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ABSTRACT

Work on the forward problem in zooplankton bioacoustics has resulted in the identification of
three categories of acoustic scatterers: elastic-shelled (e.g. pteropods), fluid-like (e.g. euphausiids),
and gas-bearing (e.g. siphonophores). The relationship between backscattered energy and animal
biomass has been shown to vary by a factor of -19,000 across these categories, so that to make
accurate estimates of zooplankton biomass from acoustic backscatter measurements of the ocean,
the acoustic characteristics of the species of interest must be well-understood. This thesis
describes the development of both feature based and model based classification techniques to
invert broadband acoustic echoes from individual zooplankton for scatterer type, as well as for
particular parameters such as animal orientation. The feature based Empirical Orthogonal
Function Classifier (EOFC) discriminates scatterer types by identifying characteristic modes of
variability in the echo spectra, exploiting only the inherent characteristic structure of the acoustic
signatures. The model based Model Parameterisation Classifier (MPC) classifies based on
correlation of observed echo spectra with simplified parameterisations of theoretical scattering
models for the three classes. The Covariance Mean Variance Classifiers (CMVC) are a set of
advanced model based techniques which exploit the full complexity of the theoretical models by
searching the entire physical model parameter space without employing simplifying
parameterisations. Three different CMVC algorithms were developed: the Integrated Score
Classifier (ISC), the Pairwise Score Classifier (PSC) and the Bayesian Probability Classifier
(BPC); these classifiers assign observations to a class based on similarities in covariance, mean,
and variance, while accounting for model ambiguity and validity. These feature based and model
based inversion techniques were successfully applied to several thousand echoes acquired from
broadband (-350 kHz - 750 kHz) insonifications of live zooplankton collected on Georges Bank and
the Gulf of Maine to determine scatterer class. CMVC techniques were also applied to echoes
from fluid-like zooplankton (Antarctic krill) to invert for angle of orientation using generic and
animal-specific theoretical and empirical models. Application of these inversion techniques in situ
will allow correct apportionment of backscattered energy to animal biomass, significantly
improving estimates of zooplankton biomass based on acoustic surveys.
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CHAPTER 1

THE CLASSIFICATION PROBLEM

Accurate acoustic characterisation of zooplankton species is essential if reliable estimates of

zooplankton biomass are to be made from acoustic backscatter measurements of the water column.

Much work has recently been done on the forward problem, where scattering predictions have

been made based on animal morphology. Three categories of scatterers (Figure 1-1), represented

by theoretical scattering models, have been identified by Stanton et al. (1994a):

Gas-Bearing (GB) Fluid-Like (FL) Elastic-Shelled (ES)

Agalma Meganyctiphanes Limacina

okeni norvegica retroversa

e.g. siphonophores euphausiids pteropods

Figure 1-1 Examples of three acoustic scattering types, each represented by a theoretical scattering model.

The characteristic acoustic signature of each of these classes of zooplankton is unique. As a result,

it is possible to invert acoustic backscatter data for the class of scatterer. The material properties of

species within a scattering class are similar, leading to a relationship between scattering class and

animal biomass. Solving the "inverse problem" of identifying a scatterer from its acoustic

signature will enable biological oceanographers to make more reliable estimates of zooplankton

biomass from acoustic backscatter data.

The thesis work described herein encompasses the development of a classification scheme for

inverting acoustic backscatter data for organism type, leading to the identification of marine

zooplankton by their acoustic signatures (Figure 1-2). Central to this objective is the development

of classification algorithms that exploit unique features of the acoustic signatures for each class. To

ensure the development of robust classifiers, an investigation of the effect of animal orientation on

acoustic signature is undertaken. The product of this thesis research is an assemblage of

classification techniques evaluated in terms of their performance with experimental data, as well as

a brief outline of some guidelines for classifier implementation and indications for future work.



ASSEMBLAGE OF
CLASSIFICATION TECHNIQUES

DEVELOPMENT OF
CLASSIFICATION- classifier evaluation

ALGORITHMS - data requirements
- future work

Investigation of effect of

zooplankton orientation on
acoustic signature

Figure 1-2 Scope of this thesis work.

1.1 BACKGROUND

1.1.1 ZOOPLANKTON BIOMASS ESTIMATION

Marine zooplankton influence the global carbon cycle since they play a critical role in determining

the flux of nutrients and carbon from the upper mixed layer to depth (Smith et al. 1992). They also

serve as a principal food source for most of the commercially important fish species, particularly

during the larval stages (Turner 1984). Consequently, accurate knowledge of zooplankton

distribution, abundance and production is necessary in order to understand the global biological

pump as well as to characterise the trophic interactions between commercial fish species and their

prey. For example, to quantitatively assess the amount of food available to a particular fish stock,

accurate estimates of zooplankton biomass are essential. Conventional methods for estimating

zooplankton biomass include measurement of displacement volume (Yentsch and Hebard 1957

cited in Wiebe et al. 1975), wet weight (Nakai and Honjo 1962 cited in Wiebe et al. 1975), dry

weight (Lovegrove 1966 cited in Wiebe et al. 1975) or carbon (Curl 1962 cited in Wiebe et al.

1975) from net (e.g. MOCNESS - Wiebe et al. 1985) or pump (Miller and Judkins 1981) samples.

As a result of the spatial patchiness of zooplankton populations in the ocean and extreme temporal

variability in their abundance, it is estimated that biomass can vary over seven orders of magnitude

on the spatial and temporal scales important for populations of macrozooplankton (Huntley and

Lopez 1992). This magnitude of spatial and temporal variability is particularly troublesome, since

conventional techniques for biomass estimation (nets, pumps, trawls) are not suited for

simultaneous sampling of the entire water column over the relevant scales. To make more accurate



biomass estimates, high resolution instruments (-1 m) capable of mapping variation in

zooplankton biomass on large vertical (10 - 100 m), horizontal (1 - 10 km) and temporal (days to

months) scales are required. The use of high-frequency acoustics to make volume backscatter

measurements of the water column has recently made it possible to do rapid, high-resolution,

broad-scale synoptic surveys of zooplankton abundance over the time and space scales of interest

(Greenlaw 1979).

The acoustic characterisation of various species of zooplankton is essential if biologists wish to

use volume backscatter measurements of the ocean as indicators of zooplankton biomass.

Traditional acoustic biomass estimation methods have employed an empirical conversion from

acoustic scattering strength (at a single frequency) to biomass, relying on regression relationships

between the acoustic backscatter data and the biomass collected in simultaneous net samples. For

example, Flagg and Smith (1989a, 1989b) used data from a 307 kHz (1989a, 1989b) or a 150 kHz

(1989b) ADCP (Acoustic Doppler Current Profiler) in correlation with simultaneously acquired

MOCNESS (Multiple Opening / Closing Net and Environmental Sensing System) data to make

biomass estimates of New England Shelf zooplankton populations; they claim these estimates are

accurate to within - 15 mg/n (10 - 40%). Greenlaw (1979) pointed out that biomass estimates

made in this manner are subject to all the shortcomings of the net sampling technique (size and

species specificity, avoidance, inability to sample over relevant scales). For a single, known size

class of animals, or for a monospecific population of known size distribution, single-frequency

acoustic measures have been used in conjunction with the fluid sphere model to make biomass

estimates (Greenlaw 1979). However, observations of the biota will be largely influenced by the

choice of acoustic frequency (Holliday 1980). In addition, oceanic zooplankton populations often

consist of multiple-species assemblages of different sized organisms with drastically different

acoustic scattering properties. For these reasons, biomass estimates based on simple regression

curves to net data or single-frequency echo energy measurements will be subject to large errors.

For example, Wiebe et al. (1996) found that although the volume backscattering was 4 to 7 times

higher at two stratified sites as compared with a mixed site on Georges Bank, MOCNESS-

collected biovolumes at these sites were not significantly different. Greenlaw (1979) noted that the

volume scattering from a region containing a single 22 mm fish, which has a gas inclusion, is the

same as that from a region containing 260 similar-sized euphausiids, which are fluid-like, weak

scatterers. In fact, Stanton et al. (1994a) observed that the relative echo energy per unit of biomass

measured from a variety of animals ranging from elastic-shelled gastropods to fluid-like salps



varies by a factor of -19,000 to 1. This huge species-dependent variability in echo energy per unit

biomass has important implications for the interpretation of acoustic survey data. Attempts to

equate larger acoustic returns to the presence of more or larger animals and thereby conclude that

the higher the echo energy, the greater the biomass in the insonified region, could lead to gross

errors in biomass estimates by several orders of magnitude (Stanton et al. 1994a).

Much effort has been put toward characterising the acoustic target strength of zooplankton for the

purposes of species identification, animal size classification, abundance estimation and acoustic

signal separation. In fact, the echo integration method for acoustic biomass estimation, which

measures the acoustic backscatter from a volume of water which may contain multiple scatterers,

relies on accurate knowledge of the species of scatterers in the insonified volume and their

respective scattering characteristics. Some attempts have been made to bridge the gap between

acoustic backscatter measurements of the water column and the animal biomass present, while

accounting for the vast species differences in scattering strength per unit biomass. Stanton et al.

(1987) used existing theoretical and empirical scattering models for different classes of

zooplankton in combination with the species composition in net tows to predict the expected

acoustic backscatter over a transect in the Gulf Stream, and compared this prediction to the

measured acoustic backscatter; the predictions were to within an order of magnitude of the

measured values for samples with lower volume scattering strengths, but the agreement was poor

for samples with higher scattering strengths, probably as a result of net avoidance and/or failure to

account for the poorly sampled siphonophore biomass. Wiebe et al. (1996) performed a similar

analysis on data from Georges Bank using more recently developed theoretical scattering models,

and found reasonable agreement between observed and predicted values, to within about 4 dB.

These studies have demonstrated that a solid understanding of the dependence of zooplankton

target strength on animal size, shape, material properties and orientation is necessary to convert

integrated backscattered energy to numerical densities and apportion these densities to individual

species of zooplankton, thereby obtaining an estimate of biomass in the water column.

1.1.2 THE FORWARD PROBLEM

The solution to the forward problem involves predicting the properties of the acoustic return

from a scatterer based on knowledge of the physical and geometric properties of the scatterer as

well as the specifications of the sonar system used to insonify it. Most of the progress in

zooplankton bioacoustics has been made in this area, via the development of both theoretical and



empirical models which describe the scattering from these animals in terms of their morphology

and material properties. Various theoretical models have been developed to predict acoustic

scattering from zooplankton based on animal morphology. Initially, scattering from all

zooplankton (including elongated and elastic-shelled organisms) was modelled using the Anderson

fluid sphere model (Anderson 1950). Greenlaw (1977, 1979) used the Johnson (1977) fluid sphere

model (a simplified version of the Anderson model) for euphausiids and sergestid shrimp at dorsal,

ventral and side aspects. Alternatively, Penrose and Kaye (1979) used a Love empirical formula,

originally developed to model the backscattering cross-section of fish (Love 1977), to describe the

scattering from elongated zooplankton. Comparison of backscatter data with the predictions of

these models led to the conclusion that the fluid-sphere model does not adequately describe the

scattering from elongated zooplankton such as euphausiids and shrimp (Stanton 1990a). The first

scattering model to account for the elongate and deformable morphology of some of the crustacean

zooplankton was developed by Stanton (1988a,b and 1989a). These models are based on the modal

series solution for an incident plane wave, and describe the scattering of sound by arbitrarily

deformed cylinders of finite length. To overcome the computational difficulties of calculating the

exact scattered field via the modal series solution, Stanton (1989b) refined and generalised

Johnson's (1977) approach of combining the low- and high-frequency asymptotic limits of the

modal series to provide a continuous juncture of the two solutions, thereby obtaining simple closed

form solutions for the sphere, prolate spheroid, straight finite cylinder and bent finite cylinder.

Although these "high-pass" models were useful for making quick estimates of target strength for

objects of various geometries (including zooplankton), and could roughly model some of the null

structure via empirical adjustment of certain parameters, these were not exact solutions and failed

to accurately account for the modal interferences in the geometric region (ka>l). For zooplankton

such as siphonophores (which have an approximately spherical gas inclusion) the full modal series

solution for a gas-filled sphere described in Stanton et al. (in press b) is a better descriptor of the

scattering from the siphonophore gas inclusion than is the gas sphere high-pass model. Another

shortcoming of the high-pass models is that they are only applicable for normal or near-normal

incidence of the sound wave (broadside incidence) for the elongated geometries (Stanton 1989b).

Recently, Chu et al. (1993) and Stanton et al. (1993b) developed the deformed finite cylinder

model for a distribution of animal orientations using the DWBA (distorted wave Born

approximation). Since many crustacean zooplankton behave acoustically as weakly scattering bent

fluid cylinders, Stanton et al. (1993a,b and 1994b) described them acoustically at normal incidence



and at a distribution of orientations using a ray summation model. This ray-based solution is

approximate, but it accounts for the null structure observed in empirically collected data for ka>1.

It was demonstrated that a simple solution including a summation of only two rays (which models

the constructive and destructive interference between the rays reflected from the front and back

interfaces of the weakly scattering target) agrees very well with the exact modal series solution,

accounts for empirically observed null structure (particularly when the target is near broadside

incidence), and has the advantage of being computationally manageable (Stanton et al. 1993a,b).

Stanton et al. (1994b) included six rays (which can account for scattering contributions from other

parts of the animal) in the summation to better model pings exhibiting more erratic null structures.

It was determined that even a chaotic signal (e.g. white noise or that due to turbulence

microstructure) can be adequately modelled by as few as six randomised rays (Stanton et al.

1994b).

For hard elastic-shelled organisms (e.g. gastropods), the exact modal series solution is outlined in

Stanton (1990b) with coefficients specific to the material composition, as specified by Goodman

and Stern (1962 cited in Stanton 1990b). To simplify the numerical computations, Stanton et al.

(1994a) applied a high-pass model for dense fluid spheres to describe the scattering from spherical

elastic-shelled organisms. This model assumes that scattering from the organism is dominated by

the echo from the front interface of the body. Since the body is irregular with discontinuities, this

formulation is not sufficient to explain the scattering of these organisms at all angles of incidence.

Furthermore, it is not capable of predicting echo spectrum structure resulting from sound incident

on the elastic shell. For the case where the incident sound hits the shell, Stanton et al. (in press b)

have developed a ray-based formulation based on Marston (1988) that accounts for both the direct

return and one type of Lamb wave, as well as shell roughness and discontinuities. The Lamb wave

travels circumferentially around the shell and sheds energy in all directions. This model accounts

for the interference between the direct-return ray from the body and the energy shed in the

backscatter direction from the circumferential wave.

To develop and corroborate scattering models, target strength measurements have been made of

zooplankton, both experimentally constrained (e.g. Greenlaw 1977, Kristensen and Dalen 1986,

Wiebe et al. 1990, Foote et al. 1990, Demer and Martin 1995) and in situ (e.g. Hewitt and Demer

1991, Foote 1991). Most of these measurements were taken at a single frequency, or a small

number of discrete frequencies, and although they provide information about the scattering



strength of the organisms, it was not possible to quantify the frequency dependence of the

scattering over a continuous range of frequencies with these types of measurements. Recently, Chu

et al. (1992) were able to insonify the decapod shrimp (Palaemonetes vulgaris) with a broad

spectrum of frequencies simultaneously using a broadband chirp sonar. Analysis of the broadband

echoes from these fluid-like animals revealed a pronounced structure in the frequency response of

the target strength, with deep nulls (30 dB) at certain frequencies. Following this work, Stanton et

al. (1994a) have been making target strength measurements of single organisms over a broad range

of frequencies simultaneously by insonifying tethered zooplankton with broadband chirps. Several

representatives from each of three scattering classes have been insonified in this manner,

demonstrating that the frequency response is characteristic of the scatterer class.

1.1.3 THE INVERSE PROBLEM

The inverse problem is concerned with predicting the properties of the scatterer based on

knowledge of the acoustic return from that object. The solution to this inverse problem has been

investigated for several applications within the discipline of acoustical oceanography. The

geoacoustic properties of the ocean bottom have been deduced by inverting both narrow-band and

broadband acoustic returns in the water column for the compressional wave speed in the bottom

(e.g. Lynch et al. 1991), using an inverse technique described by Rajan et al. (1987). Undersea

seismic activity (volcanic eruptions, earthquakes) has been detected and analysed, using acoustic

signals to solve the inverse problem (Fox et al. 1994). Munk and Wunsch (1979) proposed a

scheme for monitoring the mesoscale variability of the ocean basins using an acoustic

tomographic inverse. With this type of inverse, the physical properties of the water column (e.g.

temperature) can be measured by inverting acoustic wave travel time perturbations for sound speed

in the ocean (Brown 1984). Chiu et al. (1987) used acoustic tomographic inverses to elucidate the

dynamics of ocean circulation by resolving mesoscale eddies in the marginal ice zone. Preliminary

work on the inversion of acoustic data for the temperature field of turbulence microstructure has

been carried out in a laboratory tank setting by Goodman et al. (1992). In bioacoustical

oceanography, work is beginning to identify and track baleen whales remotely by inverting

received acoustic signals for species, and in some cases, individual animal identification

(Nishimura and Conlon 1994). Some work has been done on identifying individual fish and fish

schools from both single-frequency and multiple frequency acoustic returns (e.g. Deuser et al.

1979, Zakharia and Sessarego 1982, Vray et al. 1990, Lebourges 1990, Scalabrin et al. 1996,



Simmonds et al. 1996). Holliday et al. (1989) have estimated the size distribution of a zooplankton

assemblage based on volume scattering data from a multi-frequency sonar system using several

discrete frequencies.

If the solution to the forward problem is known, the inverse problem for a linear system may be

solved using a standard general inversion technique that has been described in several works on

inverse theory (Backus and Gilbert 1967, Aki and Richards 1980, Menke 1989). The general

formulation for a linear system expresses the observed data as a linear combination of the model

parameters weighted by the kernel, which represents the solution to the forward problem. The

solution to the inverse problem involves solving for the model parameters that, once weighted by

the kernel, best predict the observed data. There exist other means by which acoustic backscatter

data may be inverted for scatterer class identification. For example, the features of the acoustic

signatures of each scattering class can be exploited in a pattern recognition scheme, which matches

the features of a novel dataset to known features of a scattering class.

To perform an inversion of an acoustic return for the scatterer properties (Figure 1-3), acoustic

sampling of the ocean must be broadband. This can be accomplished either by using many discrete

frequencies, e.g. MAPS (Multifrequency Acoustic Profiling System), which uses 21 frequencies

from 0.1-10 MHz (Pieper et al. 1990), or a broadband chirp (Chu et al. 1992). A priori information

may be obtained via simultaneous net samples, which can provide species composition and size

class information, and/or VPR (Video Plankton Recorder) samples, which can provide some

species composition data as well as orientational information. The echoes obtained from the

acoustic sampling are initially represented as a time series of voltage levels. Echo integration may

be performed to determine the volume backscattered energy and obtain a calibrated echogram.

If the range of sampling frequencies brackets the turning point between the Rayleigh regime and

the geometric regime for the particular sample, then a non-linear NNLS (Non-Negative Least

Squares (Holliday et al. 1989)) inverse can be performed yielding a histogram of the absolute

number of scatterers in each size class. This type of inversion, where the model parameters are the

number of individuals in each size class, lends itself to the classical inversion formulation

described in (EQ 3.8). Holliday et al. (1989), Pieper et al. (1990), Holliday (1980), Holliday and

Pieper (1980 cited in Pieper et al. 1990) and Pieper (1983 cited in Pieper et al. 1990) used this

technique on MAPS data to make biomass estimates of zooplankton; the accuracy of these

estimates not known. Their NNLS algorithm assumes that the scattering by the targets is described
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Figure 1-3 Some approaches to solving the inverse problem for zooplankton, based on ideas from Stanton.

by a truncated version of Anderson's fluid sphere model (Holliday et al. 1989), so that the size-

distribution histogram is in terms of the equivalent spherical radii of the zooplankton; this

assumption is not valid for predicting scattering from elongated zooplankton. Holliday (1977)

presents a mathematical formulation of the NNLS inversion that can account for animals of

different scattering properties and possibly geometries, but notes that the available scattering

models upon which this type of inversion is based will often be inadequate. The results of the

Holliday/Pieper NNLS inversion are also very sensitive to the choice of size classes used in the

inversion, and accurate a priori information from net or pump samples (which may be subject to

avoidance and size- and species- selectivity (Holliday et al. 1989)) is important for choosing the

appropriate size classes for a given dataset. If individual scatterers are not resolvable in the dataset,

this type of inversion may be the only possibility.

In the case where the echoes from individual zooplankton are resolvable and the acoustic sampling

includes a broadband signal with a continuous (or virtually continuous) range of frequencies, a

different type of inversion is possible. A spectral decomposition may be performed on the echo



time series from each individual scatterer, and the zooplankton may be classified according to their

frequency-dependent scattering characteristics. This type of classification inversion aims to

identify individual scatterers from their acoustic signatures, and can be carried out with or without

relying on theoretical scattering models. The development of a classification inversion of marine

zooplankton based on single-ping broadband insonifications is the basis for this thesis work.

1.2 APPROACH

The principal objective of this thesis work is to develop a classification scheme that will identify

marine zooplankton by their acoustic signatures, allowing biologists to correctly apportion

backscattered acoustic energy to individual scattering classes of zooplankton, thereby obtaining an

accurate estimate of biomass in the water column. Central to this objective is the development of

classification algorithms that exploit unique features of the acoustic signatures of zooplankton.

This has been accomplished employing both feature based and theoretical model based

approaches. To ensure the robustness of the classifications, the inherent variability in the acoustic

signatures was examined, and in particular the effect of zooplankton orientation on the acoustic

signature was investigated. The product of this thesis research is an assemblage of classification

techniques evaluated in terms of their performance with experimental data. The relative

performance of the classifiers is discussed, leading to specifications for their use, as well as

recommendations concerning requirements for field data collection.

The balance of Chapter 1 (Section 1.3) is devoted to outlining the data collection techniques for

acquiring the dataset used to develop and test the classifiers. The experimental setup is detailed,

and the processing steps for the acoustic data are outlined. Since the video data were employed

primarily to investigate the effect of animal orientation on acoustic signature, acquisition and

processing details for the video portion of the dataset are described separately (Chapter 5). The

thesis consists of two main parts: three chapters (Chapters 2, 3 and 4) are dedicated to detailing the

development of several classification algorithms, and a separate chapter (Chapter 5) is devoted to

an exploration of the effects of zooplankton orientation on acoustic signature, including the

application of classification techniques to invert broadband acoustic echoes for animal orientation.

1.2.1 DEVELOPMENT OF CLASSIFICATION ALGORITHMS

The development of an automatic classification scheme for zooplankton described herein

essentially involves the inversion of the return spectrum of a broadband acoustic insonification of

an individual zooplankter for scatterer type. An inversion of this type can produce several different



results. An individual may be assigned to a category based on the classification of a single return

echo from that animal. Alternatively, an animal may be assigned a score or probability that it is a

member of a given class based on a single echo. In addition, it is feasible to invert for some of the

physical properties (e.g. size, orientation etc.) of the animal. If several return echoes are available

for a particular organism, then it is possible to obtain the proportion of echoes assigned to each

class, or the average score or probability associated with each class, based on the ensemble of

echoes.

Inversion schemes can be of two general types, those based on intrinsic features in the data and

those based on an empirical or theoretical forward model of the scattering process. Both feature

based and theoretical model based classifiers have been developed. Several approaches, all

concentrated on exploiting the spectral characteristics of the acoustic returns, have been

investigated. Feature based classification operates independently of the theoretical models,

exploiting only the inherent characteristics of the signals. The Empirical Orthogonal Function

Classifier (Chapter 2) discriminates scatterer types based on differences in the variability in the

signals, and does not rely on theoretical model predictions.

The emphasis of this thesis work has been on developing and refining model based approaches in

order to best exploit the existing set of theoretical forward models. These models express the

relationship between the observed acoustic backscattered spectra from individual zooplankton and

the physical model parameters. As a result, a model based approach not only allows inversion for

scatterer class, it also has the potential to invert for certain physical characteristics of the scatterer

represented by the model parameters (e.g. size, shape). The Model Parameterisation Classifier

(Chapter 3) depends on comparison of the acoustic signatures with simplifying parameterisations

of the theoretical scattering models for each class, assigning a given acoustic return to one of the

three classes. The Covariance Mean Variance Classifiers (Chapter 4) are a set of more advanced

model based techniques which exploit the full complexity of the theoretical models by searching

the entire physical model parameter space without employing simplifying parameterisations. This

more sophisticated approach incorporates weighting functions to account for the ambiguity

between the model spaces for different scattering classes as well as to quantify the validity of each

theoretical model in predicting acoustic returns from known scatterers. The result of the inversion

is expressed as a certainty or probability that a given acoustic return belongs to each class.



The sensitivity of some of the classification algorithms to the effects of signal degradation as well

as signal variability was investigated. In particular, simulated acoustic signals representing returns

from scatterers in each class were degraded through the addition of synthetic noise as well as by

decreasing the signal bandwidth, and the ability of the Empirical Orthogonal Function Classifier

(EOFC) and the Model Parameterisation Classifier (MPC) to discriminate these degraded

signatures was measured (Sections 2.4 and 3.4). The sensitivity of the MPC to the ping-to-ping

and animal-to-animal variability inherent in the acoustic returns from individuals in the same

scattering class was also evaluated using simulated datasets (Section 3.5).

Some of the work on MPC development (portions of Sections 2.1, 2.2 and 2.3) has been published

together with part of the EOFC development (portions of Sections 3.1, 3.2 and 3.3) in Martin et. al

(1996). The development of the Covariance Mean Variance Classifiers (Chapter 4) is presented

here as a manuscript to be submitted for publication (Martin Traykovski et al. submitted a);

consequently, some repetition of the contents of previous chapters will be necessary to ensure the

completeness of this manuscript.

1.2.2 INVESTIGATION OF EFFECT OF ZOOPLANKTON ORIENTATION

To determine the effect of zooplankton orientation on acoustic signature, video data of each animal

(acquired simultaneously with the acoustic returns) was analysed in conjunction with the acoustic

data for individuals in the fluid-like scattering class (Chapter 5). For different animal orientations,

a preliminary look at the time series data led to a detailed examination of the frequency responses

(spectra of the returns) to provide information on how the acoustic signature of this scattering class

can be expected to change versus angle of orientation. The angle of orientation of the animal at the

time of insonification was compared on a ping-by-ping basis with the frequency spectrum of the

corresponding acoustic return, giving an indication of the variability in the acoustic returns for a

given orientation. The acoustic returns observed from tethered zooplankton were compared to the

spectra predicted by the distorted wave Born approximation theoretical model for the angle of

orientation, size, and shape of the measured animal. Finally, the classification algorithms were

employed to invert the observed spectra for angle of orientation, and a comparison of

experimentally-measured and classifier-predicted orientations was made.

To render the results of this analysis of the effect of orientation on zooplankton acoustic returns

applicable to in situ acoustic surveys, it is important to establish the animals' natural (untethered)

orientation during feeding, swimming and resting. A preliminary investigation of the in situ



orientation of those species of zooplankton for which we have acoustic data was carried out, and a

brief summary of the findings is summarised (Section 5.1); sources of information included the

literature as well as video footage taken by SCUBA divers, submersibles, and the Video Plankton

Recorder (VPR). The results of this analysis have increased our a priori knowledge-base, and in

the future, this type of information can assist in placing bounds on some model parameter values

as well as in helping to constrain the acceptable tethered-animal dataset to include only

"reasonable" animal orientations.

A portion of the work on the investigation of the effect of animal orientation on acoustic signature

is presented here as a manuscript to be submitted for publication. In particular, the comparison of

experimental results with theoretical model predictions and the results of the classification

inversion for orientation angle (Section 5.3) are presented in manuscript form. This manuscript

(Martin Traykovski et al. submitted b) includes a brief summary of other work detailed in Chapter

5, so that some overlap is inevitable. It is one of two papers co-authored with D.E. McGehee and

R.L. O'Driscoll (see also McGehee et al. accepted) and is included here with the co-authors'

permission.

Finally, the various classification techniques developed are compared, some implementation

guidelines are given, considerations for the collection of field data are discussed, recommendations

for future research based on this thesis work are outlined, and the contributions of this thesis are

summarised (Chapter 6).



1.3 SOURCES OF DATA

The data used in classifier development were collected on two separate cruises to Georges Bank

and the Gulf of Maine: the Oceanus cruise 262 (27 September - 6 October 1993) and the Endeavor

cruise 253 (18 September - 29 September 1994). Data used in the investigation of the effects of

animal orientation on acoustic signature were collected at the Second Bioacoustics Workshop in

Santa Cruz, CA (1 August - 25 August 1995).

1.3.1 METHODS OF DATA COLLECTION

On the two cruises, organisms were captured in both vertical and oblique tows in the slope water,

the Gulf of Maine and over Georges Bank with a meter net (335 tm mesh) with a cod-end bucket

(32 cm diameter by 46 cm tall), and sorted into large containers for short-term storage under

refrigeration to maintain seawater temperature. The animals for the workshop were captured in the

Southern Ocean in February 1995 and kept alive under refrigeration at 20C in the absence of food

until the experiments in August 1995. A detailed sketch was made of each animal before or after

insonification, and various measurements were taken:

1. siphonophores: total length, size of gas inclusion

2. euphausiids: - total length and width of carapace (1993 and 1994 cruises)
- 5 length measures, carapace width, depth (1995 workshop)

3. shelled pteropods, gastropods: length and width of shell

4. salps: length and width of mucous house, diameter of gut

5. ctenophores: length, width

6. naked pteropods: length and width of body, size of "feet"

7. amphipods: relaxed and extended length and width of thorax

Individual organisms were tethered with an acoustically transparent monofilament strand, and

suspended in a 2.44 m diameter by 1.52 m high tank filled with filtered (through 64 gtm mesh) sea

water on-board the ship (1993 and 1994 cruises) or a 2 m by 0.75 m by 0.8 m deep insulated tank

filled with filtered, chilled seawater (1995 workshop). Extreme care was taken to ensure that no air

bubbles were present on the animal or the tether during insonification. Acoustic experiments

included broadband insonification (center frequency 500 kHz, -350 kHz - 750 kHz) of each live

animal, as well as narrowband insonification at several other frequencies. Only the 500 kHz

broadband data were used in this thesis work. The return echoes from several thousand acoustic

transmissions (pings) were collected. Insonifications were made with a pulse-echo acoustic data

acquisition system (Figure 1-4).
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Figure 1-4 Pulse-echo acoustic data acquisition system used to insonify several species of zooplankton.

