
Differential Kolmogorov Equations for Transiting Processes

by

Gael D6silles

Ingenieur Dipl6me de l'Ecole Polytechnique, France (1995)
Ing6nieur Dipl6m6 de l'Ecole Nationale Superieure de 1'Aeronautique et de l'Espace,

France (1997)

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1998

) Massachusetts Institute of Technology 1998. All rights reserved.

Author . .................. ........................ ...........
Department of Aeronautics and Astronautics

April 1998

7/

Certified by ................. ................
Eric Feron

Assistant Professor
Thesis Supervisor

Accepted by............ ........................ ... ..

Chairman, Department Committeb on Graduate Student

JUL 087~8

LIBRARIES
'iB



Differential Kolmogorov Equations for Transiting Processes

by

Gael D6silles

Submitted to the Department of Aeronautics and Astronautics
on April 1998, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

This work develops a short theory on transiting stochastic processes, following standard guidelines
in the theory of probabilities and stochastic processes. Transiting processes are processes submitted
to It6's stochastic differential equations, with drift and diffusion depending on a Poisson random
process. We establish the integro-differential equations satisfied by the probability density function
of such a process, and also the one satisfied by the first passage conditional probability for a stopped
transiting process. As an application of this theoretical work, we show how existing probabilistic
models of aircraft behaviour in free flight, involving mainly Poisson and Gaussian processes but
also other probability distributions, lead to quite simple differential equations for the probability
density function of an independent aircraft, and for the probability of collision of two aircraft. The
equations are solved numerically, using finite difference or finite element methods. We also propose
other methods based on Fourier analysis.
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Introduction

One future perspective in sight in the Air Traffic Management is to release the hard constraints of

the flight, letting the pilots make their own decisions [6, 1, 17], with the help of automated and

autonomous systems aboard. The main issue here is to design alert systems to assist pilots and

controllers resolve conflicts between aircraft.

One way to address the design of such systems is to imitate the behaviours of the pilots by

statistical models and deduce from them predictions, such as speed, altitude, heading, etc. Among

the statistics of first concern, the probability density function of an isolated airplane has shown

authorizing an analytical calculation, or at least a semi-analytical one. On that statistical back-

ground, high safety standards require extreme accuracy in the computation of the probability. Two

approaches have been proposed so far : one is to simplify the hypotheses of the problem, by modeling

reality with Gaussian processes, on the purpose to achieve analytical solutions [1]; the other is to

use Monte-Carlo simulation techniques to evaluate the probabillity by trajectory launches [17].

The analytical approach, though very efficient, does not take into account natural behaviours

of the pilots, for instance taking unknown actions like quick turns or changes of altitude. These

decisions are critical as a conflict arises. Continuing improvements of computation means allow to

now consider the resolution of a more general model by well-known numerical techniques, similar

to those used in Computational Fluid Dynamics (analogies between probability density functions

and mass density of a fluid are profound). As computation power increases, the hope of solving the

problem with high accuracy and efficiency becomes more and more concrete.

Poisson processes are very frequently used in the modeling of physical systems, for they provide

a mathematical model of events with mean frequency of occurrence, and very few hypotheses are

needed on a process to be of the Poisson type [16]. While arrival times of customers in a post office

are often the academic example of such processes, Poisson processes can also model the decision

times of pilots of an aircraft, in the context of aircraft behaviour modeling.

However, as soon as Poisson processes are involved in a random process, the Chapman-Kolmogorov

differential equation satisfied by the probability density function of the problem can take a very awk-

ward form, typically infinite in the number of terms, as shown in references [4]. Poisson processes

are actually not the only processes to infere infinite Chapman-Kolmogorov differential equations.



Examples of such infinite differential equations show the catastrophic results of truncating Taylor's

expansions at a large, but finite, rank. The solutions to the truncated equation may converge weakly

to the solution of the exact equation, but the weak convergence is at the price of enormous oscil-

lations of the approximated solution around the exact one, causing the approximated probability

density function to take on negative values - among other problems.

There is therefore a need to avoiding such a global approach. Master equations, that transform

the infinite expansion of the Chapman-Kolmogorov equations into an infinite-dimensional problem,

are here shown to be a possible attack, as applied to a model of aircraft behaviour in free flight

proposed earlier.



Chapter 1

Differential Kolmogorov equation

for transiting Markov processes

The idea of the theory developed in the following lines is to find the evolution of the probability

density function of a system at position x(t) changing of dynamics at random times. The probability

distribution of the instants of change is assumed (a decreasing) exponential, that is to say the random

process of the times of change is a Poisson process. First we consider the case of a finite set of

possible dynamics driving the modile between two consecutive instants of switch. Second we extend

the formalism to the more general case of a continuous set of dynamics. Our point of view is fully

probabilistic, in the sense that the dynamics itself is not assumed deterministic. Formally, we will

identify the change of dynamics to a change of system, and with this convention, a change of system

will be called a jump. The best mental representation of the behaviour of such a mobile (or, more

technically, a stochastic process) is a moving body with a trajectory depending on a parameter (for

instance : the heading, the speed, the curvature, any geometrical characteristics of the trajectory...),

such that the parameter changes of value at "Poisson times". The mathematical background needed

is exposed in the next section.

1.1 Position of the problem, Notations

Let us consider n systems E, ... , E,, with n a finite integer. We assume that each of them can

be completely defined by a vector-valued Markov process x, (t) E Rd, thus driven by a stochastic

differential equation. We assume to know for each EY the transition probability p' (x, t I y, s), defined

as the probability that the state xj (t) is at the position x at the instant t, given that x j (s) = y

(with s < t) :

p3(, t I y, s) = P{ x(t) = x in Ej I x(s) = y in E, }



The process driving Ej is not assumed stationary. We admit that the transition probability pi (x, t I y, s)

can be developed with respect to the time delay t - s as :

p7 (x, tI y, s) = 6(X - y) + p~ ( Y; s) (t - s) + o(It - s) (1.1)

where the term pt(x 1y; s) may be formally identified to

pt (x I y; s) = lim (P (x, s + ds I y, s) - 6( - y))
ds-+O, ds>O ds

The expansion (1.1) can be held each time the system Ej has continuous sample paths. It is no

evidence that pt(xy; s) and pi(x, t I y, s) should be functions of their arguments x and y. It even

simplifies a lot further analytical developments to suppose that they are distributions. Hence, we

will use the formalism of bilinear brackets (., .) in the following. We assume all distributions to be

tempered, in the sense given by Laurent Schwarz [2]. To find the expansion (1.1), one may prefer

to expand the Fourier transform of p3 (x, t I y, s) (with respect to the space variable x) as a Taylor

series in t - s, and then invert the expansion from the Fourier domain. In some major references

[4], the Taylor expansion (1.1) is split into three separate statements, involving functions instead of

distributions.

We now suppose that the system x(t) randomly jumps from one given subsystem Ei to another

subsystem Ej with probability P{ E -+ Ej } = Aij(t) dt during dt (with Aij(t) > 0 at any instant

t. Between two consecutive jumps, x(t) is thus driven by a unique subsystem at any time. In

mathematical terms, we define :

Ai(t) = lim P{ x(t + dt) E EYj x(t) E Ei }
dt-+O dt

It is the Poisson hypothesis that allows the limit to exist. There is no requirement on the functions

Ai, (t) to be symmetric in the indices i and j. See Figure 1-1 for a graphic representation of the

process, in terms of flows.

We want to find a partial differential equation satisfied by W(x, t), the probability density func-

tion of the process x(t), or the probability to find x(t) at the position x and instant t :

W(x, t) = dP{x (t) = x}

We will also precise properties of the Aij (t), and give canonical examples of the formalism proposed.



Figure 1-1: Flow chart of Poisson transfers between subsystem i and subsystem j.

1.2 Practical treatment

1.2.1 Expansion of the conditional density functions

Let W (x, t) be the conditional probability density function defined by

WJ(x,t) = dP{x(t) = xIx(t) E Ed}

Using a Chapman-Kolmogorov equation, we may write

W3 (x, t + dt) = i 1 - E  Aj i ( t ) d tifj  (PJ (x' t + dt 1. t) , WJ(., t))

+ dt Aiji(t)(p(x , t + dt .,t), Wi(., t)) (1.2)

This relation can be easily understood if interpreted in terms of flows of particles; in that context

indeed, WJ(x, t) may be seen as the fraction of the total number of particles in system Ej that are

at position x at t. Between t and t + dt, some particles of Ek, with mass proportional to Wk(y, t)

jump from any far y to the actual position x, and then get in E,, whatever k be (j itself or i : j).

The first event occurs with probability pk (x, t + dt I y, t) by definition, whereas the second one has

probability Akj (t) dt.

Plugging the Taylor's expansion (1.1) for each pk (x, t + dt I ., t), and observing that by definition

(6(X - .), Wk(., t)) = Wk(z, t), we get

W .(x,t + dt) = Wj (x,t) + dt [((xl .; t),t W ) ) - Ai(t) W (x, t)

+ A j (t) wV(x, t)I + (dt)

Hence, by letting dt tend to zero, W (x, t) must satisfy

8WJ
t (x, t) = (p(x ., t) , W(. ,t)) + , (A ,(t) Wi(x, t) - Aji(t) W (x,t)) (1.3)

We shall comment on the formalism used in the first term later.



1.2.2 Evolution of the masses

By a straight-forward conditional expansion, the probability density function we are searching for,

namely W(x, t), reads :

W(x,t) = W(x, t) P{x(t) E E3}

where P{x(t) Ej } = pj (t) may be called the mass of the j-th system. The requirement E uj(t) =

1 follows from the definitions of these masses (probability 1 to be in any of the systems).

Let us consider the random variable J(t) defined as the index of the system where the state x(t)

actually finds itself :

J(t) = j : x(t) E Ej

The random index J(t) is a well-known death-birth process [4, 14], with (infinite) transition matrix

P(i -4 j) = Ai3 (t). One can easily see that pj(t) = P{ J(t) = j }. Therefore, the pj's have to satisfy

dt=_ - (Aij(t)pi(t) - Aji(t) pj(t)) (1.4)

that may also be seen as a law of mass conservation.

The system of ordinary differential equations satisfied by the masses Pj is thus linear, and it is

clear that, when the transfers are symmetric (Aij = Aji , V i, j), the equally weighed system of masses

pj(t) = , j = 1...n is a particular solution. The general case, however, is completely determined by

the initial distribution of masses {j}j=1...n, and is a uniform distribution at each instant t under

the necessary and sufficient condition that the transfers be symmetric and the initial distribution

uniform (p0 = I for all j).

1.3 Extension to a continuum of systems

Here, we extend the formalism shown to the case of a nondenumerable number of systems, that we

will denote E, further on, with a belonging to an arbitrary measurable set A. For instance, the

systems E, of concern could be a generic system parametrized by some real number a.

1.3.1 Writing the equations in the continuous parameter

Replacing all integer superscripts j and i by continuous superscripts a and /, we define again :

Wa(x, t) = dP{ x(t) = x x(t) E E, }

and

Apao(t) = lim dP {x(t + At) E E Iz(t) Ea
At-*o At



The same developments with continuous indices provide the equation :

W (x, t)= (p(x I ., t), W'o(., t)) + d( ALa(t) W (x, t) - AaO(t)

The probability density function now reads

W(x,t) = da Wa(x,t) a (t)

with p,(t) = P{x(t) E E,}. The mass /p(t) is again ruled by a law of mass conservation, now

reading

dp_= IA
dt d3 Aap(t) pi (t) - AP(t) P(t)) (1.6)

with

Ad/3 po(t) = 1 and V/, po(t) > 0

The rule that the total mass f dp pol(t) be 1 is consistent with any nonnegative solution to (1.6).

Indeed, by simple permutation of indices a and /3,

da p(t) dA d13 AcO(t) =

Therefore the derivative of fA da p, (t) is zero as we may derive from the integration of (1.6) with

respect to a.

We can prove (1.6) in a very simple way : by the definition

1p(t + At) = P{x(t + At) E E,}

= d3P{x(t + At) E EI x(t) e E} P{x(t) EO}

SdoP{x(t + At) E Ea I x(t) E EO} pp(t)

But the conditional probability factoring p~ is, by the Poisson hypothesis, of first order in At with

P{x(t + At) E Ec I x(t) E E} = AOp(t) At + o(At)

Hence:

pa(t + At) = At d3 Ac(t) )p(t) + o(At)

W x(, t)) (1.5)

d o (t)JA da A a(t)



Regardless of the state a at time t, x is in at least one state 3 at time t' 1, therefore :

Sd/oP{x(t') E EO Ix(t) E E,} = 1

Then by multiplication of p, by 1, we have

Pa(t) = d3 P{x(t') E E Ix(t) E Ea}a(t)

With t' = t + At, substracting the equalities and dividing by At yields :

1 (P,(t+ At) - Pi(t)) = / d3 (AO(t) po(t) - A,(t) p (t) ) + o(l)

clearly leading to the differential equation (1.6).

Now, we can check the relevance of the formalism regarding the intuitive significance of the

probability density function W(x, t). By the definition of the conditional probability, we have indeed :

dP{ x(t) =x and x(t) E Ea }
dP{ x(t) E Ea }

= dP{x (t) = x Iz(t) Ea }

= We (X, t)

Therefore

L EA
= dP{ x(t) =x and x(t) E Ea }

JaEA

= dP{x(t)= x}

= W(x, t)

(1.8)

as expected.

1.3.2 Redundancy of the definitions

It is also straight forward to see that, instead of solving two systems (1.5) and (1.6), we can replace

the conditional probability density function W' (x, t) by

Wa(x, t) = pao(t) Wa(x, t) = dP{ x(t) = x and x(t) E Ea } (1.9)

This new probability satisfies the same equation (1.5) as Wa (x, t). Let us consider indeed the change

of unknown function W (x, t) = v,(t) W' (x, t), where vi (t) is still to be determined. By integrating

(1.5) with respect to the space variable x, since f dx W' (x, t) = 1 for each time t, the function v. (t)

'A better image of the fact is that the state x(t) is spread over all possible states 0, with given probabilities.

(1.7)

P,(t)W (x, t)



must verify :

dt = A do (AO,(t) (t) - Aai3 (t)va(t)

If we impose the initial condition : v, (0) = , (0), the two functions of time Va and Pa are solutions

of the same system of integro-differential equations with the same initial conditions, therefore2 they

are equal. This proves the relation (1.9) between W' and W'. After the change of probability (1.9),

the total probability density function reads simply :

W(x,t) = WA (x, t)

The integration of (1.5) with respect to the space variable is a mnemonic technique to retrieve

the evolution of the masses. As it is intuitive, the integration of the joint probability defined in (1.9)

with respect to x gives the probability of being in system E'. Notice that the value 1 of the integral

f dx Wa (x, t) (or p) is precisely an equilibrium of equation (1.6). Losing this equilibrium is the

trick to solve two systems of equations (1.5) and (1.6) at the same time. From now on, we abandon

the heavy tilded notation, and suppose by convention that Wa(x, to) bears the new initial condition

(former, multiplied by p (to)).

