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New Developments of the Goodness-of-Fit
Statistical Toolkit

Barbara Mascialino, Andreas Pfeiffer, Maria Grazia Pia, Alberto Ribon, and Paolo Viarengo

Abstract—The Statistical Toolkit is a project for the development
of open source software tools for statistical data analysis in ex-
perimental particle and nuclear physics. The second development
cycle encompassed an extension of the software functionality and
new tools to facilitate its usage in experimental environments. The
new developments include additional goodness-of-fit tests, new im-
plementations of existing tests to improve their statistical preci-
sion or computational performance, a new component to extend
the usability of the toolkit with other data analysis systems, and
new tools for an easier configuration and build of the system in the
user’s computing environment. The computational performance of
all the algorithms implemented has been studied.

Index Terms—Data analysis, data comparison, goodness-of-fit
testing, software, Statistical Toolkit.

I. INTRODUCTION

THE comparison of data distributions with respect to other
reference data or functions is a common problem in

experimental physics: some typical cases are the validation
of simulation results against experimental data, the evaluation
of physical quantities reconstructed by the experiment’s soft-
ware against theoretically expected ones, or monitoring the
behaviour of a particle detector with respect to its nominal
operation reference. Moreover, the regression testing of an
experiment’s software usually involves some comparisons of
data distributions to monitor the software stability or to verify
its evolution.

A recent project, named the Statistical Toolkit [1], under-
took the development of an open source software system for
the comparison of data distributions, especially addressing, but
not limited to, applications in particle and nuclear physics. This
project is characterized by an iterative and incremental software
process, according to established best practices in software de-
velopment [2]; the first development cycle is documented in
[1]. This paper describes the new developments and improve-
ments, which have been released [3] for public usage in version
2. The new features available respond to experimental user re-
quirements. The first two development cycles concern the com-
parison of two samples of one-dimensional distributions.
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Several goodness-of-fit tests have been added to the already
extensive collection available in the first released version; some
of them introduce new weighted formulations of established
tests, for the first time available in a software tool for data
analysis. Other tests have been significantly improved, either
in their mathematical algorithms or in their computational
performance. New developments in the architectural user layer
have extended the usability of the Statistical Toolkit, addressing
in particular the requirements for data analysis in high energy
physics experiments. A significant redesign of the supporting
software tools package facilitates the configuration of the
system in the user’s own computing environment.

The paper also reports a comparative analysis of the com-
puting performance of all the algorithms implemented: these re-
sults provide useful guidance to experimental users to select the
test appropriate to their requirements among those available in
the toolkit. A comparative study of the statistical performance of
the various goodness-of-fit tests is the object of current research
activity [4], [5]; it will be documented in a dedicated paper.

II. OVERVIEW OF THE GOODNESS-OF-FIT

STATISTICAL TOOLKIT

The Statistical Toolkit is a software system for statistical data
analysis; it is especially targeted to common applications in ex-
perimental nuclear and particle science. It exploits the object
oriented technology and generic programming techniques; it is
implemented in C++. Its life-cycle is based on the iterative-in-
cremental model of the Unified Process [2]; the process frame-
work adopted emphasizes the role of the software architecture
and the relevance of use cases in the software development.

The Statistical Toolkit adopts a component-based architec-
ture, which facilitates its usage in association with other data
analysis software systems widely used in particle physics ex-
periments; its sound object oriented design makes it open to ex-
tension and evolution.

A. Statistical Background

Goodness-of-fit testing provides the mathematical foundation
for a rigorous, quantitative evaluation of the compatibility of
two data samples, or of a data sample against a reference func-
tion. A detailed overview of goodness-of-fit testing is reported
in [1]; the brief summary below is meant to introduce the basic
mathematical concepts involved in the software developments
described in the following sections.

Let and be two real-valued random variables, and let
and be, respectively, two samples of

independent and identically distributed observations with em-
pirical distribution functions and . For every the em-
pirical distribution function denotes the observed fraction
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of values smaller or equal to x; it ranges between 0 and 1. An
empirical distribution function statistic evaluates the deviation
between and ; the value of the corresponding test statistic
is computed as a mathematical function of the differences be-
tween the two empirical distribution functions.