The transmit/receive transducer pair was mounted in an upward-looking transducer bank (1993

and 1994 cruises) sitting on the bottom of the experimental tank (Figure 1-5) or in a horizontally-

aimed configuration (1995 workshop), looking across the tank (Figure 5-8). To allow investigation

of correlations between the acoustic scattering of an organism and its orientation, each animal was

filmed during insonification with a high-magnification underwater video system (1994 cruise and

1995 workshop only). Each insonification was marked with an acoustic pulse recorded on the

audio track of the Hi-8 video tape.

After the experiment, excess water was removed from each organism and the specimens were

frozen. Wet weight of the samples was measured on land following the cruises, and after

insonification (before freezing) during the workshop. Several organisms from each of the three

scattering classes were insonified (Table 1-1). On the cruises, 11 individuals (all of one species)

from the elastic-shelled class and 14 individuals (representing 2 species) from the gas-bearing

class were insonified. A total of 24 zooplankters of 3 different species were insonified from the

fluid-like class during the cruises and the workshop. In addition to using animals from the three

scattering classes, data from several other unmodelled zooplankton were also collected.
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Figure 1-5 Experimental setup for insonifying zooplankton, including underwater video system.

Table 1-1 Animals insonified from the three scattering classes; 1993 and 1994 cruises, 1995 workshop.

scattering class species and number # pings

gas-bearing 9 Agalma okeni (1993) 50 each
(GB) 3 Agalma okeni (1994) 1200/1200/800

2 Nanomia cara (1994) 1000/600

fluid-like 1 Meganyctiphanes norvegica (1993) 1000
(FL) 7 Meganyctiphanes norvegica (1994) 1000/1200/1200/600/3200/1600/200

2 Euphausia croni (1994) 200 each
14 Euphausia superba (1995) 1000 each

hard elastic-shelled 8 Limacina retroversa (1993) 50 each
(ES) 3 Limacina retroversa (1994) 4600/4400/2400

not modelled 1 Clione limacina (1993) 50
1 Clio pyramidata (1993) 50

2 Hyperiid amphipod (1994) 1000 each
1 Parathimisto sp. (1994) 1000
1 Pelagia noctiluca (1994) 200
1 Cavolinia inflexa (1994) 200

8 Creseis sp. (1994) 250/250/200/1000/1000/600/1200/1000



1.3.2 ACOUSTIC DATA PROCESSING

For the pulse-echo system used in these experiments, the frequency response of the return echo

received from the animal during insonification may be expressed using the sonar equation in terms

of logarithmic quantities as follows:

VRs = VTs + GTs + STs - TLs + ES - TLs + SRs + GRs (EQ 1.1)

where VRs represents the voltage signal level received while scattering from the animal, VTs

represents the voltage signal level transmitted to scatter from the animal, GTs and GRs are the

transmitter and receiver gains, STs and SRs are the transmitter and receiver sensitivities, TLs is the

transmission loss 2010g(rs) due to the distance rs between the transducer faces and the animal,

which appears twice to account for two-way transmission loss, and ES represents the echo

spectrum of the acoustic target strength of the animal.

To obtain the calibrated echo spectrum, the results of the calibration measurements must be

incorporated. During calibration, the transmit and receive transducers are focused on each other

with no target in the beam, and a calibration signal is transmitted. Writing the calibration equation

in the same manner as (EQ 1.1):

VRc = VTc + GTc + STc - TLc + SRc + GRc (EQ 1.2)

where VRc represents the voltage signal level received during calibration, VTc represents the

voltage signal level transmitted for calibration (of much lower amplitude than the signal used in

the scattering experiment), GTc and GRc are the transmitter and receiver gains, STc and SRc are

the transmitter and receiver sensitivities, and TLc is the transmission loss 20log(rc) due to the

distance rc between the transmitter and receiver when they are in the calibration configuration.

Assuming that (ST, SR, GR)s = (ST, SR, GR)c, subtracting (EQ 1.2) from (EQ 1.1) yields an

expression for the echo spectrum of the animal in terms of the transmitted and received signal

levels, the transmission losses, and the transmitter gains for both scattering and calibration:

ES = VR s - VRc + (VT c + GTc) - (VT s + GTs) + 2TLs - TLc (EQ 1.3)

This is equivalent to:

2010g(Fbs) = 20(log Vrecs-log Vrecc + log Vxmit c - log Vxmit s + log r - log r (EQ 1.4)

with

Vrecs = 1 0 (VRs/20), Vrecc = 1 0 (VRc/20
) , Vxmitc = 1 0 (VTc+GTc)/20 and Vxmit s = 1 0 (VT s +

GT
s
)/20



Here ES is represented in terms of Fbs (= Ifbsl) where fbs is the backscattering amplitude, and is a

measure of the efficiency with which an object scatters sound back toward the sound source (fbs is

related to Gbs, the differential backscattering cross section, by abs = !fbsl2 ).

(EQ 1.4) leads to an explicit expression for Ifbsl, the absolute value of the acoustic backscattering

amplitude of the animal:

(Vrecs. (Vxmitc. (r 2 s (EQ 1.5)

fb Vrecc) Vxmits rc

In this equation, fbs is expressed in terms of measurable quantities. Vrecc and Vxmitc are computed

by taking the absolute value of the FFT of the received and transmitted voltage time series for

calibration, measured at the beginning and again at the end of the experiments each year. Vxmits is

computed as the absolute value of the FFT of the transmitted voltage time series for scattering

measured at the end of each run (every 50 or 200 pings). To compute Vrecs, a fixed rectangular

window is applied to the received voltage time series for each ping (to capture only the echo from

the animal) before applying the FFT. The scattering and calibration distances were rs = 51 cm and

rc = 60 cm respectively.

The acoustic returns of the zooplankton studied exhibit a very large dynamic range over the

frequency band, and are often characterised by the occurrence of deep nulls at certain frequencies

(where Obs is -1/1000 of peak values). The echo spectrum, conventionally represented by TS

(where TS = 201oglfbsl) on a logarithmic scale, is a convenient and widely-accepted means of

compressing this huge dynamic range. This representation has the advantage of emphasising the

peak-and-null structure in the acoustic signatures, and the dynamic range compression also

improves the suitability of the signals for numerical classification inversion schemes (other data

transformations are also possible; a single choice may not be optimal for every classification

application (Fukunaga 1972)). The echo spectrum (ES = 20log Ifbsl) of each acoustic return was

sampled at 241 points between 348.33 kHz and 748.33 kHz (1993 data), or at 152 points between

348.33 kHz and 600 kHz (1994 data) or at 203 points between 348.33 kHz and 685 kHz (1995

data). The reduced bandwidth of the 1994 and 1995 data is due to the use of a different transducer

with a different frequency response over the 350-750 kHz band. It is this sampled version of the

echo spectrum that is used as the basis for classifier development and evaluation.



CHAPTER 2

FEATURE BASED CLASSIFICATION:

EMPIRICAL ORTHOGONAL FUNCTION CLASSIFIER (EOFC)

2.1 RATIONALE

One approach to the classification problem is the application of techniques that capitalise on

measurable features of the data belonging to each class, and seek to exploit class-specific

differences in these features. Feature based inversion approaches do not rely on any theoretical or

empirical models which may exist to predict the data in each class; they are based only on the

inherent characteristics of the observed data. For inversion problems where the theoretical or

empirical basis from which to construct a relationship between observed data and model

parameters is not well-characterised, it is necessary to adopt a feature based formulation, which

can operate independently of a forward model. Feature based techniques are often the first

approach used to attack a classification problem since they allow a direct exploration of the data in

terms of its intrinsic characteristics, and are not complicated by the details of sophisticated

theoretical models. An important advantage of feature based inversion schemes is that they are not

subject to assumptions and potential errors in model structure. For this reason, it may be desirable

to design an inverse formulation independent of theoretical models, even in cases where there exist

well-developed theoretical forward models with which to predict the data, as is the case for the

zooplankton acoustic classification problem. In addition, the application of feature based

techniques yields unique insights into the problem by identifying discriminating features,

providing a solid basis for model based inversions. Although these feature based approaches are

independent of an explicit model, it is possible to relate features to biologically relevant

parameters, thereby illuminating the bases of class separation, and providing insights into the

underlying processes which contribute to the expression of the discriminating features.

The objective is to develop a general acoustic classification technique for zooplankton based on

single-ping broadband insonifications which does not depend on scatterer-specific or species-

specific assumptions to identify scattering type, but instead relies on the empirical separation of

scatterers based on the unique spectral signatures of each scatterer type. One approach to a feature

based classification scheme is the implementation of a statistical distance based classifier, which

categorises observations based on metrics or distances in "feature space". An alternative forward



model-independent approach involves the construction of a library of "signatures" against which

observational data may be compared, ultimately leading to a categorisation of the observations. To

invert broadband acoustic backscatter data for zooplankton scatterer type using this approach,

unique characteristics of the echo spectra of each scatterer type can be exploited in a pattern

recognition scheme, which matches the signatures of a novel zooplankter to known signatures

characteristic of a particular scattering class. The emphasis of the feature based portion of this

thesis work has been on developing an approach based on such a signature library (e.g. the EOFC).

A short discussion of the distance based classification approach, accompanied by a preliminary

clustering analysis of the 1993 data, is included for completeness. The potential of the distance

based approaches has not been fully explored herein.

2.1.1 DISTANCE BASED CLASSIFICATION

Distance based classification schemes operate independently of theoretical model predictions, and

assign a data point to a class based on its projection in feature space. In this implementation, a

subset of n features of the spectral signatures are identified which best discriminate the different

scatterer types of interest. Known scatterer types are then projected in n-dimensional space as a

function of these discriminating features, and class boundaries are delineated (e.g. via eigenvalue

decomposition or Fisher Pairwise Projection (Fukunaga 1972)) to separate scatterer type domains.

Novel observations of unknown zooplankton may then be projected onto this feature space, and

various statistical decision rules applied to classify the observations into particular domains.

Distance based classification involves identifying and extracting the relevant characteristics or

features of the data that uniquely identify a particular scattering class, thereby allowing retrieval of

the properties of interest. These features may consist of direct measurements, as well as properties

derived or calculated from these direct measurements. The goal is to identify and select features

which are the best delineators of the scattering classes. A sensitivity analysis can be carried out on

these features, using a priori information to place bounds on the feature values. Features that are

most discriminating are then selected to be used in the classification. Means of feature selection

include the Karhunen-Lobve Expansion, which decomposes the features into a basis set, thereby

expanding them in terms of the eigenvectors of the covariance matrix (Fukunaga 1972). This

technique yields features which are optimal in terms of representing the data, but may not be the

best features for discriminating between scattering classes. Other discriminators in combination

with the K-L expansion may yield features with greater class-separability potential (Tang and

Stewart 1994). The presence of contaminating noise can make feature extraction more difficult.



Once the relevant feature set is identified, it can then be employed to identify classes or categories

which share common properties or attributes. This is accomplished by projecting data from known

scatterers in feature space as a function of the relevant discriminating features. Possible projection

techniques include eigenvalue decomposition, in which the data are projected onto a plane in

which the principle axes are the first two eigenvectors of the covariance matrix, and the Optimal

Discriminant Projection (Fisher Pairwise Projection), in which all the data are projected onto the

plane that optimally discriminates a particular pair of classes. The delineation of class boundaries

is accomplished by means of statistical decision rules based on discriminant functions or metrics,

such as minimum Euclidean distance, minimum intra-class distance, maximum inter-class

distance and minimum mean-squared error. Statistical decision theory can be used to derive an

optimum classification rule if multivariate probability density functions are known for each class

or if an empirical probability model can be obtained by statistical estimation. Alternatively, a

decision rule may be derived directly from the distribution of samples in feature space. Once class

boundaries are determined, novel observations may subsequently be projected in feature space and

classified into categories based on the discriminating features and the statistical decision rules.

Distance based classification is also possible where no a priori information is available, through

exploitation of naturally occurring groupings or clusters in the data. Features can then be

empirically related to scatterer type.

Preliminary Clustering Analysis

In order to better characterise the zooplankton scatterer types, a preliminary analysis of some of

the potentially discriminating features was undertaken. Some statistics were compiled on various

features of the spectra from animals of known scatterer type from the 1850-ping 1993 dataset. An

average level (mean TS in dB) was computed for each ping. Null spacing (the distance between

successive peaks or nulls in the spectra, measured in frequency units) was also estimated for each

ping, as was the frequency shift (translation of the spectra along the frequency axis relative to

some zero-reference spectrum). The mean TS feature did not appear to be a good discriminator

between animals in the FL class (e.g. Meganyctiphanes norvegica) and those in the ES class (e.g.

Limacina retroversa), but may be a good way to distinguish the GB class (e.g. Agalma okeni),

since average levels for animals in this class seem to be higher than those observed for the other

two classes, based on this limited dataset. In addition to considering features based only on

individual pings, features based on ensembles of pings have potential to discriminate the classes.



For example, the distribution (variance) of mean TS (based on ensembles of n = 50 pings) may be

a good discriminator, since it appears to be much tighter for animals from the ES class than it is for

the other two classes. The distributions of null spacing and frequency shift also appear much

tighter for ensembles of pings from the ES class than for the FL class. Ensemble type features are

promising discriminators, since they are based on statistical analysis of several echoes from the

same animal. The practical utility of ensemble-based discriminators depends on the feasibility of

acquiring many insonifications of a single animal or several animals in a given class.

An initial clustering analysis was performed (Figure 2-1) to view the 1993 data in terms of three

individual ping features that were thought to have good class-discriminating potential: mean TS,

null spacing, and SSR (sum of squares of the residuals: SSR = I (y(i) - SPEC(i)) 2, where y

represents the straight line fit through the echo spectrum SPEC). These three features were

extracted from all 1850 echo spectra from the 1993 cruise dataset. Although there is overlap

between the feature spaces of pings in the three classes, some separability is evident. For example,

many of the 400 pings from the Limacina retroversa individuals (ES class) are clustered tightly

around a particular null spacing and over a small range of SSR. Even though the 450 Agalma okeni

pings (GB class) appear quite spread out in terms of the null spacing feature, they are clustered

toward the lower end of the SSR range for all the pings, with a very tight grouping in the upper

left-hand corner, a region of low SSR and high mean TS. As a possible result of the fact that the

Meganyctiphanes norvegica specimens (FL class) were permitted to assume a wide range of

orientations during insonification, these 1000 pings are distributed widely along the null spacing

axis. However, M. norvegica pings tend to exhibit a higher SSR than do A. okeni pings, and may be

discriminable from members of the GB class by this feature alone.

Further insight into potential class separability using these same three individual ping features may

be gained by employing alternative projections. The highest SNR subset of 150 pings (93-18, 93-

33e (run5) and 93-29) was extracted from the 1993 data, containing 50 pings from a single

individual from each of the 3 classes. This subset was clustered using a Fisher Pairwise Projection,

in which the data are projected onto a two-dimensional plane that optimally discriminates a

particular pair of classes (in this case, FL and ES) by maximising the between-class distance and

minimising the within-class distance between the class pair (Figure 2-2). This projection reveals

that the L. retroversa data (ES) is very tightly clustered, but the M. norvegica data (FL), even for

only 50 pings from 1 animal, is spread over the feature space occupied by the other two classes.
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2.1.2 MODES OF VARIABILITY AS FEATURES

The individual ping features used in the clustering analysis (e.g. mean TS, null spacing) are each

single metrics that capture a certain aspect of the echo spectra. There is considerable overlap in the

cluster diagram (Figure 2-1) between the three classes, and distinct clusters are not immediately

evident. Even when only 50 echo spectra from one individual from each class are considered

(Figure 2-2), the classes are not completely distinct. This may be because the individual ping

features chosen here are not the best discriminators of the three classes. It is likely that an

exhaustive search of all possible features, followed by a detailed feature selection analysis, would

yield an optimally-discriminating feature set, allowing better separation of the classes. Another

possibility is that these individual ping metrics are unable to exploit the richness of information

contained in the broadband spectra of the acoustic returns.

The distance based approach described in Section 2.1.1 is well-suited to problems in which the

available information content of the data is limited. For example, the inversion of satellite remotely

sensed ocean colour data from the Coastal Zone Color Scanner (CZCS) for water properties or

phytoplankton bloom taxa is a classification problem that lends itself well to a distance based

approach. For a given area of ocean surface, only water-leaving radiances at 443, 520 and 550 nm

(three samples over the entire optical spectrum) are measured; projection in a three-dimensional

feature space can exploit all the available information. In fact, different water types, as well as

waters containing different phytoplankton species, are readily distinguishable in this feature space

(Martin Traykovski and Sosik in prep.). The 241-point sample of the echo spectra resulting from

broadband insonifications of individual animals that provide the data basis for the zooplankton

acoustic classification inversion problem may contain much more information than can be

exploited in a distance based classifier. Consequently, an alternative to individual ping metric

distance based classification was developed, and will be the focus of the remainder of this chapter.

To design a robust feature based classification scheme, features were sought that were better able

to exploit the full information content of the broadband echo spectra than were the individual ping

features. A promising approach is to classify the echo spectra based on the variability they exhibit.

A feature that can capture that variability will be derived from the entire frequency response, and

will be based on more than one acoustic return from a particular animal. In the case of the

Empirical Orthogonal Function Classifier (EOFC) developed herein, the discriminating features

are the modes of variability present in the frequency responses of the acoustic returns from animals



in each class. An EOF decomposition of the echo spectral data from scatterers belonging to each

class reveals that the mode shapes present in the data are characteristic of the scattering classes.

These mode shapes serve as the basis for classification. The EOFC is able to discriminate the

scattering classes by identifying characteristic modes of variability in the echo spectra for each

class, thereby creating a library of modal signatures. Classification of a novel observation involves

matching the observed mode shape to the library, and identifying the class to which the best-fit

modal signature belongs.

2.2 ALGORITHM

The EOFC matches an observed echo spectrum (ping) to a scattering class based on an empirical

orthogonal function decomposition. The frequency spectra of echoes from scatterers in each class

are decomposed into modes that represent the variation of the data from the mean value. This is

accomplished by computing the eigenvalues and eigenvectors (EOFs) via a singular value

decomposition (see Menke 1989) of the covariance matrix (K) of the data:

K = A . A (EQ 2.1)

where A is a matrix in which each row represents a mean-subtracted ping. The modal

decomposition hinges on the fact that:

K - p, = Xi (Pi (EQ 2.2)

where cpi represent the eigenvectors or EOFs, and %i are the eigenvalues. The eigenvector

corresponding to the maximum eigenvalue is the dominant mode. For example, for the 1993

dataset (in which the echo spectra are sampled at 241 points between 348.33 kHz and 748.33

kHz), a total of 241 EOFs (modes of variability) can be calculated. To classify echo spectra, the

EOFC employs any of the modes, alone or in summation, weighted by the corresponding

eigenvalues:

N

I %i - (P, (EQ 2.3)
i=n

Here n is the initial mode number and N is the final mode number of the modes used in the

weighted sum. To build a library of modal signatures against which novel observations may be

classified, the appropriate weighted sum of modes was computed for each individual insonified in

the 1993 experiment. For example, creation of the dominant mode (Ml) library for the M1-EOFC



involves setting n = 1 and N = 1 in (EQ 2.3). In this M1 library, the "modal space" of a given

scattering class is represented by the dominant mode (based on 50-ping datasets) weighted by the

dominant eigenvector of each individual insonified from that class. For the M2-EOFC, the M2

library is constructed in a similar manner (n = 2 and N = 2), using only the second-to-dominant

mode (M2), so that the modal space for a given scattering class is represented by the second mode

weighted by the second eigenvalue of each individual of that class. In general, the WN-EOFC

classifies using a WN library constructed from the weighted sum of the first N modes, and the

modal space for each scattering class is represented by the weighted sum of a number of modes.

For example, in the W2-EOFC, a W2 library is built using the weighted sum of the first 2 modes (n

= 1 and N = 2 in (EQ 2.3)).

Once the libraries are constructed and the modal spaces for each scattering class are delineated,

echo spectra from a novel scatterer may be classified. Since the EOF decomposition characterises

the modes of variability of the returns, the EOFC classifies based on multiple pings from a

particular scatterer. Although thousands of returns can be acquired from a single individual in a

tank experiment, practical considerations dictate the number of pings that can reasonably be

collected for field applications. For example, it is unlikely that individual animals can be insonified

even 50 times in the field on a regular basis. However, five insonifications of a single animal seems

a reasonable number, given the speed at which the echosounder is towed, and the velocity of the

swimming plankton (for a moored system). The EOFC was therefore evaluated on the basis of five

pings collected from an individual animal. To classify a novel scatterer, an EOF decomposition is

performed on an ensemble of five acoustic returns from that scatterer. For the M1-EOFC, for

example, the five-ping-ensemble dominant mode is then correlated to the M1 library (containing

the M1 modal spaces for all scattering classes). Classification involves determining to which

modal space the best-fit dominant mode belongs.

2.3 PERFORMANCE

The EOFC modal libraries were developed based on 37 50-ping datasets collected from 18 animals

insonified on the 1993 cruise. Initially, a 150-ping sub-sample (representing the highest signal-to-

noise ratio (SNR) data) consisting of 10 five-ping ensembles from one animal in each of the three

classes (Animals 93-18 Agalma okeni, 93-33e Meganyctiphanes norvegica (run 5) and 93-29

Limacina retroversa) was classified with the M1-EOFC to assess classifier performance with the

best quality data. M1-EOFC success rate with this high SNR dataset was about 93% (Figure 2-3).
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Figure 2-3 M 1-EOFC classification results for the high SNR subset (1993 cruise). Success rate was -93%.
Five-ping ensembles of echo spectra for each class are numbered up the y-axis.
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The M1-EOFC average success rate over the entire 1993 dataset of 1850 pings was about 86%,

with excellent performance for euphausiid (FL class) and gastropod (ES class) data (Table 2-1).

Table 2-1 Ml, M2 and W2-EOFC results for 370 5-ping ensembles (1993). "*" indicates high SNR data.

% CORRECTLY CLASSIFIED

species Animal # run # n M1-EOFC M2-EOFC W2-EOFC

Agalma okeni

Meganyctiphanes norvegica

imacina retroversa

Limacina retroversa

*

93-13

93-14

93-16

93-17

93-18

93-19

93-20

93-21

93-22

TOTAL

93-33a

93-33b

93-33c

93-33d

93-33e

TOTAL

93-23

93-24

93-26

93-27

93-28

93-29

93-30

93-31

TOTAL

10

10

10

10

10

10

10

10

10

90

10

60

60

60

10

200

10

10

10

10

10

10

10

10

80

70%

80%

100%

100%

80%

40%

70%

60%

60%

73%

80%

83%

87%

92%

100%

88%

100%

100%

90%

100%

90%

100%

90%

90%

95%

60%

50%

60%

60%

70%

40%

30%

40%

50%

51%

80%

70%

72%

60%

90%

69%

70%

80%

30%

100%

60%

70%

40%

80%

70%

60%

80%

90%

80%

30%

30%

50%

40%

59%

60%

78%

88%

93%

90%

86%

100%

100%

90%

100%

60%

100%

70%

90%

66% 89%

ALL ANIMALS TOTAL 370 86% 64% 80%
370 86% 64% 80%ALL ANIMALS TOTAL



Although the second mode shows some discriminating power, particularly for identifying echo

spectra from the FL class, the overall performance of the Ml classifier is substantially better than

the M2 classifier. This indicates that the dominant mode is a better discriminating feature than is

M2 for the data classified here (1993 cruise). The W2 classifier, which discriminates based on the

weighted sum of the first two modes, performs better than the M2 classifier overall, but not as well

as the M1-EOFC, which classifies based on the dominant mode alone. To evaluate whether better

results could be achieved through the inclusion of additional modes in the weighted sum,

classifications were carried out for the entire 1993 dataset using the W3-EOFC (n = 1 and N = 3 in

(EQ 2.3)) through the W10-EOFC (n = 1 and N = 10) as well as with the W241-EOFC (Figure 2-4).

The W3 classifier, in which the third mode is included in the weighted sum, performs slightly

better than the W2 classifier for the L. retroversa and A. okeni data, but considerably worse for the

M. norvegica data. Inclusion of up to 10 modes in the weighted sum does not improve the overall

performance of the EOFC. In fact, including all the modes (W241-EOFC) results in overall

performance similar to that achieved with only 3 modes, and in all cases, using Ml alone yields

the best results. For a signal with contaminating noise present, the higher order modes tend to

represent the variability contributed by the noise. This may explain the degradation in performance

as higher order modes are added to the dominant mode. In general, the M1-EOFC appears most

robust to noise contamination, although it may be desirable to use the W2 classifier in cases where

M2 demonstrates good discriminating power (e.g. for the M. norvegica data). The performance of

the EOFC relative to that of the other classifiers developed in this thesis work is discussed briefly

in Section 6.1.

100

- 80

-70

50

M1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W241
number of modes used in weighted sum

Figure 2-4 Average classification results for the 370 5-ping ensembles (1993) using M1, W2 through W10,
and W241-EOFC. + = L. retroversa (ES class), o = M. norvegica (FL class), * = A. okeni (GB
class). Dashed line is overall average.



2.4 SENSITIVITY TO SIGNAL DEGRADATION

To classify zooplankton based on their acoustic signatures, return echoes from broadband

insonifications of individuals must be acquired, either in an experimental tank from tethered

(constrained) animals, or ideally, in situ from free-swimming zooplankton. In either case, the

presence of contaminating noise in the echo spectra of the acoustic returns could present an

obstacle to the classification process. Depending on the nature and level of noise present, noise

contamination could cause the classification inversion to be non-unique.

The sources and nature of noise contamination in the echo spectra of the broadband acoustic

returns from individual zooplankton are varied, and may depend to a great extent on whether the

data are collected in a tank or in situ. Even for the tank experiments described in Section 1.3, from

which all the data used to develop the classifiers was collected, specific sources of noise differ

between ship-board tank experiments and a land-based experimental setup. Potential sources of

contaminating noise for both tank and in situ data collection include system noise (e.g. pre-

amplifier noise), background noise (e.g. for shipboard experiments, reverberation due to the tank

enclosure, to sea state, or to ambient noise such as electrical noise from other functions of the

research vessel), the presence of other acoustic scatterers other than the target of interest (e.g.

temperature microstructure in the tank water, or the presence of multiple zooplankton scatterers in

an in situ insonified volume), and calibration error or drift. System noise and background noise are

generally simple additive noise, but noise from other scatterers could be complex and have a

"signature" of its own. In addition, noise contamination observed in data collected in a tank

experiment is not necessarily representative of the noise likely to be present in field-collected data.

The presence of noise can contaminate both the signature information in the echo spectra and the

inversion process itself. For example, for echo spectra characterised by a pronounced undulating

structure with deep nulls (30 dB) at certain frequencies (e.g. returns from fluid-like animals at

broadside incidence), uncorrelated additive noise will add proportionately more energy to the nulls

than to the peaks. This simple form of noise addition can degrade the signature by making the null

and peak structure less pronounced. On the other hand, correlated additive noise may exhibit a

spectrum possessing pronounced structure itself. The structure in the noise spectrum could

resemble the acoustic return of the scatterer of interest, but in the additive process, it could

markedly alter the scatterer signature. Alternatively, the noise spectrum structure could differ

significantly from the scatterer spectra, thereby confounding or degrading the scatterer signature



and/or resulting in classification of the noise signature instead of the scatterer signature. Simple

offset-type multiplicative noise introduces a gain factor which shifts the entire echo spectrum,

altering the average level of the return but leaving the structure of the scatterer signature intact

This form of multiplicative noise can confound classification approaches that discriminate based

on the average level of the echo spectra. Other forms of multiplicative noise (e.g. frequency-

dependent spectral amplitude drift) could significantly alter the features of the scatterer echo

spectra, blurring or distorting the signature of the scatterer.

Several strategies may be adopted to mitigate the effects of contaminating noise on the

classification process. Standard procedures include pre-processing the collected data to remove

noise, either via time-windowing or frequency domain filtering. These approaches are particularly

effective if the noise characteristics are well-understood, which may be more likely for a

controlled tank experiment than for a field data collection system. For field data applications,

range-gating is an effective technique to avoid scattering from multiple targets, and is used

extensively in current echosounder applications. In the case of both tank and in situ data

collections, reduction of incoherent noise may be achieved by averaging over several returns from

a particular scatterer. This may also result in a degradation of the structure in the scatterer echo

spectrum, so that there exists a trade-off between noise reduction and scatterer signature

preservation, both of which will affect classifier performance.

In addition, the usable bandwidth of the collected data is an important consideration for the

success of the classification inversion, since signal degradation through bandwidth reduction

results in information loss. Significant loss of bandwidth could lead to data which contain

insufficient information for robust classification. Reduction in usable bandwidth may arise from

filtering out contaminating noise in a particular spectral band. In this case, the trade-off between

scatterer signature degradation due to the presence of noise and information loss due to bandwidth

reduction must be considered. Bandwidth reduction can also result from the frequency response

characteristics of the acoustic transducer used to make the measurements. The operational

characteristics of different transducers are variable; one device may exhibit a flat frequency

response across the spectral band of interest, whereas another may possess a non-ideal frequency

response over part of the band, yielding data with a reduced usable bandwidth.