1.4 Discussion

We shall now make a few comments on the equations (1.5), and the bracketed notation in direct

or reverse order used in the previous paragraphs. The first remark goes to the structure of the

Kolmogorov equations (1.5), seen as balances. Then the role played by the distribution p' as a

differential operator is pointed out. The adjoint of p' is also fully specified, with the so-called

backward version of the equations (1.5) in mind. Last but not least, the notation f used with the

transition rates AO is precised, since it is non-standard.

Similar comments could be formulated for the discrete case. We will discuss within the continuous

context however, and this each time that a double viewpoint has no further significance than a purely

formal analogy.

1.4.1 Structure of the Kolmogorov equations

The structure of the system is to be decomposed into two categories of terms : in one hand, the

terms (po(x (x , t), W'(. , t)), describing the evolution of the probability density functions inside of

each system Ea, and in the other hand, terms describing incoming and outcoming flows, namely

f dp Ap(t) WO(x,t) - Aap(t) Wa(x, t). It is remarkable to observe that, in absence of exchange

2 under appropriate conditions of smoothness of the transition rates Ac3



rates A, (t), the only remaining term is (p(x I ., t) , Wa(., t)). And this situation corresponds to a

"decoupled" system CE (no exchange with other systems). The equation for Wa(x, t) then reduces

to
atW

But as it is extensively shown in references [4, 10, 14, 15], the probability density function satisfies

a forward Fokker-Planck equation in this case :

W = - div(a(x, t)W(, t)) + 1div ( b' (x, t) grad W (x, t))
at 2

where aa (x, t) and ba(x, t) have appropriate dimensions (ac is a vector, b' is a matrix). This clearly

identifies p (x . ,t) to

(p (x.,t), V (.)) - div(a"(x,t)V(z)) + 1div ( b(x,t)gradV(x)) (1.10)

Hence, the system of equations can be readily constructed, by adding and substracting proper

transfer terms AX(t) Wa(x, t) to the differential equation describing a closed system Ea. With a

mass balance requirement in mind, one can write :

OWeS(x, t) = Fokker-Planck of closed E, + Incoming flows - Outcoming flows

This practical method does not need the expansion of p' (x, t I y, s). Well-known probabilistic systems

with continuous sample paths often present themselves by their Fokker-Planck equation, which is

exactly the first term needed on the right-hand side.

1.4.2 p(x I y; t) as a differential operator

The definition of the transition probability pa (x, t I , s) is such that

Vt > s, /dp(x, ty, s) = 1 (1.11)

as a result of the conditioning. Technically, we have indeed

pa (x, t and y, s)
pa(zt|y,s)= P{y,s}

where the denominator is sometimes viewed as a normalization factor [16].

For we have expanded the probability p' (x, t I y, s) as :

po(x, t I Y, s) = J(x - y) + p (I | Y; s) (t - s) + o(It - s)



the equality (1.11) implies :

Vt, Jdxp(xly;t) = 0

or more properly :

Vt, (Pt(.IY;t),xRd(.)) = 0 (1.12)

where XRd is the characteristic function of the set Rd.

This equality points out the nature of differential operator of the distribution p (. I y; t). The

reader may want to keep in mind that the operation of the distribution on a smooth function W is

a linear combination of first and upper order derivatives of W. The use of the bracket instead of a

more detailed notation in terms of derivatives is only to allow more general properties, in the case

of non-standard processes.

1.4.3 Adjoint of the operator p(x Iy; t)

Let U(x) and V(x) be two twice continuously differentiable functions over IRd. According to (1.10),

the usual inner product between U(x) and (p(x I .; t), V(.)) is given by :

(U(x) IP(xI.;t), V(.)) = d [ - div(a (x,t) V (x)) + I div ( b' (x, t) grad V(x)) ]

By Stokes' formula, and assuming that U(x) and V(x) and their derivatives vanish as xz -4 00, we

can write

d dxU(x)div ( a(x,t) V (x)) = - dx V(x) a (x, t),U(x)

(1.13)

Sdx U() div (b'(x, t) grad V(x)) = V(x) b (X, t) &i U()
Rd 

Ld i

By the definition of the adjoint p(x I y; t)* of p (x I y; t), we then have

(p(. I y; t)*,(.)V(y))= d V(x)[ aI (xt) i () 'y (x, t) ,j U(x) ]

identifying the adjoint as the operator :

(p(. Iy;t)*, U(.)) a= (x, t) O, U(x) + b? (x, t) Oij U(x) (1.14)

As a convention on notation, we will write (U(.), p(. I y; t)) instead of (p(. I y; t)* , U(.)) 3

3 This is similar to the "ket-bra" notation used in Quantum Mechanics



1.4.4 Integrability of the transition rates

The notation f d/ A,0 in a common sense is proving irrelevant, since the transition rates Ao cannot

be summable. A definition of the integral as a principal value is necessary. The case of the discrete

jumps clarifies the origin of such an ill-integrability.

Indeed, regularly integrating the equality

A,0 (t) = dP{x(t+At) E I x(t) Ea } +o(1)

with respect to o would lead to

do A3 (t) = + o(1)

This equality clearly denies the convergence of the integral f d/ A, (t), since the left-hand side

is independent of At and the right-hand side diverges as At -+ 0. The discrete case gives a more

intuitive explanation of this phenomenon : writing, as in the continuous case :

S Atj(t) At = 1 + o(At)

where the discrete sum includes the index i = j, after dividing by At the equality becomes nonsense

as At -+ 0. But in the partial differential equation found (1.3), the coefficient Ajj does not appear,

and is therefore useless to define. By the definition of the transition rates, we must have

S: Aij(t)At < 1
i .j

(the probability to jump into another state during At small is less than one). This is certainly

true as At -4 0, if no Aij (t) is infinite. The use of a non-defined Ajj (t) only provides a convenient

start, thinking of flows when writing equation (1.2) : the factor 1-Cij Aij (t) At actually represents

Ajj (t) At. However, one may want to skip this half-rigorous step and write the relation (1.3) directly,

where indeed no A13 (t) is needed.

As limits of discrete Riemann's sums, the integrals over the parameter / shall exclude the current

value a in the continuous Kolmogorov differential equation - as are defined principal value integrals

[2, 4].

1.4.5 Simultaneity of jumps and travels

One may address a legitimate question about the particle point of view. During At, we said that a

given particle first travels from position y to position x, and then possibly jumps from a-th system

to 0-th system. The question indeed arises whether the order travel-jump imports. The system of

partial differential equations shows, in fact, that the behaviour of the system is independent of the



order travel/jump. The reason is that we assumed continuous sample paths inside of each system.

As At tends to zero, the distance traveled in a system before or after the jump goes to zero; it is

the way this distance goes to zero that influences the probabilities, not the fact it goes to zero.

1.5 Technical proof of the Kolmogorov equation

Here we develop a simple but technical proof of the relations (1.5). This proof follows well-known

references (for instance [4]), though extended to the case of a transiting process without discontinuity

of the trajectories. The first step is to derive the equations (1.5), often called of the forward type,

from a mathematical synthesis of the hypotheses of the problem. The equations (1.5) have an

equivalent backward form, that we developp as well. The backward version is then used to find

the equations satisfied by a probability of first passage, a very important statistics related to the

problem of collision or first encounter of two objects. The notions are detailed in the corresponding

paragraphs.

These technicalities complete the formalism proposed so far, as specific extensions of a standard

theoretical corpus known as It6's calculus [10, 15].

1.5.1 Forward expansion

We start with assuming the following first order forward expansion of the conditional probability

with respect to the time delay At :

W(x,a,t + At z, ,t) = 6(a-y) (x-z) + 6(a - 7)p(xlz,t)At

+ 6(x - z) Aa(t)At - 6(a - y) 6(x - z) f d A,(t)At + o(At) (1.15)

where the subscripts x and a give the points the Dirac's 6-distributions are centered at. This

expansion is the mathematical translation of the hypotheses of the problem, and is thereby of

axiomatic nature. The integral in the last term is a principal value centered at a.

Using the fundamental Chapman-Kolmogorov relation

W(, a, t + Aty,0,s) = dzdy W(x,a,t + Atz, 7, t) W(z , t Iy,,s)



characterizing Markov processes, we can write :

W(x,a,t + At I y,, s) = W(x,a,t I y,,s)
+ At dzp'(xIz,t)W(z,a,tly,0,s )

(1.16)
+ At fdy A Y(t)W(X,7, t Iy,0, s)

- At J dr A (t) W(x,a,t|y,/,s) + o(At)

The integrals are principal values, including those of the Chapman-Kolmogorov relation. The as-

sumed summability of the probabilities ensures that principal values are equivalent to simple inte-

grals. Again, replacing the mute index 77 by y, dividing by At and taking the limit At --+ 0, we get,

with the bracketed notation :

atW(x, , tly, 0, s) = (pY(x I ., t), W(., a, t y, , s) )
(1.17)

+ ]d7 [A-o (t) W(x, 7, t y, 3, s) - Ay (t) W(x, a, t I y, 3, s)]

This equation is often referred to as the forward Kolmogorov differential equation. The initial

condition follows from the forward expansion (1.15) :

W(x, a, t z,7, t) = 6(a - y) 6(x - z)

The equation (1.5) is obtained by integrating (1.17) with respect to y and 3, after postmultipli-

cation by W(y, /, s). The reader has observed that the derivation of the equation is a consequence

of the expansion (1.15), which concentrates all the hypotheses we have made in the first section :

in particular, continuous sample paths are responsible for Dirac's distributions 6. The expansion is

a mathematical translation of the problem, and suggests how we can modify them to obtain other

properties (for instance, lose the continuity requirement by replacing the 6's with other distributions

with mass 1).

1.5.2 Backward expansion

Finding 0,W(x, a, t I y, ,, s) is the purpose of the backward expansion of the conditional probabilities.

Provided that s < t, the backward equations thus describe the evolution of the probabilities as the

time goes backward (up to a simple change of sign in the convective terms).

This is again by the mean of the fundamental Kolmogorov equation that we can write for As > 0

and s + As < t :

W(x,a,t Iy,,s)= dzd W(x,a, tIz,,s + As) W(z,,s + Asy,3,s)



The forward expansion can then be applied to the second term, while the first term is assumed

to possess a Taylor's series :

W(, a, t I z,-, s + As) = W(x, a, tI z, y, s) + AsOW(x, a, tI z,y, s) + o(As)

Plugging the expression for the forward expansion and the Taylor's series in the Kolmogorov relation

provide, after rearrangements,

W(x, a, t y, 0, s) = W(x, , t y, 0, s)

+ As 8,W(x,a,tly, 3,s) + As dzW(x,a,t z, ,s) p(zIy,s)

+ dY A) ,(s) [W(x, a, tIy,7, s) - W(x,a, t y, , s) ] + o(As)

Simplifying W(x, a, t Iy, , s) on both sides and dividing by As gives the backward differential Kol-

mogorov equation :

a,W(x,a,tly,,s) = -(W(x,a,tjl.,,s), p,(. y,s))

-/dy AJc ,(s) [W(x,a, tly,,s) -W(x,a,tly,3,s)] (1.18)

One can also show that the backward expansion implies the forward expansion. Hence both

expansions are equivalent. As a parallel with the first order series (1.15), it is easy to see that the

backward expansion reads :

W(x,a, sz,,s+ As) = 6(7-a)6(z-x) - 6(-a)p'(xlz, s)As

- J(z - x) (1 - 6(y - a))Ap,(s) As + o(As) (1.19)

1.5.3 Probability of first passage

The purpose is now to find the equations of evolution of the (conditional version) of a probability

of first passage, ie the probability that a process with Poisson transitions crosses a fixed boundary

for the first time (also known as first encounter). To this purpose, it is necessary to define a stopped

process [15], which intuitively is the process itself up to the time 7 of the first encounter, and

remains stopped at the position of the encounter after T. Like the process, the time 7 is random.

The equations are obtained with the use of the backward expansion. Some restrictive hypotheses are

necessary.

Let x(t) be a stochastic process, with continuous sample paths and transitions between states, as



in the previous paragraph. Let DC be a closed subdomain of Rd, and 7 the first hitting time [4, 15] :

7 = inf{t : x(t) E DC}

with 7 = +oo if the set is empty. By continuity of the process, we can define a stopped process ((t)

associated with x(t) [4, 15] such that

x(t) if t < r

The fundamental property of the stopped process is that if ((t) ever encounters the boundary dDC, it

remains stuck on it forever. Let 7r(y, t) be the conditional probability of first passage of the boundary

ODC, or the probability that the stopped process ( hits the boundary ODC exactly once between the

instants 0 and t, starting from the position y :

r(y, t) = P{((t) E DC I (0) = y }

Following well-known references [4, 5], to find what equation ir(y, t) satisfies, it is sufficient to

examine the evolution of the expectation of a smooth function of the process (. Let indeed f ((t), t)

be a twice continuously differentiable function of the process 6(t) and the time t > s. The process

has the initial condition c(s) = (y, 0). Denoting 6y,O,,(t) the process with fixed start, let 4(y, /, t, s)

be the expectation of f(py,,s(t), t) at t :

S(y,3, t,s) = E[ f (y,,s(t),t)] = dxda f (x, t,s) W(x, a,t y,, s) p (t)

where we can replace the product W(x, a, t j y, /, s) pa (t) by the simpler W(x, a, t y, , s) after a

change of convention on the function W, as hinted at the beginning of the section 1.3. By the

backward expansion, we have :

, (y, p, t, s) = E[ Of (6v,,s (t), t)] - ((. , , t, s), P (. I y, s))

- dy A ~ (s) [ (y,7, t, s) - (y,0, t, s)] (1.20)

But if the transition probabilities of the problem do not depend on s (time invariance of the

process, see [5], pp 173-176), the two processes y,O,,(t) and y,f,o(t - s) have same distribution of

probability. Therefore :

(y, , t, s) = '(y, 0, t - s, 0)



Then s,4(y, ,, t, s) = -ot (y, 0, t - s, 0), and denoting 4(y, 3, t - s, 0) = D(y, /, u) with u = t - s,

u-,(y, , u) = -E[Ouf((y,o,o(u), u)] + (I(.,/3, u), p~(. y))

+ dy A~p7 [ (y, 7,u) - b(y, , u)

With D = RId \ DC and the characteristic function XD of D, we consider the sequence :

fe,n( y,0,o(t),t) = XD (y,,o (t)) e - n f pe(,,p,o(t))

where p, (x) is a twice continuously differentiable function such that :

(1.21)

=0 if d(x, Dc) > c

> 0 otherwise

The expectation of the function fE,n (y,,o(t), t) is an approximation of the probability

P { y,,o(t) ED }

It is indeed straight forward to check the following properties :

1. If y,P,o(t) ' D, fE,n( y,,(t), t) = 0 because of the characteristic function XD factored.

2. If we denote 7, the first time the process approaches the boundary within a distance less than

c (then 7, < 7 by continuity of the sample paths),

t > T~ r pE(= ,f,o(t)) > 0 and lim fe,n( y,,o (t),t) = 0

Hence the integral keeps the memory of the first (approximated) encounter.