Two-sample inferences test the null hypothesis

(1)

without specifying the common distribution function between
the two samples.

Under the hypothesis that the two samples were drawn from
the same population distribution, the corresponding empirical
distribution functions are expected to be close to each other; if
the two-sample empirical distribution functions differ signifi-
cantly, it is likely that the samples derive from different popula-
tions.

The result of a goodness-of-fit test is expressed through a
p-value, which represents the probability that the test statistic
has a value at least as extreme as that observed, assuming the
null hypothesis is true. The exact distributions associated
with empirical distribution function statistics are usually com-
plex and scarcely documented in the literature; for this reason
the Statistical Toolkit provides the asymptotic distributions for
the calculation of the p-value associated to the observed test
statistic of the various algorithms, whenever they have been doc-
umented. In a limited number of cases, documented in the fol-
lowing sections, the toolkit provides the critical values, that is
the values corresponding to a given significance, instead than
the p-value.

Several formulations of goodness-of-fit tests have been
devised in statistical science. They apply to binned or unbinned
distributions, or are especially suitable to compare distributions
with specific characteristics, such as cyclic observations or
so-called fat tails. The Statistical Toolkit refers to authoritative
sources in statistical literature for a sound theoretical foundation
of the algorithms implemented in the software and distributed
to the scientific community. It aims to provide an exhaustive
collection of algorithms, among which the user can choose the
most appropriate one to her or his experimental problem.

A complete and systematic evaluation of the power of the
existing goodness-of-fit tests, that is of their capability to ac-
cept or reject the null hypothesis correctly, has not been
documented in statistical literature yet; only some sparse data
about a few specific tests and application cases are available.

B. Software Features

The first released version of the Statistical Toolkit [1] de-
fined its architecture and implemented an initial set of good-
ness-of-fit tests, chosen among the most commonly used in the
data analysis of particle physics experiments.

The component-based architecture of the Statistical Toolkit
is articulated through a Layer architectural pattern [6]. The ar-
chitecture distinguishes a core statistical layer, which is respon-
sible for mathematical computations, and a user layer, which
is responsible for any user analysis actions and for the inter-
face to external data analysis systems. The architectural pattern

adopted, which clearly decouples the functionality of the math-
ematical component from its usage, allows for an independent,
unlimited extension of the statistical functionality of the Toolkit;
it also facilitates the usability of the software in different data
analysis environments.

The main types in the core statistical component are the
Distribution, the ComparatorEngine and the ComparisonAlgo-
rithm. The ComparatorEngine class is responsible for driving
the comparison; it is parameterized over the data Distribution
type (binned or unbinned) and the goodness-of-fit Algorithm.
Concrete goodness-of-fit tests correspond to specializations of
the ComparisonAlgorithm parameterized class, respectively
bound to binned or unbinned Distributions. A Strategy pattern
[7] handles the evaluation of the quality of the fit. The main
features of the statistical test design are shown in Fig. 1.

The goodness-of-fit tests implemented are listed in Table I,
where names in italic highlight the new tests released in ver-
sion 2 of the Toolkit. The set of tests available in the first re-
lease covered various mathematical approaches, encompassing
the test, tests based on the empirical distribution functions
maximum distance and tests based on the empirical distribution
functions quadratic distance. It included the two-sample good-
ness-of-fit tests most widely used in experimental physics ( ,
Kolmogorov-Smirnov), and a few other tests applied in more
sophisticated analyses of particle physics experiments, like the
Anderson-Darling test and the Cramér-von Mises test.

Some tests were implemented with preliminary algorithms
in the first development cycle; the focus of the development
process was on the mathematical correctness of the algorithms,
rather than on their performance optimization. Thanks to the
sound software design, implementation improvements could
be addressed in further development cycles without interfering
with the rest of the software, according to the iterative-incre-
mental software process adopted.

The first release of the Statistical Toolkit encompassed one
User Layer component, based on the AIDA [8] Abstract Inter-
faces for Data Analysis. This User Layer component interfaced
the Statistical Toolkit to all the AIDA-compliant analysis sys-
tems: JAS [9], Open Scientist [10], PAIDA [11] and PI [12]. The
component-based architecture of the system allows extending
the interface to other analysis systems, without affecting the
core statistical component.