Successful classification is possible in the presence of contaminating noise as well as with signals

of reduced bandwidth, and may be achieved through the simultaneous application of alternative



classification techniques. Different classification approaches will differ in their sensitivities to the

effects of noise contamination or the impact of information loss through bandwidth reduction. By

taking into account the differential performance of each technique with noisy signals and

bandwidth-reduced signals, overall classification performance can be improved. This requires a

solid understanding of the sensitivity of the classifiers to signal degradation. To better understand

the strengths and shortcomings of each classification approach, the EOFC (this Chapter) and the

MPC (Chapter 3) have been evaluated in terms of their sensitivity to both noise contamination and

signal bandwidth reduction. Based on the good performance of the EOFC in classifying the 1993

dataset (which included both reasonably high SNR data and some much noisier data), it is

expected that this feature based classifier will prove robust in the presence of contaminating noise.

EOFC performance with reduced bandwidth signals is also expected to be robust in the face of

considerable bandwidth reduction. For the spectral signatures characteristic of the three classes,

successful EOFC classification will likely be possible until bandwidth reduction results in the

elimination of the signature information in the spectra.

2.4.1 EFFECT OF CONTAMINATING NOISE ADDITION

To explore the impact of noise contamination on the success of the different classification

approaches (EOFC, MPC), simulations were carried out in which synthetic noise was added to

simulated, noise-free acoustic returns for scatterers belonging to each of the three classes. To

generate clean (noise-free) signals for the three scatterer types, the theoretical models detailed in

Section 3.1.1 (Figure 3-1) were employed. These models are capable of generating a wide range of

signals for each scattering class, but only a small subset of these signals was chosen as a basis for

this noise sensitivity analysis, so that sensitivity to signal variability was not confounded with

sensitivity to contaminating noise. For this analysis, animals in the gas-bearing class (GB) were

modelled as a spherical gas bubble plus a contribution from fluid-like tissue, with the echo from

the gas bubble dominating the return ((EQ 3.1) with bj = 0). Returns from the fluid-like class (FL)

were modelled as a ray summation including two rays, which represent scattering from the front

and back interfaces of the animal (EQ 3.4). Similarly, noise-free elastic-shelled returns (ES) were

modelled by a summation of the contributions of two rays, one from the direct return from a hard

elastic sphere and the other from scattering due to a circumferential Lamb wave with the series

truncated to include only the first partial circumnavigation (EQ 3.6).



To simulate a wide range of noise contamination conditions, varying quantities of synthetic noise

were combined with these clean signals. Noise contamination was modelled as Gaussian-

distributed white noise (GDWN). Many physical processes are well-modelled by Gaussian

distributions, and GDWN is a reasonably good approximation to many of the potential noise

sources in both tank experiments and field data collections. To consider the effects of additive,

uncorrelated noise contamination on classifier performance, increasing quantities of synthesised

GDWN were added to the clean signatures characteristic of each class, and classifier performance

under these different signal-to-noise-ratio (SNR) conditions was monitored. Some other noise

effects, including the effects of ensemble-averaged noise and multiplicative noise contamination,

were also explored. These effects do not represent expected forms of noise contamination, but

were investigated to isolate the effects on the classifiers of specific aspects of signal degradation.

Some noise contamination is apparent in the data collected in the ship-board tank (1993, 1994

cruise) as well as the land-based tank experiments (1995 workshop). A rough estimate of the

degree of noise contamination can be made by determining the approximate range of SNR

observed in the datasets. For the 1993 cruise datasets, the time series from 50 acoustic returns from

each scatterer type (Animals 93-18 Agalma okeni, 93-33e Meganyctiphanes norvegica (run 5) and

93-29 Limacina retroversa) were examined. Assuming noise stationarity, time-windowing each

return made it possible to isolate the experimental noise by looking at the portion of the return

after the echo from the scatterer was received. The SNR (in dB) was computed by taking the

logarithm of the ratio of the mean squared signal (s 2 (t)) to the mean squared noise (n 2(t)):

SNR = lOlog(snr) = 10log (s 2(t)) (EQ 2.4)
(n2(t))

Using (EQ 2.4), the mean SNR (10log(snr)) of the 50 A. okeni (GB class) returns was -14 dB,

ranging from 5.3 dB to 16.8 dB. For the 50 M. norvegica echoes, the mean SNR was -7 dB,

ranging between 6 dB and 8 dB. The L. retroversa returns also had a mean SNR of -7 dB, but with

a much greater variance, ranging between 1.75 dB and 12.9 dB.

Coherent addition of instantaneous sample of GDWN

To simulate the noise contamination present in the experimental data, an instantaneous sample of

synthesised GDWN was added coherently to the clean (noise-free) theoretical-model-generated

signals for each class. This addition of an instantaneous GDWN sample may be the best

approximation of incoherent, additive noise contamination, particularly if the primary source of



the noise in the experimental data is pre-amplifier noise. Gaussian-distributed white noise may be

represented as the sum of sinusoids with varying amplitude and phase as follows:

N

n(t) = I A n -sin(ont + 4) (EQ 2.5)
n= 1

For white noise, on and On are uniformly distributed between 0 to 27t. This formulation has the

advantage that it can be used to generate noise that has a spectrum differing from white noise (e.g.

red noise, which is a low-pass version of white noise) simply by choosing different distributions

for on and On (Shinozuka and Jan 1972). For white noise (on and On uniformly distributed), the

sum in (EQ 2.5) itself converges to a Gaussian distribution by virtue of the Central Limit Theorem.

Therefore, by choosing samples at random from a Gaussian distribution, a time series of the noise

process described in (EQ 2.5) may be simulated. For this synthesised GDWN, the magnitude of the

Fourier transform (I(N(co)I, where N(o) is the Fourier transform of n(t)) is Rayleigh-distributed

whereas the phase of N(o) is uniformly-distributed (Figure 2-5). This arises from the fact that the

real and imaginary parts of the Fourier transform of GDWN are Gaussian-distributed. Since the

magnitude and phase are statistically independent, the joint PDF of the magnitude and phase can

be shown to be the product of a uniform distribution and a Rayleigh distribution (Haykin 1988).
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Figure 2-5 Histograms of the magnitude and phase of N(co) (FFT of n(t)) reveal that the magnitude of the

synthetic noise is Rayleigh-distributed while the phase is uniformly-distributed.

Coherent addition of the synthesised GDWN noise to the clean signals is accomplished by

summing the real (Re) and imaginary (Im) parts of the spectra separately:

S(o) + N(co) = [Re(s(o)) + Re(N(co))] + i[Im(S(Co)) + Im(N(o))] (EQ 2.6)

Where S(co) and N(o) are the Fourier transforms of s(t) and n(t) respectively.



An appreciation for the potential effects of noise addition to the theoretical-model generated clean

signals can be gained through examination of the magnitude and phase, as well as the real and

imaginary parts of the clean signals (Figure 2-6). In phase space, at a particular frequency, a single

GDWN realisation will have a magnitude (length) drawn from a Rayleigh distribution and a phase

(angle from the real axis) randomly sampled from a uniform distribution. Adding this noise phasor

to the signal phasors will result in a "noisy" signal-like phasor, characterised by random deviations

from the general shape of the signal phasor,
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Figure 2-6 Characteristics of the theoretical-model-generated clean signals. Top row is IS(co)l, the magnitude
of the Fourier transform of s(t), plotted as target strength (TS) in dB. Second row is the phase of
S(o), computed as tan-'(Re[S(o)]/Im[S(o)]). Bottom row is the phasor diagram, showing plot of
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above are explicitly described in (EQ 3.1) with bj = 0 (GB), (EQ 3.2) with N = 2 (FL) and (EQ 3.5)
with the series truncated to include only the first partial circumnavigation (ES).
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Since the classification algorithms are based on the magnitude of the frequency response of the

echoes, only the effect of noise contamination on the resultant echo spectra is important. As noise

contamination increases (decreasing SNR), the characteristic signature in the echo spectrum for

each class becomes blurred due to random deviations from the signal shape introduced by the

noise as well as a disproportionate addition of noise energy to the nulls as compared to the peaks

(Figure 2-7). At an SNR of 0 (snr = 1), spectra from the three classes begin to resemble each other.
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Figure 2-7 Effect of coherent addition of GDWN to clean signals (top row) on the magnitude of the Fourier
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EOFC performance as a function of SNR was evaluated with 10 5-ping ensembles of simulated

noise-contaminated signals. The M1-EOFC, which classifies the noisy 5-ping ensemble dominant

mode (Ml) against the M1 library for clean data, was fairly robust in the presence of GDWN. In

particular, M1-EOFC performance began to deteriorate only once the SNR fell below -3 dB (noise

energy twice as large as signal energy) for the FL and ES class realisations (Figure 2-8). For GB

class realisations however, performance degraded at an SNR of as high as 17 dB (for which the

signal energy is still 50 times the noise energy). This is not surprising, since the simulated clean

signal for the GB class has no structure of its own. It is likely that even with the addition of very

little noise energy, sufficient structure is added to the spectrum so that the dominant mode of

variability of the noise-added signal becomes the noise mode. This will prevent the M1-EOFC

from identifying it as the correct M1 library entry. In fact, the M21-EOFC results (for which M2 of

the 5-ping ensembles of the noisy data were classified versus the M1 library) reveal that for some

low SNR conditions, M2 of the noisy data is better identified versus the Ml library than is Ml.
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Addition of ensemble-averaged noise

The effect of the coherent addition of clean signals to instantaneous samples of GDWN, which

yields the spectra shown (Figure 2-7), can be thought of as a combination of two separate

contributions. The effect of the first of these contributions will be considered here, and the effects

of the second will be further explored subsequently (see "Multiplicative noise contamination").

With increasing noise addition (decreasing SNR), the structure in the echo spectra of the signals is

degraded because the noise energy adds disproportionately to the nulls as compared to the peaks.

If the noise simulation process were not confined to the addition of finite length, finite bandwidth,

sampled instantaneous GDWN, the effect of this disproportionate addition of energy to the nulls of

the echo spectra on the classifiers could be explored. In fact, ensemble-averaging an infinite

number of realisations of instantaneous GDWN results in truly "white" time series. This averaged

noise will be spectrally flat, with equal energy at all frequencies. By evaluating classifier

performance on signals contaminated by the addition of this ensemble-averaged noise, the effects

of structure degradation due to adding proportionately more energy to the nulls than to the peaks

of the signal echo spectra may be explored in isolation. To simulate the effects of this type of noise

contamination, increasing amounts of spectrally flat noise were added to the clean signals (Figure

2-9). This form of noise contamination affects the signal spectra for the three classes differently.

For the FL and ES classes, increasing noise addition degrades the null and peak structure, making

the spectral features progressively less pronounced. Since the ideal ensemble-averaged noise has a

flat spectrum, as does the theoretical-model-generated clean signal used in this analysis to describe

the GB class, the structure (or lack thereof) in the GB realisations remains intact once noise is

added. However, the average level (TS) changes significantly with increasing noise addition.

Similar to the case of the addition of instantaneous GDWN, at an SNR of 0 (snr = 1), the spectra

from the three classes resemble each other considerably, both in the absence of any marked

spectral structure, and in terms of average signal level (TS). For an SNR of 10, and perhaps even

for SNR as low as 3, sufficient structure may remain in the spectra to allow class discrimination.

M1-EOFC performance (classification of the dominant modes (Ml) of the noisy signals against

M1 library for clean data) was outstanding for ideal noise-added realisations in all three classes

(Table 2-2). The EOFC proved to be extremely robust to the effects of structure degradation alone.

Even with noise contamination of same magnitude as signal (SNR=O), the M1-EOFC always

correctly identified the dominant mode in the signal. This is a result of the fact that the EOFC does

not depend directly on a pronounced structure in the spectra, but rather on the modes of variability
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Figure 2-9 Effect of addition of ensemble-averaged noise to clean signals (top row) on the magnitude of the
Fourier transform (plotted as TS in dB). SNR (in dB) decreases down the columns (value at left).

in the spectra. The addition of ensemble-averaged noise does not alter the modes of variability of

the characteristic signatures of each class, it merely re-scales the energy of the signal by reducing

the dynamic range so that the noise-contaminated realisations are easily identified. Since the

performance of the EOFC under conditions of more severe noise contamination (SNR < 0) was not

evaluated for this type of noise addition, the point at which performance degrades (if it does) is



unknown. It is certain that the EOFC will fail once the noise level exceeds the threshold at which

the numerical quantisation of the spectral levels (in dB) becomes insufficient to resolve the

variability which exists in the signal.

Table 2-2 M1-EOFC results (% correctly classified, n=50) with ensemble-averaged noise contamination.

MAXIMUM SNR (dB)

class Inf 20 17 15 13 10 3 0

GB 100% 100% 100% 100% 100% 100% 100% 100%

FL 100% 100% 100% 100% 100% 100% 100% 100%

ES 100% 100% 100% 100% 100% 100% 100% 100%

AVERAGE 100% 100% 100% 100% 100% 100% 100% 100%

Multiplicative noise contamination

Examination of the echo spectra resulting from the coherent addition of instantaneous samples of

GDWN (Figure 2-7) reveals that signature degradation occurs not only because of the

disproportionate effects of noise addition on the nulls in the signal structure, but the characteristic

signature in the echo spectrum for each class is also blurred due to random deviations from the

signal shape introduced by the noise. In fact, complex scattering effects (from parts of the animal

body not accounted for by the simplifying theoretical models, or from reverberation effects) can

lead to returns that appear "spectrally noisy", where the spectra are characterised by signature-

obscuring, seemingly random deviations. To isolate and investigate the effect of such random

deviations in the spectra on classifier performance, simulations were carried out in which a form of

multiplicative noise contamination was applied. Simulation of multiplicative noise was

accomplished by adding the log-transformed noise spectra to the log-transformed spectra (TS) of

the clean signals (Figure 2-10). This is equivalent to multiplying the non-log-transformed clean

signals by the non-log-transformed noise. The noise spectra were simulated by choosing frequency

samples at random from a normal distribution with a mean TS of 0 dB. Noise levels were altered

by increasing the variance of the normal distribution from which the frequency samples were

drawn. Since SNR is not a meaningful measure of multiplicative noise contamination, noise levels

were measured in terms of this variance increase. With increasing noise variance, this form of

noise contamination blurs the signature structure quite rapidly, in addition to widening the spread

of the resultant echo spectrum. Applying multiplicative noise with a variance of 15 dB or greater

results in the loss of all visible signature structure, so that the spectra from the three classes

become indistinguishable to the eye.
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The EOFC was evaluated with a simulated dataset for each class (n=50) in which the noise

variance was increased from 0 dB up to 24.5 dB. The M1-EOFC was highly sensitive to this form

of multiplicative noise contamination, and was unable to correctly classify most of the spectrally

noisy data, particularly for the GB and FL classes (Table 2-3). In contrast, the M21-EOFC showed

considerable improvement over M1-EOFC performance. This indicates that as the noise variance
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increased, the dominant mode became the noise mode (i.e. Ml represented the variability present

in the noise, not the signal). The second-to-dominant mode (M2) then became the signal mode,

and was readily identified vs. the Ml library. Although this mode switch (of M1 to noise mode and

M2 to signal mode) occurred right away for GB realisations and at a noise variance of -10 dB for

FL realisations, it did not happen until higher noise variances for ES realisations. This is because

the ES clean signal has higher variance than the FL signal, so that the ES signal mode remains the

higher energy mode (Ml) for higher levels of noise energy than does the FL signal mode under the

same noise contamination conditions. An improvement in EOFC performance for the ES

realisations can be achieved by using the weighted sum of the first 2 modes (W2-EOFC).

Table 2-3 EOFC results (% correct, n=50) with multiplicative noise contamination (max. variance=24.5 dB).

M1-EOFC M21-EOFC W2-EOFC

GB 0% 100% 0%

FL 0% 100% 100%

ES 40% 60% 100%

2.4.2 EFFECT OF BANDWIDTH REDUCTION

Information loss through bandwidth reduction represents another important form of signal

degradation. If classifier performance with reduced-bandwidth signals is well-understood, it is

possible to optimise the trade-off between scatterer signature degradation due to the presence of

noise, and information loss due to bandwidth reduction resulting from band-limited noise filtering.

Even if filtering of band-limited noise is not performed, variability in the properties of transducer

frequency responses can lead to bandwidth limitation issues. For example, the data collected in the

three experiments (1993 cruise, 1994 cruise, 1995 workshop) differ in usable bandwidth due to

differences in the transducer frequency responses for each experiment. The 1993 cruise data had a

maximum usable bandwidth of between -348 and 748 kHz, whereas the usable bandwidth for the

1994 cruise data was markedly reduced (-348 - 600 kHz) due to the poor high-end frequency

response characteristics of the new transducer used on that cruise. Data from the 1995 workshop

had an intermediate bandwidth, since a third transducer with a flatter high-end frequency response

was employed. Regardless of the cause of bandwidth reduction, significant loss of bandwidth

could lead to data which contain insufficient information for robust classification.

To assess the performance of the classifiers in the face of spectra with decreasing information

content due to progressive bandwidth reduction, simulations were carried out in which clean



signals (described in Section 2.4.1, generated from theoretical models detailed in Section 3.1.1)

were band-pass filtered using filters with pass-bands of decreasing width. This type of simulation

not only allows characterisation of performance degradation with decreasing bandwidth, but the

minimum required bandwidth for successful classification can also be determined in this manner.

Clean signal bandwidth was reduced progressively from 241 sampled points representing the full

spectrum between 348.33 - 748.55 kHz, down to a single point (Figure 2-11). For each bandwidth,

the retained portion of the spectrum was varied by frequency-shifting the band-pass filter relative

to the clean signal. This ensured that the classification results reflected the degree of bandwidth

limitation and not the particular portion of the signal that was retained in a given realisation.
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Figure 2-11 Effect of bandwidth reduction on the magnitude of the Fourier transform of clean signals (top
row, plotted as TS in dB). For these realisations, the band-pass filter is centered at -550 kHz.
Remaining bandwidth (value to left of rows, in kHz) decreases down the columns.



M1-EOFC performance was remarkably robust with decreasing bandwidth (Figure 2-12). In

particular, the modes of GB realisations appear to be insensitive to bandwidth reduction, with

excellent results obtainable down to bandwidths just above 0 kHz. Classification success was also

very high for the bandwidth reduced ES realisations. Good results were obtained down to a

remaining bandwidth of only 125 kHz, which is approximately the bandwidth between successive

nulls. On the other hand, performance with reduced-bandwidth FL realisations degraded much

sooner. This is due to the fact that the bandwidth reduced FL modes are undersampled, resulting in

aliasing and misclassification with as much as 300 kHz of remaining bandwidth.

M1-EOFC % correct vs. bandwidth
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Figure 2-12 M1-EOFC performance (% correctly classified, n=50) for bandwidth reduced signals.

The time-bandwidth product is a frequently used guideline of discrimination power. It provides a

measure of the number of orthogonal signals that can be resolved for a given length time series

with a given bandwidth. For example, for the 200 ps duration echo time series collected in the

experiments, in order to resolve 3 perfectly orthogonal model realisations (corresponding to the 3

classes), a bandwidth of only 15 kHz should be required (3 = T*BW = 2x10-4s * 15x10 3Hz). This



measure provides an absolute lower bandwidth limit, assuming orthogonality. Since the clean

signals used in this analysis to represent the 3 classes are not orthogonal, it is expected that a

minimum bandwidth of significantly greater than 15 kHz will be necessary to resolve them. In the

presence of contaminating noise, bandwidth requirements for successful classification will likely

increase further, since depending on the noise characteristics, the information in a limited

bandwidth spectra may become insufficient once confounded with a noise signal.



CHAPTER 3

THEORETICAL MODEL BASED CLASSIFICATION:

MODEL PARAMETERISATION CLASSIFIER (MPC)

3.1 RATIONALE

The application of model based classification techniques is only possible if there exist theoretical

or empirical forward models which express the relationship between the observed data and the

model parameters. For inversion problems where the theoretical or empirical basis from which to

construct such a relationship is well-characterised, a promising approach to the classification

problem is the application of techniques that can capitalise on the predictive power of class-

specific models. For the zooplankton classification problem, there are reasonably well-developed

theoretical scattering models for the three classes (Section 1.1.2), providing a sound basis for a

model based classification approach. The success of any model-based inversion scheme depends

upon the degree to which the forward model adequately describes the relationship between the

observed data and the model parameters, and whether features predicted by the model can be

resolved in the data. Although the theoretical models for each scattering class will not accurately

predict all possible observed echoes, these sophisticated models describe the general scattering

characteristics of zooplankton in each class sufficiently to allow discrimination between classes.

A model based classification scheme that incorporates the full detail of the theoretical model

predictions for each class can be designed, but such a design would be very complex due to the

number of model parameters, and may not classify robustly, particularly in the case where the

values of many of these parameters are unknown or unmeasurable. It may in fact be desirable to

design a scheme that can exploit the predictive power of the theoretical models for echo

classification without being encumbered by the details in the models. For example, it is possible to

parameterise the theoretical model predictions into simpler forms and to establish a connection

between the model parameters and the physical properties of the animal, so as to achieve a

practical, working parameterisation that can be generalised to other animal types. The Model

Parameterisation Classifier (MPC) described in this Chapter represents an initial approach to

theoretical model based classification. The MPC involves the creation of several alternative

parameterisations of the theoretical scattering models for each class. This parameterisation process

was carried out in such a manner that the resulting simplified model realisations encompassed a

range of predicted spectra for each class, but also allowed separability of the classes.



3.1.1 SUMMARY OF THEORETICAL MODELS

For gas-bearing (GB) fluid-like plankton (siphonophores) with a single gas inclusion, the general

scattering properties are described by the spherical gas bubble plus fluid-like tissue model (modal

series solution for bubble plus ray summation solution for tissue) as given in Stanton et al. (in

press b):

TSGB 20log j (2m + 1) (-1)m . b(f ) + b, e (EQ 3.1)
m=0 j=l

The first term represents the scattering from the gas inclusion (which at high ka is dominated by

the echo from the front interface), assuming the bubble can be modelled as a fluid sphere, whereas

the second term represents the scattering from the body as a summation of the rays due to the

major scattering features of the fluid-like tissue. The bW{) are the modal series coefficients for a

sphere (Anderson 1950), E. is the displacement of the scattering feature from a zero-phase

reference plane, thereby accounting for the phase shift of each ray, and the b, are the amplitude

coefficients for the rays. These amplitude coefficients are difficult to determine for the

siphonophore body, which is composed of many bracts, gastrozooids and tentacles. The echo from

the gas bubble is believed to dominate the scattering from siphonophores; however, echoes from

the tissue (although many dB weaker) may contribute measurably in some cases.

Scattering from elongated fluid-like (FL) crustacean zooplankton (euphausiids, shrimp) in the

geometric regime is described by a ray summation formula, from Stanton et al. (1994b, in press b):

N
TSFL = 20log , e i2k (EQ 3.2)

j= 1

In much the same way as for the siphonophore tissue, each ray represents the scattering

contribution from a different scattering feature of the fluid-like body. The phase shift of each ray is

again accounted for by the E , but for these elongated fluid-like animals, the amplitude coefficients

bi are more easily defined. For example, for the ray associated with the front interface of the

animal b = (1/ 2 )91(pS1). p(2 )) 1/ 2 where p5l) and p( 2) are the local radii of curvature (in two

I planes, (1) and (2)) of the point of scatter. With this formulation, many rays (associated with

different scattering features of the animal body) may be taken into account, and the resultant

predicted signal is the summation of the scattering contributions from all these rays. Although this



formulation allows the incorporation of an infinite number of scattering features, the summation of

more than two rays can lead to an erratic signal, and with as few as six rays, the frequency

response can appear similar to that of noise. In fact, changing the relative locations and strengths

of the scattering features drastically changes the predicted backscattered signal. In many cases,

particularly when the animal is oriented near broadside relative to the transducer, the scattering

from these elongated fluid-like crustacean zooplankton is well-described by a simpler two-ray

summation, which models the constructive and destructive interference between the ray associated

with scattering from the front interface of the animal and the ray associated with scattering from

the back interface. This two-ray randomly oriented fluid bent cylinder model is expressed as

follows, from Stanton et al. (1993a,b):

TSFL 20log (1ca9te-i2ka Ioe-a(2pc/L)2 (EQ 3.3)

where

I o = 1 - T1 2 T 2 1ei 4 k2aei i(kla) with Tmn = 2 PnCnI/( 1 + PCn (kla) =-(k 0.4)

PmCm PmCm 2(ka + 0.4)'

pc is the radius of curvature along the longitudinal axis of the body; and

0 is the angle of orientation, with 0 = 0 indicating broadside incidence.

For a narrow range of lengths, and orientations including broadside incidence, (EQ 3.3) was used to

derive an expression for the average backscattering cross-section (Stanton et al. 1993b), yielding:

TSFL= 10log 2AJ-L 1 - e-8(ka)2s2s(ka(4 - 2(ka (EQ 3.4)

where

S B for angle of orientation uniformly-distributed;

f3 = (L/a); and

s = sL/L, where SL is the standard deviation of length.

Here aB = 0.8, TB = 1, and CB = 1.2 are empirically determined parameters (Stanton et al. in

press b), with values adjusted to achieve a best fit to predictions using the more precise distorted

wave Born approximation. Stanton et al. (1993b) also includes an expression for averaging over

angle of orientation only, as well as an expression for Aij for Gaussian-distributed orientations.



For spherical hard elastic-shelled (ES) organisms (e.g. pteropods) a ray-based model also applies

(Stanton et al. in press b):

n

TSES 20log Fspec2 %e-i2ka - Fl2 Gle'e-2(n - 6t)PI . e"r1 I (-_)m e-2nmpl . emO . e-(1/2)y2c 2 (EQ 3.5)
spec2  2

m=O

where

8 (c with c 8ka + 0.5
GI = -8xit - with

C, ct  ka

Tll = 2ka ( -(-) - cos0- 2'
IC

= 27ka -;
Cl

01 = Re{asin(c/ct)};

y = k{2 (- 01)- cos 0 + 2m )}; and

.= 0.002ka

Here (D = -n/2, a = 0.025a and a is the average value of several samples from a Gaussian

distribution with mean a and standard deviation a. The first term represents the direct return (the

echo from the front interface), assuming the body can be modelled as a fluid sphere, with Fspec

indicating the relative contribution of this specular reflection. The second term represents the

scattering from a circumferential, antisymmetric Lamb wave 1 travelling at subsonic speeds along

the surface of the shell (Marston 1988), with F, indicating the relative contribution of this return.

If the animal is oriented in such a way that the opercular opening interferes with the propagation of

the flexural wave, the scattering will be dominated by the direct return, and the second term may

be neglected (F, = 0). For these organisms, the zeroth-order Lamb wave (flexural wave)

dominates (Stanton et al. in press a), and the series is truncated to include only the first partial

circumnavigation (m=O term), so that (EQ 3.5) becomes:

TSEs = 20log Fspec fe-i2ka - F Gle"ile-2
(n- Oi)I e're - ( 1/ 2 )

y2y 2  
(EQ 3.6)spec2  2

where 7 is now:

y = 2k( ( - 0) -cos 01)



In the expressions for all three scattering classes, a is the equivalent spherical or cylindrical radius

of the animal in m, k is the acoustic wavenumber k = 2n f/c, fis the acoustic frequency in Hz, c is

the sound speed in m/s, 91 is the reflection coefficient 91 = (gh - 1)/(gh + 1) where g = p2/P1

is the density contrast of the organism (subscript 2) relative to water (subscript 1), h = c 2/c 1 is its

sound speed contrast, and L is the total length of the animal in m.

3.1.2 COMPARISON OF DATA AND THEORETICAL MODELS

In order to parameterise the theoretical models so that the resulting model realisations allow

discrimination between classes while encompassing the range of echoes observed for each class, it

is necessary to gain an understanding of the variability present in the echo spectra as well as to

identify the features of the data and the theoretical predictions that will allow discrimination of the

classes. To this end, some single-ping echo spectra collected from animals in each scattering class

are compared to a theoretical model of TS versus frequency for that class (Figure 3-1).
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Figure 3-1 Echo spectra of a selected set of experimental data plotted with theoretical models for each class.
GB model: spherical gas bubble plus fluid-like tissue model (EQ 3.1) with echo from gas
dominating scattering; GB data: single siphonophore Agalma okeni (Animal 93-18). FL model:
ray summation including two rays, one from front interface, one from back interface (EQ 3.4); FL
data: decapod shrimp Palaemonetes vulgaris (top) and euphausiid Meganyctiphanes norvegica,
(Animal 93-33). ES model: ray summation including only first partial circumnavigation of Lamb
wave (EQ 3.6); ES data: two pteropods Limacina retroversa (Animals 93-29 (top) and 93-30).



For gas-bearing (GB) fluid-like plankton (siphonophores) with a single gas inclusion, selected

echo spectra were compared to the spherical gas bubble plus fluid-like tissue model (modal series

solution for bubble plus ray summation solution for tissue from Stanton et al. in press b) with the

echo from the gas bubble dominating the scattering. For elongated fluid-like (FL) crustacean

zooplankton (euphausiids, shrimp), pings were compared to the ray summation formula (Stanton

et al. in press b), with two rays (those representing scattering from the front and back interface of

the animal) included in the summation (from Stanton et al. 1993b). For spherical hard elastic-

shelled (ES) organisms (pteropods), echo spectra were compared to the ray-based model that

accounts for the direct return (the echo from the front interface), as well as the scattering from a

circumferential Lamb wave travelling along the surface of the shell with the zeroth-order Lamb

wave dominating and the series truncated to include only the first partial circumnavigation

(Stanton et al. in press a). The experimentally collected echo spectra shown for the gas-bearing

category (GB) are from a single siphonophore Agalma okeni insonified during the 1993 cruise

(Animal 93-18). Pings from animals in the fluid-like (FL) class are from a euphausiid

Meganyctiphanes norvegica insonified during the 1993 cruise (Animal 93-33) and a decapod

shrimp Palaemonetes vulgaris insonified in a tank on land (see Chu et al. 1992, Stanton et al.

1994b). Data collected from animals in the elastic-shelled class (ES) include the echo spectra of

two pteropods, Limacina retroversa insonified during the 1993 cruise (Animals 93-29 and 93-30).