3. Similarly,

t < f~ P (y,p,o(t)) = 0 and lim fL,n(y,P,o(t),t) = 1

The continuity of the sample paths of the stochastic process y,O,o(t) also justifies that r, -+ 7 as

C -+ 0.

Calling 4,,,(y, 3, t) the corresponding expectation, and observing that [5]

E [ tfe,n( y,o(t), t)] = -n PE(Y) DE,fn(, /, t)



we have, for y such that d(y, DC) _ E : p, (y) = 0 therefore

E[ tfe,n (y,o(t),t)] = 0

It follows :

at c,n(Y, /, t) = (,n (.,,t) , pPt(- i)) + J dy- AO [ ,n(Y, 7, t) - ,n(y,, , t) ] (1.22)

because But as n -* oc, using the properties enumerated it is easy to check that

~E,n(y , t,) -+ E(y,3, t) = P{ y,,o(t) E D, }

with D, the c-neighborhood of D : DE = { x E I d : d(x, D) < e }. By taking the limit n -- co in

the equation, -,(y, ,, t) must also satisfy (1.22). Finally in the limit c -+ 0, as we hinted 7, tends

to 7 and

4,(y, 0, t) ---+ 1 - 7r(y, 3, t) = 1 - P{ y,,o(t) E Dc

The limit 1 - 7r(y, /, t) satisfies the limit equation, therefore 7r(yp, t) also satisfies the limit equation :

at r(y, , t) = (r (.,, , t), Pt(. I )) + / dy AO, [ r(y, 7, t) - 7r(y, , t) ] (1.23)

It has been proved in a previous section that (1(.), pt(. I y)) = 0 indeed.

The probability of passage is obtained by the decomposition :

7r(y, t) = P { (,o(t) E D c

J d/, P{ y,0 (t) E D I Cy,O(O) E EP } P{ y,(O) E EP } (1.24)

= d3 (y,3,t) P{ y,0o(0) E E}

1.6 Stability

This brief section is devoted to some stability aspects of the Kolmogorov equations, in a sense

defined. The main issue is the convergence of numerical solutions of the corresponding numerical

problems to the exact probability density functions or other statistics, such as W(x, t) and 7r(y, t),

when it is not possible to find direct analytical expressions.

First we recall the use of the premultiplication convention (or the change of probability), that

allows W(x, t) = fA da W'(x,t). Now, denoting W(.,:) = {Wa(., :)}cEA the time-dependent family

of functions W'(., :), where the dot temporarily replaces the space variables in this section, and the



colon the time, the system can be clearly put into the form :

d
--W(., t) = A(t).W(., t) (1.25)

dt

where A(t) is the (time-dependent) integro-differential operator defined by

A(t).{W (X,t)}aEA = { (Pt(x I.,t), Wa(.,t)) + A d3 Aoc(t) WO(x,t) - A (t) W (x,t) }aEA

This operator is linear in W globally (hence a specific notation). Any solution of problem (1.25) is

therefore unique, and completely determined by the initial conditions W(., to).

We now consider the set X of all possible families W(.) such that

fda dx IW (x) < 00

and for such families we define II W II= fA da f dx IW (x)1. Endowed with this norm, the set X

is a normed R-vector space. For families of probability density functions (with the convention of

premultiplication by pe (t)), the absolute value is not necessary since all quantities are nonnegative,

and the norm must be 1.

By construction, the integro-differential operator A(t) is the infinitesimal generator of a semigroup

T(t) [13], that satisfies the stability condition4

Vt >0, II T(t)-W 11 <11 WI (1.26)

This inequality even becomes an equality for true probabilities, since

Vt 2 0, /dx da W (x,t) = 1

if W is a solution of (1.25). In other words, if the initial distribution W is a family of probability

density functions, the solution to the system of integro-differential equations (1.5) is still a family of

probability density functions. Such a semigroup is a particular case of contractions.

1.7 Important applications

Now we show two important classes of applications, namely deterministic systems and Gaussian

systems Ea. The second case (It6 processes) is a generalization of the first one.

4 With appropriate smoothness of the coefficients of the differential operators and the transition rates.



1.7.1 Case of deterministic systems

In the present subsection we show how to deal with determistic systems, more precisely systems Ea

driven by ordinary differential equations ±, = f ((x, t) (not necessarily linear), where the vector

fields f'(x, t) are assumed to be lipschitzian5 . In this context indeed, the transition probability

pa(x, tly, s) should concentrate all its mass at the point x such that

x - y = f" (X(T), T) d

The continuity of the vector field at the point (y, t) allows to therefore expand the transition prob-

ability as

p'(x, t + dt I y, t ) = 6(x - y) - '(x - y).f '(y, t) dt + o(dt)

where . denotes the scalar product. Hence, by definition, po(x I y; t) = -6'(x - y).f0(y, t). The

presence of the gradient of the Dirac's 6-function 6'(x - y) allows to replace y by x in the vector

field, such that
d

pt(xIy;t) = -6,'( - y).f ,(x,t) = - 6'(xi - y) fl (X,t)
l=1

The partial differential equation (1.3) satisfied by WJ(x, t) takes the form:

OWj (, t) = -div(f W) (x, t) + A) ij(t) Wi(x, t) - Aji(t) WJ(x, t) (1.27)
Ot 

iAj

In the continuous case :

pa(x, t + dt I y, t) = 6(x - y) - 6'(x - y).f'(y, t) dt + o(dt)

leads to

OW , xt) = -div (fa Wa) (x, t) +  d O Ao a ( t ) W ( x , t ) - Aa (t) W (x, t) (1.28)

1.7.2 It6's stochastic partial differential equations

Here we deal with a general class of stochastic differential equations, often called It6's stochastic

partial differential equations [4, 10, 15]. This class of stochastic processes is very important in

practice, for it fairly models many physical systems and allows a thorough calculation of many

important statistics related to it.

5 This allows the systems Ya to have continuous and unique sample paths



In the case of continuous transitions, let x' E E, be a stochastic process such that :

dx = a'(xt,t) dt + b(xZt,t) dWt

where Wt is a n'-dimensional standard Brownian motion [15], and b(xt, t) a d x n' matrix. we

have :

p'(x, t y, s) = 6(x - y) - 6'(x - y).a'(x, t) (t - s) + 6"(x - y) ba(x, t)bP(x, t)T (t - s) + o(t - s)

One may refer to [4], pp 96-97, for a proof. The distribution p(x I y, t) identifies to :

p(x I y, t) = -6 ' (x - y).aa(x, t) + 6"(x - y) ba(x, t)ba(x, t)

and leads to the system :

at (x,t) = -div(aa W)(x,t) + 2div(babaTgradW')(x,t)

+ d/3Aa (t) W (x,t) - A0 (t) Wo(x,t) (1.29)

1.8 Academic example

Here, we consider a mobile traveling along a straight line, and whose speed, though it keeps a

constant magnitude, sees its sign changing with Poissonian occurences. Thus the speed remains at

E v for a random time that follows an exponential law (c E {-1, 1}), and then toggles to the value

-e v, at which it remains an exponentially distributed time, and so forth. The Poisson distribution

has parameter A. We want to find the probability density function W(x, t) for the position of the

mobile, at each instant t, given an initial distribution W(x, 0) = Wo(x). We assume that initially,

the probability that the mobile has speed +v is equal to the probability it has -v.

1.8.1 Treatment

We consider the two deterministic systems

(1.30)



and the two corresponding conditional density functions W+ (x, t) and W-(x, t). According to (1.3),

we have

aw+  aw+
t ax +(1.31)

OW- OW-w = - v- + A (W - W- )
at zx

The masses also verify

dp+ = A (p- -+)
dt

-
dt

The initial conditions suggest: p (0) = /u-(0) = . The initial equilibrium perpetuates forever,

according to the later system. Then W(x, t) = W+ (x,t) + W-(x, t). From the former system,

we have immediately

aW OZ
at Ox (1.32)
at ax

with the convention Z(x, t) = W + (x,t) - W-1(x,t). Taking the time derivative of (1) and the

space derivative of (11), we can eliminate Z and get

a2W 2 2W aw
= v - 2A

at2 ax 2  at

This equation may be solved6 using the Fourier transform w(s, t) of W, also called the charac-

teristic function of W(x, t) : w(s, t) = Ew[eisxt], where the process Xt is supposed to have W(x, t)

as a probability density function. We find :

w(s,t) = hi(s)e- (A -
A2v22)t h 2 (S) e- (A A2v2s2)t

with hi and h2 two arbitrary functions of s. Let us identify those two functions, using the remaining

information. The initial distribution Wo(x) has Fourier transform wo(s), therefore hi (s) + h2(s) =

wo(s). Moreover, the Fourier transform z(s, t) of Z must satisfy

Ow
isvz(s,t) = (s,t)

= hi(s) ( - A + A2 
- v2s2) e-(A-/ v22)t + h 2 (S) (A - 2 

- v2s2) e - (A" /
A2v2s2)t

6 At least for the time dependent Fourier transform w(s, t).



At t = 0, we assumed the masses equally distributed, that is W+(x, 0) = W-(x, 0), or Z(x, 0) = 0.

Therefore z(s, O0) = 0, that is

hi(s) (- + 2 -v 2 s2 ) + h2 (S) ( - v2s 2 ) = Vs

Hence

h2 () - -1 + 1 - v 2s 2/A 2

h2(s) = hl(S)
1 + 1 - v 2s 2/ 2

The functions hi and h2 can then be completely identified to

2 A
1,2(8 ) -= W8 ) 1 i(1 - -2--)

We come up with the following expression for w :

- + sinh (At/ 1 -r2s2)
w(s, t) = wo(s) e-  cosh (At 1 - r2s2) + s -r2s

2

with r = . Hence W(x, t) is the convolution of Wo(x) by the Green function F(x, t) of the problem,

whose Fourier transform y(s, t) can be written :

e-xt cosh (At1 - r2s2) + when Isl <

sin (At Vrw 1221)e- x t cos (Atvr 2 s 2 - 1) + when Isi >

The function -y(s,t) is real, due to the symmetry of the problem (same intensity of the speed

rightward and leftward, and same initial distributions).

1.8.2 Comments

It is interesting to examine the asymptotic behaviour of the characteristic function. If the initial

distribution is a Dirac 6 (that is to say, when wo(s) = 1), it is indeed easy to check that

w(s,t)- e-At (eivst + ezvst)

Therefore, the total probability density function W(x, t) is the sum of a probability with a Fourier

transform vanishing when Isl -+ oc and two dumped moving "peaks" (two Dirac's 6), with speed v

and opposite directions. The dumping coefficient is equal to e- At, which is the total probability that

the mobile never changes its speed. Each peak represents an equal part of the initial distribution

moving at constant speed from the origin, with no change in the direction during the move. The

moving mass loses weight all along the trajectory, as it becomes harder to keep the same speed when



time goes. The loss is proportionnal to 1 - e- t.

We have run a Monte-Carlo simulation, with particles starting at the origin, and with equal

probability to start leftward and rightward. At each time step, a random trial decides if a particle

changes its speed, in accordance with the Poisson distribution. The time step is chosen small enough

to avoid a significant bias in the distribution of the instants of changes, when time is sampled. At

a given date t, the simulation is stopped, and the particles are counted in each interval [Xk, Xk+1)

of the space domain. The (fast) Fourier transform of the resulting density is compared to the exact

solution on figure (1-2). The distribution obtained from the simulation is also plotted on figure (1-3).

The two sharp peaks are clearly visible.

We also solved the partial differential equation (1.31) numerically, by a standard first order

forward Euler scheme. A comparison of the numerical solution with the simulation is plotted on figure

(1-4). In this case, the initial distribution was Gaussian; this explains the significant extension of the

two peaks. Higher order forward Euler schemes were then studied, with no significant improvement.

On the contrary, instability was a reason for increasing the number of iterations needed. The figure

(1-5) shows these results.

In all cases, the following values were chosen :

A= 20 s - 1 v = .5 m.s- 1
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Figure 1-4: Comparison between the distribution obtained from the simulation and a numerical
resolution of the differential equations (1.31). The initial distribution is a Gaussian (hence "fatter"
peaks).
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Chapter 2

Probabilistic models for air traffic

control

2.1 Modeling uncertainty

We may apply the framework shown in the previous chapter to the case of air traffic control, where

the behaviours of pilots and aircraft can be described in terms of probability. Poisson processes play

a key-role in this context, conveniently modeling events occurring with a mean frequency A.

In the following, we use the model and the assumptions proposed earlier [6, 1, 17]. In particular,

the planes are treated by pairs host/intruder, where the host has a well-known probabilistic behaviour

while the intruder may take unexpected actions. The main issue of the modeling is to compute

WH(x, t) and W (x, t), the respective probability density functions of the host and the intruder - in

fact, their evolution in time and space, as described by integro-differential equations, but also the

probability of collision for the pair, as defined in [6].

Let us assume the host is flying with initial heading H, at altitude hH and initial position

(XH, YH) at that altitude. We denote 0I, hi, and (xI, yl) the corresponding variables for the intruder.

We now briefly recall the model used. Each plane has a nominal speed, with fluctuations assumed

to be Gaussian, with standard deviation a, = 15 kts. Only the along-track position is affected by

these fluctuations. The speed, though imperfectly known, is assumed to remain the same along

the trajectory. The cross-track position is also not completely deterministic, and is assumed to

be normally distributed with standard deviation actp = 1 nmi. The imperfect knowledge of the

intruder's behaviour is modeled as follows : the plane may engage changes of altitude with a mean

frequency of A = 4 h-1, as well as changes of heading with the same mean frequency. When changing

of altitude, the final altitude is random, with uniform distribution between 0 and 10, 000 ft. The

heading changes do not have a uniform distribution, but favor left or right turn between 5 and 20



degrees. In case of high collision risk, controllers may submit orders to the pilots of the host airplane,

orders to be executed after a random time following a gamma distribution with mean 1 min and

such that the orders are executed within 2 min with 95% probability (flight crew response latency)

[17]. The action to take may also be suggested by an automatic system of conflict alert, aboard. As

in this paragraph, we will use the subscript H for the flight parameters of the host aircraft, and the

subscript I for the intruder.