C. Extension of the Functionality

The second development cycle, which is the object of this
paper, addressed a well defined set of requirements in various
domains:

• an extension of the set of goodness-of-fit tests covered:
an ample set of software tools would enable the choice of
the most appropriate test for any specific data analysis; the
availability of software tools for an extensive number of
tests also allows for the first time a comprehensive, quanti-
tative evaluation of their applicability and their respective
power in various experimental conditions;

• more precise calculations of some test algorithms available
in the first release, such as the computation of p-values
instead of critical values;
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Fig. 1. Detail of the Goodness-of-Fit Statistical Toolkit design: the white classes represent components present in the first released version, the colored ones
represent classes of the new goodness-of-fit tests added in the second development cycle.

TABLE I
LIST OF ALL THE GOODNESS-OF-FIT TESTS IMPLEMENTED IN THE STATISTICAL

TOOLKIT [1]. THE NAMES IN ITALIC HIGHLIGHT THE NEW TESTS AVAILABLE

IN THE 2.0 RELEASE

• a faster implementation of the test suitable for applica-
tion in online data analysis;

• the possibility of using the Statistical Toolkit in association
with ROOT [13], that is a data analysis system widely used
in high energy physics experiments.

The component-based architecture of the Statistical Toolkit
and its sound object oriented design facilitated its evolution to
satisfy the new requirements. The new features and improved
functionality were included in the system as extensions of the
existing design, or just as new implementations of already
existing classes, without needing any modification of interfaces
in the core statistical component or of user’s code. The process
of extending the toolkit functionality for the inclusion of a
new goodness-of-fit test is illustrated in the UML (Unified

Modelling Language) [14] class diagram of Fig. 1: adding
a new test implies the creation of a concrete class imple-
menting the ComparisonAlgorithm interface for the appropriate
distribution type, and the implementation of the associated
StatisticsQualityChecker. Since the main conceptual entities of
the problem domain are handled through abstract interfaces,
the extension of the system is completely transparent to the
core computational component.

Similarly, the addition of a new User Layer component en-
abled the usability with ROOT in a transparent way.

III. NEW GOODNESS-OF-FIT TESTS

The second version of the Statistical Toolkit includes various
new goodness-of-fit tests: the Watson test, a generalised for-
mulation of the Girone test, and variants of the Kolmogorov-
Smirnov and Cramér-von Mises tests.

A. Generalised Girone Test

The second release of the Statistical Toolkit provides the
first implementation of a generalized version of the Girone test
[15]–[20] in an open source software tool.

The Girone test [21]–[23] presents some interesting
characteristics: when the variable under study is asymmetric,
it appears more powerful than the Kolmogorov-Smirnov and
Cramér-von Mises tests [15]. However, it is affected by an
intrinsic limitation: it is applicable only to the comparison of
samples of equal sizes , whereas in experimental
practice one often encounters data samples of different size.
Various studies aimed at generalizing the original Girone test
are documented in statistics literature, and their validity has
been proved to be asymptotically equivalent [24].

A version of general applicability, resulting from a critical
analysis of the mathematical literature on this issue, has been
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implemented in the Statistical Toolkit as GironeGeneralised-
ComparisonAlgorithm. This test can be applied to unbinned
distributions; the test statistic implemented is:

(2)

B. Watson Test

An implementation of the Watson test [25]–[27] is also pro-
vided in this release of the Statistical Toolkit. This test was
originally proposed [25]–[27] for application to unbinned cyclic
observations, however, it is valid even for samples not exhibiting
a periodicity [28]. This test is quite powerful [27] and provides
equal sensitivity to the tails as to the median of the two empirical
distribution functions.

The Watson test statistic involves the integral of the squared
deviations between the empirical distribution functions of the
two-samples; in the Statistical Toolkit the following formula
[26] has been implemented, which is more suitable for numer-
ical calculations, as it does not require any computationally in-
tensive integration, while it has been demonstrated to be equiv-
alent to the original one:

(3)

C. Weighted Kolmogorov-Smirnov and
Cramér-Von Mises Tests

Two modified versions of the Kolmogorov-Smirnov test, have
been introduced in the second release of the Statistical Toolkit.