The observed variability in the frequency spectra of the acoustic returns within and between

individuals in a scattering class can be attributed to differences in the behaviour and morphology

of the animals. Changes in the orientation of the animal during insonification may lead to ping-to-

ping variability in the acoustic returns from a single target. For example, the spectra of elongated

fluid-like zooplankton can exhibit different null-spacings depending on the animal's orientation

relative to the acoustic beam (Figure 5-6). Additionally, when the animal is not near broadside

incidence, it is possible that other scattering features contribute, leading to a more complicated

interference pattern. Differences in orientation may explain why echoes from some elastic-shelled

individuals contain several tightly spaced nulls, whereas echoes from others exhibit a flat

spectrum. For certain orientations, Lamb (circumferential) waves may propagate and scatter back

toward the receiver, yielding an oscillatory spectrum as a result of the interference between the

direct return (from the front interface of the shell) and the Lamb wave. For other orientations,

attenuation of the Lamb waves by the opercular opening may eliminate the interference pattern,

and the spectrum may be flat (Stanton et al. 1996). Variability in the frequency response between



different animals of the same species or in the same scattering class can also be attributed to

differences in apparent animal size (which may change as orientation changes). For fluid-like and

elastic-shelled scatterers there is an inverse relationship between apparent animal size and null

spacing in the frequency response (Figure 5-5). The size range of the elastic-shelled Limacina

retroversa represented in the data is tight, resulting in fairly similar null spacings for different

animals for this dataset. Although gas-bearing animals with a single gas inclusion dominating the

scattering will exhibit predominantly flat spectra, individuals with multiple closely-spaced

inclusions or animals in which the tissue contributes significantly to the backscattered signal can

exhibit an interference pattern and a spectrum with nulls.

It is evident that some echo spectra fit the theoretical model predictions better than others. For

example, although the top and middle echo spectra (Figure 3-1) for the gas-bearing category are

fairly well-described by the bubble-dominated spherical gas bubble plus fluid-like tissue model,

the bottom spectrum may be better described by a non-bubble-dominated version of this model

(one in which the tissue contributes significantly to the scattering giving rise to an interference

pattern with a deep null). In the fluid-like category, the top return is remarkably well-described by

a two-ray summation model, the middle spectrum is adequately described by a frequency-shifted

version of this same two-ray model, while the bottom ping may be better described by a two-ray

summation for a scatterer with a larger apparent size (either because the animal has a larger girth

thereby increasing the distance between its front and back interfaces, or the animal is oriented off-

broadside, also leading to a greater apparent girth). Alternatively, inclusion of more than two rays

in the summation due to possible contributions from other scattering features may lead to a better

prediction of this bottom spectrum. In a similar manner, the top and middle echo spectra in the

elastic-shelled category appear to be well-predicted by a model which includes significant

contributions from both the specular return and the backscattered energy from the Lamb wave,

whereas the bottom ping does not possess the same structure as do the other two, and would likely

be better predicted by a direct-return dominated version of the model where the Lamb wave

contribution is significantly reduced.



3.2 ALGORITHM

The theoretical models outlined in Section 3.1.1 describe a non-linear relationship between the

many input parameters and the predicted acoustic returns from zooplankton in the three scattering

classes. Classifying observed data based on these model parameters would involve a non-linear

inversion, since the theoretical model parameters cannot be linearly combined to predict the

observations. Instead of attempting to classify observed data by inverting for these theoretical

model parameters, the Model Parameterisation Classifier (MPC) matches observations to model

realisations, which are generated by employing simplifying parameterisations of the theoretical

models. The MPC is based on the assumption that the data can be represented as a linear

combination of these simplified model realisations. MPC classification consists of choosing the

best match among all the model realisations, so that an observation is assigned to the model space

(or class) which contains the model realisation with the highest contribution in the linear sum.

To build the model spaces (which consist of several alternative model realisations) from the

theoretical models, a range of simplifying parameters was chosen for each scattering class that

could encompass most of the variability present in the echoes from scatterers in that class, and at

the same time allow for distinction between the 3 classes of scatterers. The MPC incorporates

parameterisations of the subset of theoretical model predictions plotted in Figure 3-1: the bubble-

dominated spherical gas bubble plus fluid-like tissue model for the GB class, the ray summation

formula including the principal two rays for the FL class, and the specular return plus zeroth-

order-Lamb-wave ray-based model (with the series truncated to include only the first partial

circumnavigation) for the ES class. This subset of the theoretical model predictions can be

parameterised to yield three unique model spaces. Attempts to incorporate other model

parameterisations that are not unique to a particular scattering class will result in overlapping of

the model spaces, leading to an inability to discriminate the classes. For example, the non-bubble-

dominated spherical gas bubble plus fluid-like tissue model can predict GB echoes nearly identical

to the FL echoes predicted by a multiple-ray summation. Clearly, including parameterisations of

these in the GB and FL model spaces will result in the confounding of these model spaces and an

ambiguous classification result.

The MPC involves two stages of classification (Figure 3-2). In the first stage (STAGE I), the gas-

bearing model is parameterised as a straight line with slope (m) and intercept (b) parameters. A

straight line is fit through each echo spectrum (SPEC) by linear regression (y = mx +b) and the



sum of squares of the residuals (SSR) is computed for each: SSR = Z (y(i) - SPEC(i)) 2. Echo

spectra from scatterers that are well represented by a straight-line model will have considerably

smaller SSR than echo spectra exhibiting deep nulls. All echo spectra are classed as either "GB"

(gas-bearing) if SSR < t or "not GB" if SSR > t, where t is an optimal threshold adjusted to give

the best classification of a sample known dataset. The GB model space consists of 25 bins that

quantify the SSR associated with each return. Echo spectra classed as "not GB" enter the second

stage of classification.

Model Space
STAGE I STAGE II +

GB
(gas-bearing)

Straight-line fit:

SSR <=cutoff ? yesCorrelation with es FLCorrelation with I (fluid-like)
no , rectified cosine models:

best-fit <= FLlimit ? no ES
(elastic-shelled)

Figure 3-2 Summary of the MPC classification algorithm.

In STAGE II, the FL (fluid-like (EQ 3.3)) and ES (hard elastic-shelled (EQ 3.6)) theoretical models

are simplified by parameterising them as rectified cosines. These sinusoidal realisations are fully

described by only two features: null spacing and frequency shift. To construct each of the model

spaces, several model realisations of rectified cosines, differing in null spacing and frequency shift,

were created (Table 3-1). The ranges of these two parameters for fluid-like (FL) and hard elastic-

shelled (ES) model realisations were determined by examining the appropriate theoretical model

predictions as well as several dozen experimentally collected echo spectra for each scatterer type.

To include the range of echo spectra observed in the datasets, nine different null spacings were

chosen for the FL model realisations. For ES, 5 different null spacings were used. The possibility

of frequency-shifted returns was also accounted for in the model spaces, resulting in 81 different

FL model realisations and 25 different ES model realisations. These simplified model realisations

are able to capture the structure in the echo spectra, differentiating the classes based only on

differences in the null spacing. Other features of the echo spectra such as mean echo level, null

depth and variance are not exploited in this preliminary classification scheme.



Table 3-1 Parameter values used in the simplifying parameterisations of the FL and ES theoretical models.

MODEL TYPE null spacing frequency shift

FL (fluid-like) every 130 - 370 units every 2n/9

ES (hard elastic-shelled) every 60 - 100 units every 2r/5

All pings classed as "not GB" pings after STAGE I of classification were examined to determine

whether they were FL (fluid-like) or ES (hard elastic-shelled). The echo spectrum of each ping

was correlated to each model realisation as follows:

x = MTy (EQ 3.7)

where y is a matrix in which each column represents one mean-subtracted echo spectrum to be

classified, M is a matrix in which each column represents a model realisation and x gives the

degree of correlation of each ping to each model realisation. Maximum correlation (i.e. maximum

value in each column of x) reveals the best-correlated model realisation for a particular echo

spectra, indicating best fit. Classification of a ping involves determining to which model space the

best-fit model belongs. This correlation procedure, which identifies the largest contributing model

realisation in the linear sum, follows from the least squares linear inverse solution.

The MPC as a Least Squares Linear Inverse

For a linear system, the inverse problem may be solved using a standard general inversion

technique that has been described in several works on inverse theory (Backus and Gilbert 1967,

Aki and Richards 1980, Menke 1989). In a linear inversion, the observed data can be expressed as

a linear combination of the theoretical forward model parameters, so that the solution to the

inverse problem involves solving for the model parameters that, once weighted by the kernel, best

predict the observed data (Menke 1989). The general formula for a linear system is expressed as:

M

d i = _ Gijm (EQ 3.8)
j=1

where di (i = 1, 2,..., N) are the data or observations of the system, Gij is the kernel, and mj are the

model parameters for which we wish to invert. This equation can be written in matrix form as:

d = Gm (EQ 3.9)

For the zooplankton classification problem, this formulation of the linear inverse problem does not

present a convenient form in which to invert observed data for theoretical model parameters, since



the theoretical models (Section 3.1.1) describe a non-linear relationship between the model

parameters and the predicted acoustic returns from zooplankton in the three scattering classes.

However, this linear inverse solution may be exploited by deriving simplifying parameterisations

of the theoretical models to create model realisations for each scattering class, and assuming that

the data can be represented as a linear combination of these simplified model realisations. The

zooplankton classification problem can then be cast in the form of a generalised inverse solution in

the following manner:

y = Mx (EQ 3.10)

Where y is either a vector or a matrix containing the data to be classified (in this case, the echo

spectrum/spectra of the acoustic return(s) from an animal), M is a matrix containing the model

realisations against which we want to classify the data (derived from parameterisations of the

theoretical models), and x is a vector or matrix of weights which reveal the best classification for

the input data. One approach to inverting for x (for an over-determined problem) involves looking

at the model space:

x = (MTM)-1MTy (EQ 3.11)

where (MTM)- 1 can be decomposed into its orthogonal basis functions:

(MTM) 1 = (pA- (T (EQ 3.12)

If the model realisations contained in M are all orthogonal, then (p would contain exactly these

model realisations; in the case of non-orthogonal realisations, 9 represents the basis set from

which all the model realisations may be constructed. An alternative formulation (for an under-

determined problem) of the generalised inverse given in (EQ 3.11) is as follows:

x = MT(MMT)-ly (EQ 3.13)

This formulation permits a more informative investigation of the data space. In a similar manner to

(EQ 3.12) above, (MMT)-1 may be decomposed into it's orthogonal basis functions:

(MMT)-1 = OA-1 T  (EQ 3.14)

Substituting (EQ 3.14) into (EQ 3.13) yields:

x = MT(oA- T)y (EQ 3.15)

Thus the solution to the inverse problem x is arrived at by first projecting the model realisations

onto their own orthogonal basis set (MTO) to determine how much of each orthogonal element



composes each of the model realisations. Similarly, the data for which we want to invert for

scattering class is projected onto the orthogonal basis set of the model realisations ( Ty) to

determine how much of each component is required to describe the data. Finally, A-1 is a

weighting function that gives the relationship between the two projections by normalising the

energy content of each projection to yield an estimate of x.

The representations in (EQ 3.11) through (EQ 3.15) allow for an adjustment of the resolution of the

inverse. This may accomplished through a de-tuning of the A matrix which will decrease

resolution, and depending upon the particular classification problem may lead to more accurate

results than the highest resolution inversion. In fact, the trade-off between resolution and variance

for this type of classifier is the key to ensuring robust classification. For the zooplankton

classification problem, the primary goal of this preliminary classification scheme is not to be able

to discriminate between the many similar but alternative model parameterisations within the model

space for a given scattering class, but instead to make gross distinctions between one class and the

other with very little error. Given this requirement, the most robust classification results will likely

be obtained using the fully-damped least squares inverse, which sacrifices resolution in favour of

low error/variance. This least squares inverse is arrived at by setting (MTM)- 1 = (MMT)- 1 = I in

(EQ 3.11) and/or (EQ 3.13), resulting in:

x = MTy (EQ 3.16)

Comparing (EQ 3.16) to (EQ 3.7), it becomes apparent that the MPC is simply the fully-damped least

squares formulation of the generalised linear inverse. The MPC has very low resolution, but the

level of resolving power is sufficient to discriminate between the three scattering classes, and with

very low error. An increase in resolution may be unnecessary for the purposes of discriminating

the scattering classes, and would lead to an increase in error (variance) in the classification results.



3.3 PERFORMANCE

In addition to the variability observed in the spectra, both between separate insonifications of a

single zooplankter as well as between different individuals in the same scattering class, noise

contamination was more evident in returns from some animals than others. Initially, MPC

performance was evaluated against a 150-ping sub-sample (representing the highest signal-to-

noise ratio (SNR) data) consisting of acoustic returns from one animal in each of the three classes.

This high-quality dataset consisted of 50 echo spectra each of a siphonophore Agalma okeni

(Animal 93-18), a euphausiid Meganyctiphanes norvegica (Animal 93-33e (run 5)), and a

pteropod Limacina retroversa (Animal 93-29).

For this subset of data, MPC STAGE I correctly identified all M. norvegica and L. retroversa pings

as "not GB" and 92% of the A. okeni pings as "GB", indicating that the parameterisations of the

bubble-dominated theoretical model are adequate to classify these GB class returns (Figure 3-3).
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Figure 3-3 Results of MPC STAGE I with the high-SNR 150-ping sub-sample of the 1993 dataset. The
optimal SSR threshold as estimated for this data is shown as a straight line.

After STAGE II, the MPC success rate for these three high SNR 50-ping datasets was about 95%

(Figure 3-4). The parameterisations of the 2-ray model for the FL class and the direct-return-plus-

Lamb-wave model for the ES class allow excellent discrimination of these echo spectra.
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Figure 3-4 MPC classification results for the high SNR subset (1993 cruise). Success rate was -95%.
Individual echo spectra for each class are numbered up the y-axis.



The MPC was less successful in classifying many of the other datasets (Table 3-2). The MPC

average success rate over the entire 1993 cruise dataset of 1850 echoes (37 50-ping ensembles)

was approximately 64%.

Table 3-2 MPC results for 1850-ping (1993) dataset. "*" indicates high SNR data shown in (Figure 3-4).

species Animal # run # n % correct

Agalma okeni

Meganyctiphanes norvegica

Limacina retroversa

ALL ANIMALS

93-13

93-14

93-16

93-17

93-18

93-19

93-20

93-21

93-22

TOTAL

93-33a

93-33b

93-33c

93-33d

93-33e

TOTAL

93-23

93-24

93-26

93-27

93-28

93-29

93-30

93-31

TOTAL

TOTAL

50

50

50

50

50

50

50

50

50

450

50

300

300

300

50

1000

50

50

50

50

50

50

50

50

400

1850

58%

50%

10%

66%

92%

10%

12%

48%

12%

40%

92%

86%

79%

86%

94%

85%

20%

16%

2%

66%

40%

100%

0%

54%

37%

64%



Despite a very high success rate with the high SNR subset of the 1993 cruise data, the MPC was

much less successful in classifying the balance of the 1993 dataset. This follows from the fact that

acoustic returns that are not well-predicted by the parameterised theoretical models will not be

correctly inverted for with this model based inversion scheme. Deviations from the model

realisations could result from either noise contamination in the data or the presence of a wider

range of signal variability in the data than is captured in the parameterised model realisations. Both

the Agalma okeni and Limacina retroversa data were poorly classified due to variability in the

observed echo spectra for these two scatterer types. Much of the L. retroversa data also had lower

SNR than data from the other two species. Because the MPC relies on matching an observed

acoustic return to the parameterised noise-free model realisations, noise contamination is likely to

be particularly troublesome for this classifier. Sections 3.4 and 3.5 describe the results of a

thorough investigation of the sensitivity of the MPC to signal degradation caused by noise

contamination as well as a preliminary look at the effects of signal variability on this model based

classifier. The performance of the MPC relative to the other classifiers developed in this thesis

work is discussed briefly in Section 6.1.

All of the misclassified A. okeni returns were identified as "not GB" by MPC STAGE I, and most

were subsequently classed as FL. STAGE I of the MPC relies on the fact that spectra from

scatterers that are well represented by the straight-line parameterisation of the GB model will have

considerably smaller SSR than spectra exhibiting deep nulls. Significant individual-to-individual

variability in echo spectra was observed in the 1993 A. okeni data. This variability may have been

due to the presence of multiple-bubble gas inclusions in some of the experimental animals, since

individuals with multiple closely-spaced inclusions (as can result from embolism upon being

removed from depth too quickly (Pugh and Harbison 1986, Pugh and Youngbluth 1988)) could

exhibit a multiple-bubble interference pattern and a spectrum with nulls. Pre-insonification visual

inspection of the siphonophores in this experiment revealed multiple bubbles in all but two

individuals (Animals 17 and 20) whereas the majority of the specimens contained only one bubble

after insonification. It is uncertain how many bubbles were present during insonification, or

whether the presence of multiple bubbles is the sole mechanism for the observed oscillatory

spectra. It is believed that even individuals with a single gas inclusion can exhibit both flat and

oscillatory spectra (see (EQ 3.1)). If the tissue contributes significantly to the scattering, then the

scattering from the bubble may no longer dominate and the interference between returns from the



tissue and the single bubble can introduce spectral oscillations (Stanton et al. in press b), which are

not included in the theoretical model parameterisation used to create the GB model space.

In a similar manner, the model parameterisation used in the ES model space does not account for

possible attenuation of the Lamb wave by the orientation of the opercular opening. Several

Limacina returns, particularly those from Animal 93-30, were classified as GB because the echo

spectra were more or less flat due to an insignificant Lamb wave contribution. Many L. retroversa

returns were misclassified as FL (especially those from Animals 93-24, 93-26 and 93-28), either

because they exhibited a wider null spacing due to a smaller apparent size, or some nulls were not

as pronounced, possibly due to a smaller Lamb wave contribution. Although MPC success with

the Meganyctiphanes norvegica data was generally high, most of the few misclassified echo

spectra were assigned to the ES class, likely due to tighter null spacings resulting from changes in

apparent animal size.

The simplifying parameterisations employed in the MPC provided a convenient basis from which

to build model spaces for the three scattering classes, and inversion based on these model spaces is

reasonably effective, particularly for high SNR data and datasets with low intra- and inter-

individual variability. For datasets which include gas-bearing animals with differing scattering

contributions from the tissue, fluid-like zooplankton which assume a broad range of orientations,

or elastic-shelled animals with variable Lamb wave contributions, these simple parameterisations

may not be adequate to account for the extent of signal variability present in the data. It is

uncertain to what degree the wide range of variability observed in some of the experimentally

collected acoustic returns is an artifact of the experimental procedure itself, particularly since

much of the variability is orientation dependent. The natural orientation distribution of these

zooplankton is not well-understood; Section 5.1 contains a summary of what is known about the in

situ orientation of zooplankton in the three scattering classes from the literature and observations.

Even if experimental artifacts were eliminated, it is possible that model spaces consisting of

simple parameterisations of a subset of the theoretical model predictions for each class may not be

sufficient to correctly classify all echoes from these zooplankton. Building model spaces which

incorporate the full breadth of echoes predictable by the theoretical models for each scattering

class will result in a classification scheme better able to classify data exhibiting a high degree of

variability in the acoustic returns of zooplankton within a class, providing that the confounding

effects of inter-class ambiguity due to overlapping model spaces can be overcome (see Chapter 4).



3.4 SENSITIVITY TO SIGNAL DEGRADATION

To better understand the limitations of the classifiers, the effects of several different forms of

signal degradation on the classification success of the MPC were explored. In particular, the

characteristic acoustic signatures of each scattering class were subjected to various forms of noise

contamination and bandwidth reduction, and the performance of the MPC was evaluated under

these conditions. This investigation sought to simulate several possible types of signal degradation,

including system noise, background noise, the presence of other scatterers, calibration error/drift,

and a non-ideal transducer frequency response over the band of interest. A detailed discussion of

the sources and various effects of these forms of signal degradation is included in Section 2.4.

Possible strategies to minimise the effects of processes contributing to signal degradation include

pre-processing to remove noise, range-gating to avoid scattering from multiple targets, and

averaging over several returns to reduce the incoherent noise. Once the differential performance of

the classification approaches with degraded signals is well-understood, additional classification

success with degraded signals can be achieved through the simultaneous application of several

different classification techniques.

3.4.1 EFFECT OF CONTAMINATING NOISE ADDITION

To understand the effect of contaminating noise on MPC performance, simulations were

undertaken in which different types of synthetic noise were added to simulated noise-free (clean)

signals and classifier performance was evaluated. As outlined in Section 2.4.1, a limited set of

clean signals were generated using the theoretical models detailed in Section 3.1.1. To investigate

the effects of additive, uncorrelated noise, MPC performance under different SNR conditions

(computed using (EQ 2.4)) was evaluated by adding increasing quantities of synthesised GDWN to

the clean signatures characteristic of each class. The effects of ensemble-averaged noise addition

and multiplicative noise contamination were also explored.

Coherent addition of instantaneous sample of GDWN

In this analysis, instantaneous samples of synthesised GDWN (EQ 2.5) were added coherently to the

clean theoretical-model-generated signals for each class using (EQ 2.6), yielding realisations with

increasing noise levels (Figure 2-7). The amplitude and phase characteristics of the clean signals,

and the properties of GDWN and its appropriateness for this analysis, are discussed in detail in

Section 2.4.1. For example, addition of an instantaneous GDWN sample is a good approximation

of the incoherent, additive pre-amplifier noise contamination suspected in the tank experiments.



The performance of the MPC was fairly robust in the presence of GDWN, with deterioration

beginning only once the SNR fell below 0 dB (noise energy same as signal energy) for the FL and

ES class realisations (Figure 3-5). For GB class realisations however, performance degraded at an

SNR of as high as 7 dB (for which the signal energy is 5 times the noise energy). Since the

simulated clean signal for the GB class has no structure of its own, the addition of relatively small

quantities of noise energy adds sufficient structure to the spectrum so that the SSR exceeds the GB

classification threshold for the GB class. This prevents the MPC from identifying it as a GB

realisation, and classification success goes immediately to 0 once this threshold is exceeded. For

the other two classes, MPC performance degrades gracefully with increasing SNR.
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Figure 3-5 MPC performance vs. SNR (in dB) for GDWN contaminated signals.

Addition of ensemble-averaged noise

As described in Section 2.4.1, to decompose the effects of the instantaneous GDWN

contamination explored above into two separate contributions, the impact of ensemble-averaged

(spectrally-flat) additive noise on MPC performance was investigated in isolation. This form of



additive noise contamination affects the spectra for the three classes somewhat differently (Figure

2-9): the null and peak structures are degraded for the FL and ES classes, whereas only the

average level is changed for the GB class.

The MPC performs well with ideal noise-added GB realisations (Table 3-3), but its performance

quickly deteriorates as noise is added for the other 2 classes (FL, ES). This is not surprising, since

the MPC relies heavily on matching the structure of the signal to the structure of the theoretical

model parameterisations. This form of noise contamination adds energy disproportionately to the

nulls relative to the peaks, thereby narrowing the dynamic range of the spectra by progressively

shallowing the nulls. Any noise contamination that degrades the spectral structure in this manner

will be particularly problematic for the MPC. In fact, adding a maximum of only 5% noise

(SNR=13 dB) significantly decreased the success probability of the MPC for FL and ES class

realisations.

Table 3-3 MPC results (% correctly classified, n=50) with ensemble-averaged GDWN contamination.

MAXIMUM SNR (dB)

class Inf 20 17 15 13 10 3 0

GB 100% 100% 100% 100% 100% 100% 100% 100%

FL 100% 100% 98% 64% 40% 20% 4% 2%

ES 100% 100% 100% 100% 60% 30% 6% 4%

AVERAGE 100% 100% 99% 89% 67% 50% 37% 35%

Multiplicative noise contamination

The second noise effect (as discussed in Section 2.4.1) that was investigated in isolation was the

blurring of the characteristic echo spectra of each class due to random deviations from the signal

shape introduced by the noise. To determine the effect on MPC performance of this spectral

blurring and of the accompanying increase in spectral dynamic range, varying levels of

multiplicative noise contamination (measured by the variance of the noise in dB) were applied to

the clean signals for each class (Figure 2-10).

MPC STAGE I (the SSR decision threshold) was found to be very sensitive to multiplicative noise

contamination (Table 3-4). This follows from the fact that increasing levels of multiplicative noise

contamination applied to even the lowest variance clean signals (e.g. clean GB realisation)

drastically increase the value of the spectral SSR, so that the optimal classification threshold is

rapidly exceeded. A decision threshold-based rule is bound to fail in the presence of the levels of



multiplicative noise contamination tested herein. It should be noted that the SSR threshold may be

optimised for different signal-to-noise conditions, within a reasonable range that will allow the FL

and ES pings to be distinguished from the GB pings. MPC STAGE II on the other hand is

extremely robust in the presence of multiplicative noise contamination. Classification results for

the FL and ES class realisations were perfect, even when the noise variance reached 24.5 dB.

MPC STAGE II is based on correlation of the data spectra to parameterised model realisations.

Since the multiplicative noise spectrum is completely uncorrelated (each frequency sample was

chosen at random from a normal distribution), the STAGE II correlation process is unaffected by

the presence of even large quantities of this type of noise. For this reason, the MPC is able to

correctly identify the maximum correlation model realisation for even highly noise contaminated

spectra.

Table 3-4 MPC results (% correct, n=50) with 2 levels of multiplicative noise contamination.

MAXIMUM NOISE VARIANCE (dB)

12.25 24.5

GB 32% 16%

FL 100% 100%

ES 100% 100%

3.4.2 EFFECT OF BANDWIDTH REDUCTION

As discussed in Section 2.4.2, signal degradation through bandwidth reduction can arise due to

filtering of band-limited noise or as a result of non-ideal transducer frequency response

characteristics. In fact, the data from the three experiments (1993 cruise, 1994 cruise, 1995

workshop) differs in usable bandwidth due to differences in the frequency response of the

transducer used for each experiment. To understand MPC performance capabilities with reduced

bandwidth signals, a simulated dataset of progressively narrower-band signals was created for

each class (Figure 2-11). For a given bandwidth reduction, the band-pass filter was frequency-

shifted relative to the clean signal so that the retained portion of the spectrum was varied. MPC

performance with these bandwidth-reduced signals was evaluated.

The MPC was able to correctly classify the reduced bandwidth realisations quite well down to a

remaining bandwidth of 200 - 220 kHz (Figure 3-6). It was found that MPC STAGE I (the SSR

decision threshold) is somewhat sensitive to bandwidth reduction, particularly for FL and ES

realisations. For a given bandwidth reduction, the SSR varies considerably depending on which



portion of the band is retained. In some cases, the remaining portion of the bandwidth for the FL

and ES realisations had an SSR below the optimal SSR decision threshold, leading to mis-

classification of these realisations as GB. The MPC proved most robust with reduced bandwidth

GB realisations, since bandwidth reduction does not affect SSR for these signals. Even with the

FL and ES signals, a good portion of the spectrum can be filtered out (depending on which portion

of the band remains) before classification performance degrades. Interestingly, MPC STAGE II

results reveal that the bandwidth-reduced signals correlate best with different frequency-shifted

model realisations in the correct class. It is not surprising that the MPC results with reduced

bandwidth ES realisations are slightly better than with FL realisations, since more structure is

contained in the signature per unit of bandwidth for the ES signals relative to the FL signals,
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Figure 3-6 MPC performance vs. remaining bandwidth (in kHz) for bandwidth reduced signals.



3.5 SENSITIVITY TO SIGNAL VARIABILITY

The simulations described in Sections 2.4 and 3.4 to assess the sensitivity of the classifiers to

signal degradation made use of the theoretical models detailed in Section 3.1.1 to generate clean

(noise-free) signals characteristic of the three scatterer types. Varying the parameter values of

these theoretical models generates a wide range of possible signals for each scattering class. Only

a limited subset of these possible predicted echoes (Section 2.4.1) was employed in the sensitivity

analyses so that classifier sensitivity to signal variability was not confounded with sensitivity to

signal degradation. This allowed the effects of noise contamination and bandwidth reduction on

the classifiers to be explored in isolation. However, not only do the theoretical models predict a

wide range of signals for each class, significant variability in the observed echo spectra is evident

both between different returns from the same individual as well as across different individuals in a

given scattering class (Figure 3-1). In addition, the MPC classification algorithm is based on

matching observed echo spectra to parameterised versions of a subset of the full range of signals

predictable by the theoretical models. As a result, the sensitivity of the MPC to variability in the

acoustic returns within a given class was investigated in order to better characterise the limitations

of this classifier.

Acoustic signature variability exists both between distinct echoes from a single individual as well

as between the returns from different individuals within a particular scattering class. Some sources

of intra-individual signature variability include changes in the orientation of the individual,

differences in its material properties due to changes in physiological state (e.g. starving vs. replete)

or changes in season (e.g. molting, over-wintering), and alterations of individual body geometry/

morphometry (changes in gas inclusion size with depth, tentacle extension for feeding or tentacle

contraction for swimming, etc.). Changes in orientation alone can drastically modify the amount

of acoustic energy scattered by a particular zooplankter, as well as the apparent size of the

individual (particularly for non-spherical, elongated animals). These orientation-dependent effects

result in differences in the level (TS) of the acoustic returns from a single animal as well as

variability in the structure of the echo spectra; changes in apparent size of the animal alter the null

spacing of the signature (Figure 5-6). Additional orientational effects include fundamental changes

in the physical scattering characteristics of the animal, manifested as changes in the relative

contribution of different rays to the total scattered energy. For example, for a pteropod oriented in

such a way that the opercular opening interferes with the propagation of the circumferential wave,

the direct return ray can dominate the scattering, dwarfing any contribution from the



circumferential ray. Variability in the acoustic signatures of different individuals within the same

scattering class can result from inter-individual differences in animal size or from differences in

animal morphometry (i.e. the relative proportions of the animal, its radius of curvature etc.)

between individuals of the same species, as well as between animals of different species within the

same scattering class. In addition to size-dependent effects on the echo spectra (variability in echo

level and null spacing), morphometric differences could have complex scattering effects,

contributing to significant variability in signature structure through the possible introduction of

additional scattering features.