We now construct the system of equations the probability density function should satisfy, follow-

ing step by step the procedure described above : first derive the Fokker-Planck equation of a plane

with fixed heading and altitude, second add exchange terms to obtain the system.

The variables of the problem have to split into two different groups : the variables (x, y), with

Gaussian distributions, and the variables driven by Poisson processes, namely 0 and h. Observing

that a plane with fixed 4 and h has a well-known (probabilistic) trajectory, we will consider from

now on a continuous set of systems EP,h modeling the aircraft with heading 7 and altitude h.

The possible values of the altitude are equally distributed over [0, 10, 000 ft]. In the system EP,h,

according to the model the aircraft follows the stochastic differential equation :

dXt = VH,I (dt + dWt,) (2.1)
IVH,II

where VH,I denotes the vector speed, and dWt/cl, the one-dimensional Standard Brownian Motion'.

The constant c represents the time unit, playing the role of a scaling factor; in our context, c =

1 h. The nominal speed is assumed horizontal, ie with coordinates VH,I = vH,I (cos 4, sin 4, 0).

The linear, differential equation (2.1) leads to the following Fokker-Planck equation for system

(¢, h)[4, 15] :

(X, h, t) = -VH '.VW h(X, h, t) + V.B VW¢'h(X, h, t) (2.2)
at 2

where X = (x, y), a2 = col2, and B is the 2 x 2 symmetric, diffusion matrix

B cos24' sin4 cos4)

= sin 4 cos 4 sin 2 4'

Observe that B = u uT, if u stands for the unit vector VH,I/IVH,II with 2D-coordinates (cos 4, sin 4).

1 As in the previous chapter, this refers to a Gaussian process with mean and standard deviation proportional to

time. The coefficients of proportionality, called drift rate for the mean and variance rate for the standard deviation,
are respectively 0 and 1 in arbitrary units in the case of Standard Brownian Motion. The abstract process must be

scaled by physical constants to obtain a physical process, in particular a length for the standard deviation and a speed

for the drift rate. This is the role of the constant c.



The last term of equation (2.2), multiplied by a2/2 is thus a short-hand for :

02W O2W 2 W ( 9 0) 2

cos2  + 2 sin 4 coso y + sin 2  y cos ? ix + sin 0y W

In equation (2.2), the redundant superscript h is used to recall that the altitude is a random

variable with Poisson behaviour, and hence deserves a particular treatment.

Also, space derivations do not hold for the altitude h. The first order term is traditionally called

the drift term. The second order term is known as a diffusion term (hence the name of diffusion

matrix for B). The uncertainty in cross-track position can be taken into account in the initial

distribution WA'h(X, h, t = 0).

We now have to state what exchange rates the model imposes here. As for the intruder, we have

Intruder: A( ,h -+ ',h')(t) = A k(4' - 4) u(h)

where k(O) is the probability density function used by Yang and Kuchar to describe the preferred

angle of turn, and u(h) the uniform distribution over the possible altitudes h. Thus, u(h) is a

constant that will be denoted U. Note that the function k(O) is even.

The relations of the transfer coefficients A(V, h -+ 0', h')(t) to the model are very intuitive :

during dt, the probability to change the heading from 4 to 4' and the altitude from h to h' is

k(0' -4) u(h) - since the altitude h is a uniformly distributed random variable. But this probability

has to be multiplied by that of the actual decision to maneuver, namely A dt. Hence the coefficients

for the intruder.

Now, for the host, suppose the maneuver thought of to prevent from collision is a left turn of ¢

degrees from present heading, at a constant altitude hH. Then only two headings are of concern, 4'H

and OH + ¢, and we only have to describe the transition between these two angles. We then consider

only WC
H,hH and W '

H+OhH, and the corresponding transfer coefficient A(OH, hH -+ OH- + , hH)(t).

If to denotes the time when pilots are notified to take action, we have

A(OH,hH -+ OH + -, hH)(t) { before to

A y(t - to) after to

All other transfer coefficients are zero - including A(4H + 0, hH -+ OH, hH)(t) (pilots do not turn

right back). Remark that the instant to, which may be seen as an instant of switch between two

models, is entirely determined by the security system (or the controller). But in turn this is an

independent event (intruder plane continuing on dangerous action) that determines the decision of

the system (the controller). The host is not a closed-loop system.

The initial distribution of the time-dependent "masses" f dX W'h (X, h, t) remains to be set up.



The initial heading is assumed to be a well-known bH,I; the altitude, however, suffers from some

uncertainty (due to GPS) assumed to be normally distributed around a mean hH,I, with standard

deviation 30 m. Regarding the other uncertainties (a, O'tp), we chose to neglect this term : in

particular octp > 30 m indeed. Hence, we take the initial distribution

Sdx W ' h (X, h, t = 0) = 6[(, h) - (H,I, hH)]

2.1.1 Resulting system

The model discussed in the previous paragraphs leads to the following system of integro-differential

equations, for any t :

Intruder

-VI.VW,h + VB VWh + V.B U dV'dh' k(?' - 0) (WI ' 'h' _ Weh) (2.3)
at 2

Since both indices 0 and h are continuous, these equations form a global integro-differential system

with continuous coupling between equations.

Host before to

OWbH,hH 2
= _VH.VW"hH + 2 V.B VW ,hH (2.4)

at 2

This is a simple Fokker-Planck equation, to be solved for the altitude hH only (null initial conditions

at other altitudes make the solutions trivial).

Host after to

Denoting 'H + q = Of, we have two coupled partial differential equations

W'H'hH = -VH.VWH h H  
V.B VW H,h (t t) W

H h  
(2.5)

at 2

and

OW If,hH =2
= -VH.VWIf"hH + V.B VW fhH +Ay(t - to) WHhH (2.6)

a 2

Recall that the nominal velocity vectors VH,I as well as the diffusion matrices B depend on 4.

The total probability of presence of the aircraft is, in both cases, given by

W(X, h, t) = fd W h (X, t)



2.2 Reduction of dimensionality

The host aircraft has rather simple equations describing its probability density function. Before to,

the heading and the altitude are fixed, and if we suppose the heading to be 0, one can express a

"direct" analytical solution as :

W(X, hH, t) = W(X, hH, 0O) * exp - H t)2  (2.7)
21roVt 2 2t

with X = (x, y) and an initial speed VH positive (plane flying to the right). The star * is the

operation of convolution with respect to the 2-D variable X. The distribution is thus convoluted

with the ditribution of a one-dimensional Brownian motion, with variance rate a 2 and drift rate VH.

This analytical solution is very useful to know with high accuracy the values of the distribution far

from the plane, in regions yet close enough to constitute a danger for the intruder. The solution for

h 0 is found by rotation of the coordinates by an angle of -0H in the 2-D space.

After to, an "indirect" solution can be found. The equation (2.5) is independent of the equation

(2.6), and with F(t) = fto dt' y(t'), a change of unknown function gives a solvable equation. With

again the hypothesis OH = 0, we find

WohH(X, t) = e-Ar(t) W hH (X, to) * exp - 2( 2 (t to))

27roet 2 u2(t - to)

The other component may be found through its Fourier transform WOhH. With

2A(( , y) = -iVH (x cos ¢ + (y sin ¢) - -(Jx cos ¢ + , sin ¢)2

coming from the Fourier transform of the differential operators of (2.6) and the change of unknown

Wi',hH - eA(,v) t w,hHI we have

0W'0,hH

t (,~y, t) = Ay(t) e -A( 3()t Wo (h(,I, t) (2.8)

where IO,hH (, , t) is the Fourier transform of WO,hH (X, t). The numerical integration of (2.8)

gives the Fourier transform of W'I,hH . After multiplication by eA( ,' y) t, one recovers W',hH that

can be inverted by fast inverse Fourier transform algorithms. One may as well find a numerical

solution of (2.6), knowing Ay(t) WOhH (X, t).

As mentioned before, the intruder has an infinite dimensional system of integro-differential equa-

tions (2.3). This is caused by the presence of two continuous state parameters : 4 and h. One

expects a very high computational complexity.

Nonetheless, the altitude h plays a particular role : first, the velocity V of the airplane depends



only on 4, not h. Second, as a parameter of the state describing the trajectory of the airplane, it has

a uniform probability distribution U over a (bounded) interval. These particularities allow to easily

reduce the dimensionality of our problem, without modification of the equations and/or solutions.

It will make the resolution easier, either by numerical or possibly analytical methods.

Here is how dimensionality can be reduced. If we multiply the equation (2.3) by the constant U

and integrate with respect to the altitude h, we get for Zo (X, t) A U f dh WOh(X, t) :

Zt = -V.VZ + -2 V.B VZ ¢ + A d?' k(i' - 7) (ZO' - ZO)  (2.9)
Ot 2

We can indeed commute the two integrals with respect to the altitudes h, h' in the last term, then

we have to evaluate f dh'U Z ' (X, t) where Z' does not depend on h' at all : it can be factored

out, and the remaining integral is 1 by definition of U.

Equation (2.9), as can be easily seen, is a 2D problem, for which any numerical computation is

expected to cost much less than a 3D. On one hand, for an altitude h fixed, we may write equation

(2.3) as

Ow,h + A W h + VI.VW,h = A J do' k(' - 4) Z' (2.10)

For this we use the property U f dh'do' k(0' - 0) = 1, for every 0. In (2.10), the right-hand side

may be interpreted as a shared inhomogeneous term. Then knowing Z'(X, t) for every X, t, 4, ie

solving the 2D problem (2.9), allows to completely decouple the integro-differential equations (2.10)

satisfied by the family W,' h - and these even become classical partial differential equations.

On the other hand, the reader may now remind we chose deterministic initial conditions in the

parameters 4 and h, so to speak the plane has well-known initial altitude hi and initial heading 0I.

Then, as far as the parameter h is concerned, there are only two cases to consider : 1. the altitude

h where we solve (2.10) is actually hi, 2. the altitude h is not hi. Indeed, neither the equation to

solve nor the initial conditions for Wo 'h distinguish two altitudes hi, h2 that have in common to be

in case 2. Therefore, for all hi, h2 ,

hi 4 hi and h2 $ hi == W, ' h  = W ,h2 ,

by uniqueness of the solutions to the well-posed inhomogeneous problem (2.10).

The remarkable consequence is that we only have to solve three 2D problems in order to solve

the entire 3D problem :

i. Find ZO(X, t), for all 4, X, t, by solving the independent system (2.9),

ii. Solve a classical partial differential equation (2.10) for h = hi, with Dirac initial distribution



in 4,

iii. Solve a classical partial differential equation (2.10) for h 5 hi, with zero initial distribution in

Note that solving (2.10) with zero initial condition does not provide a zero solution, because of

the nonzero inhomogeneous term in Z. Here, by the change of unknown function W'h(X, t) =

eA t W ,h (X + Vo.t, t), we have

0W = Wh + W h' + VI.VWO h (X + Vi.t, t)

= AeAt d ' k( ' - 4) Z ' (X - V.t, t)

that makes the resolution reduce to an integration.

Our efforts have thus concentrated on the integro-differential equation (2.9). We present in the

next sections two possible numerical procedures for the solution if this equation.

2.3 Numerical method based on finite differences

2.3.1 Description of the scheme used

Finite difference methods [3, 11] can be mixed with interpolation methods to obtain from system

(2.9) a numerical approximation of ZO (X, t). To approximate the equation, one must keep in mind

that we deal with probabilities, therefore all approximations made should be conservative, in the

sense that the numerical solution must have a total mass equal to 1. The integro-differential equation

is thus approximated in three ways. First the continuous variables X and 0 are discretized, with

respective steps AX and A0. Calling Oi the points of the grid used for 4, the integral term is

replaced by a Riemann sum, in which the probability k(V' - 4) is approximated with

where sN,, is a constant depending on the number No of points 0i in the grid, and insuring

-i A0 k(4i -0j) = 1 for every 4j. As Np becomes larger, sN,, tends to 1. The second order deriva-

tives are approximated by finite differences computed on a grid Xim, such that Xl+1,m - XI,m =

Xi,m+1 - Xl,m = AX. The finite differences used here have first order of accuracy. As for the

gradient of the first term, we use instead the property :

Zim (X - VH,i At, t) - Z'(X, t) (2.11)
lim = -,.VZ(X,) (2.11)at-+o At'



To evaluate the first term of the denominator, in the case when X - VH,I At is not a point of the

space grid, we linearly interpolate the values of Z taken on at the three nearest vertices of the grid.

Also discretizing time with a step At, we come up with the following approximation of the

problem (2.9) :

Z*O (Xim, tr+1) = Z0 (Xjm - VH,I At, tr) + At (Diffusion terms + Coupling terms) (2.12)

where Z' (Xlm - VH,I At, tr) is the triangle-based linear interpolation of ZPi at the point Xtm -

VH,I At, and with

Diffusion terms = v(Ccos2 i ZC (Xim, tr) + 2 sin Oi cos Oi Z' (Xim, tr) + sin 2 0i Z,(Xm, t))

Coupling terms = AA - k(/j - Vi)(Z (Ximtr) - Z' (Xm, tr))

(2.13)

if we denote Z', ZO and Z '- the second-order differences approximating the second-order deriva-

tives of ZP with respect to X.

Since on one hand the linear interpolation satisfies with excellent approximation

E Z0 (Xim - VH,I At, tr) 1 Z'¢ (Xim, tr)
Im Im

for any Oi and any tr, and, on the other hand,

E Diffusion terms(Xtm) ; 0
Im

with also excellent approximation if we choose a domain of resolution large enough (then the proba-

bility Z has very small values on the boundaries), we can verify that, with excellent approximation,

the total mass of the probability is conserved by the scheme :

Vr, AO AX 2 Z (Xtm, tr) p 1 (2.14)
i,lm

The sum is in fact slightly less than 1, due to losses at the boundaries, as is required for convergence.