The Kolmogorov-Smirnov [29], [30] test statistic is defined
as the maximum unsigned deviation between the two empirical
distribution functions derived from the data samples to be
compared. Modified versions of the Kolmogorov-Smirnov
test have been proposed [31], [32]; they introduce appro-
priate non-negative weight functions to attribute
different weights to different parts of the distributions:

(4)

can have many formulations; two of them, the
Anderson- Darling and the Buning weighting functions, have
been implemented in the Statistical Toolkit. These functions at-
tribute larger weight to different parts of the distributions; there-
fore, the corresponding weighted Kolmogorov-Smirnov tests
are suitable to look for specific types of deviations.

The Anderson and Darling [33], [34] weighting function
is symmetric; it attributes larger weight to the lower

(close to 0) and upper (close to 1) part of the empirical distri-
bution functions:

(5)

The Buning [32] weighting function is asymmetric and em-
phasises the lower part of the empirical distribution functions:

(6)

A new weighted Cramér-von Mises test ,
which adopts the Buning [32] weighting function , has been
added to the second released version of the Statistical Toolkit.

The Cramér-von Mises test statistic [35], [36] measures the
sum of the integrated squared discrepancy between and .
For historical reasons, when the Cramér-von Mises test statistic
is weighted with , the test is named the Anderson-Darling
test [33], [34]. Both the original Cramér-von Mises and the
Anderson-Darling tests were already present in the first version
of the Statistical Toolkit (the former named Fisz-Cramér-von
Mises test in its generalized version for the two-sample problem
[37]). The test statistic of the new weighted Cramér-von Mises
test has the following formulation:

(7)

The asymptotic distributions associated to the weighted test
statistic are not documented in statistical literature; only some
critical values corresponding to the significance level of 0.05
were obtained by Monte Carlo simulation for a few selected
sample sizes [31], [32]. This deficiency would have limited the
applicability of the weighted tests, in spite of the fact that these
tests are more powerful than other goodness-of-fit tests for some
data sample comparisons [32]. An original approach was devel-
oped to overcome this limitation in the Statistical Toolkit: it con-
sists of an approximated method to calculate the critical values
of the test statistic corresponding to the significance level of 0.05
for any sample size. For each test, a regression model has been
devised on an empirical basis and evaluated on the critical values
available in literature; these models are capable of predicting the
expected critical values as a function of the sample sizes.

The regression models associated to the two weighted
Kolmogorov-Smirnov tests and to the weighted Cramér-von
Mises test are listed in Table II. The table also reports the
models’ coefficient of determination : ranges from 0
(when no agreement is found between the model and the data
points) to 1 (in the case of perfect agreement); it represents the
proportion of variation in the dependent variable explained
by the model. The high values in Table II confirm the
excellent predictive capabilities of the model developed for
the Statistical Toolkit implementation of the weighted good-
ness-of-fit tests.

The implementation in the Statistical Toolkit makes these
weighted tests available for the first time in an open-source
software tool; it enables researchers to exploit their peculiar
features in physics data analyses, by selecting the version of
the well known Kolmogorov-Smirnov test, or of the powerful
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TABLE II
REGRESSION MODELS TO EVALUATE THE EXPECTED CRITICAL VALUES

(ĉv) CORRESPONDING TO THE SIGNIFICANCE LEVEL 0.05 AS A FUNCTION

OF SAMPLE SIZES FOR THE WEIGHTED KOLMOGOROV-SMIRNOV AND

CRAMÉR-VON MISES TESTS. THE DETERMINATION COEFFICIENTS R

HIGHLIGHT THE EXCELLENT PREDICTIVE QUALITY OF THE MODELS

Cramér-von Mises test most appropriate to the data distributions
to be compared.

D. Approximation of the Anderson-Darling Test

This release of the Statistical Toolkit also includes a new ap-
proximated version of the Anderson-Darling test, in addition to
the standard one. The implementation of the approximated al-
gorithm was motivated by the interest to evaluate potential ben-
efits in terms of computing performance, that could be valuable
in some use cases. The Anderson-Darling test is known as one
of the most powerful goodness-of-fit tests [38]; the investiga-
tion of the performance of an approximation is relevant to users
concerned with the speed of execution, as well as the power, of
goodness-of-fit tests.