The presence of acoustic signature variability within each of the three scattering classes poses

some challenges to the classification process. Signature variability broadens the range of average

echo levels and signature structures that must be identified with a particular scattering class. A

successful classifier must encompass this range of possibilities in the model spaces for each class

in order to correctly recognise animals exhibiting variable signatures. However, this broadening of

possible signatures within each class could result in an overlap or ambiguity between the model

spaces of different classes (at least in terms of certain aspects of the structure), so that simply

broadening the model spaces for each class will not ensure successful classification. For example,

given the possible range of sizes and orientations for animals in the FL and ES classes, the

observable range of null-spacings could overlap, and the echo spectra of animals in these two

classes will not be unambiguously distinguishable on the basis of null-spacing alone (Figure 3-7).

In a similar manner, the range of SSR for the GB and ES classes could overlap for GB animals

whose scattering is dominated by their gas inclusion and ES animals whose scattering is direct-

return dominated, so that discrimination based on SSR alone will be confounded. Animals in the

GB class whose scattering is influenced by significant contributions from the tissue could exhibit

spectra with null-spacings that overlap with those observed in FL or ES echoes. In these cases,

successful classification will depend heavily upon the ability of the classifier to resolve these

ambiguities.

One strategy that can be adopted to overcome the confounding effects of signature variability on

the classifiers is the incorporation of a priori information into the classification process. For field

applications, this includes information about the species or taxa present in the water and their

respective size ranges (obtainable from direct water sampling by net or pump), as well as the

orientation of the animals (obtained directly using video cameras, or estimated as expected
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Figure 3-7 Diagram illustrating the potential for signature ambiguity between classes due to intra- and inter-
individual variability in the acoustic returns within a class. In (a), variability in animal size and/or
orientation leads to an overlap in the observed null-spacing of the echo spectra for animals in the
FL and ES classes. In (b), the SSR-overlap between the GB and ES classes due to variability in
scattering-feature contributions for these two animal types also leads to signature ambiguity.

orientations corresponding with suspected activities). For a given dataset, this a priori information

may be used to place bounds on the set of possible species, sizes, and orientations, thereby

constraining the range of feature values (e.g. null-spacing, SSR) and combinations of feature

values (particularly for co-dependent features) used in the classification. This information can also

serve to constrain the classification itself, since in the known absence of a particular scattering

class, that class may be ruled out as a possibility entirely. Another strategy to combat the effects of

variability might be to classify an animal based on several echoes, computing the moments of the

feature values (e.g. mean, variance). These statistical measures may prove to be better

discriminating features since they take into account the information contained in several acoustic

returns from the same animal, thereby capturing the inherent variability in these returns. Finally,

the simultaneous implementation of several different classification approaches that have differing

sensitivities to signature variability will increase classification success. This requires a solid

understanding of the relative affect of signature variability on classifier performance.



A preliminary investigation of the impact of within-class acoustic signature variability on MPC

performance was undertaken. Simulations were carried out in which spectra spanning a wide range

of signal variability were generated (Figure 3-8) using the multiple-ray summation theoretical

model (EQ 3.2). This multiple-ray model is ideal for simulating echo spectra variability, since it is

capable of describing a vast range of signals ranging from a coherent two-ray interference pattern

(e.g. the echo from an elongated fluid-like zooplankter at broadside incidence) to a chaotic

Gaussian-distributed white noise-like signal (Stanton et al. 1994b).
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Figure 3-8 Multiple-ray model (EQ 3.2) predictions (magnitude of the Fourier transform, plotted as TS in dB)
for fluid-like zooplankton with N = 2, 3, 4, 5, and 6 randomly spaced scattering features.
Examples given for each case show a wide range of signal variability in the simulated spectra.
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The ray-summation model has been used to predict scattering from fluid-like zooplankton

containing an arbitrary number of randomly spaced scattering features, as well as the scattering

contribution of the tissue of gas-bearing zooplankton. It models the scattering from a fluid-like

animal as the sum of rays reflected from a number of randomly spaced scattering glints on the

body of the animal. It is a simplified summation of phasors to account for the phase differences

between ray reflections from the various glints. For the purposes of this simulation, the multiple-

ray model (EQ 3.2) was employed with N = 2 through 6 to simulate variable acoustic returns in the

FL class corresponding to the presence of two, three, four, five and six randomly-spaced scattering

features on the animal body.

A preliminary assessment was made of the performance of the MPC with these simulated FL class

signals. Only those returns that were identified as FL were considered correctly classified. The

MPC did not perform well with these highly variable realisations, misclassifying about 40% of the

signals overall (Table 3-5). For spectra generated with N = 2, almost half of the realisations were

misclassified as ES since their null-spacings were more consistent with those of ES model space

spectra than with FL model space spectra. About half of the misclassified realisations predicted

using more than 2 rays in the summation were classed as GB, indicating that their SSR was

comparable to that of spectra observed from gas-bearing animals. The MPC was shown to be quite

sensitive to signal variability in the FL class, and was subject to ambiguity problems when faced

with spectra that did not correlate well with those contained in the FL model space. Ambiguity in

both null-spacing and SSR resulted in poor performance with these variable signals.

Table 3-5 MPC results (% classified as each scatterer type, n=50) with high-variability signals generated

using the multiple-ray summation model (EQ 3.2) with the number of rays N ranging from 2 to 6.

N=2 N=3 N=4 N=5 N=6 average

%correct: 56% 58% 58% 64% 72% 62%

% classed as GB: 0% 30% 20% 24% 20% 19%

% classed as ES: 44% 12% 22% 12% 8% 19%

The sensitivity of the MPC to variability in the echo spectra may explain its inconsistent

performance with the 1993 cruise data. To further improve upon the performance of the MPC,

more sophisticated theoretical model based classification techniques that are better able to contend

with signature variability have been developed (Chapter 4). These more advanced classifiers,

collectively referred to as the Covariance Mean Variance Classifiers (CMVC), were designed to

account for a wide range of echo spectra variability by incorporating into the model spaces the full



breadth of signals predicted by the theoretical models for each scattering class. Incorporating the

variability alone will not necessarily improve classification success, since broadening the possible

signatures for each class will result in ambiguity (overlap) between the model spaces of different

classes. Successful classification then depends upon the ability of the classifier to resolve these

ambiguities. To ensure more robust classification in the face of between-class overlap in both the

observed spectra and in the model spaces, the CMVC were also designed to account for this

ambiguity as part of the classification process. In addition, these more sophisticated classifiers are

able to easily incorporate a priori information to constrain the inverse. With the CMVC, the

classification choices themselves can be limited by eliminating certain answers or assigning

probabilities to them based on available a priori information. A priori knowledge may also be

employed to constrain the model spaces themselves based on a validity measure, which indicates

the representativity of each member of the model spaces relative to data from known classes.

Incorporating these capabilities into a theoretical model based classifier has the potential to

significantly improve classification success over that obtained with the MPC.



CHAPTER 4

THEORETICAL MODEL BASED CLASSIFICATION:

COVARIANCE MEAN VARIANCE CLASSIFIERS (CMVC)

Model based Covariance Mean Variance Classification (CMVC) techniques:

Algorithm development and application to the acoustic classification of zooplankton

Linda V. Martin Traykovski, Timothy K. Stanton, Peter H. Wiebe, and James F. Lynch.

ABSTRACT

For inversion problems where the theoretical or empirical basis from which to construct a

relationship between observed data and model parameters is well-characterised, a promising

approach to the classification problem is the application of techniques that can capitalise on the

predictive power of class-specific models. For the zooplankton classification problem, there exist

reasonably well-developed theoretical scattering models for three scattering classes (hard elastic-

shelled, e.g. pteropods; fluid-like, e.g. euphausiids; gas-bearing, e.g. siphonophores), providing a

sound basis for a model based classification approach. The model based Covariance Mean

Variance Classification (CMVC) techniques rely on comparisons of observed echo spectra to

theoretical-model-generated model spaces to classify broadband echoes from zooplankton into

scattering classes based on similarities in covariance, mean, and variance, while accounting for

ambiguity between model spaces as well as model validity (representativity). Three different

classification algorithms have been developed based on the CMVC techniques. The Integrated

Score Classifier (ISC) and the Pairwise Score Classifier (PSC) have some flexibility in terms of

incorporating ambiguity and validity weightings, whereas the Bayesian Probability Classifier

(BPC) accounts for ambiguity inherently in its expression of conditional probability, while validity

is accounted for via empirically derived probability distributions. These three classification

algorithms are capable of assigning observations to a class either based on class scores or based on

matches to particular model realisations. Classifier performance was evaluated with several

hundred echoes collected in a ship-board tank from 24 different individuals on two cruises to

Georges Bank and the Gulf of Maine. All three classification algorithms had a very high rate of

success with a high-quality, high SNR subset of the data (n=25 echoes from each class): between



80% and 90% of echoes were correctly classified based on the maximum class score criterion.

With the entire dataset, the PSC yielded the best results overall, with a high percentage of correct

classifications for echoes from gas-bearing and fluid-like animals. Echoes from hard elastic-

shelled animals, which were not well classified by the maximum score PSC, were better classified

by the maximum score TYPE I BPC. Best match PSC classification results (based on assigning an

observation to the class containing the best match model realisation) were better than those based

on the maximum score criterion, with an overall success rate of close to 85%. Inversions for

animal size based on best match model realisation were promising; further work is necessary to

quantify the other parameter values so that size may be determined more robustly. Overall, the

three CMVC-based classification algorithms were able to successfully invert a high percentage of

experimentally collected echoes from individual zooplankton for scattering class, particularly for

the highest quality subset of data. The CMVC technique also shows promise in inverting for

specific zooplankter characteristics, such as animal size, within a scattering class. Such accurate

acoustic classification of zooplankton species is essential if reliable estimates of zooplankton

biomass are to be made from acoustic backscatter measurements of the water column.
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Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA 02543. Correspondence to Martin Traykovski
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List of Symbols

a radius of sphere or cylinder

a average radius

a w within-class representativity weighting factor

abc between-class representativity weighting factor

bj scattering amplitude of local facet that is broadside to incident acoustic wave

b(f) modal series coefficient for homogeneous fluid sphere

Ptit, tilt angle of tangent to axis a particular point on the axis

pt  attenuation coefficient of Lamb wave on an elastic shelled sphere

C Covariance Mean Variance (CMV) metric matrix

c sound speed

c, sound speed of Lamb wave

D observed data matrix

11 phase shift due to partial circumnavigation (i.e. path between +±O points) of Lamb waves

,j distance between the point of scatter and the zero phase reference plane

f(P) empirically constructed probability mass function (PMF) for class p

fbs scattering amplitude in the backscattering direction

F 1  factor ranging from 0 to 1 to account for loss of Lamb wave due to discontinuity in shell

Fspec factor ranging from 0 to 1 to account relative contribution of specular reflection

g density contrast p2/p1

y,, y9 material property parameters in DWBA formulation: y, = (K 2 - K1)/K 1, 'p = (P2 - PO/P2

y phase term to account for attenuation of Lamb wave due randomness of shell irregularities

G, coupling coefficient for combination of landing and launching of Lamb waves on the shell



h sound speed contrast C2 /C 1

hij height assigned to jth model realisation for each observation i in V

i /-i unless used as a summation index or subscript to k

J1  Bessel function of the first kind of order 1

K covariance matrix between data and model space (= DTM)

k acoustic wavenumber (= 2t/,)

iK compressibility (= 1/(pc2 ))

ki wavenumber vector of incident field

k acoustic wavelength

M(P  full model space matrix for class p

M(")  reduced model space matrix for class p

pa, "P  a priori probability for class p

o phase shift of Lamb wave heuristically added for non-ideal body

p mass density

r s  scattering distance, i.e. distance between transducer and animal

rc calibration distance, i.e. distance between transmit and receive transducers

rpos position vector of axis of deformed cylinder

9t plane wave/plane interface reflection coefficient ( = (gh - 1)/(gh + 1) )

S,sc Integrated Score Classifier (ISC) score matrix

SPSC Pairwise Score Classifier (PSC) score matrix

SBPC Bayesian Probability Classifier (BPC) score matrix

a standard deviation of effective radius (relative to mean radius) of rough sphere



t CMV threshold

tR redundancy threshold

t, probability mass function (PMF) threshold

TS target strength (= 2 0log!fbsI)

01 launch/land angle for Lamb wave

U variance similarity matrix

V(P) validation set (matrix) of observations of echo spectra known to be from class p

wA integrated ambiguity weighting function for class p

wAqP pairwise ambiguity weighting function

w* redundancy weighting function for class p

*V integrated validity weighting function for class p

*V" pairwise validity weighting function

x mean similarity matrix

1,2 subscripts indicating medium "1" (surrounding fluid) and medium "2" (body medium)



4.1 Introduction

The use of high-frequency acoustics to make volume backscatter measurements of the water

column has made it possible to do rapid, high-resolution, broad-scale synoptic surveys of

zooplankton abundance over the spatial and temporal scales important for populations of

macrozooplankton. Attempts to use volume backscatter measurements of the ocean as indicators

of zooplankton type, size and biomass rely on the accurate acoustic characterisation of various

species of zooplankton. Traditional acoustic biomass estimation methods have employed single-

frequency acoustic measures in conjunction with either theoretical models (e.g. Greenlaw 1979) or

empirical regression relationships between the acoustic backscatter data and the biomass collected

in simultaneous net samples (e.g. Flagg and Smith 1989a, 1989b). Biomass estimates based on

simple regression curves or on single-frequency echo energy measurements may be subject to

large errors, since oceanic zooplankton populations often consist of multiple-species assemblages

of different sized organisms with drastically different acoustic scattering properties. For example,

Wiebe et al. (1996) found that although volume scattering at 420 kHz was 4-7 times higher at two

stratified sites versus a mixed site on Georges Bank, MOCNESS-collected biovolumes at these

sites were not significantly different. This may be explained by the fact that the echo energy

scattered per unit biomass varies significantly across species, with the relative echo energy per unit

of biomass measured from animals ranging from elastic-shelled gastropods to fluid-like salps

varying by a factor of -19,000 to 1 (Stanton et al. 1994a). This huge species-dependent variability

has important implications for the interpretation of acoustic survey data; equating larger acoustic

returns to the presence of more or larger animals (thereby concluding that the higher the echo

energy, the greater the biomass in the insonified region) could lead to gross errors in zooplankton

biomass estimates by several orders of magnitude.

Much effort has been put toward characterising the acoustic target strength of zooplankton for the

purposes of species identification, animal size classification, abundance estimation and acoustic

signal separation. The echo integration method for acoustic biomass estimation, which measures

the acoustic backscatter from a volume of water which may contain multiple scatterers, relies on

accurate knowledge of the species of scatterers in the insonified volume and their respective

scattering characteristics. Some attempts have been made to bridge the gap between acoustic

backscatter measurements of the water column and the animal biomass present, while accounting

for the vast species differences in scattering strength per unit biomass. Stanton et al. (1987) used

existing theoretical and empirical scattering models for different classes of zooplankton in



combination with the species composition in net tows to predict the expected acoustic backscatter

over a transect in the Gulf Stream, and compared this prediction to the measured acoustic

backscatter. Due to net avoidance and inadequate scattering models, the predictions were only

accurate to within an order of magnitude of the measured values, with discrepancies of up to 30

dB. Wiebe et al. (1996) performed a similar analysis on data from Georges Bank using more

recently developed theoretical scattering models, and found reasonable agreement between

observed and predicted values, to within about 4 dB. These studies have demonstrated that a solid

understanding of the dependence of zooplankton target strength on animal size, shape, material

properties and behaviour is necessary to convert integrated backscattered energy to numerical

densities and apportion these densities to individual species of zooplankton, thereby obtaining an

estimate of biomass in the water column.

The Forward Problem

The solution to the forward problem involves predicting the properties of the acoustic return from

a scatterer based on knowledge of the physical and geometric properties of the scatterer as well as

the specifications of the sonar system used to insonify it. Most of the progress in zooplankton

bioacoustics has been made in this area, via the development of both theoretical and empirical

models which describe the scattering from these animals in terms of their morphology and

material properties. Various theoretical models have been developed to predict acoustic scattering

from zooplankton based on animal morphology (Anderson 1950; Greenlaw 1977,1979; Johnson

1977; Love 1977; Penrose and Kaye 1979; Stanton 1988a,b 1989a,b 1990a,b; Chu et al. 1993;

Stanton et al. 1993a,b; 1994a). To develop and corroborate scattering models, single-frequency

target strength measurements have been made of zooplankton, both experimentally constrained

(e.g. Greenlaw 1977; Kristensen and Dalen 1986; Wiebe et al. 1990; Foote et al. 1990; Stanton et

al. (1993b, 1994a; Demer and Martin 1995) and in situ (e.g. Hewitt and Demer 1991, 1996). These

measurements were taken at a single frequency, or a small number of discrete frequencies, and

although they provide information about the scattering strength of the organisms, it is not possible

to quantify the frequency dependence of the scattering over a continuous range of frequencies with

these types of measurements. Recently, Chu et al. (1992) were able to insonify the decapod shrimp

(Palaemonetes vulgaris) with a broad spectrum of frequencies simultaneously using a broadband

chirp sonar. Following this work, Stanton et al. (1993b; 1994a,b; 1996) have been making target

strength measurements of single organisms over a broad range of frequencies simultaneously by

insonifying tethered zooplankton with broadband chirps. Comparison of the broadband echoes



received from these animals to theoretical scattering models (Figure 4-1) has resulted in a division

of the insonified zooplankton into 3 acoustic types (Stanton et al. 1994a; Martin et al. 1996;

Stanton et al. in press b): (i) ES hard elastic-shelled (e.g. pteropods); (ii) FL fluid-like (e.g.

euphausiids); (iii) GB gas-bearing (e.g. siphonophores). Several representatives from each of the

three scattering classes have been insonified in this manner, demonstrating that the frequency

response is characteristic of the scatterer class. As a result, it should be possible to invert acoustic

backscatter data for the class of scatterer.

Elastic-Shelled (ES)

Limacina
retroversa

e.g. pteropods

400 500 600 700

Fluid-Like (FL)

Meganyctiphanes

norvegica

euphausiids

400 500 600 700
Frequency (kHz)

-50

-60

-70

-80

-90

-100

Gas-Bearing (GB)

Agalma
okeni

siphonophores

* .

400 500 600 700

Figure 4-1 Representative zooplankton from the three scattering classes. Echoes collected from broadband

insonifications of animals in each class are plotted (points) together with theoretical models

(solid line) that describe the acoustic scattering from these three classes of animals under certain

conditions. Details of these models are included in Stanton et al. (1996).
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investigated for several applications within the discipline of acoustical oceanography, and success

has been achieved with geoacoustic bottom inverses (e.g. Lynch et al. 1991; Rajan et al. 1987),

acoustic tomographic inverses for measuring mesoscale variability of ocean temperature (e.g.

Munk and Wunsch 1979; Brown 1984; Chiu et al. 1987), and acoustic inverses to measure the

temperature field of turbulence microstructure (Goodman et al. 1992). In bioacoustical

oceanography, some work has been done on identifying fish and fish schools from both single-

frequency and multiple-frequency acoustic returns (e.g. Deuser et al. 1979; Holliday 1980;

Zakharia and Sessarego 1982; Vray et al. 1990; Simmonds et al. 1996). For zooplankton, the size

distribution of an assemblage has been estimated based on volume scattering data from a

multifrequency sonar system using several discrete frequencies (Holliday 1977; Holliday et al.

1989; Pieper et al. 1990). If acoustic sampling of the ocean is broadband, it is possible to perform

an inversion of acoustic returns for scatterer properties (Figure 4-2). If echoes from individual

zooplankton are resolvable, and include a continuous sweep of frequencies (e.g. Stanton et al.

1994a), a classification inversion is possible (e.g. Martin et al. 1996). In this type of inversion, a

spectral decomposition is performed on the echo time series from each individual scatterer,

allowing each zooplankter to be classified according to its frequency-dependent scattering

characteristics.

A classification inversion strives to categorise individual zooplankton into distinct scatterer types

based on the signature information contained in the return spectra of broadband insonifications of

the animals. Inversion schemes can be of two general types, those based on intrinsic features in the

data and those based on an empirical or theoretical forward model of the scattering process. The

first feature based and theoretical model based classification inversion techniques for zooplankton

were developed by Martin et al. (1996). The feature based Empirical Orthogonal Function

Classifier (EOFC) discriminates scatterer types based on differences in the variability in the

echoes, exploiting only the inherent characteristic structure of the acoustic signatures without

relying on theoretical scattering model predictions. The model based Model Parameterisation

Classifier (MPC), which is the fully-damped least squares formulation of the generalised linear

inverse (Aki and Richards 1980), depends on comparison of acoustic signatures with simplifying

parameterisations of the theoretical scattering models for each scatterer type, assigning a given

acoustic return to one of three classes based on its correlation with model realisations representing

each class. The Covariance Mean Variance Classifiers (CMVC) developed in this paper are a set of

more advanced model based techniques which exploit the full complexity of the theoretical models
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Figure 4-2 Approaches to solving the inverse problem for zooplankton. If frequency sampling brackets the

turning point between the Rayleigh and geometric regimes, a non-negative least-squares (NNLS)
inversion can be used to estimate the size distribution of a zooplankton assemblage. If echoes
from individual zooplankton are resolvable and frequency sampling is virtually continuous, a
CLASSIFICATION INVERSION can be performed to categorise individual zooplankton
according to their frequency-dependent scattering characteristics. A priori information may be
obtained via simultaneous net samples and/or VPR (Video Plankton Recorder) samples.

by searching the entire physical model parameter space without employing simplifying

parameterisations. This more sophisticated approach aims to account for the ambiguity between

the model spaces for different scattering classes as well as to quantify the validity of each

theoretical model in predicting acoustic returns from known scatterers.

This paper is organised as follows. The collection and processing methods for the acoustic data

used in classifier evaluation are outlined. The central portion of the paper, which describes the

development of the CMVC, is divided into four main sections. First, the ideology behind the

classification techniques is described, and the CMVC algorithms are given. Second, the details of

the classifiers are presented, drawing on examples using simplified model spaces to elaborate on

the design and mechanics of the algorithms. Next, the physics governing acoustic scattering for



each zooplankton class is reviewed, and the theoretical models which constitute the CMVC model

spaces are outlined. Last, the performance of the CMVC algorithms is evaluated with

experimentally collected data. Following this, the final discussion addresses the strengths and

shortcomings of each classifier, as well as of the CMVC approach itself.

4.2 Data Collection and Processing

The data used in classifier development were collected on two separate cruises to Georges Bank

and the Gulf of Maine: the Oceanus cruise 262 (27 September - 6 October 1993) and the Endeavor

cruise 253 (18 September - 29 September 1994). Organisms were captured in both vertical and

oblique tows with a meter net (335 gm mesh) with a cod end bucket (32 cm diameter by 46 cm

tall), and sorted into large containers for short-term live storage under refrigeration to maintain

seawater temperature. Prior to insonification, a detailed sketch was made of each animal and

measurements were made of animal length, width, size of shell (pteropods) and size of gas

inclusion (siphonophores). After each live animal was insonified, excess water was removed from

the body and it was frozen. Wet weight was measured on land following the cruises. Individual

organisms were tethered with an acoustically transparent monofilament strand and suspended in a

2.44 m diameter by 1.52 m high tank filled with filtered (through 64 gm mesh) seawater on-board

the ship. Acoustic experiments included broadband insonification (center frequency 500 kHz,

-350 kHz - 750 kHz) of each live animal, as well as narrowband insonification at several other

frequencies. Only the 500 kHz broadband data were used in classifier development. Insonifications

were made with a pulse-echo acoustic data acquisition system. The transmit/receive transducer

pair was mounted in an upward-looking transducer bank sitting on the bottom of the experimental

tank, and the tethered animal was positioned at the focal point of the transducer pair,

approximately 50 cm above the transducer bank (see Stanton et al. in press a for a detailed

description of the experimental setup). During the two cruises, 50 individuals representing 15

different species of zooplankton were insonified, and the return echoes from over 36,000 acoustic

transmissions were collected. A subset of these data, including representatives of the numerically

abundant species found in the Northwest Atlantic (the pteropod gastropod Limacina retroversa,

the euphausiid Meganyctiphanes norvegica, and the physonect siphonophores Agalma okeni and

Nanomia cara), was used in classifier development and evaluation (Table 4-1).



Table 4-1 Acoustic data used in the development and evaluation of the CMVC.

scattering class species and number # echoes used

hard elastic-shelled 8 Limacina retroversa (1993) 50 each

(ES) 2 Limacina retroversa (1994) 200 each

fluid-like 1 Meganyctiphanes norvegica (1993) 700
(FL) 2 Meganyctiphanes norvegica (1994) 200/250

gas-bearing 9 Agalma okeni (1993) 50 each
(GB) 1 Agalma okeni (1994) 200

1 Nanomia cara (1994) 200

To obtain the echo spectrum representing the actual acoustic return from the animal, the results of

calibration measurements were combined with the raw received signals. During calibration

(subscript C), the transmit and receive transducers were focused on each other with no target in the

beam, and a calibration signal was transmitted. During the scattering experiments (subscript S), the

transducers were aimed at the animal, and for each received acoustic return the calibrated echo

spectrum was computed as:

Vrec Vxmitc r2 (EQ 4.1)
bs Vrecc Vxmits rc

In (EQ 4.1), fbs is the acoustic backscattering amplitude of the animal, and is a measure of the

efficiency with which an object scatters sound back toward the sound source (fbs is related to obs,

the differential backscattering cross section, by Obs = fbs12). Vrecc and Vxmitc were computed by

taking the absolute value of the FFT of the received and transmitted voltage time series for

calibration, measured at the beginning and again at the end of the experiments each year. Vxmits

was computed as the absolute value of the FFT of the transmitted voltage time series for scattering

measured at the end of each run (every 50 or 200 pings). To compute Vrecs, a fixed rectangular

window was applied to the received voltage time series for each return (to capture only the echo

from the animal) before applying the FFT. The scattering and calibration distances were rs = 51

cm and rc = 60 cm respectively.

The acoustic returns of the zooplankton studied exhibit a very large dynamic range over the

frequency band, and are often characterised by the occurrence of deep nulls at certain frequencies

(where obs is -1/1000 of peak values). The echo spectrum, conventionally represented by TS

(where TS = 2 010ogfbsl) on a logarithmic scale, is a convenient and widely-accepted means of

compressing this huge dynamic range. This representation has the advantage of emphasising the



peak-and-null structure in the acoustic signatures, and the dynamic range compression also

improves the suitability of the signals for numerical classification inversion schemes. The echo

spectrum of each acoustic return was sampled at 241 points between 348.33 kHz and 748.33 kHz

(1993 data), or at 152 points between 348.33 kHz and 600 kHz (1994 data; the reduced bandwidth

of these data is the result of using a different transducer characterised by a non-ideal frequency

response above 600 kHz). It is this sampled version of the echo spectrum that is used as the basis

for classifier development and evaluation.

4.3 The CMVC Approach

A model based classification scheme strives to classify observations into a particular category

based on the correspondence between the observations and theoretical or empirical model

predictions for each category. The model based acoustic classification inversion for zooplankton

described herein classifies the frequency spectrum of an acoustic return resulting from the

broadband insonification of an individual zooplankter (echo spectra) into one of three classes

representing acoustic scattering types as predicted by theoretical models for each class. The

classification result for a single echo spectrum can be based on a global maximum "best match",

which reveals the theoretical model which best predicts the observation. The observed echo

spectrum is thus assigned to the class predicted by the best match theoretical model. Sub-optimal

matches (local maxima) can also be taken into account, and a certainty score or probability for

each class may be computed based on a subset of these matches. In this case, the observed echo

spectrum may be assigned to the class with the highest score or probability. Alternatively, the

inversion may consist of the certainty or probability that the observed echo spectrum belongs to

each class, based on the relative class scores or probabilities themselves. If several echo spectra are

observed for a single animal, these class scores/probabilities may be averaged over the

observations.

All the classification techniques developed with the Covariance Mean Variance Classification

(CMVC) approach incorporate three basic components: a model space for each class, a means by

which to account for the redundancy, ambiguity, and validity of these model spaces, and a CMV

metric with which to measure correspondence between the observations and the model spaces, as

well as to quantify redundancy, ambiguity, and validity (Figure 4-3).
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Figure 4-3 Diagram of the CMVC approach. Model spaces for each class p are constructed based on the

theoretical models, and redundancy is eliminated by applying the redundancy weighting function

*WR
( ) . Ambiguity and validity are accounted for via ambiguity and validity weighting functions,

A 
W ' and Wiiv' in the ISC (Integrated Score Classifier), (A'qP) and Wv(qp) in the PSC (Pairwise

Score Classifier), or the probability mass function f(P) and the a priori probabilities pa( ) in the

BPC (Bayesian Probability Classifier). The CMV metric for classification is given in (EQ 4.2).

First, the theoretical scattering models are used to construct a model space for each class,

consisting of model realisations which represent predictions of the theoretical models for

particular parameter values spanning the entire parameter space. A model space may contain

redundancy if there does not exist a one-to-one mapping between parameter values and predicted

model realisations, for example, if different combinations of parameter values predict similar or

virtually identical model realisations. Ambiguity between model spaces can arise if the theoretical

models representing different scattering classes are non-unique over any part of the parameter



space, for example, if the theoretical model for a particular class predicts model realisations which

are similar or identical to model realisations predicted by the theoretical model for another class.

The validity of theoretical models in predicting known data can vary considerably; observed echo

spectra may resemble some model realisations frequently, whereas other model realisations are

scarcely or never observed in real data.