2.3.2 Stability and convergence

It is well-known that a correct choice of the parameters of the mesh AX, At and AV) allows the

stability of the scheme. In particular, At must be chosen such that the coupling terms and the

diffusion terms, that may have negative values, remain smaller in magnitude than the interpolated

value 2 ' (Xim). With such At, the positivity of the probability distribution is therefore conserved



by the scheme. We have translated the equation by -VH,I(4 = 0) t to prevent from very high drift

terms and thus obtain more stability. Then the resolution is made in a moving referential, whose

velocity is exactly the nominal speed of the plane, and it is easy to perform a change of coordinates

to recover the solution in the fixed referential (or in the referential of one plane). An approximate

analysis (following classical methods [11]) gives a rough range of stability for the scheme : with

V = IVH,II, the interpolated term can be, in first approximation, assimilated to

Z"' (Xtm) z Z*O (Xim) - V At ((1 - cos i)(Z¢' (Xt,m) - Z", (Xi-l,m))

+ sin Vi(Z ' (X,m) - Z** (X,m-1)))

Suppose that the ratio of positive numbers ZP" (Xt,m)/Z*" (Xi,m-1) remains between and e > 0,

then the stability condition reads

V 1 2a 2

At (AX sup((1 - c os ) + - sin I 1 ) + A + AX 2 )

using the fact Eji AV) k(OiP - Vbj) = 1 for every Oj by the choice of k. The factor sup€(1 - cos +

sin ) I is large, and can be bounded by 2+ - For A = 4h - 1 , a 2 /AX 2 = 225h - 2 , AX = 1nmi

as in previous works[l, 17], and an E equal to .1, the stability condition gives At < .58s. The

inefficiency of the method is clear. With e close to 1, the condition releases to a better, but still bad

At < 2.6 s. The Figure (2-1) shows occurrence of instability at t = 285 s with At = 5 s.

If stability is fulfilled, one can bound the maximum pointwise error between the exact solution

and the numerical one. An estimate of the error is found through the computation of the truncation

error T(AX, At, AO) of the scheme. We find :

IT(AX, At, AO) I < C1At + C2 AX 2 + C 3 AO (2.15)

where C 1,C2 and C3 are three positive constants depending on the maximum values of the initial

condition Z¢(X, t = 0) as well as its derivatives with respect to time, space and heading. Here

the Dirac initial distribution in 4 is a problem, because C3 should be infinite. In practice, we can

replace the Dirac 6(o) by a narrow peak, with a finite C3. From the estimate of the truncation error

and the conservative property of the scheme (2.14), the following estimate of the maximum error is

derived

max IZJm.(X1m, tr) - Zexact(Xlm,tr)l (C 1At + C2 AX 2 + C3 ) T

over the bounded time interval [0, T]. This distance therefore tends to zero as the parameters of the

mesh go to zero, and this means convergence of the numerical solution. In practice, the constant C3

has proven very high, not to mention C1,2 : typically C3 M 150 rad- 1 in our context. Even with the
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Figure 2-1: Probability density function of the intruder at t = 285 s, with instability of the numerical
scheme. Here At = 5 s. The instability is particularly important for the component at 4 = 200, as
the strip of negative values shown on the right testifies.
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Figure 2-2: Comparison of the computation of the probability density function of the intruder at
t = 300 s, with a coarse and a narrow grid of headings 0 (respectively 61 and 241 points). The
maximum absolute error is 1.4 10- 4 . It is therefore useless to compute the probability with the
narrow grid.

result of convergence, the method fails to prove accurate. To illustrate this fact, we have computed

the same solution for a narrow grid and a coarse grid of headings, with the same choice of At and

AX in both cases (see Figure (2-2)). Though the absolute error between the two numerical solutions

seems very small (less than 2 10- 5 at peak values), the relative error is still large : up to 40 % near

the boundaries.

2.3.3 Numerical solutions

In practice, to obtain more stability, we have decreased the standard deviation a to 5 nmi.h - 1. One

gains indeed on the stability bound. An argument is that the precision of position sensors shall

improve in the future - as suggested by authors before [1].

We have achieved good stability by choosing values such that At = 5 s, AX = .5 nmi, and various

cases of AV. The reason for diminishing AX instead of increasing it as the stability condition would

suggest, is that the smaller AX, the closer e to 1 - and this is the leading term of the bound.
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Figure 2-3: Probability density function of the intruder at t = 300 s. On the right :

Z - 30 0 (X, t = 300 s). Nominal speed parallel to the x-axis, oriented to the right.
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Figures (2-3)-(2-4) show what density Z(X, t) is obtained at t = 300 s (60 iterations, requiring

about 60 minutes of computation on a 300 MHz PC, with vectorized code under Matlab V). The

distribution of a component ZO (X, t) with 0 = -300 is also shown. This computation was made

with 61 components, from -300 to 300. On the 3-D plot, two tails can be seen, having developed

from the initial Gaussian distribution under the effect of the Poisson transfers. The mean direction of

those tails is roughly perpendicular to the direction of the flight, since at 0 = - 900, the y-component

V sin 0 of the drift is maximum, occurring the most intense evasion of probability in that direction.

2.3.4 Fourier Transform

As we stated before, the system (2.9) is linear. We can therefore considerably reduce its complexity

using Fourier transforms, and references show how this method is related to the search for the

eigenvectors and eigenvalues of the linear operator of the problem. We shall abandon the superscript

notation for 0 and will write it as a variable like X instead.

Here we group the variables of the problem in the following way : on one hand the equation is

X 10
- 6

Total probability
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Figure 2-4: Probability density function of the intruder at t = 300 s - 3-D plot.



2r-periodic in the parameter V and we shall apply an adapted Fourier transform to this variable,

on the other hand we are in the presence of X with respect to which the solution is not expected

to be periodic at all. We will apply to X a classical Fourier transform. As usual, time is kept apart

any transform.

Let us denote 2( , t) the mixed Fourier transform of Z(X, t, b) defined by

z(, t)= {fin(, t)}neZ

where

n( , t) = f db dX Z(X, t, 0) e - i ( x + n V)

The space integration is performed over the whole space R12 . The dot . stands for the inner product

in 1R2 . We have the converse formula

Z(X, t, )) = d i d (, t) ei(~.x+nV)
nEZ

The probability density function k(o) describing possible turns = '1 - 4 from actual heading

b must be 27r-periodic as well. It therefore has the Fourier series :

nEZ

with kn = I fr d k(4) e - i n . Observing that in (2.9) the last term is the convolution of Z(X, t,.)

by k(.) at heading /, we have, by mixed Fourier transform and identification term by term

S(, t) + A in(,t) = -i .(V * 2(, t)) + A n(~,t) k Vn EZ

where V denotes the (two-dimensional) sequence of Fourier coefficients of the 4-dependent speed

(* is the operation of sequence convolution). The speed for parameter 4 reads simply V(O) =

IVI (cos(0), sin(4)), therefore we can explicit the sequence V :

(1, -i) if m = 1

Vm = (1, i )  if m = -1

0 otherwise

Hence

| VI n+1 (n , t) + in-1(1 (,t)

2 -Zn+i(C,) + iin-i (C0



If we denote ( = ( ,, ~,) when relevant, we get the following infinite coupled system :

_--= - ~- [(i, + y)~n+1 + (i - ) i] +A (k - 1) in Vn E Z (2.16)
at 2

that has to be solved for the family of functions {2n( ,t)}nEZ. We may complete the system by

computing the coefficients kn; between -r and -w, the function k takes on the following values :

1 for 0 E [-02, -1] U [01, 2]

k(o) = c. 101/01 for 0 E [-1,1 O]

0 otherwise

where 1 = 50, 02 = 200, and c is a normalization constant (with 1/c = 202 - ¢1). By symmetry of

the real function k, it is not difficult to check that k-n = kn = kn, therefore the ks's are real and

symmetric in n. Then

1 if n = 0

S(sin(n2) + cos(n )-1) if n 0

(observe that k0o can be obtained from the general term when n # 0 by making n go to 0 in the

expression). The leading term of k, is thus O( !), and kn is bounded. If we assume the function

Z(X, t, 4) infinitely many times continuously differentiable, then the functions n,((, t) are rapidly

decreasing as [(1 and n tend to oo (decrease faster than any positive polynomial in |(i and n). The

bounded coefficient kn does not influence the fast decreasing of all quantities in equation (2.16).

Solving completely the system (2.16) in an analytical way seems out of range. However, the fast

decreasing of all functions as n and I(1 tend to oo allows to truncate the system at ranks +N, for N

large enough, and solve numerically on a bounded box for the variable (.

Back to the 2D problem we try to solve, recall that we assumed a Dirac initial distribution for

the parameter 4. Suppose, with no restriction on generality, that the Dirac is centered at 0o = 0.

Then the initial Fourier coefficients ,(, t = to) are independent of n : to be more precise, if

Z(X, to,4) = 6(0).Z'(X), we have

i = to) = JdXZ(X)ei'X -n( , t = to) = dX Z'(X) e-i .x

because the integration of the Dirac with respect to 4 only "selects" the value = 0. But the

system (2.16) is linear in the functions ,n. Therefore the solution is directly proportional to Z'((),

the coefficient of proportionality being the solution with uniform initial conditions 1.

The advantage of this property is that the family of function 2n((, t) is then very easy to compute

: it is sufficient to compute and keep before hand the family fin( , t) that is solution to the system



Figure 2-5: Fourier coefficients of the probability density function k, for n > 0 and up to 60. The
decay rate is rather slow, due to a leading term O(1).

with initial conditions 1, and then to perform the simple multiplication in( , t) = Z' () fin(6, t). We

insist that the family fin(6, t) is totally independent of the initial distribution of concern, and can

be computed and memorized once for all. Of course, the family depends on IV I,, 1, , 2.

Now, the advantage of this method becomes clear. To find the distribution Z(X, t, 4) on a grid,

given the initial distribution Z'(X) at = 0, we need :

1. Perform the two-dimensional Fourier transform of Z'(X), and store it in Z'(6).

2. Perform the products Z'(6) i n (6, t) for each , and each t available.

3. Inverse Fourier transform the result in 2D, to recover Z(X, t, 4).

Direct and inverse Fourier transforms can be computed extremely fast, especially when the number

of vertices in the grid is a power of 2. The multiplication stage is a very elementary operation that

is not to take long time as well. The method must then be very quick. As for the accuracy reached,

it is clear that the size of the mesh is the primary factor, since we can compute the functions i, (, t)

with an accuracy as high as wanted (and for instance, sample a very fine solution, computed on a

very narrow grid, to get the values taken by these functions on a coarser grid). The computation

cost of the method is directly proportional to the number of vertices in the grid, times the number

of instants at which we compute. Also remark that these instants are not submitted to be equally

distributed over the time interval [0, T], and therefore could be adapted at constant computational

cost to get more accuracy.

The method, however, has a main drawback : this is the cost of the precomputation of the

coefficients Un( , t). Indeed, to compute them, we need

1. Find the eigenvectors and eigenvalues of the truncated operator of the chain equation (2.16),

and this for every ( of the grid of interest.
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Figure 2-6: Distribution of the eigenvalues on a parabolic curve, independently of the point I of
computation

2. Writing the un(, t) as linear combinations of the eigenvectors, weighed by a decreasing expo-

nential, find the coefficients of the combination, using the initial conditions. This requires the

inversion of the matrix of the eigenvectors, again at each point ( of the grid.

The first stage can be performed pretty quickly, because the matrix of system (2.16) is tridiagonal.

The inversion of the matrix of the eigenvectors, however, is a heavy computation, because this matrix

is neither symmetric nor sparse. One shows on figure (2-6) the distribution of the eigenvalues at an

arbitrary point (, ,).

Moreover, the solutions behave quite differently whether we approximate the system in a way or

another. We have indeed two choices : truncate the system at rank +N, with N large enough, or

truncate the system at that N and make it circular : this would be done by adding to equation N

a term in i-N to replace the absent term zN+1, and by similarly adding to equation -N a term

in ZN. This completion of the system, however, deeply perturbes the eigenvalues, even providing

unstable eigenvalues if N is not large enough. This clearly endangers accuracy of solutions.



2.4 Collision probability

The modeling as seen in the previous sections had a major goal : find the probability density function

of each plane of the scenery, as considered separately. The density function can be filtered, for the

sake of position estimation, or other applications. However, this approach does not allow to compute

the probability of collision for an arbitrary pair of planes, since in a current pair, the two aircraft

are assumed independent of one another. The independence is lost whenever the two planes collide.

Authors [6] have suggested the correct approach, that we may now explain.

2.4.1 Definition

Continuing on the same notation as before, let us define the difference position vector for two

airplanes H and I :

A(Xt, ht) = (XH(t) - X,(t), hH(t) - hi(t))

Now, for a fixed, bounded, closed region DC in the space, that will be called the security region,

a collision occurs after to = 0 whenever A(Xt, ht) "hits" the boundary ODC at some instant t.

After the collision, the process A(Xt, ht) remains inside the region forever. There therefore exists

a random first hitting time process -r = inf{t : A(Xt, ht) E DC} (with 7 = +oo if the set is empty).

From the two random processes A(Xt, ht) and T, we define the stopped process 't as [15] :

( A(Xt,ht) if t < r

A(X,,h,) ift>T

with the property t > r t Dc.

In this context, the collision probability of the two planes between the instants tl < t 2 is

P { 2 Dc and tli DC

provided that the planes at instant tl are separated by the security distance at least (diameter of

the region DC).

2.4.2 Evolution in time

To find what equations the collision probability satisfies, one may write [6] :

P{ (t 2 C DC and tl V Dc } = P t2 E Dc} - P { t2 E DC, tl E DC

= P{~t 2 E Dc} - P{ tl, E DC



decomposing the event { (t2 E DC} as the disjoint union of the sets { (t 2 E Dc} f {t, E D } and

{ (t 2 E Dc} {(t 1  Dc }, and using the property : t, Ec DC = 62 E DC.

Using the conditional expansion, we have for t > 0

P{ t E Dc} = J d6 P{ t E Dc 1 6 = 6} P{ 6o = }

where P{ (o = 4 } is the initial distribution of the separation vector, directly dependent on the

knowledge of the respective initial positions of the planes. This distribution is completely determined

by the position uncertainty as induced by the position sensors (GPS, etc...), taken into account in

the model of aircraft behaviour. Therefore the only quantity to evaluate is P{ (t E Dc I 6o = }.