The Anderson-Darling [39], [40] test statistic is based on a
doubly weighted sum of the integrated squared differences be-
tween the two empirical distribution functions weighted by the
weighting function proposed by Anderson and Darling and de-
fined in (5). This test has a highly skewed and complex limit dis-
tribution. The calculation of the test statistic is left unchanged
in the approximated variant, while an empirical approximation
[41] is used for the calculation of the p-value of the test. If
represents Anderson-Darling test statistic, the alternative for-
mulation of its limiting distribution implemented in the Statis-
tical Toolkit is:

(8)

This formula is adequate for both the upper and lower tails of the
asymptotic distribution; it was demonstrated to be more accurate
than other theoretical approximations proposed [41].

The computational performance of the Anderson-Darling test
and of its approximated variant is documented in Table III and
discussed in Section VII.

IV. IMPROVED ALGORITHMS

The Statistical Toolkit offers new implementations of some
goodness-of-fit tests already released in its first version. The im-
provements concern either the precision of the statistical calcu-
lations or the computational speed of the algorithms.

A. New Implementations of the Anderson-Darling and
Fisz-Cramér-Von Mises Tests

The first release of the Statistical Toolkit provided the critical
values corresponding to the significance level 0.05 for two of
the most powerful goodness-of-fit tests: the Anderson-Darling

and the Fisz-Cramér-von Mises. The critical values have been
replaced by the statistic asymptotic distributions in the second
release; this evolution addressed the requirement for a p-value
evaluation based on a more accurate and rigorous method.

In the Statistical Toolkit the Anderson-Darling p-value calcu-
lation is based on the one-sample limit distribution [40]:

(9)

In fact, the Glivenko-Cantelli theorem [42] allows using the
asymptotic distributions of the one-sample problem in the two-
sample case too, given the null hypothesis as in (1).

Similarly, under the null hypothesis , the two-sample Fisz-
Cramér-von Mises asymptotic distribution has the same limiting
distribution as the one-sample test statistic [43]:

(10)

where is the modified Bessel function of the second kind.

B. New Implementation of the Test

Among the many goodness-of-fit tests devised in statistical
science, the test is the most commonly used in experimental
particle physics. Because of the wide usage of this test, a soft-
ware tool for statistical analysis should address a variety of
use cases, corresponding to different applications in the experi-
mental practice: some, like physics analysis, may be more con-
cerned with the precision of the calculation, while other ones,
like online detector monitoring, may be more concerned with
the speed of the computation. The implementation of test in
the first released version of the Statistical Toolkit satisfied the
requirement of precision of calculation; a new implementation
in the released version 2 also addresses the computational speed.

A new version of the test is based on the fact that the
cumulative distribution function is related to the incomplete
gamma function [44]–[47]. The algorithm implementation
exploits the function of the GNU Scientific
Library [48] for generating random variables and computing
their probability, using the incomplete gamma function. The
class corresponding to this new implementation has been named
Chi2ComparisonAlgorithm; the old version is still distributed in
the Statistical Toolkit as Chi2IntegratingComparisonAlgorithm
to enable comparative evaluations.

The computational performance of the two versions is
documented in Table III. The new formulation represents a
significant time gain with respect to the first released version; it
is suitable to online data analysis, where computational speed
is a significant requirement. The p-values resulting from either
version of the algorithm differ less than .

A similar performance improvement, based on the same tools
of the GNU Scientific Library, has been implemented in the
Goodman [49] and Tiku [50] tests, which respectively represent
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TABLE III
AVERAGE CPU TIME IN MS FOR THE EXECUTION OF

THE GOODNESS-OF-FIT TESTS

the approximation of the Kolmogorov-Smirnov and Cramér-von
Mises tests to a statistic.

V. EXTENSION OF THE USER LAYER

The user requirement of enabling the usage of the Statis-
tical Toolkit to compare ROOT analysis objects was motivated
by the wide popularity of this analysis system in high energy
physics experiments. In fact, the rich functionality of the Sta-
tistical Toolkit effectively complements the limited tools for the
comparison of histograms currently available in ROOT.