Elimination of redundant realisations within the model spaces (through the application of the

redundancy weighting function WR ) can increase classifier efficiency; this is particularly beneficial

in cases where significant size reduction of model spaces can be achieved (drastically increasing

computational efficiency) with minimal resolution cost. More importantly, to maximise the

effectiveness of the classifier, overlap between model spaces must be accounted for by quantifying

ambiguity (via the ambiguity weighting functions A ) and incorporating it into the classification

scheme. In addition, by applying the validity weighting functions W,, rewards for high within-

class validity for a model space can be incorporated into the classification by quantifying the

representativity of a model space in predicting data known to be from that class; penalties may also

be incurred for good representativity of data from outside that class. Finally, the CMV metric (C)

quantifies the correspondence between observed echo spectra (D) and model realisations (M)

based on their covariance (K, which compares their spectral structure), weighted by the similarity

of mean echo levels (x) and the variance similarity (U), so that for class p:

C( ) = CMV(M ( p ), D) = K (P ) X (P ) U (P )  (EQ 4.2)

Note that in (EQ 4.2), C = DM'(P) X" ' U, since K'" = D M(p) is the covariance (0 < K(~' < 1,

see Papoulis 1991) between the observed data matrix D and the model space M(P) (each column of

D contains a mean-subtracted, energy-normalised observed echo spectrum, whereas each column

of M(P) contains a mean-subtracted, energy-normalised model realisation for class p); X(P) and U(P)

are the mean and variance similarity matrices (o 0 X P', uI, ' 1, where X'y = 1 indicates that the ith

observation and the jth model realisation have identical mean echo levels, and u, ' = 1 indicates

that the ith observation and the jth model realisation have the same variance); np is the number of

points in each echo spectrum; "-" indicates element-wise multiplication of matrices.

Three distinct classification techniques (Figure 4-3) have been developed with the CMVC

approach; the Integrated Score Classifier (ISC), the Pairwise Score Classifier (PSC) and the

Bayesian Probability Classifier (BPC). Although they are based on the same CMV metric (EQ 4.2),

the means by which ambiguity and validity are accounted for differs between classifiers. Details of



the calculation of W?', wA', W , ' ), f(), and pP'"' are given in Section 4.4. The general

algorithms for these three techniques are presented here.

4.3.1 Integrated Score Classifier (ISC)

For each observed echo spectrum, the Integrated Score Classifier computes a score for each class

based on the CMV metric weighted by the integrated ambiguity Wi ' ) and validity W') weightings

for that class. The score matrix S, for each class p is computed as:

sC(p) sum(C p)
. V4Ap . V p)

):SC = (EQ 4.3)

sumk
( k ) .WA k). (k)

where sum indicates element-wise summation. For each observed echo spectrum i, this classifier

yields a relative score (0o S~ ') 1) for each class k, which gives a measure of the certainty that the

observation belongs to that class. For all data, the matrix of scores for class 1 is computed as the

element-wise ratio of the sum of the elements of C(") weighted by the integrated ambiguity and

validity weightings for class 1 model realisations (r ', w*')) to the sum over all N classes (k =

1..N) of the element-wise sum of the weighted C("). The WA() and W*' for a given class are not

other-class-specific, i.e. they are integrated measures of these properties over all model realisations

in all other classes.

4.3.2 Pairwise Score Classifier (PSC)

The Pairwise Score Classifier computes a score for each class based on a weighted CMV metric, as

does the ISC. However, in the PSC, the CP"' are weighted by the pairwise ambiguity and validity

weightings. This classifier is based on ideas from classical signal detection theory, where a "hit" is

defined as a target detection when the target is present, whereas a "miss" occurs if the target is

present but not detected. Extending this logic to a classification problem with N possible classes,

this classifier computes both "hit" scores and "miss" scores for the observed echo spectra, based

on an assumption of the a priori class membership. For observed echo spectra assumed to be in

class m, the overall score matrix S"( ' for class p is computed as the element-wise ratio of the hit
PSC

score matrix for that class to the element-wise sum of the hit and miss score matrices, as follows:

S(p, m) S
(p)PSC = S( (EQ 4.4)

I S(mk)
k= 1



In general, S"' = mean(C"' A
qP"' Wv) is a matrix of mean scores for class p for all observations

in class q; the numerator on the right-hand side of (EQ 4.4) is computed by setting p = m and q = p,

whereas the denominator is computed by setting p = m and q = k. The PSC has better resolution

than the ISC as a result of incorporating the more specific pairwise weighting functions (* ,P),

V) instead of the integrated weighting functions employed in the ISC. The particular pairwise

weighting functions employed by the PSC are determined based on an assumption regarding the

class membership of an observation. A priori information (e.g. from net tows) may be used to

guide this assumption; alternatively, the classification may be run N times assuming a different a

priori class membership each time, so that the results of each classification run can be taken into

consideration.

4.3.3 Bayesian Probability Classifier (BPC)

An alternative approach to model based classification involves determining the probability that an

observation belongs to a given class based on its correspondence with the model space for that

class and an understanding of the underlying probability distribution of observations in that class.

Given an observed echo spectrum di, the probability that di was received from an animal that

belongs to scattering class p can be computed using Bayes rule (see Papoulis 1991):

(p) (P)
Pa f (dil di e p)

P(di e p di) N (k)(EQ 4.5)

, Pak)f (di di e k)
k= 1

In (EQ 4.5), pa(P) is the a priori probability of the occurrence of an observation from class p, and fP)

is the probability mass function (PMF) for class p so that f''(d, Id, e p) is the probability associated

with the occurrence of di given that it is in class p. In general, f('P may be the true probability

distribution for each class, or it may be estimated, either from a probability distribution predicted

by theoretical models for each class, or empirically from data. To determine the score for class p

for an observed echo spectrum di, first the probabilities associated with the class p model

realisations (fP)) are weighted by the CMV metrics associated with the comparison of the

observation (di) and those model realisations (cl,). The score is then computed as the ratio of the

sum of these weighted probabilities for class p to the sum over all N classes:

p sum(C ) .f (p) (p)

S(p) = s Pa (EQ 4.6)
Ssum(C(k) f(k) (k))

k=l



so that each row of the score matrix SP'c contains N scores (one for each class) for a given

observation. For the BPC, these scores are proportional to the probability that an observation

belongs to a class, and are based on the underlying probability mass functions describing the

model spaces for each class as well as the a priori probability associated with each class.

All three classification techniques (ISC, PSC, BPC) can be implemented in several configurations.

For example, the resolution of each of these classifiers may be adjusted by choosing the range of

values of the CMV metric to include in the classification. If the desired classification result is the

"best match", then only the global maximum C, is included for each observation di. Alternatively,

including all C,, in the classification incorporates information about the correspondence between

the observation and all model realisations representing all classes into the classification result.

Computational considerations may render it impractical to include all this information in the

classification decision, and in fact, better results are often achievable by considering some subset

of the CMV correspondence values which includes local maxima (i.e. t < C' < max(Cf')); the

threshold t may be adjusted according to the range appropriate for the classification problem. The

CMV classification techniques are also flexible in terms of accounting for ambiguity and validity;

the ISC and PSC may be implemented with or without WA and/or W, and the relative importance

of these weightings may be adjusted depending upon the specific classification problem. In the

BPC, if the probability distribution is empirically determined, the structure of f can be configured

to account only for within-class validity, or to include outside-class representativity as well.

4.4 CMVC Mechanics with Simplified Model Spaces

To illustrate the mechanics of the CMVC techniques, the computational details involved in the

determination of the redundancy weighting functions (w*P'), the ambiguity weighting functions

(MIA, wA), the validity weighting functions (w? )', ? and the PMFs (p'P) are elaborated by

employing a set of three highly-simplified model spaces for the zooplankton classification

problem. These first-order model spaces consist of a small number of alternative model

realisations (nm = 100) for each of the three classes, thereby reducing the dimensionality of the

problem for illustrative purposes. The simplified model realisations making up the first-order

model spaces were derived from parameterisations of the theoretical models describing each

scattering class. By choosing a range of simplifying parameters that encompassed some of the

variability present in the echoes from scatterers in each class, a manageable set of reasonably



simple model spaces was constructed (Figure 4-4). The model parameterisation technique is

similar to that used for the Model Parameterisation Classifier (MPC), and is described in Martin et

al. 1996. The resulting simplified model spaces incorporate parameterisations of the subset of

theoretical model predictions plotted in Figure 4-1; details of these models are given in Stanton et

al. (1996; in press b). Although these simple model spaces do not encompass the complete range

of variability in echo spectra predicted by the full theoretical model description of each class, they

provide a good first-order representation of the more complex complete model spaces.

E space F space G space
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Figure 4-4 Example model realisations from the three first-order model spaces (E, F and G, nm = 100).
These simplified model realisations were derived from parameterisations of the theoretical
scattering models describing the three classes of zooplankton, and are used to illustrate the
computational details of the determination of W?*P', W? , W , A

P , *W' , and f'(P

4.4.1 Redundancy Weighting Functions

To maximise classifier efficiency, it is desirable to eliminate the redundancy within the model

spaces for each class p. This may be accomplished by computing the redundancy weighting
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function WR' for the full model space M', and applying it to obtain a reduced model space M'P"

for that class:

M = M) WP) (EQ 4.7)

The redundancy weighting function acts as a mask filter, where the jth column of Wp(jU) contains

either Os for CP'(i, j) 2 tR, or is otherwise (Figure 4-5). To obtain M( ), the zero-valued realisations

of M' are eliminated so that the dimensionality of M( ) is smaller than that of MFP). The

redundancy threshold tR may be adjusted to optimise the tradeoff between resolution and numerical

tractability for the specific classification problem. C ' = CMV(M P'), M') is the matrix of CMV

metrics for the model space compared to itself, and is computed as described in (EQ 4.2).

CMV metric CR Redundancy weighting function WR
1 1

20 0.8

co 40 0.6

60 0.4

0
E 80 0.2

100 0 ,
20 40 60 80 100 20 40 60 80 100

model realisation # model realisation #

Figure 4-5 Matrix of CMV metrics C, and the redundancy weighting function WR for the simplified model
space F (a first-order representation of the model space for the FL scattering class). In this
simplified model space, MF contains 100 realisations. Application of wR with t, = 0.95 reduces

the dimensionality so that M contains only 46 realisations. np is the number of frequency samples
in each model realisation.

4.4.2 Ambiguity Weighting Functions

For the CMV classifiers, the degree of overlap between the model spaces of different classes is

determined by the extent to which the theoretical models representing different scattering classes

are non-unique over any part of the parameter space. If different theoretical models predict similar

or identical model realisations for the different classes, the classification result will be ambiguous

unless the ambiguity in the model spaces can be accounted for by weighting the individual

realisations according to their uniqueness. By implementing such an ambiguity weighting

function, similarity of an observed echo spectrum with realisations in class p that are ambiguous
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between classes will not contribute to N"' as much as similarity with unambiguous class p
realisations (e.g. see (EQ 4.3) for the ISC). The ambiguity weighting functions are computed as:

(P = WA p
= mean(W )) (EQ 4.8)

WA = n WA (EQ 4.9)
q p

where WA " = 1 - c? (Figure 4-6) with CP = CMV(M ) , M(), computed as detailed in (EQ 4.2).

The pairwise ambiguity weighting functions " represent the average degree of ambiguity
between each model realisation in the model space for class p and all the class q model space
realisations (mean indicates a row-wise average); 0 -w I with values near 1 indicating high
uniqueness (low ambiguity). The integrated ambiguity weighting function for class p WAp' is
computed as the element-wise product of the pairwise weightings and represents the net ambiguity
for each realisation in class p relative to all other classes; for example, applying (EQ 4.9) for p = 1
yields w'" w'. WA''

W (12 ) (E vs. F) W('3) (E vs. G) W (23) (F vs. G)

10 10 10

10 20 30 40 5 10 15 20 25 5 10 15 20 25
F realisation # G realisation # G realisation #

Figure 4-6 WAPq for the three first-order model spaces (E, F and G), from which the pairwise ambiguity
functions W are computed (EQ 4.8) and the integrated ambiguity functions WI~' are derived
(EQ 4.9). Ambiguity between class 2 (F) realisations and class 3 (G) realisations is highest,
particularly for class 2 realisation numbers 25 through 46 (as reflected by low values of W 3 ).

4.4.3 Validity Weighting Functions

The effectiveness of a model based classifier depends to a great extent upon the accuracy of the
model spaces in representing observations from each class. For the zooplankton classification
problem, if the theoretical model predictions that make up the model space for a particular class do
not correspond well with echo spectra received from animals in that scattering class, the model
space will have low validity. For example, observed echo spectra from class p may resemble some
model realisations in the model space for class p, whereas other model realisations in the class p

102



model space are scarcely or never observed in class p data. For this reason, it is desirable to credit

highly representative realisations with a high validity weighting. Alternatively, observed echo

spectra from class q may resemble some model realisations in the model space for class p, in which

case a penalty may be assigned to those class p realisations for their high representativity of class q

data. The validity weighting functions quantify the validity of each model realisation by

considering both within-class and between-class representativity, and are computed as:

W = W
p q ) 

= mean(W 
))  (EQ 4.10)

W(P)= LwcWV bcp c 1 V Wp (EQ 4.11)

(N - C=qp

where wVq = C " (Figure 4-7), with CV" = CMV(M", V(q)) (V4) is a validation set of observations

of known echo spectra from class q); C(?q is computed as detailed in (EQ 4.2). The pairwise validity

weighting functions w:P" represent the average validity between each model realisation in the

model space for class p in terms of its representativity of all the observed data in the validation set

for class q, and are dependent on both the number of representative realisations and the degree to

which they are representative; 0oV< w 1 with values near 1 indicating high validity. The

integrated validity weighting function for class p W*'* is computed as an element-wise weighted

sum of the pairwise weightings and represents the net validity for each realisation in class p. ac

and abc are chosen to reflect the importance of within-class representativity relative to between-

class representativity for the particular classification problem.

W(11) (E vs. V ( 1 )  W(12) (E vs. V (2 ))  W(13) (E vs. V (3))

S10 C 10 z10

20 20 20
0 e 05

.o30 .30 .30

S40 Z 40 40

50 50 50 0
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

E realisation # E realisation # E realisation #

Figure 4-7 WV" for the simplified model space E (a first-order representation of the model space for the ES
scattering class), from which the pairwise validity functions WV) are computed (EQ 4.10) and the
integrated validity function w '( is derived (EQ 4.11). Within-class representativity of the
validation set is higher than between-class representativity for the E model space. Some E class
model realisations are more representative of V'' (the validation set for class 1 (E)) than others.
For these calculations, the validation sets each contain 50 observed echo spectra: V'' was
collected from a single pteropod (Limacina retroversa), V(2) from a single euphausiid
(Meganyctiphanes norvegica), and V3) from a single siphonophore (Agalma okeni).
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4.4.4 Probability Mass Functions

For the zooplankton classification problem, the underlying probability distribution of observations

in a given class can be modelled empirically, whereas the a priori probabilities Pa must be

determined using a priori information (Figure 4-2). The probability mass function (PMF) f"P) for

class p is constructed based on a validation set of observations V '" of known echo spectra, in much

the same way as with the computation of the validity weighting functions. This validation set may

then be compared to class p model realisations to construct a "class-support" PMF (which

accounts only for within-class validity), or to the model realisations in all N model spaces to build

a "full-support" PMF (which also considers between-class representativity). An empirical PMF is

simply a histogram, for which the x-axis bins (support) are the model realisations; the histogram

f'P' is constructed as follows:

n
V

fj(P) = hij (EQ 4.12)

where f,'(P is the value of the PMF for the jth model realisation, computed as the sum of the hij over

all nv observations in Vy" . For each observation i in v'"', the height assigned to the jth model

realisation hij may be computed in one of three ways:

TYPE I: hi = 1 for model realisationj for which CP ) = max(C('), hij = 0 otherwise.

TYPE II: h, = C7' for all model realisations j for which tf C( ) < max(C'p), hj = 0 for

all other realisations.

TYPE III: h,, = C(,)/X C(, where nj is the number of model realisations for which

tf Cf) < max(CIyP), hj = 0 for all other realisations.

Here C: ) = CMV(M, V(P)) is computed as shown in (EQ 4.2), with M = M'P) for the class-support

PMF; max(C 'p) indicates the maximum value in row i of C P . In constructing a TYPE I PMF,

only the best match (global maximum) model realisation for each observation is considered,

whereas for TYPE II and TYPE III, a subset of the CMV correspondence values which includes

local maxima are considered (Figure 4-8), and the threshold tf may be adjusted according to the

appropriate range for the particular classification problem. In the TYPE II PMF, the hij are

proportional to the degree of similarity (as measured by the CMV metric) between realisationj and
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observation i, whereas for TYPE III, the hij are normalised so that only the relative CMV of a

particular observation to all the model realisations is considered; differences in CMV across

observations are not accounted for.

TYPE I TYPE II TYPE III
15 151 I 15 1

0 0 -
" "
_--

-  0 '

5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

G realisation # G realisation # G realisation #

Figure 4-8 Class-support TYPE I, TYPE II and TYPE III PMFs f"', computed using (EQ 4.12), for the

simplified model space G (a first-order representation of the model space for the GB scattering

class). For TYPE II and TYPE III f, t, = 0.5max(C"P). The validation set V 3) contains 50

observed echo spectra from a single siphonophore (Agalma okeni).

4.5 Zooplankton Scattering Physics

The CMVC are a set of advanced model based classification techniques designed to accommodate

a wide range of potential model spaces, ranging from the simplifying parameterisations employed

to illustrate computational mechanics in the last section, to the most sophisticated theoretical

model representations for the acoustic backscattering of zooplankton available to date. To best

evaluate the performance of the CMVC, it is desirable to construct model spaces which fully

exploit the current knowledge of zooplankton scattering physics gained through the forward

modelling of acoustic backscattering from several zooplankton types. Using empirical data

collected from individual live zooplankton in combination with the basic physics governing the

scattering from objects with simplified geometries, a number of theoretical model formulations

have been developed to predict echoes from three classes of zooplankton. These sophisticated

models, which provide the basis for the CMVC model spaces, are outlined here together with a

review of the basic physics governing the scattering from these zooplankton classes.

In the following expressions for TS as a function of frequency for all three scattering classes, a is

the equivalent spherical or cylindrical radius of the animal in m, k is the acoustic wavenumber

k = 2t7f/c,f is the acoustic frequency in Hz, c is the sound speed in m/s (i.e. X = c/f), and 91 is the

reflection coefficient 91 = (gh - 1)/(gh + 1) where g = p2/p is the density contrast of the

organism (subscript 2) relative to water (subscript 1), and h = c2/C 1 is its sound speed contrast.
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For spherical hard elastic-shelled (ES) organisms (e.g. pteropods), a ray-based model which

includes a summation of contributions from a direct return and a circumferential wave can be used

to describe the scattering (Stanton et al. in press b). Although the circumferential wave

contribution is generally represented by an infinite summation of terms representing multiple

circumnavigations around the shell, for these organisms the series is truncated to include only the

first partial circumnavigation, which is dominant:

TSES 220log Fs 9lei2ka - F a Ge'le-2(n - 
0l I) . "lle-(1/2)y2G2  (EQ 4.13)2  2

The first term in (EQ 4.13) represents the direct return (echo from the front interface of the body),

assuming the shell can be modelled as a fluid sphere, with Fspec indicating the relative contribution

of this specular reflection. The second term represents the scattering from a circumferential,

antisymmetric Lamb wave 1 travelling at subsonic speeds along the surface of the shell (Marston

1988; Kargl and Marston 1989; Marston et al. 1990), with F, indicating the relative contribution

of this return. In this representation, the zeroth-order Lamb (flexural) wave dominates the

scattering (Stanton et al. in press a), and G, = -8r1cp(c/c), OI = -7t/2, 01 = Re{ asin(c/ct)},

7l- = 2ka[(c/c)(nr - 0) - cos0] - 7t/2, and y = 2k((c/c)(it - 01) - cos0 1) (where cI is the speed

of the Lamb wave, c/c = (8ka + 0.5)/(k), and P, = 0.002ka). The ray formulation for an

idealised spherical shell has been modified to account for shell roughness (so that a is the average

value of an ensemble of samples from a Gaussian distribution with mean a and standard deviation

o, with a = 0.025a) and discontinuities (Stanton et al. in press b). For example, if the animal is

oriented in such a way that the opercular opening (aperture at top of shell in sketch of Limacina

retroversa (Figure 4-1) through which animal body protrudes) interferes with the propagation of

the flexural wave, the scattering will be dominated by the direct return, and the second term may

be neglected (F, = 0).

Scattering from elongated fluid-like (FL) crustacean zooplankton (euphausiids, shrimp) in the

geometric regime may be approximated by a ray summation formula bj -ei2 k j with each ray

representing the scattering contribution from a different scattering feature of the fluid-like body

(Stanton et al. 1994b, in press b). For each ray contribution, Ej is the displacement of that

scattering feature from a zero-phase reference plane, thereby accounting for the phase shift of each

ray, and the bi are the amplitude coefficients for the rays (e.g. for the ray associated with the front

interface of the animal bj = (1/2)91Jpj) . p 2) where p( 1) and p(2 ) are the local radii of curvature

of the point of scatter in two perpendicular planes (1) and (2)). In many cases, particularly when
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the animal is oriented near broadside relative to the transducer, the scattering from these elongated

fluid-like crustacean zooplankton is well-described by a simpler two-ray summation (e.g. the two-

ray randomly oriented fluid bent cylinder model from Stanton et al. (1993a,b)), which models the

constructive and destructive interference between the ray associated with scattering from the front

interface of the animal and the ray associated with scattering from the back interface. Chu et al.

(1993) and Stanton et al. (1993b) developed a more precise alternative to these ray models for

weakly scattering elongated zooplankton at all angles of orientation using a formulation based on

the distorted wave Born approximation (DWBA) volume integral (Morse and Ingard 1968). If the

fluid-like body has a circular cross-section at every point along its length-wise axis, the DWBA

integral may be reduced to a line integral along this axis (Stanton et al. in press b), yielding an

exact expression for the scattering from an elongated, fluid-like zooplankter as a function of

animal size, shape, material properties, and angle of orientation:

k ,p i2(02,) -.- Jl(2k2aCOS tilt) ,
TSFL = 201og 4 (, -y)e 2()2pos Cstilt pos  (EQ 4.14)

rpos

In (EQ 4.14), J1 is a Bessel function of the first kind of order 1, yp = (p2-P0)/P2,

y, = (K2 - 1C)/1, with compressibility K defined as ci = 1/(P iC?); subscript 1 refers to the

surrounding medium (seawater), subscript 2 refers to the fluid-like medium of the zooplankton

body, so that (y,-Ky,) = (1/gh2)+(1/g)-2. Here, (ki) 2 = 2 = l/h and O<Pit<n. This

formulation accurately predicts the scattering from a deformed fluid-like cylindrical body of

arbitrary shape (i.e. the cylindrical radius can vary along the length-wise axis) for any angle of

orientation relative to the incident acoustic wave.

For gas-bearing (GB) fluid-like plankton (siphonophores) with a single gas inclusion (located at

the top of the stem above the animal body in the sketch of Agalma okeni (Figure 4-1)), the general

scattering properties are described by a spherical gas bubble plus fluid-like tissue model. In the

formulation given in Stanton et al. (in press b), scattering from the gas inclusion is modelled using

the modal series solution for a fluid sphere -j " (2m + 1) -(-1) by, where the b(f) are the modal

series coefficients for a sphere (Anderson 1950). Scattering from the gas bubble may alternatively

be modelled as a single ray contribution from a spherical gas inclusion, in a similar manner to the

model for the direct return from a hard elastic spherical shell (term 1 in (EQ 4.13)). The gas bubble

plus tissue model then becomes:
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N

TSGB = 20log 1 ae -i2ka + b ei 2ke (EQ 4.15)
j=1

The first term in (EQ 4.15) represents the scattering from the gas inclusion (which at high ka is

dominated by the echo from the front interface), assuming the bubble can be modelled as a fluid

sphere, whereas the second term represents the scattering from the fluid-like body as a summation

of the rays due to the major scattering features of the fluid-like tissue. As described for the ray

summation for elongated fluid-like animals, the Ei are the displacements of each scattering feature

from a zero-phase reference plane, and are computed for the gas-bearing animal as

E U = (j- 1) -E + s AE with Aj varying randomly between 0 and 0.1 - j, and s alternating

randomly between +1 and -1. The ray amplitude coefficients bj are difficult to determine for the

siphonophore body, which is composed of many bracts and gastrozooids. Stanton et al. (in press b)

estimated these coefficients based on the echo statistics of the scattering measured from a gas-

bearing zooplankter before and after removal of the gas inclusion, so that the bJ for the tissue may

be expressed in terms of the amplitude of the scattering from the gas inclusion and a ratio Fiss, of

the energy scattered by the tissue relative to the bubble: bj = ( JFtgss/2N)at, where N is the

number of tissue rays. The echo from the gas bubble is believed to dominate the scattering from

siphonophores; however, weaker echoes from the tissue may contribute measurably to the

structure of the echo spectra in some cases.

4.6 CMVC Performance

The performance of the CMVC techniques was evaluated against over one thousand

experimentally collected echoes, using the best theoretical models to date (without simplification)

as a basis for the model spaces. For each class, a model space was constructed from the theoretical

models described in the previous section by varying the values of the model parameters to generate

several hundred model realisations, which represent theoretical scattering predictions spanning the

entire chosen parameter space (Figure 4-9). Only a subset of the parameters were varied for each

model, while the rest were fixed (values as indicated in the figure caption). For the ES model

space, the mean shell radius a, and the relative contributions of the specular Fspec and Lamb wave

F, were varied in (EQ 4.13); for the FL model space, the cylindrical radius a, the orientation angle

Pit and the animal shape (as digitised from video images of several different animals and

expressed by 'pos) were varied in (EQ 4.14); for the GB model space, the bubble radius a, the mean
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displacement for each ray ej, and the relative tissue scattering contribution F,,,,ss were varied in (EQ

4.15). To ensure that the model spaces spanned the full extent of the parameter space, these

parameter values were varied either over or their entire range (e.g. Fspec Fl, Ptlt, Ftss) or over the

range observed in the experimentally measured animals (e.g. a). The resulting full model spaces

contained 600, 700, and 800 model realisations for the ES, FL, and GB model spaces respectively.
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Figure 4-9 Selected examples of model realisations from the three model spaces ES (top row), FL (second

row) and GB (bottom row) as generated by varying the parameters of the theoretical scattering

models. The 600 realisations in the full ES model space M( )' were generated using (EQ 4.13) with

C/Cl = 8, 91 = 0.84, varying Fspec and Fi between 0 and 1, and a between 0.5 and 1 mm.

M:F' is composed of 700 FL realisations, generated using (EQ 4.14) with g = 1.0357 and

h = 1.0279, varying Ptilt between 0 and 180', a between 1 and 3 mm, and using 5 different

shapes (digitised from actual video images of euphausiids). The 800 realisations in the full GB

model space M' were generated using (EQ 4.15) with g = 0.0012, h = 0.22, and N = 6, and

varying Ftiss between 0 and 1, a between 0 and 1.75 mm, and Ej between min(,)/(N - 1) and

max(X)/(N- 1).

Redundancy was eliminated from the full model spaces M ' for each class using (EQ 4.7) with

t, = 0.95. The resulting reduced model spaces contained 237 (ES space, M"1'), 663 (FL space, M(2
1),

and 561 (GB space, M13
1) model realisations, so that a relatively minor sacrifice of within-class

resolution was accompanied by a significant increase in computational efficiency. Ambiguity

weighting functions w"j and W", validity weighting functions ir ' and *", and class-support

probability mass functions f''P, were computed using (EQ 4.8) through (EQ 4.12) for each class. The

validation set V' "P used in the computation of ir', (q, and fP" consisted of half the data for each

class (every other echo from Table 4-1). Classification of the other half of the dataset was then

carried out to evaluate the performance of the ISC (EQ 4.3), the PSC (EQ 4.4), and the BPC (EQ 4.6).
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To assess classifier performance with the best quality data available, a 75-observation sample was
extracted from the 1993 dataset. This subset consists of 25 acoustic returns each from an elastic-
shelled pteropod Limacina retroversa (Animal 93-29), a fluid-like euphausiid Meganyctiphanes

norvegica (Animal 93-33e) and a gas-bearing siphonophore Agalma okeni (Animal 93-18), and
represents the highest signal-to-noise ratio (SNR) data collected. For all three classifiers, ES class
scores (Si' S2;'), S'c' ) were high for the L. retroversa echoes, accompanied by low FL and GBISC ' PSC BPC-

class scores (Figure 4-10). Similarly, GB class scores were consistently high for A. okeni echoes.

ISC PSC BPC S(p )

100

50

0ES FL GB ES FL GB ES FL GB

100

50

ES FL GB ES FL GB ES FL GB

100

050

0ES FL GB ES FL GB ES FL GB
CLASS

Figure 4-10 Classification scores for the Integrated Score Classifier (ISC; left, (p) x 100), Pairwise Score
Classifier (PSC; center, S( , P) ) and Bayesian Probability Classifier (BPC; right, Sc'' ) for a
selected subset of the highest quality data (25 acoustic returns each (y-axis) from an elastic-
shelled pteropod Limacina retroversa, top row, a fluid-like euphausiid Meganyctiphanes
norvegica, middle row, and a gas-bearing siphonophore Agalma okeni, bottom row). Scores S'P'

colour-coded according to the legend (right). ISC and PSC implemented including both
ambiguity and validity weightings (WA, Wv); BPC implemented using a class-support TYPE II
f(P with t1 = 0.5max(C:'). Validation set V included half of the 1550 observations from the
1993 dataset. Classification threshold t was adjusted to include all CMV within the 3 dB-down
range: t = 0.5max(C~p~).

110



On the other hand, FL and GB class scores for the M. norvegica echoes were similar, so that

assigning each echo to the class with the maximum score resulted in a high mis-classification rate

for Animal 93-33e (Table 4-2). For this 75-echo dataset, the ISC correctly classified 80% of these

echoes overall, whereas the PSC and BPC performed better, correctly classifying about 90% of the

echoes. Alternatively, if the classification is made by assigning an observation to the class

containing the best match model realisation (global maximum), the success rate with the M.

norvegica echoes is increased, with the PSC achieving 100% correct classifications.