The stopped process 6t has continuous sample paths. When the headings of the two planes are

fixed, and up to time T, the stochastic differential equation (It6's equation) that 6t follows is simply,

with the same notation as above :

d~t = dXl(t) - dXH(t)

= (Vi - VH) dt + oVF(u, dW'c - UH dW2 )(cos 01 cos V5H dW
= (V - VH) dt + , o s -i (HdW / (2.17)

sin i - sin OH dW 2

where UH and ui are the two unit vectors supporting the velocities of the aircraft, and dW 1' 2 are two

independent one-dimensional Brownian motions. After r, the process, as we defined, is stopped in

the region DC. According to authors [6, 5], the continuity of the sample paths and the existence of an

It6's equation for the process are sufficient to prove that the probability p(6, t) = P{ 6t E DC I 6o = 41,
also known as a passage probability, is subject to the partial differential equation (with contracted

notations allowed by the independence of the coefficients of the space variables) :

(6, t) = (VI - VH).Vp(, t) + -V.B(OH, I)B(OH,' I) T Vp(, t) (2.18)
at 2

where B(OH, 0I) is the matrix of equation (2.17). The product reads :

B = B(H, H I
T  ( cos

2 CH + COS2 I sin H COS VsH + sin C cos 0Ii

= B(sin O
H Cos H + sin icos 7I sin2 OH + sin 2 i

Back to the problem, the process 6t with fixed heading - and by this, we mean the difference

4 = 0I - OH of the headings of the two planes - follows a regular stochastic differential equation

associated with a (forward) Fokker-Planck equation. We have shown above how one is then led to



the following backward Kolmogorov equations :

= (VH - V).Vp 'h( , t) + 2V.BVp 'h(,t)

+ / do'dh'A( h -+', h') [p',h' (, t) - p'h ((,t)] (2.19)

as soon as the transition rates A(O, h -+ 0', h') can be explicited.

A particular case of the sceneries described above is when the host follows a straight route :

OH = constant, while the intruder has the behaviour depicted before. Then the transition rates

A(4, h -+ I', h') are those of the intruder, and do not depend on time in this case. If we consider the

2-D problem - on simplification purposes only - it is now easy to check that the passage probability

satisfies :

(,t) = (VI - VH).Vp ((,t) + 2V.BVp(,t) + A d'k(o - 0') [p"' - p"](,t) (2.20)

With no restriction on generality, we can suppose OH = 0, whereby 0 = OI and the matrix B shall

be written
1 + cos 2 0 sin cos4

sin 4 cos 4 sin2 o

For the separation process starts from outside the security domain Dc, and stops in any case as soon

as it reaches its boundary, we have the following Dirichlet type boundary conditions [6] :

lim p (, t) = 1, for t > 0
-+aD, CE D (2.21)

lim p ( , t) = 0, for ( E D fixed
t4o

As we have shown in section 1.5.3, the unconditional passage probability at time t is

(, ) =/ d p (, t) P{ o,o(0) E EO }

(with obviously Co,o(0) = 0o). Here, the initial state 0o is well-known, and P{ (o,o(0) E Ep } =

6(o - Oo). Hence

p(Ct) = p1=1°( , t)

2.4.3 Numerical computation by the finite element method

We have implemented a finite element method [11] to solve the system of equations (2.20) with the

boundary conditions (2.21) described in the previous section for the probability of collision. We now

briefly describe the method.



The domain D = Rd \ DC is first restricted to a bounded subdomain D' such that Dc C D' C

D, and sufficiently large to contain the region of interest. We then decompose D' into a finite

triangulation T, defined by a set of node points P and triangles Tk having the Pj's as vertices.

Multiplying by some test function ,(() and integrating over Q = D', we can write :

pq f j(VI - VH).VpV Oi + -'- V.BVP$ ¢i
at 2

+ A f d'k( - ') [p' - p ] i (2.22)

A test function 4j () is by convention a continuous, real function of such that j (Pi) = 6j with the

Kronecker notation, and is linear over each triangle Tk of T. The fundamental idea of the method

is to project the problem (2.20) onto a finite dimensional vector space of functions 77j (). Solving

the problem is then defined as finding the linear combination

p (, t) = pj (t)r ( ) (2.23)

that minimizes a distance from the exact solution pf ( , t)* to the equation (2.20) at t. The distance

used is traditionally inherited from the L2-norm.

We denote v and vo the coordinates of VI - VH, and Bab the 4 components of the matrix B,

with a, b E {x, y}. Using various forms of Stokes' equality [2], we can transform the differential terms

of (2.22) as follows :

f i = P , nads - P

(2.24)

f 2! i = Oi na ds - ]QK a
o ab an b Ob Oa

with again a, b E {x, y), and n, the corresponding coordinate of the outward normal vector along

0Q. Since pP must be equal to 1 along OD, and is left "free" along OD' \ OD, the first term of the

first equality simplifies to

fa Oi n ds + Lo pP Oi na ds
HereD It is easy but tedious to check that the differential problem can be

Here we take rq (() = qj (c). It is easy but tedious to check that the differential problem can be



written as the finite dimensional ordinary differential equation :

M dPP (t) = (v' (Hx - Ex) + vOC (HY - EY)) PP(t)
dt Y

or 2

+ 2ab

a,b6 {z,y}

in which P' (t) is the vector of the coefficients

matrices and Gx, GY vectors such that

Mij= O i

E = J Ja a

R b = f a03

(Lab - Rab) P"(t) + ve Gx + v' G Y + F*(t) (2.25)

p,(t) of (2.23), and M, E x , E Y , Hx , HY , Lab, Rab are

(2.26)H = Oi n, Oj ds

i3 JD'\OD

Lab i na ds

G = D 9 a ds

for a, b E {x, y} and i,j indexing the vertices of T. The vector FO (t) (the same length as P(t)) is an

approximation of the coupling term, obtained by discretization of the integral over the parameter #

and the values of pO' at t.

To solve (2.25), we used the Backward Euler Method [11] : with a discretization of time tn = nAt

and PO, = P!'(tn), the equation is approximated by

2

[M - (L - R) At] P sn+1 = [M + (H - E) At] P n + (F (tn) + G)

for each 0 of a discretization of the segment [-7r, i], and the 0-dependent arrays :

(2.27)

E = v¢ Ex + vC E Y

H = vC H x + v y H Y

G = vf Gx + vO GY
X Y

R= 13fb Rab
a,bE{x,y}

L= Z 3 b Lab
a,bE{x,y}

The reason for separating x- and y-components of these arrays is to quicken the precomputation

of the matrices before solving (2.27) - also known as assembling stage [11, 12, 8]. Indeed, the

components shown do not depend on the value of V), while the coefficients v', v, B , B ¢ , BaL, BC

are scalar.

As matrices of an assembled problem, E, H, L and R are sparse. Thus so is the premultiplicating

matrix of the left-hand side of (2.27), whose inversion can be therefore performed by a fast method

(Gaussian elimination for instance). To force the fulfillment of the boundary condition p ((, t) = 1

along OD, we have used a system reduction method, which consists of solving the system (2.27) only

for the vertices in Q \ OD. The method is fully described in [12], chapter 4. The set of modules

(2.28)



implemented to perform the computation are listed in the Appendix.

On figure (2-7), the collision probability between 0 and 90 s is shown. The host is flying from

West to East, while the intruder initially comes from the North (OH = 0, ?o = -900). The velocities

of the aircraft were taken equal to 300 kts. The computation was stable for a time step of 15 s (6

iterations), and needed about 550 s to complete on a 300 MHz PC under Matlab V. This stability

was enforced by an artificial diffusion term, aimed at making the matrix B invertible for every O's,

while it is normally singular at 0 = 0. The amplitude of the diffusion was limited to 10% of the

total ,, = 30 kts. The mesh generated had 2244 node points and 4320 triangles. The number of

systems was 51.

The diffusion term added to the right-hand side of the equation (2.20) corresponds to an isotropic

Brownian motion, with zero drift rate and a small (but nonzero) variance rate. This Brownian motion

wt is perturbing the stopped process 't (the former adds to the latter), but one expects negligible

changes of the probability of collision : indeed since wt has no drift,

E[(t + wt] = E[,t]

such that in average the perturbed trajectories behave as the nonperturbed ones. Studying the

equation (2.20) with an artificial, isotropic diffusion term, one may easily convince oneself that the

solution with artificial Brownian motion is not the same as for the pure process. The perturbation

thus needs be small, and the variance rate is a good parameter for tuning it up.

The figure (2-7) testifies for the convection of a high probability of collision along the bisecting

line of the initial angle between the two planes (450 in our case). This fact is in full agreement with

the physical reality : when starting from two points located on the same bisecting line with the same

speed, the two planes have a maximum probability of colliding, due to a rather small mean frequency

of turns of the intruder. Of course, causality explains why there is a dyssymmetry of the distribution

of probabilities about an axis orthogonal to the bisecting line : the two planes may collide only if

their respective vector speeds are oriented such that the instant of collision would be in the future.

There is a nonzero probability of collision however, for those planes starting with uncausal initial

speeds, due to the Gaussian along-track effect of the wind (anisotropic diffusion term in (2.20)).

Even with uncausal initial ground speeds, the planes driven by the wind may fly backward to one

another, causing a collision.
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Figure 2-7: Collision probability at 90 s, computed with a time step of 15 s in about 550 s. The

host is flying from West to East, the intruder from North to South.



Chapter 3

Perspectives

The theory exposed of posing differential equations to find conditionnal or transition probabilities

of a transiting system is part of the more general theory of filtering. As usually admitted, filtering

consists of finding estimates of the state of a system, taking measurements into account. In a first

section, we clarify the stages of filtering, and show what is the position of our work in this frame.

We also mention other approaches. Despite the capital role played by filtering in every practical

fields of experimental sciences and in industry, it was out of our reach to explore every aspects of

the question.

In a second part of this chapter, we rise questions more specific to probabilities in security systems

- though the fundamental material remains of general interest. With again practical issues in mind,

there is of course a need in the high-standard requirements of ATM to compute important statistics

with high accuracy. In the case of a collision probability and the alert systems that are designed upon

them [17], an upper bound instead of an approximate solution is for instance sufficient to determine

secure thresholds of alert. Similarly, in many other fields of stochastic processes, only upper or

lower bounds are wanted for the probabilities. One possible, but seemingly difficult perspective of

this work thus consists of developing a practical and efficient technique of computing such bounds

instead of the exact solution. Very trivial bounds (for instance the maximum of the probability) are

of course useless; the main requirement is a convergence of the bound to the probability, as some

parameter of the bound goes to zero. In two sections, we give a linear and a nonlinear approach.

The style is deliberatly rather abstract, as a few examples are convincing that each step on the way

to the technique sought needs much wariness.

3.1 Theory of filtering with incorporation of measurements

We briefly present the theory of filtering, in the particular case of continuous time systems with

discrete time observations. An argument for keeping a continuous time in real-life systems, that are



yet always sampled, is the existence of differential equations satisfied by the conditionnal probabili-

ties. These equations are solved approximately between two instants tk and tk+l or even at a higher

sampling rate, but we ought not exclude from the study possible exact integrations between tk and

tk+1 in particular cases. Note that the equations we write in this section have a form adapted to

recursive computations, to allow real-time evaluation of estimates.

Let x(t) be a Markov process in Rd, and tk a sequence of consecutive instants of measurements

Yk, sometimes called observations of the state x(t). This terminology hides that the observation

may be partial, ie some components of the state x(t) cannot be measured. Criteria and issues of

observability will not be examined here. We suppose no feed-back loop in the dynamical system,

that is to say the observations Yk do not influence the dynamics of the system. Systems that would

be controlled through an estimate are therefore excluded.

Another important hypothesis is that the measurements involve only noises that are independent

in time (for instance Gaussian). The vector of all observations up to time tk is denoted Y[O,k]. The

same notation is used for the process x(t), sampled at times tk.

The purpose of the following calculus is to find a recursive expression of the conditionnal proba-

bility dP(x[o,k] IY[,k]), used to compute the estimate x[0,k] [0,k] given the observation Y[O,k]. The result

follows from two elementary steps :

1. Prediction

dP(x[o,k] IY[0,k-1]) = dP(x[o,k-1], k ly[o,k-1]) (31)

= dP(xk IX[0,k-l], Y[,k-1]) dP(xZ[,k-1] IY[O,k-1])

The second equality uses the definition of a conditionnal probability. Since the observation

process y(t) does not control the process x(t), Xk does not depend on y[o,k-1], therefore

dP(k IX[O,k-1], Y[0,k-1] = dP(Xk IX[0,k-1])

But the new conditionnal probability reduces to dP(xk IXk-1), because x(t) is a Markov process.

We have then

dP(x[,k] IY[,k-1]) = dP(xk IXk-1) dP(xZ[,k-1] IY[,k-1]) (3.2)

2. Correction through the measurement Yk



Using Baybs' rule for conditionnal probability, we have

dP(x[0,k] IY[o,k]) = dP(x[o,k] IY[,k-1], Yk)

dP(yk Ix[O,k], Y[O,k-1]) dP(x[o,k] IY[,k-1]) (3.3)

dP(yk Y[,k-1])

Since Xk contains all the information actually "seen" by Yk because of the independence of the

measurements, we can simplify the first term. The equality reads :

dP(yk lxk)
dP(x[o,k] IY[O,k]) = k Y[,k-1] dP(x[o,k] IY[O,k-1])

We get the recursive relation :

dP(x[o,k] IY[o,k]) = Zk dP(Z[,k- 1] IY[O,k-1]) (3.4)

with

dP(yk Xk) dP(xk k-1) (35)
dP(yk IY[o,k-1])

In the definition (3.5) of the linear coefficient Zk, the term dP(yklXk) is known through the

modeling of the sensor. The denominator, independent of Xk and xk-1, is a normalization factor

with respect to yk. The remaining term : dP(xk lk-1) is the transition probability of the process

z(t) between the state Xk-1 at time tk-1 and the state Xk at time tk. The main issue of filtering is

often to evaluate this transition probability, since the other terms defining the coefficient are known.

For instance, if the sensor is modeled with some uncorrelated, additive noise vk : Yk = H(xk) + Vk

we have simply

dP(yklXk) = dP(YkY - H(xk))

The value Yk is known by definition, and Xk is a variable, such that the probability is a function of

Xk.

The position of the work developed in the first chapter is clear : we have precisely found the

evolution equation of the transition probability of a transiting process. Hence, one could conceive a

full filter bank based on the numerical methods we have proposed. The filter would first compute

the transition probability P(xkX k-1) as a solution of the differential equations (1.5) with the initial

condition 6 (Xk - Xk-1) (Green's function). Then the coefficient zk would be evaluated, and the

recursive relation (3.4) would be applied, to find the conditionnal probability. Applying well-known

methods (least variance of error, maximum likelihood, etc...) it is then easy to compute various

estimates of the state x(t) at tk.