The User Layer bridges the user’s representation of analysis
objects to be compared to the binned and unbinned Distribution
classes handled by the core Statistical Layer. An implementa-
tion of a new User Layer component is easily performed by
creating a single class called StatisticsComparator and imple-
menting one public method for the comparison (compare). This
is typically done in the header file of the class itself, thus re-
ducing the overhead to rebuild the library for adding new user
layer components.

The usability with ROOT was easily satisfied by extending
the User Layer with a new component implementing the func-
tionality required to handle user supplied ROOT histograms
(i.e., binned analysis objects); three protected helper methods
are employed, allowing an easy extension for the case that future
versions of ROOT may provide unbinned data classes too. The
helper methods convert ROOT one-dimensional histograms into
the BinnedDistributions type employed by the toolkit, create an
instance of the templated Algorithm, then forward the actual
evaluation to the Algorithm.

Because of the clear separation of the User and Statistical
Layers in the architecture of the Statistical Toolkit, and of dif-
ferent components in the User Layer itself, the extension for the
operability with ROOT did not affect any of the existing soft-
ware. As described in Section VI, the user may decide to con-
figure her or his system with either the ROOT or the AIDA User
Layer components, or with both.

VI. CONFIGURATION AND BUILD TOOLS

The new version of the Statistical Toolkit represents a sub-
stantial improvement concerning the installation and configu-
ration in the user’s software environment. Standard procedures
provide a more flexible and user friendly way to configure and
build it.

The only external dependency of the system is on the GNU
Scientific Library (GSL) [48]. The initial analysis objects sup-
plied by the user as input to the comparison also depend on ex-
ternal analysis systems; however, this dependency is limited to
the User Layer, while the core Statistical Layer does not depend
on any external analysis tools.

In the version 2 release the configuration and build of the
Statistical Toolkit software is fully based on GNU Autotools
[51]; these tools are the de facto standard for portably building
and installing C and C++ applications across different UNIX
flavours and systems.

The Statistical Toolkit provides two scripts (configure.in and
Makefile.am) for the fully automated configuration and build of
the system in the user environment. The configuration scripts
accept the options to configure the system with either the AIDA
or the ROOT user layer, or with both; the user can also specify
the location of the external systems (GSL, ROOT, AIDA-com-
pliant analysis tools) in her or his computing environment.

The build procedure provides the option to build and run all
the unit tests of the Statistical Toolkit; therefore, the user has the
possibility to verify the correctness of her or his installation of
the software.

The reference supported platform for the Statistical Toolkit
is the open source Scientific Linux CERN (SLC Version 3 at
the time of the second release of the toolkit). This platform is
widely used in particle and nuclear physics experiments; it is
not a site-specific product: all CERN site customizations are op-
tional and need not be activated for users in other environments
than CERN. The adoption of the standard GNU Autotools and
of coding guidelines compliant with the C++ standard greatly
facilitates porting the system to other platforms.

VII. PERFORMANCE OF THE ALGORITHMS

The computational speed of the various goodness-of-fit
algorithms available in the Statistical Toolkit is one of the
criteria to select a test appropriate to a given application. A
complementary selection criterion is the power of the test, that
is its capability to identify compatible distributions correctly,
while minimizing the chance of spurious compatibility results;
this topic will be extensively treated in two papers currently in
preparation.

A thorough investigation of the computational performance
of all the available goodness-of-fit tests has been carried out
in connection with the release of version 2 of the Statistical
Toolkit. This study exploited the software tools regularly used
in the system testing process of the toolkit.

The system testing of the Statistical Toolkit encompasses a
series of tests, that exercise the goodness-of-fit algorithms in
realistic use cases. It consists of the Monte Carlo generation of
a large number of pseudo-experiments: unbinned and binned
data samples of variable size are drawn from a set of parent
distributions (flat, gaussian, right and left tailed exponential),
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and compared to one another through each of the goodness-of-fit
algorithms. These tests were equipped with a calculation of the
CPU time spent in the computation of the comparison algorithm.