Table 4-2 Summary of ISC, PSC and BPC results for the high-quality subset of data (25 acoustic returns
each from a pteropod Limacina retroversa (93-29), a euphausiid Meganyctiphanes norvegica
(93-33e), and a siphonophore Agalma okeni (93-18)). Mean class scores (n=25) for each
classifier ( S , S'P'P, Sc) ) are shown, followed by the % correctly classified based on

ISC PSC BPC

assigning each observation to the class with the maximum score. Last 3 columns show %
correctly classified based on assigning each observation to the class containing the best match.

% CORRECT % CORRECT
MEAN CLASS SCORES

(based on max S) (based on max C)

sc psc PSc ISC PSC BPC ISC PSC BPC

ANIMAL n ES FL GB ES FL GB ES FL GB

93-29 25 .79 .09 .12 95 2 3 74 8 18 100% 100% 96% 96% 100% 12%

93-33e 25 .03 .44 .53 5 54 41 2 53 45 40% 64% 76% 68% 100% 84%

93-18 25 .02 .14 .84 2 7 91 1 21 79 100% 100% 100% 96% 100% 32%

Overall 75- 80% 88% 91% 77% 100% 43%

Classifier performance was also assessed with the complete dataset for 1993 and 1994 (non-

validation portion; n=775 for 1993, n= 625 for 1994). These data included echoes from 10

different pteropods L. retroversa, 3 euphausiids M. norvegica, and 11 siphonophores A. okeni (10),

and Nanomia cara (1; another species of physonect (gas-bearing) siphonophore commonly found

in the N.W. Atlantic Ocean). Each of the classifiers was implemented in two different

configurations: for the ISC and PSC, ambiguity and validity weighting functions were either

included or neglected; for the BPC, either TYPE I or TYPE II class-support PMFs were used

(Figure 4-11). A. okeni echoes were correctly classified most often, while the L. retroversa data

was generally poorly classified. The PSC showed the best performance overall, both when

classifying based on the class with the maximum score, as well as based on the class with the best

match model realisation. The PSC performed considerably better when the weighting functions

were included, particularly for the M. norvegica data. Notably, PSC classifications based on the

global maximum best match model realisation were best overall, although for the L. retroversa

data, BPC classification with a TYPE I PMF yielded the most favourable results.
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Figure 4-11 Classification results (% correct) for complete 1993 (top row, n = 200 for L. retroversa; n = 350
for M. norvegica; n = 225 for A. okeni) and 1994 (bottom row, n = 200 for L. retroversa; n = 225
for M. norvegica; n = 200 for A. okeni / N. cara) dataset. Classifications based on assigning
observations to the class with maximum score (max S) are shown at left; those based on
assigning echoes to the class containing the best match model realisation (max C) are shown at
right. ISC and PSC implemented with (+w) and without (-w) Wa and W ; BPC implemented
with both TYPE I (I) and TYPE II (II) class-support f(P'. For 1993 classifications, validation
set V included half of the 1550 1993 observations; for 1994 classifications, V included half of
the 2800 1993 plus 1994 observations. In all cases, t = 0.5max(C ).

In addition to inverting echoes for scattering class, the classifiers were also designed to invert for

scatterer characteristics within a class. This may be accomplished by considering the global

maximum best match model realisation for each echo; since a given model realisation arises from

a theoretical model prediction for a particular combination of parameters, it is possible to invert

each echo for these "best-fit" parameter values. For classification of echoes based on the best

match model realisation, the PSC demonstrated the best performance (Figure 4-11). The high

success rate of the global maximum best match PSC is attributable to its excellent between-class

resolution; however, sufficient within-class resolution is necessary in order to invert for individual

112



scatterer characteristics (as related to theoretical model parameters). To evaluate the within-class

resolution of the PSC, the parameter values associated with the best match model realisation are

compared to known characteristics of the animal (selected examples are shown in Figure 4-12). Of

the model parameters that were varied to create the model realisations for each class, only animal

size was measured for the experimental animals. For all 25 L. retroversa echoes in the high quality

data subset, the inversions predicted the mean shell size reasonably well (a = 0.7 mm as compared

to an experimentally measured average shell size of about 0.75 mm). Interestingly, the predicted F,

varied slightly (around a central value of 0.67) from echo to echo, probably as a result of small

changes in the position of the opercular opening relative to the transducer during insonification

(caused by very slight orientational changes in the animal due to ship motion). For the M.

norvegica echoes, animal size is fairly well-predicted for echoes where the predicted angle of

orientation P,il,, is near broadside (900) (a=1.65 mm as compared to the experimentally measured

radii of about 1.5 mm (dorso-ventral) and 2 mm (lateral)). For these elongated, actively-swimming

animals, the sound wave was often incident at off-broadside angles, changing the apparent size of

the animal (projection of the animal radius onto the acoustic axis) significantly. Since animal size

and angle of orientation for these elongated fluid-like animals are confounded, it will be difficult to

accurately invert for individual animal size without knowing the angle of orientation. For the A.

okeni data, the inversions predicted a smaller bubble size (e.g. a = 0.75 mm) for some echoes and

a larger bubble size for others (e.g. a = 1.25 mm) as compared to the experimentally measured

dimensions of the elongated bubble (about 0.6 mm - 1 mm). In general, the PSC is able to identify

the best match between echoes and model realisations by relying on the CMV metric, and shows

promise in inverting for specific animal characteristics as represented by the theoretical model

parameters.

4.7 Discussion

The CMVC techniques provide a comprehensive framework within which to perform

classification inversions based on theoretical or empirical models for each class. Three different

classification algorithms (ISC, PSC, BPC) have been developed using the CMVC approach, and

these were applied to the classification of broadband acoustic echoes received from several species

of zooplankton with good success. For a given observed echo spectrum, these classifiers provide a

relative weighted measure of similarity to each model realisation in each of the model spaces (C),

as well as a relative score for each class (S). If the classification is based on matches to particular
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Figure 4-12 Selected examples of PSC-inverted best match echo classifications for five observations each of
a pteropod L. retroversa (i = 0.75 mm, top), a euphausiid M. norvegica (a = 1.5 - 2 mm, middle),

and a siphonophore A. okeni (a = 0.6 - 1 mm, bottom), from the high-quality subset of 1993 data.
Observations (points) plotted together with best match model realisations (solid line); best match
scattering class and model realisation number shown at bottom left, parameter inversions given
at bottom right (ES: Fspec/Flla; FL: Ptilt/shape#/a; GB: Ftiss/J/a; a and a in mm, Pilt in

degrees). PSC implemented including both ambiguity and validity weightings (WA, Wv).
Validation set V included half of the 1550 1993 observations. Classification threshold t was
adjusted to include all CMV within the 3 dB-down range: t = 0.5max(C P)).

model realisations, the observation may then be assigned to the class containing the best match

model realisation (max(C) criterion). Alternatively, if the class scores are used as a basis for

classification, the observation may be assigned to the class with the highest score (max(S)

criterion); the class scores themselves provide error bounds on that decision. It may not always be

desirable to assign an observation to one of the classes, particularly when two or more class scores

are similar. In this case, although the class scores give an indication of the relative certainty that

the observation belongs to a given class, it may not be assignable to any particular class if the class

scores do not exceed some minimum threshold, or if they are not separated by some minimum

difference.

One of the fundamental components of the CMVC techniques is their ability to account for the

ambiguity between the model spaces as well as the validity of each model space in representing

known data from that class. For example, for the three scattering classes of zooplankton, the

highest degree of ambiguity occurred between theoretical model predictions for the FL and the

GB model spaces. This ambiguity was accompanied by a slightly lower within-class validity for

the GB class. One result of this could be that echoes from fluid-like animals are incorrectly

classified as GB. In fact, when the classifiers were implemented without accounting for ambiguity
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or validity (-w in Figure 4-11), the GB class scores for the fluid-like M. norvegica echoes were

often higher, resulting in misclassification of these echoes as GB. Incorporating both ambiguity

and validity weightings into the classifications (+w) improved the M. norvegica classification

results considerably (e.g. for 1993 data, PSC (-w): 33% correctly classified; PSC (+w): 73%

correctly classified, based on assigning an observation to the class with the maximum score). PSC

classification results for the other animals also improved with the incorporation of WA and Wv.

Clearly, accounting for both ambiguity and validity allows for fine-tuning of the resolution of the

classifiers, leading to better classification results.

Depending on the model spaces for the particular classification problem, and the relative

importance of between-class versus within-class overlap, as well as between-class representativity

of the model realisations, the ISC and PSC techniques can be implemented with ambiguity

weightings, validity weightings, both, or neither. With the BPC, ambiguity is inherently accounted

for in the expression for conditional probability (EQ 4.5), since if the model spaces for two classes

(e.g. 1 and 2) are highly ambiguous, f'.. and f'2) will be similar for a particular observation. The

BPC relies on the PMFs to account for model representativity. Both within-class validity and

between-class representativity (as reflected by fP''), the value of the PMF for the jth model

realisation) are confounded with other issues. For example, in addition to indicating that model

realisation j has low validity in representing data from class p, a small f,'P" could also indicate that

observations represented by model realisation j occur very infrequently, or that the observations

are outside the parameter range of the model space (i.e. that the model space as constructed fails to

span the entire range of observable echo spectra). The ISC and PSC provide a flexible means by

which to incorporate ambiguity and validity weightings, whereas with the BPC there is no explicit

way in which to condition the classification to favour certain less-ambiguous model realisations

based on the degree of ambiguity, nor is there a mechanism for penalising a model realisation

which represents data outside its class well.

The three different classification algorithms offer implementation alternatives depending upon the

classification problem at hand. For example, the PSC has greater between-class resolution due to

the incorporation of pairwise ambiguity and validity weightings. However, unlike the ISC which

requires no a priori information, the PSC is based on an assumption of the a priori class

membership of the data; if good a priori information is available (as it was for the experimental

data with which these classifiers were tested), the PSC has a performance advantage over the ISC,

115



yielding more accurate classifications. A priori information regarding species composition for

field-collected data may be obtained via simultaneous net or pump samples. A sensitivity analysis

was carried out to assess the impact of an incorrect assumption of a priori class membership on the

PSC results. It revealed that echoes from some animals (L. retroversa and A. okeni) are just as

well-classified (using the maximum score criterion) even if the wrong a priori class membership

assumption is made, whereas the M. norvegica data can be much more poorly classified under the

wrong class membership assumption. If good a priori information is not available, the ISC may be

the more robust alternative, depending upon the species composition of the data to be classified.

In the BPC, two types of PMFs can be constructed depending on the relative importance of within-

class versus between-class model representativity. A class-support PMF incorporates a measure of

within-class validity, whereas a full-support PMF can also provide a measure of the validity of

model realisations in a given class for representing data in other classes. The computationally less

expensive class-support PMFs were used in the classifications, since a preliminary sensitivity

analysis with a test dataset indicated that the classification results based on the full-support PMFs

were no better overall than those obtained with class-support PMFs. Specifically, classification

results (based on maximum score criterion) for the L. retroversa echoes remained the same, while

the success rate with M. norvegica echoes increased considerably (100% correct vs. 72% with the

class support PMFs), likely as a result of the full-support PMFs accounting for between-class

representativity. However, classification results with A. okeni echoes using the full-support PMFs

deteriorated (68% correct vs. 100% with class-support PMFs), probably because the full-support

PMFs do not provide flexibility in conditioning the impact of high between-class representativity

the way the validity weightings for the ISC and PSC do.

Classification with the BPC is based on the underlying probability distribution describing how the

model space of each class is represented by known data collected from that class, as well as the a

priori probability of that class. Ideally, the true probability distribution of echo spectra for the

three scattering classes of zooplankton would be used as the f"P, but the true distribution is not

known. Furthermore, although the theoretical models are able to predict realisations of individual

echo spectra for a specific set of parameter values, they do not predict the probability distribution

for these realisations. If a distribution was known for each of the parameters in the models, the

probability distribution of the model realisations for each class could be generated from the

theoretical models based on the multivariate probability distribution of the parameters. In the
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absence of a true distribution, or a multivariate expression based on theoretically predicted

distributions of the parameter values, the f(P) must necessarily be constructed empirically. This

empirical PMF is built using data from known class, and reflects the frequency of occurrence of

each model realisation in the real data; in this way, it is similar to the validity weighting functions

for the ISC and PSC. Constructing fI"P in this manner relies on the assumption that the theoretical

models, and therefore the model spaces, accurately predict the entire range of echo spectra

observable for a given class, and that the available known data used to construct the probability

distribution are representative and span the entire range of observable echo spectra. To the extent

that these assumptions are met, the empirical PMFs are good estimators of the true probability

distributions of echo spectra for the three scattering classes.

The application of model based classification techniques is only possible if there exist theoretical

or empirical forward models which express the relationship between the observed data and the

model parameters. For the zooplankton classification problem, theoretical model predictions were

used to generate the model spaces, but empirical models may also be employed, particularly when

the theoretical basis from which to construct a sound relationship between data and model is not

well-characterised. In the absence of good theoretical or empirical models, feature based

classification techniques provide another alternative. Feature based inversions (e.g. distance based

classifiers, principal components analysis, and the EOFC (Martin et al. 1996)) are based only on

the inherent characteristics of the observed data; they operate independently of theoretical or

empirical models since they capitalise on measurable features of the data belonging to each class,

exploiting class-specific differences in these features.

The model spaces are an integral component of the model based CMVC approach. The success of

any model-based inversion scheme depends upon the degree to which the forward model

adequately describes the relationship between the observed data and the model parameters, and

whether features predicted by the model can be resolved in the data. Although the theoretical

models for each scattering class ((EQ 4.13),(EQ 4.14),(EQ 4.15)) will not accurately predict all possible

observed echoes, these sophisticated models describe the general scattering characteristics of

zooplankton in each class sufficiently to allow discrimination between classes. A model based

classification scheme that incorporates the full detail of the theoretical model predictions into the

model spaces for each class can be designed, but such a design would be very complex due to the

number of model parameters, and may not classify robustly, particularly in the case where the
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values of many of these parameters are unknown or unmeasurable. It may in fact be desirable to

design a scheme that can exploit the predictive power of the theoretical models for echo

classification without being encumbered by the details in the models. In constructing the model

spaces for the zooplankton scattering classes, only a small subset of the model parameters was

varied, while the rest (usually those that have been empirically determined, such as P, and (c/c,)

in (EQ 4.13), or g and h in (EQ 4.14) as measured by Foote (1990)) remained fixed. The resulting

model spaces provided sufficient resolution to discriminate between the scattering classes.

Depending upon the particular classification problem, if model spaces derived from the most

sophisticated theoretical models are too complex or too large, so that the classification problem

becomes computationally intractable, simplified model spaces can offer a good alternative. For the

zooplankton classification problem, the model spaces can be simplified by parameterising the

theoretical model predictions into simpler forms; one such simplification is the parameterisation

which resulted in the first-order model spaces (Section 4.4) used to illustrate WR, WA, and f"P)

algorithm development. These first-order, simplified model spaces for the three zooplankton

scattering classes consist of model realisations that are very crude representations of a subset of

the theoretical model predictions; they do not encompass the variability predicted in the most

sophisticated model spaces. Notwithstanding, using these first-order model spaces to classify the

high quality data subset yields classification results that are comparable to those achieved with the

more comprehensive, sophisticated theoretical model representations (e.g. overall % correctly

classified (n=75) based on maximum score criterion for ISC: 78%; PSC: 85%; BPC: 84%; as

compared to Table 4-2). It becomes more advantageous to employ the sophisticated model space

when classifying the entire dataset, since echoes collected in different experiments from different

animals exhibit considerably greater echo variability.

Inversion for individual zooplankter characteristics based on best match model realisations was

limited to animal size (mean shell radius a for ES, equivalent cylindrical or spherical radius a for

FL and GB) with this dataset. Inversion for the other model parameters used to generate the model

spaces for the three classes was not attempted, since parameters such as Fspec and F, for the

elastic-shelled animals (L. retroversa), and Fis,, and Ei for the gas-bearing animals (A. okeni), are

difficult, if not impossible, to measure. Stanton et al. (in press b) have in fact adjusted these

parameters to match empirical data, both for single echoes and statistically. For the elastic-shelled

animals, it is certain that Fspec and F, depend on the orientation of the opercular opening in the
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shell relative to the incoming sound wave, but this dependence remains uncharacterised. For the

fluid-like animals (M. norvegica) however, animal shape and angle of orientation Btilt during

insonification can be measured using a high-magnification, underwater video camera; by marking

the video footage corresponding to individual insonifications, correlations between echo spectra

and animal shape, size, and orientation may be investigated. This analysis has been carried out,

including an inversion of echo spectra for animal orientation, with excellent results for another

species of euphausiid, the Antarctic krill, Euphausia superba (Martin Traykovski et al. submitted;

see also McGehee et al. accepted, for the use of video techniques in the interpretation of single-

frequency target strength measurements). For field-collected data, a priori information about

animal size, shape, and probability of occurrence may be obtained via simultaneous net or pump

samples, whereas video techniques such as the VPR (Video Plankton Recorder) can provide

information about size, shape, probability of occurrence, and orientation.

Matching observations to individual model realisations based on the CMV metric may also prove

to be a useful tool in further theoretical model development and fine-tuning. To date, forward

model development, which has involved fitting theoretical model predictions to data and adjusting

parameter values, has relied on judging the correspondence between the observations and the

model predictions by eye (e.g. Stanton et al. 1993b; 1994a; 1996; in press a; etc.). Instead of

assessing the goodness of fit of a particular model prediction to empirical data by visual

inspection, the CMV metric provides an opportunity to quantify the fit between data and model. In

addition, the CMVC techniques provide a framework within which the parameter space for a

particular theoretical model may be searched exhaustively to determine the best matches to

observed echo spectra. In this manner, further theoretical model development could be focused on

better quantifying some of the parameter values, possibly leading to prediction of probability

distributions for these parameters. In addition, more effort must be put toward empirically

quantifying the measurable parameters (e.g. animal size, orientation, sound speed contrast, density

contrast etc.) so that inversions may be ground-truthed.

Field implementation of the CMVC inversion techniques for broadband echoes, in conjunction

with single-frequency acoustic surveys of zooplankton populations, has the potential to drastically

improve estimates of animal biomass. A classification inversion of broadband echo spectra for

scatterer type allows for correct apportionment of acoustic volume backscattered energy to

animals in each scattering class. The material properties of animals within a scattering class are
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similar, leading to a strong relationship between scattering class and animal biomass. In addition,

inverting for animal size within each class could further improve the accuracy of zooplankton

biomass estimates. Technological challenges that must be overcome to permit field

implementation of a classification inversion based on broadband echo spectra include variable

beam width and variable SNR over the bandwidth of current broadband sources suitable for field

use; development of constant beam width broadband transducers is underway by others. Solving

the inverse problem of identifying a scatterer from its acoustic signature in the field will enable

biological oceanographers to make more reliable estimates of zooplankton type, size, and biomass

from acoustic backscatter data.

4.8 Summary

The CMVC techniques rely on comparisons of observed echo spectra to theoretical-model-

generated model spaces to classify broadband echoes from zooplankton into scattering classes

based on similarities in covariance, mean, and variance, while accounting for ambiguity between

model spaces as well as model validity (representativity). Three distinct classification algorithms

(ISC, PSC and BPC) were developed, and their performance was evaluated with several hundred

echoes collected in a ship-board tank from 24 different individuals on two cruises to Georges Bank

and the Gulf of Maine. All three classifiers had a very high rate of success with the high-quality,

high SNR subset (n=75) of the data (between 80% and 90% of echoes correctly classified based on

the maximum score criterion). With the entire dataset, the PSC with both ambiguity and validity

weightings yielded the best results overall (96% of A. okeni echoes (n = 225) and 73% of M.

norvegica (n = 350) echoes from 1993 correctly classified). However, the BPC with class-support

TYPE I PMF performed best for the L. retroversa echoes. For the PSC, classification results based

on assigning an observation to the class containing the best match model realisation were better

than those based on the maximum score criterion (85% of 1993 data (n = 775) and 83% of 1994

data (n = 625) correctly classified overall). Best match classifications for the ISC and BPC tended

to be poorer overall than those based on the maximum class score, with the exception of M.

norvegica echoes, which the BPC with TYPE II PMF classified much more accurately by the best

match criterion (95% of 1993 (n = 350) and 91% of 1994 (n = 225) M. norvegica data correctly

classified) than by the maximum score criterion. Inversions for animal size based on best match

model realisation showed promise; further work is necessary to quantify the other parameter

values so that size may be inverted for more robustly. Overall, the three CMVC-based
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classification algorithms were able to successfully invert a good percentage of experimentally

collected echoes from individual zooplankton for scattering class, particularly for the highest

quality subset of data. The CMVC technique also shows promise in inverting for specific

zooplankter characteristics, such as animal size, within a scattering class.
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CHAPTER 5

EFFECT OF ANIMAL ORIENTATION ON SPECTRAL SIGNATURES

Changes in animal orientation can impact the frequency response of the acoustic returns from

zooplankton in all three scattering classes. Understanding of the variability in acoustic signatures

resulting from differences in the angle of orientation of the animal relative to the incident acoustic

wave will improve classification success. Measurements of artificially constrained zooplankton as

well as in situ measurements have shown that the target strength of many zooplankton varies with

animal orientation. A better understanding of this orientational dependence, coupled with a means

by which to invert for animal orientation based on acoustic returns, could improve acoustic survey-

based biomass estimates of zooplankton significantly.

This chapter is an investigation of the impact of animal orientation on the echo spectra received

from broadband insonifications of zooplankton. To better understand natural animal orientation

during feeding, swimming, and resting, the first section of this chapter (Section 5.1) presents a

brief summary of a preliminary investigation into the in situ orientation of those species of

zooplankton collected in the N.W. Atlantic for which acoustic scattering experiments have been

conducted. This sort of understanding is necessary to apply the results of an orientational analysis

to the interpretation of in situ acoustic survey data. Following this, the theoretical basis for

variability in echo spectra due to differences in both animal size and orientation is summarised

(Section 5.2). The bulk of the chapter, which is written as a manuscript (Section 5.3), is devoted to

a detailed exploration of the effects of animal orientation on acoustic signature based on

experimentally collected data from representatives of the fluid-like scattering class (Antarctic

krill). To determine the impact of changes in orientation on the spectral structure of echoes

received from the krill, video data of each animal (acquired simultaneously with the acoustic

returns) were analysed in conjunction with the acoustic data. Angle of orientation of the animal at

the time of insonification was compared on a ping-by-ping basis with the frequency spectrum of

the corresponding acoustic return. Acoustic returns received from the krill were then compared to

the spectra predicted by the distorted wave Born approximation theoretical model for the angle of

orientation, size, and shape as measured for each animal. Finally, the Covariance Mean Variance

Classification algorithms were employed to invert the observed echo spectra for angle of

orientation, and a comparison of experimentally-observed and classifier-predicted orientations was

made, with implications for application of the CMVC to in situ inversions for animal orientation.



5.1 INVESTIGATION OF IN SITU ORIENTATION

A preliminary investigation of the in situ orientation of representatives of each of the three

zooplankton scattering classes is summarised here. Sources of data include the literature, as well

as photographs and video footage from SCUBA divers, a submersible, and the Video Plankton

Recorder. All video references (in quotes) are listed at the end of the Reference section (p. 185).

5.1.1 Agalma okeni

Physonect siphonophores possess a gas-filled float called a pneumatophore, which acts as an

indicator of which direction is up, and may help to keep the animal nearly erect in the water

(Fraenkel and Gunn 1940). Video footage of A. okeni reveals that this species can rest passively

with tentacles retracted, floating about in the water column, the stem orientation drifting through

about 1800 (centered on vertical with the pneumatophore up) with equal time spent in all

orientations ("Blue Water"). When this siphonophore is feeding however, the tentacles are

extended (Purcell and Mills 1989) and it hangs motionless in the water column, the body held

horizontally or at an angle with the gas float above it and the tentacles hanging down in a curtain

(Madin 1988). In A. okeni, the pneumatophore is not big enough to constrain the orientation of the

animal to vertical (Biggs 1977), so that it may hang at any angle, from vertical to nearly horizontal,

surrounded by a haze of tentacles (Mackie and Boag 1963). In situ observations indicate that this

species is usually inclined 150 - 400 from the vertical (Biggs 1977), thereby allowing it to extend

its tentacles without tangling them (Figure 5-1). Video footage of A. okeni feeding indicate that it

can also fish with the stem coiled up loosely ("Ocean Drifters").

5.1.2 Meganyctiphanes norvegica

Meganyctiphanes norvegica is an active, rapid swimmer. While swimming, the telson is usually

flexed slightly downwards (ventrally), but may be straightened during quick movements

(Macdonald 1927). M. norvegica undergoes diel vertical migrations, and is found below 100m

during the day, where it is passive and lethargic (Mauchline and Fisher 1980). It has been found to

feed only in the upper 100 m of water in the evening and at night (Lasker 1966), except in winter

when the adults have been seen feeding most actively during the day (Mauchline and Fisher 1980).

Upward swimming when rising to the surface is gyratory, and M. norvegica often makes several

complete "somersaults" in rapid succession (Macdonald 1927). Video footage shows swarms of

this euphausiid darting about rapidly, with the majority of individuals oriented head up and within

-200 of vertical, alternating between swimming in straight lines and spiralling, although some
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Figure 5-1 Agalma okeni in typical fishing posture. Image captured from video footage ("Ocean Drifters").

individuals are oriented nearly horizontally ("Johnson Sea-Link 1987"). Video recordings made

from a submersible with lights on demonstrate what may be a phototactic reaction; swarms of M.

norvegica gather near the lights, swimming in spirals in all directions, but predominantly upward

toward the sea surface ("Johnson Sea-Link CNN"). Analysis of images captured from this video

footage revealed that most individuals appear to be oriented nearly vertically, head up as if

swimming for the surface (Figure 5-2).

Photo camera observations have been made of free-swimming euphausiids in situ (Kristensen and

Dalen 1986) to determine tilt angle (defined as the angle between the horizontal and a line drawn

through the eyes and the longitudinal direction of the carapace). Two photos taken within 5

minutes of each other at 40 m depth at 0200 h contained 192 euphausiids whose mean angle of

orientation was -9.8' (std. dev. 34.1 ). Analysis of all their photos revealed that the mean tilt angle

is slightly positive at night and slightly negative during the day, with standard deviations between

250 and 450, and seems to be correlated with upward and downward diel vertical migration

respectively. Although they do not describe their camera system in detail, it is likely that they used

lights to capture images of euphausiids at night at 40 m depth. A limited number of video images

recorded with visible red light (alleged not to illicit a phototactic response in euphausiids) show

individual M. norvegica swimming by the camera in a variety of orientations, but almost always

curled up with the telson tucked up toward the ventral surface of the animal ("VPR").
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Figure 5-2 Meganyctiphanes norvegica filmed at night from a submersible with lights on ("Johnson Sea-
Link CNN"). It is not known if this orientation is typical for upward swimming euphausiids.

5.1.3 Limacina retroversa

Swimming in L. retroversa is accomplished with the opercular opening pointing up and the wings
exposed above the shell (Morton 1954). The wings flap in unison like oars, and the sharp,

downward effector stroke propels the animal upward in a broadly spiral path (Morton 1964). The

animal floats by extending its wings laterally, but sinks quickly if the wings are pulled together and
held erect above the shell (Morton 1964). Fig. I of Morton (1954), reproduced here (Figure 5-3),
shows the orientation of L. retroversa while swimming and sinking. Silhouette video photography
("VPR") has recorded several images of L. retroversa in natural orientations. Direct measurements
from several frames of "VPR" footage indicate that for the most part, this species is oriented with
the long axis of the shell at 450 (± 200) from the horizontal, with the wings up (Figure 5-4). L.

retroversa maintains neutral buoyancy while feeding, probably as a result of the large, spherical
mucous web it deploys (Gilmer and Harbison 1986). When feeding, these pteropods must stop
swimming; the wings remain expanded, but are motionless, and the ventral surface (including the
opercular opening) faces upward (Gilmer and Harbison 1986), while the bulbous dorsal surface of
the shell faces down. The long axis of the shell (from the end of the opercular opening to the spiral
tip) appears to be inclined less than 450 to the horizontal, with the spiral tip at the lowest point.
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Figure 5-3 Sketches of Limacina retroversa showing typical the orientations while swimming upward (1-4)

and sinking (5-top view, 6-side view). Reproduced from Fig. I of Morton (1954)

Figure 5-4 Image of Limacina retroversa captured with the Video Plankton Recorder; the long axis of the
shell is oriented 450 from the horizontal.

A solid understanding of the natural orientations assumed by these zooplankton is necessary in

order to improve biomass estimates made from acoustic survey data. A comprehensive knowledge-

base of in situ animal orientation will assist in placing bounds on the values of some theoretical

model parameters, as well as providing context for the data sets gathered from tethered animals.

Information on the natural orientations of these zooplankton will help to constrain the

classification inverse to include only reasonable animal orientations, thereby improving

classification success.

131



5.2 LINK BETWEEN ANIMAL ORIENTATION AND SPECTRAL VARIABILITY

Different null spacings in the spectra of acoustic returns from fluid-like or elastic-shelled

zooplankton arise as a result of different animal sizes and possibly orientations. There exists an

inverse relationship between animal size and null spacing. To demonstrate this, consider a hard

elastic-shelled animal with circular cross-section insonified at high frequency (X << a). Scattering

from this animal may be modelled using a two-ray formulation which accounts for the echo from

the front interface of the animal as well as the echo resulting from energy shed by a

circumferential wave travelling around the shell (Stanton et al. in press b). A null in the echo

spectrum results when there is destructive interference, that is, when the phase difference Od/c

between the ray scattered directly from the front interface of the animal (Pd) and the ray scattered

from the circumferential wave (pc) is nr radians (Figure 5-5).