The complexity of the differential equations seems to prevent from analytical forms of these



estimates, but this is no new difficulty : completely Gaussian systems are the only case known for

allowing closed forms of optimal estimates with no approximation, by the method called Kalman

filtering. An approximation method, called Particle filtering [7]1, is based on "smart" Monte-Carlo

simulations of the system to find the transition probability. In both cases, the convergence of

the estimates computed (in a suitable sense) can be proven in rather restrictive hypotheses for

Kalman filtering, and more general hypotheses for Particle filtering. In our case, the convergence

of the estimate would be a direct consequence of the convergence of the numerical solutions of the

differential equations, no matter what method is used to find an approximate solution.

3.2 Pessimistic Numerical Schemes for Solving PDE's

In this section, we propose a linear approach to the finding of an upper bound Vn for the solution

u of a partial differential equation. The bound is sought a solution of a recursive, linear equation :

Un+l = G, U;-. The inequality u < un is valid on a discrete mesh only, for it would be meaningless

elsewhere : thus we compare the mathematical solution of a differential equation with the solution

of a recursive algorithm computing values on a space mesh. The idea of the approach is to find what

sufficient conditions G, shall meet, in relation with the Cauchy problem (identified to a semigroup

G). On this purpose, we define pessimistic numerical schemes.

3.2.1 Definition of the problem

We consider, in the Banach space (X, I.I), the linear Cauchy problem

du Au t > 0dt (3.6)

u(O) = u0

to which u is called a classical solution if u : R+ -+ X satisfies the ordinary differential equation

for t > 0 and has the initial condition u(0) = uo e X. A is assumed to be a linear, continuous

operator of X, and we define

II A I1= sup IAvI
vEX,vo0 IVI

The theory of semigroups provides the following result : Cauchy initial value problem has a

unique classical solution u : R+ -+ X, and it reads

u(t) = eAt .uo

'Unfortunately the reference cited in the text is in French. There is still no references in English on this efficient
and fructuous method.



where eAt is the exponential of the linear, continuous (and thus bounded) operator A.t at t :

eAt = Zo(At)n/n!.

3.2.2 Definitions, Estimation of operators

Let Y be any Banach space. A family of continuous, linear operators {G,}n>o is called an approxi-

mation of a fixed G E £(Y) if

3 lim G, =G 3 lim 11 G, - G II= 0
77-+O n-*O

Now, suppose Y has nonnegative and nonpositive elements, and let Y+ be the subset of all

nonnegative elements (Y+ is a cone). Let Z be another Banach space, with nonempty subsets

Z+ and Z- of nonnegative and nonpositive elements. G E £(Y, Z) is called nonnegative, with the

notation G > 0 if

Vx E Y+, G.x E Z +

In L(Y, Z), G is said to be greater than or equal to H if G - H > 0 ; in that case, we write G > H.

In that context, a family {G,}n>o in £(Y) will be called an estimation from above of a fixed G, if

it is an approximation of G and

V 7' > 0, G, > G

3.2.3 Numerical schemes

As proposed in [13]. For an easier reading, we recall the definitions and theorems used.

Let {(Xn, .l1)}n>o be a family of Banach spaces, and {P, : X -+ X,}, and {E, : X, -- + X}n

be continuous, linear operators defined as follows :

1. The families {P,}, and {E, } , are uniformly bounded : exist N and N' such that Vin > 0, I

P,7 |- N, and 1i E, I< N'.

2. For any x E X, 31lim, o IPxi, = lxI.

3. For any x E X, 3 limno IE, Pnx - x| = 0.

4. For all rl > 0, P, E, = I,.

DEFINITION : A family {A, : D(A,) C X, -- X,}, of linear, continuous operators in respective

subspaces D(A,) of the Banach spaces X, is said to be convergent to A if there exists a domain

D(A) = {x E X : P,x E D(A,), and A, P, x converges as q -+ 0}



in X. In that case, we define Ax as to be limn o A P, x, for x E D(A). It is clear that D(A) is a

sub-vectorspace of X, and the operator A defined is linear.

The notion of limit in that definition needs also be defined : we say that any family {xz7 }>o of

elements of X, converges to x E X if Ix, - P, x| -+ 0 as q -+ 0.

The convergence of A, to A in that sense is denoted by A, -+-+ A. Each A, in X, will be

considered a numerical scheme; in this frame, the parameter 71 may be seen as a mesh size.

THEOREM - DEFINITION :

Let {F,}, be a family of bounded, linear operators F, (numerical scheme), such that:

1. There exists a positive constant M and a real w such that Vk E N, II F k I < Mew' 7k.

2. A, =~(F, - I,) - A

If D(A) is dense in X, and there exists Ao E C, with Re(Ao) > w such that Rg(AoI - A) be dense

in X, then A, the closure of the linear operator A is the infinitesimal generator of a Co-semigroup

{S(t)}t>o on X (then S(t) = exp(t.A)). If k.,q -+ t as q -+ 0 for a fixed and arbitrary t > 0, we have

moreover :

Fk _ -+ S(t) as 7 + 0

and D(S(t)) is entire X.

In this context, the scheme F, is called pessimistic if it satisfies the inequality :

V > 0, F, P, > P, eA (3.7)

This implies, in particular, that (F,)t/7 converges to S(t) from above as 7 -+ 0.

3.2.4 Accuracy

DEFINITION : A numerical scheme {F, : X -+ X,}, is said to estimate a bounded, linear operator

S : X -- + X with accuracy p > 0, if there exists a positive constant C such that

II F, P, - P, SJI c(x,x,) < C ~p+l

for all 77 > 0. The subscript L(X, X,) is to recall that the operators F, P, and P, S work from X

to X,. The norm used is in this case

I B IL(x,x,)= sup B
XEX,xIo |zX



3.2.5 Approach proposed

At this point, it is important to note that the problem to solve is in the discrete space X,, not in

the continuous space X, for the simple reason that a comparison between an exact solution of the

partial differential equation and a numerical solution has a sense only at node points (the points of

X, by definition). In the notations defined, stricto sensu a scheme F, is pessimistic when

F, > P, eA E ,

For E, P,, is not I in X but only in the limit 1 - 0, this definition is clearly distinct from (3.7). Here,

we have slightly shifted the definition, to prepare for further work, where we believe the solution

might be.

Now, we propose a strategy to find a pessimistic numerical scheme that would converge, in the

sense defined earlier, to a given semigroup S(t). This strategy is, basically, to solve the problem in the

continuous space X, which is expected to be much easier, and then find a bridge between numerical

schemes in X, and approximations (from above) of S(t) in X. Using the bridge, we would transport

the approximation from X into X,, and get a numerical scheme with the expected properties. The

hard part of the work in X (believed easier than in X,) is to find how to reduce the condition on the

approximation from above (that possibly also carries the notion of accuracy) to a condition easier to

check (for instance on eigenvalues). Indeed, the previous definitions of "pessimism" - such as (3.7)

- are inequalities between operators in infinite dimension.

The most obvious drawback of the approach is that it is well-adapted to finite difference methods,

but possibly nothing else.

3.2.6 Bridge between estimations and numerical schemes

Suppose that {(Tn,m, i,rn)}n>,mEZ is a family of linear operators in X and X, respectively, such

that for every ri > 0 and every m,

Pn 1 ,,m = 'f,m P,7

(think of T7,m and in,m as translations by m times a given vector in the continuous space X and the

discrete space X,).

Let G, be a (formal) series of the T1,,m :

G = Z m T,m
mEZ



This is a linear operator (if well defined) in X. Then let F, be the transported operator into X, :

F,= gm,,m

mEZ

It is clear that

P7 G = Fj Pn

and it is not difficult to check that the formal

S: G, = : g,m i-, F, = gm i,m = (G,)
mEZ mEZ

is a linear, one-to-one operator. Further properties satisfied by the gm's and the T,,m's would allow

to infere properties for T itself. This is not the aim to do so here. T is what we would call a bridge

between approximations in X and numerical schemes in X,. Note that the elements in those two

sets, for which we define a correspondence, are very peculiar.

Now, suppose we know a G, in L(X) satisfying

enA < G, < e A + C p+1 1 (3.8)

where I is the identity in X. Let us assume that for any H E £(X), H > 0 =: P, H > 0. We can

plunge then the previous inequalities into X, using P, :

P, e A  P, G, P, e A + C p+lP,

If G, was a series of the r,,m's, we can use the bridge and replace P, G, by '(G,) P, in these

inequalities, and obtain

P, e A  < F, P, < P, e A +C 7p+ P, (3.9)

denoting again F, = T (G,). We recognize, written in terms of estimations of linear operators, the

requirements of accuracy and "pessimism" the numerical scheme F, should meet.

3.3 Variational approach

Following recent work [9], we describe what possible extension could be sought for, on the way to

finding upper (lower) bounds for the solution to a linear system. The method would be based upon

the Minimax Theorem, as applied to an augmented Lagrangian. We will not recall the definitions

of the notations used, since they belong to a well-known corpus of Analysis.



Let V be a real Hilbert space, L a continuous, linear form on V, and a a continuous, coercive,

bilinear form on V. We define the linear problem to solve as :

Find u E V such that Vv E V, a(u,v) = L(v)

L(v) is often the inner product of a fixed function f by v in V, and indeed we will assume in the

following :

L(v) = (f, v)

Similarly, we suppose that a is symmetric and there exists a linear operator A such that

Vv E V, a(v, v) = (Av, v)

By the Lax-Milgram theorem, the problem (3.3) has a unique solution u in V. Note that even for

the existence of a solution, the coercivity of a is crucial.

Let ¢* be a continuous, linear form on V. We define the linear output of the problem as to be

¢* (u), for u the solution to the problem (3.3). For instance, 4* (v) = (0, v), where 0 is a C" function

with a very narrow support around x, and an integral equal to 1, that is to say, an approximation

of JX.

The trick of the method is to find an augmented Lagrangian for the problem, that reduces to

the output * (u) at the saddle-point. We denote V* the dual of V (with the requirement that the

elements of V* are continuous). Let r be a positive real parameter, and consider in V the functional :

S + (v) = r (a(v, v) - L(v)) ± ¢*(v)

By the uniqueness of the solution to (3.3), we have [9]

± 0*(u) = inf S' (v)
{v:L(v)=L(u)}

and this constitutes a constrained minimization problem. One can show that, by the Minimax

Theorem,

inf S+(v) = inf sup t (v, p*)
{v:L(v)=L(u)} {v:L(v)=L(u)} { *EV* (3.10)

sup inf £ (v, p*)
{* EV*} {v:L(v)=L(u)}

where £ is a functional on V x V* defined by

£'(v, p*) = S+(v) + IL*(Av - f)



We come up with the inequalities

VA/*, VV*, inf £+(v, ,*) < *(u) < - inf L-(v, v*) (3.11)
{v:L(v)=L(u)} {v:L(v)=L(u)}

for u the solution of the problem (3.3). Denoting

R+(p * ) = + inf £(v, p*)
{v:L(v)=L(u)}

the upper and lower bounds for the output are respectively R-(v*) and Rf+(p*). An optimization

on the paramater n allows to obtain bounds as tight as possible.

The estimation (3.11) holds in the continuous space V. As in the section (3.2), we can project the

space V onto a finite dimensional subspace V,, with 7j > 0 the characteristic size of the discretization.

V, may be a space of finite elements for instance. Under reasonnable hypotheses and for fixed v*, 1p*,

we can define in V, : and R + with v* E V,* and p* E V*, such that

lim v* = v* lim p = *
- n+ (3.12)

lim R,-(vn) = R-(v*) lim R+() = * R+(p*)
-W0 77-0

The notion of convergence of a sequence v* E V, to an element v* E V is identical to that defined

in the section (3.2.3). For E > 0 such that

e< min { - (v*) - * (u) , *(u) - R+(,*) } (3.13)

there exists 7o depending on e such that 7 < 7o implies

+(i *) < 0*(u) 5 R-(v~) (3.14)

which is exactly the estimation wanted, since the bounds are directly derived from numerical solu-

tions [9].

Though very tempful, the method has weaknesses. First, since q*(u) is unknown, one has to

estimate the distances needed in (3.13) to obtain the bounds. Second, the parameter 7o depends

on e, and this means one needs to know what is the dependence to actually compute the bounds in

(3.14). Third, as an approximation of the Dirac's 6, 0* also estimates u(x) for fixed x, and this is

another source of uncertainty.

On top of those technical problems, the computational cost of the method is obvious : for

each point x of the mesh, a complete recomputation of the bounds must be performed, and this

computation itself has a high price (computation and inversion of a matrix). In 2-D, the complexity



of the computation is such that it has encouraged authors [9] to estimate the bounds themselves

(through a narrow-to-coarse mesh interpolation) !

Those drawbacks kept us from trying it, but further investigation may allow simplifications and

more efficiency.



Conclusion

Two schools confront with one another in the field of stochastic processes. One of them is to search

for analytical solutions of the differential equations satisfied by the distributions of probabilities.

The other one is to evaluate these distributions by Monte-Carlo simulations. The advantage of the

second approach is a high efficiency.

Under technical hypotheses, this work shows it is easy to find the equations of evolution of

the probability density function of a transiting process. We give the procedure to construct the

equations practically. In the discrete case, these equations are standard, coupled partial differential

equations. In the continuous case, they involve differential terms and principal value integrals. In

both cases, they are globally linear, and stable under reasonnable circumstances. From a practical

point of view, one can approximate a continuous system by a discrete one, by the discretization of

the Poisson parameter. At the crossing of the probability theory and analysis, we find properties

such as the conservation law, which help simplify the equations and get less complex, but equivalent

problems.

Well-known computational techniques can be used to find numerical solutions to the equations,

and the increasing power of computation gives a concrete hope to obtaining accurate solutions in

real time. Here, we have used finite difference and finite element methods. But many other methods

such as finite recurrences are still to explore. From a practical point of view, strict upper bounds for

the statitics computed are sometimes sought, but there is no efficient method to find such bounds

yet. Monte-Carlo simulations do not offer the possibility of finding upper bounds.