The tests were executed over 10000 pseudo-experiments on
a PC with a Pentium ™ IV (3 GHz) processor and 512 MB of
RAM; the size of the samples subject to comparison was 500;
for the binned tests the number of bins was 20. The results are
listed in Table III. The absolute values of the execution times
depend on the characteristics of the distributions subject to the
tests, not only on the intrinsic features of the goodness-of-fit al-
gorithms; therefore, Table III should be considered as a relative
indication of the computational speed of the various algorithms,
rather than as an absolute reference.

The computational performance of the various tests depends
on the the distributions type (binned or unbinned): binned data
analysis is in general faster, since, as a consequence of the
grouped nature of data, the empirical distribution functions
exhibit simpler computational features.

The CPU times of the tests for binned distributions are all
quite similar, with the exception of the old implementation of the

test. The new implementation of this test shows a significant
improvement, which makes it suitable for usage in online data
analysis. It is worthwhile noting that the Fisz-Cramér-von Mises
test is the fastest among those available for binned distributions,
with a performance 20% better than the more popular test.
Such a consideration may be relevant to application cases where
the computational performance is a critical issue. The calcula-
tion of the probability requires the evaluation of the cumu-
lative distribution function to determine the probability corre-
sponding to a given test statistic value ; therefore, it is not
surprising that the execution of the software for the p-value cal-
culation is computationally intensive.

Among unbinned distributions, the Kolmogorov-Smirnov
test exhibits the fastest execution time, while most of the other
tests show a comparable computational performance.

The performance gain of the approximated Anderson-Darling
test is modest with respect to its full formulation: it is limited to
approximately 15% for binned distributions and about 5% for
unbinned ones. Other approximated versions of established tests
exhibit a worse computational performance than the original
formulation: this is the case, for instance, of the Goodman and
Tiku tests, which are approximated versions of the Kolmogorov-
Smirnov and Cramér-von Mises tests respectively. This conclu-
sion is apparently surprising with respect to the naive expecta-
tion that an approximated algorithm would be faster. For his-
torical reasons approximated tests have been devised to facil-
itate the manual calculation of the test statistic in some prac-
tical application cases, for instance introducing the reference to
commonly available tabulated values of the ; nevertheless,
their comparative computational performance has not been pre-
viously documented quantitatively in a software environment.
The present study shows that approximated tests play a limited
role in a modern computational environment. The availability of
a wide set of goodness-of-fit tests in the same open-source soft-
ware environment makes a thorough investigation of their prop-
erties achievable for the first time: this holds not only for their
comparative computational performance, but also for a rigorous
study of their statistical power.

VIII. CONCLUSION

The second development cycle of the Statistical Toolkit has
resulted in a significant extension and improvement with respect
to the first publicly released version.

New goodness-of-fit tests have been implemented, including
a few available for the first time in a publicly released software
product. The extensive collection of algorithms implemented
makes the Statistical Toolkit the most complete software system
for the comparison of two data distributions, not only among
data analysis systems for physics research, but even in the pro-
fessional domain of statistics software tools. To the authors’
knowledge, the new version of the Statistical Toolkit imple-
ments all the two-sample goodness-of-fit tests based on the em-
pirical distribution function statistics known in statistical sci-
ence as well as the test.

New implementations of existing tests have improved their
computational performance or their precision with respect to the
first version. Original developments have allowed to extend the
applicability of some tests, like the weighted ones, with respect
to the formulations available in statistical literature.

A new User Layer component has been added to facilitate
the usage of the Statistical Toolkit in high energy physics ex-
periments.

The sound architecture of the Statistical Toolkit enabled the
implementation of new functionality without affecting the ex-
isting core software or the user’s one. This characteristics, to-
gether with its rigorous iterative-incremental software process,
makes the Statistical Toolkit open to further extension and evo-
lution. New development cycles are planned to address comple-
mentary problems in the domain of data comparisons: the one-
sample and the k-sample problem, the comparison of multi-di-
mensional distributions, and the treatment of uncertainties. Be-
sides these major planned extensions, the requirements of more
precise p-value calculations or of possibly new tests will con-
tinue to be addressed too.

A comprehensive study is in progress to analyse quantita-
tively the power of all the goodness-of-fit tests, with the purpose
to identify the most appropriate ones for different experimental
applications. The results of this study will be documented in fu-
ture publications currently in preparation.
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