Appendix A

MATLAB V modules for the finite

element method

Module init_meq3.m

N=51; % Number of subsystems

Psimin=-150*pi/180;

Psimax=150*pi/180;

% Load geometry/boundary condition description matrices b g

load meq_geom.mat

% Initialize/refine mesh

[p,e,t]=initmesh(g);

[p,e,t]=refinemesh(g,p,e,t);

[p,e,t]=refinemesh(g,p,e,t);

% p=jigglemesh(p,e,t,'Opt','minimum','Iter',10);

np=size(p,2);

% Precomputation of reduction matrices

[QQ,GG,HH,RR]=assemb(b,p,e);

[kerH,kerHorth]=pdenullorth(HH);



% Parameters

% dt=10/3600

lambda=4

V=300

sigm=30

% Precomputation of the coupling matrix KK

Psi=linspace(Psimin, Psimax,N);

setK

q=length(K);

KK=toeplitz(K(ceil(q/2):ceil(q/2)+N-1));

sKK=sum(KK);

% Preassembling of invariant matrices

mastereq3

Module iter_meq3.m

% Iterates of the finite element methods in time

% Convention : N components k=1...N denoted u(:,k)

% Starting point uO(:,l:N) -- iter_meq3 --> ul(:,l:N)

% Pre-assembling of the problem is assumed. Assemble only the coupling terms

% (which depend on uO)

% Coupling matrix (Toeplitz) : KK

epsilon= .1 % Artificial stabilization term

f tot=lambda*(uO*KK)*dPsi; % Note : KK is a symmetric matrix

for k=l:N,

k,

f=f_tot(:,k)-lambda*uO(:,k)*sKK(k)*dPsi;

% Assemble matrix F



% Interpolated values of f, primarily given at node points

f_intrp=pdeintrp(p,t,f);

f_intrp=f_intrp.*ar/3;

F= sparse(it,l,f_intrp,np,1);

F=F+sparse(it2,1,f_intrp,np,l);

F=F+sparse(it3,1,f_intrp,np,l);

% Assemble psi-depending matrices

psi_curr=Psi(k);

G=Gx*(V*(cos(psi_curr)-l))+Gy*(V*sin(psicurr)); % gamma = V [cos(psi)-1, sin(psi)]

E=(Ex-Hx)*(V*(cos(psicurr)-1))+(Ey-Hy)*(V*sin(psicurr));

% Be aware : formula true only for host flying from W to E (psiH=O)

% L=(1+cos(psicurr)^2)*Lxx+sin(psi-curr)*cos(psi-curr)*(Lxy+Lyx)+sin(psi-curr)-2*Lyy;

% R=(1+cos(psi-curr)^2)*Rxx+sin(psicurr)*cos(psicurr)*(Rxy+Ryx)+sin(psicurr)-2*Ryy;

L=L+epsilon*(Lxx+Lyy); % Stabilization term

R=R+epsilon*(Rxx+Ryy);

MM=M-sigm^2/2*dt*(L-R);

FF=(M-E*dt)*uO(:,k)+(F+G)*dt;

% Reduction of the system MM*ul(:,k)=FF

% to force satisfaction of boundary conditions by ul

ud=full(kerHorth*((HH*kerHorth)\RR));

FFF=kerH'*(FF-MM*ud);

MMM=kerH'*MM*kerH;

ul(:,k)=kerH*(MMM\FFF)+ud; % Solve next time step

end;



Module mastereq3.m

% Master equation solved by finite element method

itl=t(1,:);

it2=t(2,:);

it3=t(3,:);

X All couples with elements in {1,2,3}

c123=[ 1 2 ; 2 1 ; 1 3 ; 3 1 ; 2 3 ; 3 2 ];

%-------------- Area contributions --------------

% Assemble x-component of matrix E

[ar,glx,gly,g2x,g2y,g3x,g3y]=pdetrg(p,t);

flx=glx.*ar/3;

f2x=g2x.*ar/3;

f3x=g3x.*ar/3;

% Non-diagonal elements

Ex= sparse(itl,it2,flx,np,np);

Ex=Ex+sparse(itl,it3,flx,np,np);

Ex=Ex+sparse(it2,itl,f2x,np,np);

Ex=Ex+sparse(it2,it3,f2x,np,np);

Ex=Ex+sparse(it3,it2,f3x,np,np);

Ex=Ex+sparse(it3,itl,f3x,np,np);

% Diagonal elements are provably zero - except for boundary node points !

Ex=Ex+sparse(itl,itl,flx,np,np);

Ex=Ex+sparse(it2,it2,f2x,np,np);

Ex=Ex+sparse(it3,it3,f3x,np,np);

% Assemble y-component of matrix E

fly=gly.*ar/3;

f2y=g2y.*ar/3;

f3y=g3y.*ar/3;



% Non-diagonal elements

Ey= sparse(it1,it2,fly,np,np);

Ey=Ey+sparse(it, it3,fly,np,np);

Ey=Ey+sparse(it2,itl,f2y,np,np);

Ey=Ey+sparse(it2,it3,f2y,np,np);

Ey=Ey+sparse(it3,it2,f3y,np,np);

Ey=Ey+sparse(it3,itl,f3y,np,np);

% Diagonal elements are provably zero, except for boundary node points

Ey=Ey+sparse(itl,iti,fly,np,np);

Ey=Ey+sparse(it2,it2,f2y,np,np);

Ey=Ey+sparse(it3,it3,f3y,np,np);

% Assemble matrix Rxx

rl2x=ar.*(glx.*g2x);

r23x=ar.*(g2x.*g3x);

r3lx=ar.*(g3x.*glx);

Rxx= sparse(itl,it2,rl2x,np,np); X Off-diagonal elements
Rxx=Rxx+sparse(it2,it3,r23x,np,np);

Rxx=Rxx+sparse(it3,itl,r31x,np,np);

Rxx=Rxx+Rxx.';

rlx=ar.*(glx.^2);

r2x=ar.*(g2x.^2);

r3x=ar.*(g3x.-2);

Rxx=Rxx+sparse(itl,itl,rlx,np,np);

Rxx=Rxx+sparse(it2,it2,r2x,np,np);

Rxx=Rxx+sparse(it3,it3,r3x,np,np);

, Assemble matrix Ryy

rl2y=ar.*(gly.*g2y);

r23y=ar.*(g2y.*g3y);

r3ly=ar.*(g3y.*gly);



Ryy= sparse(itl,it2,rl2y,np,np); % Off-diagonal elements

Ryy=Ryy+sparse(it2,it3,r23y,np,np);

Ryy=Ryy+sparse(it3,itl,r3ly,np,np);

Ryy=Ryy+Ryy.';

rly=ar.*(gly.^2);

r2y=ar.*(g2y.^2);

r3y=ar.*(g3y.^2);

Ryy=Ryy+sparse(itl,itl,rly,np,np);

Ryy=Ryy+sparse(it2,it2,r2y,np,np);

Ryy=Ryy+sparse(it3,it3,r3y,np,np);

% Assemble matrix Rxy

rl2xy=ar.*(glx.*g2y);

r23xy=ar.*(g2x.*g3y);

r3lxy=ar.*(g3x.*gly);

r2lxy=ar.*(g2x.*gly);

r32xy=ar.*(g3x.*g2y);

rl3xy=ar.*(glx.*g3y);

Rxy= sparse(itl,it2,rl2xy,np,np); % Off-diagonal elements

Rxy=Rxy+sparse(it2,it3,r23xy,np,np);

Rxy=Rxy+sparse(it3,itl,r3lxy,np,np);

Rxy=Rxy+sparse(it2,itl,r2lxy,np,np);

Rxy=Rxy+sparse(it3,it2,r32xy,np,np);

Rxy=Rxy+sparse(itl,it3,rl3xy,np,np);

rlxy=ar.*(glx.*gly); % Diagonal elements

r2xy=ar.*(g2x.*g2y);

r3xy=ar.*(g3x.*g3y);

Rxy=Rxy+sparse(itl,itl,rlxy,np,np);

Rxy=Rxy+sparse(it2,it2,r2xy,np,np);

Rxy=Rxy+sparse(it3,it3,r3xy,np,np);

% Assemble matrix Rxy



rl2yx=ar.*(gly.*g2x);

r23yx=ar.*(g2y.*g3x);

r3lyx=ar.*(g3y.*glx);

r2lyx=ar.*(g2y.*glx);

r32yx=ar.*(g3y.*g2x);

rl3yx=ar.*(gly.*g3x);

Ryx= sparse(itl,it2,rl2yx,np,np); % Off-diagonal elements

Ryx=Ryx+sparse(it2,it3,r23yx,np,np);

Ryx=Ryx+sparse(it3,itl,r3lyx,np,np);

Ryx=Ryx+sparse(it2,itl,r2lyx,np,np);

Ryx=Ryx+sparse(it3,it2,r32yx,np,np);

Ryx=Ryx+sparse(itl,it3,rl3yx,np,np);

rlyx=ar.*(gly.*glx); % Diagonal elements

r2yx=ar.*(g2y.*g2x);

r3yx=ar.*(g3y.*g3x);

Ryx=Ryx+sparse(itl,itl,rlyx,np,np);

Ryx=Ryx+sparse(it2,it2,r2yx,np,np);

Ryx=Ryx+sparse(it3,it3,r3yx,np,np);

% Assemble matrix M

aod=ar/12;

ad=2*aod;

M= sparse(itl,it2,aod,np,np); % Off-diagonal elements

M=M+sparse(it2,it3,aod,np,np);

M=M+sparse(it3,itl,aod,np,np);

M=M+M.';

M=M+sparse(itl,itl,ad,np,np); % Diagonal elements

M=M+sparse(it2,it2,ad,np,np);

M=M+sparse(it3,it3,ad,np,np);



%------------ Boundary contributions ------------

% Indices of edges with domain on the right. 'ie' assumed nonzero

ie= find(e(6,:)==O & e(7,:)>O);

e_r=e(:,ie);

nie=length(ie);

perm=[2:nie,] ;

% Assemble vectors Gx and Gy (boundary condition : u=g=1)

iel=er(l,:);

ie2=e_r(2,:);

dx=p(1,ie2)-p(1,iel);

dy=p(2,ie2)-p(2,iel);

d=sqrt(dx.^2+dy.^2); % Side length

nxe=-dy./d; % Outward norm vector

nye=dx./d;

Y In the following, the index ie2 is a trick to designate node P(j+1) when

% dealing with segments [P(j),P(j+l)] and [P(j+l),P(j+2)]

Gx=sparse(ie2,1,.5*nxe.*d,np,1);

Gx=Gx+sparse(ie2,1,.5*nxe(perm).*d(perm),np, );

Gy=sparse(ie2,1,.5*nye.*d,np,1);

Gy=Gy+sparse(ie2,1,.5*nye(perm) . *d(perm),np, );

% Preparation of data for further computation

gxl=[];

gyl=[] ;

gx2=[];

gy2=[];

% Index of the triangles with edges [e_r(1,:),er(2,:)], in this order

for k=l:nie,

i=1;



while (isempty(find(t(cl23(i,l),:)==e_r(l,k) & t(c123(i,2),:)==e_r(2,k)) & (i<7)))

i=i+1;

end;

if i==7, error('Impossible to find edge in triangles'); return; end;

gxl=[gxl,eval(['g',num2str(c123(i,1)),'x(',num2str(k),')'])];

gyl=[gyl,eval(['g',num2str(c123(i,1)), 'y(',num2str(k),')'])];

gx2=[gx2,eval(['g',num2str(cl23(i,2)),'x(',num2str(k),')'])];

gy2=[gy2,eval(['g',num2str(cl23(i,2)), 'y(',num2str(k),')'])];

end;

% Results of the last computation :

% * gxl contains the x-gradient of the element associated

% with vertice number 1 (iel) in the boundary edge

% * gx2 contains the x-gradient of the element associated

% with vertice number 2 (ie2) in the boundary edge

% etc...

% Assemble matrix Lxx

% Off-diagonal terms

112xx=.5*d.*(nxe.*gx2);

121xx=.5*d.*(nxe.*gxl);

Lxx= sparse(iel,ie2,112xx,np,np);

Lxx=Lxx+sparse(ie2,iel,121xx,np,np);

% Diagonal terms

llxxl=.5*d.*(nxe.*gxl);

llxx2=.5*d.*(nxe.*gx2);

Lxx=Lxx+sparse(iel,iel,llxxl,np,np );

Lxx=Lxx+sparse(ie2,ie2,llxx2,np,np);

% Off-diagonal terms

112yx=.5*d.*(nye.*gx2);

121yx=.5*d.*(nye.*gxl);



Lyx= sparse(iel,ie2,112yx,np,np);

Lyx=Lyx+sparse(ie2,iel,121yx,np,np);

% Diagonal terms

llyxl=.5*d.*(nye.*gxl);

llyx2=.5*d.*(nye.*gx2);

Lyx=Lyx+sparse(iel,iel,llyxl,np,np);

Lyx=Lyx+sparse(ie2,ie2,llyx2,np,np);

% Off-diagonal terms

112xy=.5*d.*(nxe.*gy2);

121xy=.5*d.*(nxe.*gyl);

Lxy= sparse(iel,ie2,112xy,np,np);

Lxy=Lxy+sparse(ie2,iel,121xy,np,np);

% Diagonal terms

llxyl=.5*d.*(nxe.*gyl);

llxy2=.5*d.*(nxe.*gy2);

Lxy=Lxy+sparse(iel,iel,llxyl,np,np);

Lxy=Lxy+sparse(ie2,ie2,llxy2,np,np);

% Assemble matrix Lyy

% Off-diagonal terms

112yy=.5*d.*(nye.*gy2);

121yy=.5*d.*(nye.*gyl);

Lyy= sparse(iel,ie2,112yy,np,np);

Lyy=Lyy+sparse(ie2,iel,121yy,np,np);

% Diagonal terms

llyyl=.5*d.*(nye.*gyl);

llyy2=.5*d.*(nye.*gy2);



Lyy=Lyy+sparse(iel,iel,llyylp,npnp);

Lyy=Lyy+sparse(ie2,ie2,llyy2,np,np);

%------------ Boundary contributions 2 ------------

% Indices of edges with domain on the left.

ie_l= find(e(6,:)>O & e(7,:)==0);

el=e(:,ie_l);

nie_l=length(ie_l);

perm=[2:niel,1];

'ie' assumed nonzero

% Assemble vectors Gx and Gy (boundary condition : u=g=1)

iel_1=e_1(1,:);

ie2_l=e_1l(2,:);

dx_l=p(1,ie2_1)-p(1,iel_l);

dy_l=p(2,ie2_l)-p(2,iel_l);

d_l=sqrt(dx_l.^2+dyl.^2); % Side length

nxe_l=dy_l./dl; % Outward norm vector

nye_l=-dx_l./dl;

% Assemble matrix Hx

X Off-diagonal terms

hl2x=d_l/6.*nxe_1;

Hx= sparse(iel_l,ie2l,hl2x,np,np );

Hx=Hx+Hx.';

% Diagonal terms

hlx=d_/3.*nxe_1;



Hx=Hx+sparse(iel_l,iell,hlx,np,np);

% Assemble matrix Hy

% Off-diagonal terms

hl2y=d_l/6.*nye_1;

Hy= sparse(iel_1,ie21l,hl2y,np,np );

Hy=Hy+Hy.';

% Diagonal terms

hly=d 1/3.*nyel;

Hy=Hy+sparse(iell,iell,hly,np,np);
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