Case 1 Pi Pc

TS

a

frequency
Case 2

Pi Pd P

TS
a

Pi = normally incident ray frequency

Pd = ray scattered directly from the front interface (in the receiver direction)

Pc = ray scattered from the circumferential wave (in the receiver direction)

Figure 5-5 Schematic of an elastic-shelled animal insonified at high frequency (>>a), comparing spectra
scattered from a small animal of radius a1 (Case 1) vs. a larger animal of radius a2 > a1 (Case 2).
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Setting the phase difference equal to t for the 2 cases yields: Od/c = 7t = k(2ira l )Af 1 = k(2nta 2 )Af 2,

where 27tan is the distance the circumferential ray travels around a body of radius an. This reduces

to the relation alAf 1 = a2 Af2 , so that the echo spectra of bigger animals exhibit tighter null spacing.

For elongated animals, apparent size (relative to the acoustic wave) changes with the orientation of

the animal relative to the incident acoustic beam. As a result, it is difficult to invert for scatterer

size unless animal orientation is known a priori. To demonstrate this, consider a deformed

cylindrical fluid-like animal insonified at high frequency (k << a). Scattering from this animal may

be modelled using a two-ray scattering model (Stanton et al. 1993a,b), which accounts for echoes

reflected from the front and back interfaces of a weakly scattering target. Similar to the case of the

elastic-shelled animal, a null in the echo spectrum results from destructive interference between

the ray scattered from the front interface of the animal (pf) and the ray scattered from the back

interface (Pb), that is, when the phase difference (pf/b between these rays is 7t radians (Figure 5-6).

Case 1 Pi

TS

frequency
Case 2 Case 3

(Case 1 rotated)
Pi Pi

P Pb

a2 Pb TS Y

pi = normally incident ray frequency

pf = ray scattered from front interface (in the receiver direction)

Pb = ray scattered from back interface (in the receiver direction)

Figure 5-6 Comparison of echo spectra received from a deformed cylindrical fluid-like animal insonified at
high frequency (X>>a) for a small animal (radius al) at broadside incidence (Case 1) and off-
broadside (Case 3), and a larger animal (radius a2 > a1) at broadside incidence (Case 2).
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Equating fb for the 3 cases yields: f/b = i = (2nAfl/c)d 1 = (27tAf 2/c)d 2 = (2nrAf 3/c)d 3 , where dn is

the total distance the ray travels in the body in each case (n = 1, 2, 3) and c is the speed of sound in

the body. When the body is at broadside incidence (Cases 1 and 2), dn = 4an where an is the

equivalent cylindrical radius. Off-broadside (Case 3), the size of the rotated animal is a1 but its

apparent size (to the acoustic ray) is >> a1, so that d3 # d1. Here d3 = d2 so that the null spacing of

the echo spectra for Cases 2 and 3 are the same (i.e. Af3 = Af2).

Changes in spectral signature with changes in animal orientation have important implications for

the classification inversion of zooplankton from broadband acoustic returns. If the impact of

orientation on the echo spectra is well-characterised, it is possible to invert for orientation based on

spectral signature. Combining orientation information derived from broadband acoustic data with

data collected in single-frequency acoustic surveys has the potential to improve zooplankton

biomass estimates considerably. A better understanding of orientational impacts on the acoustic

returns can be gained via a combination of experimental and theoretical approaches. A powerful

experimental approach involves combining acoustic data with high-magnification video footage

which records the movement and orientation of the animal during insonification.

Such a video system was implemented in the ship-board tank experiments carried out during the

Endeavor cruise 253 (18 September - 29 September 1994) to Georges Bank and the Gulf of Maine.

Video footage was acquired for zooplankton representing all three scattering classes. A qualitative

look at the correlation between the orientational video data and the acoustic data for a fluid-like

animal (Meganyctiphanes norvegica) revealed that both the time series and the echo spectrum

change significantly with changes in angle of orientation relative to the incident acoustic wave

(Figure 5-7). Comparison of the time series reveals that the echo energy of returns received when

the animal is at or near broadside incidence (i.e. when the long axis of the animal body is

perpendicular to the incident acoustic wave) is generally considerably greater than the energy

contained in off-broadside echoes. This observation is consistent with what is expected based on

the physics of scattering from elongated objects, since at broadside incidence, an elongated animal

presents a much larger backscattering cross-section to the incident acoustic wave than at any other

angle of orientation. In addition, the echo spectrum at broadside incidence exhibits a wider null-

spacing compared to the more erratic structure of the off-broadside echo spectrum. This qualitative

analysis lead to a quantitative study of the effect of animal orientation on the echo spectra of fluid-

like zooplankton, the details of which are presented in the following manuscript.
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Figure 5-7 Video images of an elongated fluid-like zooplankter (30.5 mm long Meganyctiphanes norvegica)

insonified at two different angles of orientation. Orientation significantly affects both the strength

of the acoustic return (time series, top) and the shape of the frequency response (bottom).
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5.3 EFFECT OF ORIENTATION ON ECHO SPECTRA OF FLUID-LIKE ANIMALS

Effect of orientation on broadband acoustic scattering of Antarctic krill Euphausia superba:

Implications for inverting zooplankton spectral acoustic signatures for angle of orientation

Linda V. Martin Traykovski, Richard L. O'Driscoll, and Duncan E. McGehee.

ABSTRACT

Biomass estimates of Antarctic krill (Euphausia superba) stocks in the Southern Ocean are often

based on high-frequency acoustic survey data. In order to make accurate estimates of zooplankton

biomass from acoustic backscatter measurements, the acoustic characteristics of the species of

interest must be well-understood. In particular, it has long been recognised that the target strength

of elongated, fluid-like zooplankton such as E. superba varies with animal orientation. Acoustic

scattering experiments were performed to elucidate the effect of animal orientation on the

broadband scattering characteristics of Antarctic krill. During the experiments, several individual,

live krill were tethered and suspended in a tank filled with filtered, chilled seawater. Several

thousand echoes were collected from fourteen animals during insonification with a broadband

chirp of center frequency 500 kHz (-350 kHz - 750 kHz), while their behaviour was simultaneously

captured on video tape. A novel video analysis technique was applied to images for 11 of the

animals to extract the angle of orientation of the krill corresponding to each insonification. This

analysis revealed that echo spectra from krill near broadside incidence relative to the incident

acoustic wave were characterised by widely-spaced (-200 kHz) deep nulls, whereas off-broadside

echo spectra exhibited a more erratic structure, with several closely spaced (< 50 kHz) nulls of

variable depth. Spectrally-averaged echo levels were found to be about 5 dB higher near broadside

incidence as compared to off-broadside. The acoustic returns collected from the krill were

compared to theoretical predictions for all angles of orientation based on a distorted wave Born

approximation (DWBA) model for each animal. The pattern of changes in echo spectra with

orientation is very similar for the experimentally measured data and the DWBA model predicted

spectra for all 11 krill; however, the theoretical model predicts a much greater drop in TS (about 20

dB) as orientation changes from broadside incidence to off-broadside than was actually observed

for these animals as they changed orientation (about a 5 dB drop going from broadside incidence

to off-broadside). Information contained in the broadband echo spectra of the krill was used to
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invert the acoustic returns for angle of orientation by applying a newly-developed Covariance

Mean Variance Classification (CMVC) approach, using generic and animal-specific theoretical

and empirical model spaces. The animal-specific empirical model space (based on data collected

from the appropriate animal) was best able to invert for angle of orientation. Employing a generic

empirical model space (based on data collected from an arbitrary krill) resulted in more accurate

inversions overall than could be achieved using the appropriate animal-specific theoretical model

space. By deploying a broadband sonar system in conjunction with single-frequency acoustic

surveys of Antarctic krill, and implementing a classification inversion such as the CMVC

technique with a generic empirical model space, it is possible to determine the angle of orientation

of individual krill in the field. Extraction of this orientational information has the potential to

improve the accuracy of krill biomass estimates significantly.

L. V. Martin Traykovski: Massachusetts Institute of Technology / Woods Hole Oceanographic Institution, Joint Program

in Oceanography and Applied Ocean Sciences and Engineering; present address: Woods Hole Oceanographic

Institution, MS 34, Woods Hole, MA 02543 USA. R.L. O'Driscoll: Department of Marine Science, University of Otago,

P.O. Box 56, Dunedin, New Zealand. D.E. McGehee: Department of Applied Ocean Physics and Engineering, Woods

Hole Oceanographic Institution, Woods Hole, MA 02543; present address: Tracor Applied Sciences, 4669 Murphy

Canyon Road, Suite 102, San Diego, CA 92123 USA. Correspondence to Martin Traykovski [email: Imartin@whoi.edu,

phone (508) 289-2750, fax (508) 457-2134].

5.3.1 Introduction

Marine zooplankton are of central importance to the ecology of the oceanic region in which they

live, serving as a principal food source for the larval and adult stages of commercially important

fish species (Turner 1984), and in the case of Antarctic krill, providing a direct trophic link

between the primary producers and the top predators (seabirds, whales, seals) of the Southern

Ocean (El-Sayed 1988; Nemoto et al. 1988; Permitin 1970). In addition, a commercially important

krill fishery became established about twenty years ago, peaking in the early 1980s with landings

of over 500,000 metric tons (Nicol and de la Mare 1993). Because Euphausia superba plays such

a central ecological role in the Antarctic marine food web, affecting the breeding success of the top

predators that rely on it as a food source (Croxall et al. 1988), it has become increasingly

important to assess and manage the impact of the fishery on krill stocks. Consequently, accurate

knowledge of krill distribution, abundance (biomass), and production is necessary in order to

characterise the trophic interactions in the Southern Ocean food web, as well as to successfully

manage krill stocks as a resource.
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Conventional methods for estimating zooplankton biomass include measurement of displacement

volume (Yentsch and Hebard 1957 cited in Wiebe et al. 1975), wet weight (Nakai and Honjo 1962

cited in Wiebe et al. 1975), dry weight (Lovegrove 1966 cited in Wiebe et al. 1975) or carbon

(Curl 1962 cited in Wiebe et al. 1975) from net (e.g. MOCNESS - Wiebe et al. 1985) or pump

(Miller and Judkins 1981) samples. As a result of the spatial patchiness of zooplankton

populations in the ocean and extreme temporal variability in their abundance, it is estimated that

biomass can vary over seven orders of magnitude on the spatial and temporal scales important for

populations of macrozooplankton (Huntley and Lopez 1992). For example, Antarctic krill are

distributed over a vast area of ocean, aggregating in patches, shoals, schools, swarms, and

superswarms, which can cover many square km, extend to 200 m depth, and display complex,

small-scale, horizontal and vertical structure (Nicol and de la Mare 1993). Conventional

techniques for biomass estimation (nets, pumps, trawls) are not suited for simultaneous sampling

of the entire water column over the relevant scales, nor to resolving ecologically important small-

scale patterns of krill distribution. To make more accurate biomass estimates, high resolution (-1

m) instruments capable of mapping variation in zooplankton biomass on large vertical (10 - 100

m), horizontal (1 - 10 km), and temporal (days to months) scales are required. The use of high-

frequency acoustics to make volume backscatter measurements of the water column has recently

made it possible to do rapid, high-resolution, broad-scale synoptic surveys of krill abundance over

the time and space scales of interest.

Traditional acoustic biomass estimation methods have employed single-frequency acoustic

measures in conjunction with either theoretical models (e.g. Greenlaw 1979) or empirical

regression relationships between acoustic backscatter and biomass collected in simultaneous net

samples (e.g. Flagg and Smith 1989). Attempts to use volume backscatter measurements of the

ocean as indicators of zooplankton type, size and biomass rely on the accurate acoustic

characterisation of the zooplankton species of interest. Biomass estimates based on simple

regression curves or on single-frequency echo energy measurements may be subject to large

errors, particularly if important factors such as species-specific material properties, morphology

and animal orientation are overlooked. Much effort has been put toward characterising the acoustic

target strength of krill for the purposes of species identification, animal size classification,

abundance estimation, and acoustic signal separation. Single-frequency target strength

measurements have been made of krill and other elongated crustacean zooplankton (other

euphausiids, shrimp), both experimentally constrained (by tethering or encagement, e.g. Greenlaw
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1977; Kristensen and Dalen 1986; Everson et al. 1990; Foote 1990; Foote et al. 1990; Wiebe et al.

1990; Demer and Martin 1995) and in situ (e.g. Hewitt and Demer 1991; Hewitt and Demer 1996).

To obtain target strength information over a wide range of frequencies simultaneously, as well as

to elucidate the frequency dependence of the scattering from elongated crustacean zooplankton,

broadband insonifications have been made of tethered decapod shrimp (Palaemonetes vulgaris) as

well as a species of euphausiid (Meganyctiphanes norvegica) found in the Northwest Atlantic

(Chu et al. 1992; Stanton et al. 1994a; 1996) using a broadband chirp sonar. These single-

frequency and broadband measurements have been used to develop and corroborate empirical and

theoretical scattering models.

Empirical models (e.g. Greene et al. 1991) have relied on relating a single parameter (e.g.

zooplankton size or wet weight) to acoustic target strength through a simple regression

relationship. Initial theoretical scattering models for zooplankton (including elongated crustacean

zooplankton) were based on the Anderson (1950) fluid sphere model (e.g. Greenlaw 1977,1979;

Johnson 1977; Penrose and Kaye 1979), which accounted for animal size and material properties.

The first scattering model to consider the elongate and deformable morphology of some of the

crustacean zooplankton was developed by Stanton (1988a,b and 1989a,b) to describe the scattering

of sound by arbitrarily deformed cylinders of finite length. It became widely recognised that in

addition to animal size and shape, animal orientation could have significant effects on the

scattering from these elongated plankton (Greenlaw 1977; Sameoto 1980; Samovol'kin 1980;

Everson 1982; Kristensen and Dalen 1986; Chu et al. 1993). The theoretical models were further

developed and refined (Stanton et al. 1993a,b; 1994a,b; 1996), and this orientational dependence

was incorporated by describing scattering from these elongated zooplankton at normal incidence

and at a distribution of orientations near broadside incidence using an approximate ray summation

model (which takes advantage of the fact that many crustacean zooplankton behave acoustically as

weakly scattering bent fluid cylinders). A more precise alternative to these ray models was

developed for weakly scattering elongated zooplankton of arbitrary shape at all angles of

orientation using a formulation based on the distorted wave Born approximation (DWBA) volume

integral (Chu et al. 1993; Stanton et al. 1993b; Stanton et al. in press a,b).

This paper summarises an analysis of the effect of animal orientation on acoustic scattering by

Antarctic krill. Both single-frequency and broadband acoustic scattering measurements were made

of several individual krill, and each animal was filmed during insonification with a high-
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magnification underwater video system. A separate paper (McGehee et al. accepted) is devoted to

investigating the orientation-dependence of the single-frequency (120 kHz) target strength

measurements. The work summarised herein is focused on interpretation of the broadband (500

kHz center frequency) scattering measurements in light of orientational information extracted

using a novel video analysis technique. By coupling the collected broadband echo spectra with

orientation data from the video footage, the effect of animal orientation on the frequency-

dependent scattering characteristics of elongated, fluid-like zooplankton such as krill may be

elucidated. The echo spectra collected from krill in different orientations are presented. These

echoes are compared to the theoretical model results of the DWBA volume integral, which

predicts echo spectra for all angles of orientation. Subsequently, a classification inversion using the

model based Covariance Mean Variance Classification (CMVC) technique (Martin Traykovski et

al. submitted) is carried out, employing both theoretical and empirical models to invert the echo

spectra backscattered from the krill for angle of orientation.

5.3.2 Methods

Scattering Experiment

Acoustic and video data were collected during a week-long experiment (17 August - 21 August

1995) at the Long Marine Laboratory of the University of California at Santa Cruz (UCSC).

Antarctic krill (Euphausia superba) had been captured by Langdon Quetin and Robin Ross in the

Southern Ocean near Palmer Station, Antarctica in February 1995, and placed in individual

containers without food for long-term storage under refrigeration at the University of California at

Santa Barbara, until transport to UCSC in August. Acoustic experiments included insonification of

each live animal with a broadband chirp of center frequency 500 kHz (-350 kHz - 750 kHz). The

animals were also insonified with narrowband 120 and 200 kHz transducers, as well as a 250 kHz

broadband transducer (broadband insonification at 1 MHz was attempted, but the transducer was

found to be too insensitive); only the results of the 500 kHz broadband work are summarised here.

Insonifications of the krill were made with a pulse-echo acoustic data acquisition system. The

transmit/receive transducer pair was mounted in an side-looking transducer bank, and the animal

was positioned at the focal point of the transducer pair (Figure 5-8), approximately 51 cm away

from the transducer array. During insonification, individual krill were suspended one at a time in

the 2 m long by 0.8 m wide by 0.75 m deep tank (adapted from a fiberglass dolphin transporter)

filled with filtered, chilled seawater (maintained between 2" and 5" C). Each animal was tethered to
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a vertically suspended 0.12 mm monofilament line with a very fine, acoustically transparent,

synthetic strand tied around the first or second abdominal segment. Animals tethered in this

manner had considerable freedom of movement, while being constrained to remain in the acoustic

beam. To allow investigation of correlations between the acoustic scattering of an organism and its

orientation, each animal was filmed during insonification with a high-magnification underwater

video system. The video camera was mounted directly above the transducer bank, looking across

and slightly downward at the animal. Each insonification was marked with an acoustic pulse

recorded on one audio track of the Hi-8 video tape, while a time code was continuously recorded

on the other audio track. This allowed direct correlation between each acoustic return and the

orientation of the animal at the time of insonification (to within 1/30 second).

camera

tether- 75 cm
transmitting array

receiving array

monofilament line 81 c

Figure 5-8 Scattering experiments were carried out in a portion of a modified fiberglass dolphin transporter.
To permit freedom of movement during insonification, the animals were tethered to a vertical
section of monofilament line with an acoustically transparent fine strand around the abdomen. The
tethered animal was lowered to the focal point of a side-looking transducer pair. A high-

magnification underwater video camera was mounted above the transducer array, looking slightly
downward at the animal. Each insonification was marked with an acoustic pulse on the audio track
of the video tape, so that animal orientation at the time of insonification could be determined.

After insonification, several measurements were made of each animal, including animal length,

carapace height, carapace width, telson (central lobe of tail) length and wet weight (Table 5-1).

Excess water was removed and each organism was frozen; dry weight was measured after oven-

drying (at 600 C) at a later date. During the experiment, 14 individuals were insonified and the

return echoes from 1000 acoustic transmissions were collected from each animal.
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Table 5-1 Summary of measurements made of Antarctic krill. Total length measured from center of eye to

tip of telson; carapace height measured at maximum dorso-ventral width; carapace width

measured at maximum lateral width. * indicates animal had broken telson: total length (L2)

estimated by scaling length to the end of uropods (L i) according to ratio (L2/L 1) observed in other

individuals of similar size; telson length also estimated by comparison to other animals of similar

dimensions. Video analysis not possible for Animals 12-14 due to blurring of the video images

caused by condensation on the inside of the camera housing. Dimensions in mm, weights in g.

total carapace carapace telson wet dry # echoes # video images
length height width length weight weight collected analysed

01 37.6 5.5 - 7.4 0.38 0.0872 1000 1000

02 42.2 5.9 - 8.6 0.51 0.1111 1000 400

03 41.4 5.4 4.4 8.4 0.55 0.1153 1000 400

04 38.9 4.8 4.35 7.7 0.38 0.0932 1000 400

05 41.4 5.3 4.4 7.1 0.56 0.1181 1000 1000

06 40.15 4.9 4.2 6.25 0.44 0.0916 1000 200

07* 33.3 4.4 3.65 6.2 0.24 0.0532 1000 1000

08 29.75 3.95 3.2 6.0 0.16 0.0363 1000 200

09 37.6 5.25 4.45 6.35 0.36 0.0702 1000 200

10 37.3 4.95 4.0 7.1 0.36 0.0689 1000 200

11 40.6 5.4 4.15 7.85 0.44 0.1016 1000 200

12 39.6 5.4 4.0 7.35 0.44 0.0884 1000 none

13* 42.9 6.0 4.9 8.1 0.55 0.1285 1000 none

14 42.45 6.15 4.6 7.7 0.58 0.1265 1000 none

Acoustic Data Processing

To obtain the echo spectrum

signals received from the krill

at the beginning (16 August

representing the actual acoustic return from the animal, the raw

were combined with the results of calibration measurements, taken

1995) and again at the end (24 August 1995) of the scattering

experiments. During calibration, the transmit and receive transducers were focused on each other

with no target in the beam, and a calibration signal was transmitted. The transmitted and received

voltage time series were collected for these calibration measurements. During the scattering

experiments, the transducers were aimed forward, focused at a range of about half a meter, and the

animal was placed in this focal region. The transmitted and received voltage time series were
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collected for the scattering measurements, and for each received acoustic return the calibrated

echo spectrum was computed as:

Vrecs Vxmitc (r 2  (EQ 5.1)
fbs =  Vrecc) Vxmit) rc

In (EQ 5.1), fbs is the acoustic backscattering amplitude of the animal, and is a measure of the

efficiency with which an object scatters sound back toward the sound source (fbs is related to Obs,

the differential backscattering cross section (Clay and Medwin 1977), by bs = IfbsI2). Vrecc and

Vxmitc were computed by taking the absolute value of the FFT of the received and transmitted

voltage time series for calibration. Vxmits was computed as the absolute value of the FFT of the

transmitted voltage time series for scattering measured at the end of each run (every 200 pings). To

compute Vrecs, a fixed rectangular window was applied to the received voltage time series for each

return (to capture only the echo from the animal) before applying the FFT. The scattering and

calibration distances were rs = 51 cm and rc = 60 cm respectively. The echo spectrum (TS =

20loglfbsl) for each return was then sampled at 203 points between 348.33 kHz and 685 kHz (due to

undesirable transducer frequency response characteristics in the upper end of its frequency range,

the full bandwidth (-350-750 kHz) of the collected data was not used). It is this sampled echo

spectrum that is used in analysing the effects of orientation on the frequency-dependent scattering

characteristics of Antarctic krill.

Video Data Processing

Video images for 11 of the 14 animals were analysed to extract the angle of orientation of the krill

corresponding to each echo spectrum (Table 5-1). For some animals, orientation was extracted

from only a subset of the 1000 images, since the video analysis procedure was extremely time-

consuming. Condensation inside the video camera housing obscured the images for Animals 12

through 14, so that video analysis was not possible for these individuals.

To determine the orientation of the animal corresponding to each received echo spectra, it was

necessary to extract from the video tape only the frames captured at the time of each insonification,

as indicated by the acoustic pulses recorded on the audio track. To accomplish this, the audio and

video channels of the original Hi-8 video tapes were duplicated onto Betamax and VHS, and a

screen-burn of the time code was made on the duplicates to allow easier identification and location

of frames of interest. The tapes were advanced frame-by-frame using a video editing deck (e.g. for
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VHS, Panasonic AG-7500, JVC BR-S525U or BR-S810U, which permit frame-by-frame

advancement with an audible audio track), and the time code of each frame in which an acoustic

pulse occurred was noted. The video frames of interest were then identified upon playback by the

screen-burned time code, captured, digitised, and stored in TIFF format using the public domain

image processing and analysis program NIH Image for the Macintosh.

For each image, the origin of a three-dimensional rectilinear coordinate system was situated at the

base of the animal's telson (Figure 5-9A). In this coordinate system, the video image represents the

projection of the animal onto the x-y plane, as the camera looks in the negative z-direction. The

animal itself is then represented by a vector a from the origin to the point midway between the

center of the eyes. Measurements were made to determine the x- and y-coordinates of a (ax and

ay) for each image. Using a custom-built Matlabo measurement program, the location of the mid-

point between the center of the eyes as well as the anterior edge of the conspicuous dark patch

which marks the base of the telson were determined by clicking these points with a mouse; the

colormap was adjusted to facilitate discrimination of these points on the images. The projected

length of the animal axy (in the x-y plane) was computed as axy = + a directly from these

measurements. The z-coordinate az of a was determined using the fact that az = j2 xy

(Figure 5-9B), where Ia is the length of a, as measured from an image in which the animal was

estimated to be broadside to the camera (i.e. perpendicular to the camera line of sight, az = 0).

The sign of az was determined by noting whether the animal was head towards (az positive),

broadside to (az 0), or head away from (az negative) the camera, as reflected by changes in the

projected length of the animal axy for a succession of single images (axy attained its maximum I

when the animal was broadside to the camera). This was corroborated by watching the video in

real time to estimate when broadside crossings occurred, and noting the head orientation before

and after each crossing. Additional information was extracted from the images, including the x-y

locations of the center of each eye, a coarse estimate of the axial roll of the animal (e.g. lateral, feet

down; ventro-lateral, feet up; dorsal; etc.), and a subjective judgement of the degree of flex of the

animal body (images in which the animal was very bent were discarded to minimise errors in axy) .

The angle of orientation of the animal was then determined for each image by computing the angle

p between the animal vector a and the incident acoustic wave vector k (Figure 5-9B):

= aos aJ(EQ 5.2)
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Figure 5-9 Geometry for determination of angle of orientation (p from the video images. A. Image gives the

projection of the animal vector a onto the x-y plane of a 3-D coordinate system with origin

situated at the base of the krill's telson. ax and ay computed directly from measurements made of

the image; B. az determined from geometry shown; cp computed using (EQ 5.2); incident acoustic

wave vector k is in the y-z plane, at an angle of a = 25 relative to the camera line of sight.

where k a is the inner product (dot product) of the two vectors; (EQ 5.2) follows directly from the

definition of the inner product: k -a = a cosp, with 0 < p _ i. For an animal located in the

farfield of the transducers, the incident acoustic wave is locally planar over the body of the krill,

and k is assumed to be perpendicular to the x-axis of the coordinate system, so that kx = 0, and

k= (kx, ky, kz) - (0, sina, -cosa ), where X is the acoustic wavelength and a is the angle

between the incident acoustic wave and the camera line of sight. With the animal positioned at the

focal point of the transducer pair, this angle was measured as a = 250 (Figure 5-9B).
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Theoretical Modelling

Acoustic backscattering from a finite-length, arbitrarily-shaped, weakly scattering (i.e. having

density and sound speed similar to those of the surrounding medium) object in the farfield can be

described by the general volume integral formulation (Morse and Ingard 1968) of the distorted

wave Born approximation (DWBA):

2

fb, (K- y p)ei2 ( k ,)2 rodvo (EQ 5.3)

Recently, Chu et al. (1993) and Stanton et al. (1993b) developed a DWBA model to describe the

frequency-dependent scattering characteristics of elongated, fluid-like zooplankton at all angles of

orientation. If the body has a circular cross-section at every point along its length-wise axis, the

DWBA volume integral (EQ 5.3) may be reduced to a line integral along this axis (Stanton et al. in

press b), yielding an accurate expression for the scattering from an elongated, weakly-scattering

fluid-like finite cylinder as a function of size, shape, material properties, and angle of orientation:

TS 20log k,2(,)2 poJ1(2 k2a cos Ptilt)Idos (E 5.4)
TS = _o J (YK-ype t2 J )  COS (EQ 5.4)

'pos

In (EQ 5.4), TS = 20log f bsl, k = 2-n/ is the acoustic wavenumber (X = c/f where c is the sound

speed in m/s and f is the acoustic frequency in Hz), (ki) 2 
= k2 = kl/h, J1 is a Bessel function of

the first kind of order 1, yp = (p 2 - p1)/P 2, and YK = (K 2 - K1)/' 1 with compressibility K defined

as Ki = 1/(pci2 ) ; subscript 1 refers to the surrounding medium (seawater), subscript 2 refers to the

fluid-like medium of the zooplankton body, so that (y,-yp) = (1/gh 2)+(1 /g) -2, where

g = p2/p 1 is the density contrast of the organism relative to water, and h = c2/C 1 is its sound

speed contrast. This model predicts the scattering from a deformed fluid-like cylindrical body of

arbitrary shape (i.e. the cross-sectional radius of the cylinder a can vary along the length-wise

axis) for any angle of orientation relative to the incident acoustic wave by integrating the scattering

contributions of each infinitesimally thin cross-section (located at rpos along the length-wise axis,

at an angle ft,,t relative to the incident acoustic wave) over of the entire animal body.

The line-integral DWBA formulation in (EQ 5.4) can be implemented in a numerical integration

scheme to model the orientational dependence of the scattering from an animal of known size,

shape, and material properties. The animal body may be discretised into several cylindrical cross-

sections, each defined by a position r,,o along the length-wise axis of the animal body at an angle



it, relative to the incident acoustic wave, a radius a, a density contrast g, and a sound speed

contrast h. This discretisation was achieved by digitising the outline of the animal from a video

image (in lateral aspect if possible), capturing several points along the dorsal and ventral surfaces

(see Figures 5-11 and 5-12 A, B). This outline was then scaled to size using the measurements

made of the animal after insonification (Table 5-1), and a and rpos were computed for each

discrete segment from each dorso-ventral pair of points. The sound speed contrast and density

contrast were held constant over the animal body; values of g = 1.0357 and h = 1.0279 (as

measured for Euphausia superba by Foote 1990) were used. For a particular angle of orientation

of the animal, the backscatter at each of 203 acoustic frequencies (between 348.33 kHz and 685

kHz) was computed as the sum of the scattering contributions of each of the cylindrical cross-

sections due to an incident acoustic wave vector k = (kfl cost i lt, I sin Pit,). Since the

orientational dependence of the scattering predicted by the DWBA model is symmetrical about

180" for an arbitrary shape with circular cross-section, the model was implemented by varying the

angle of orientation in 1" increments between 0" and 180. Appendix A of McGehee et al.

(accepted) contains Matlab® code to implement this numerical integration scheme.

Inversion for Angle of Orientation

If the acoustic backscattered energy from elongated, fluid-like zooplankton exhibits a strong

orientational dependence, biomass estimates for krill and other euphausiids based on the

interpretation of acoustic survey data would be much improved by in situ determination of angle of

orientation. Classification inversion schemes have been developed which can categorise individual

zooplankton into distinct scatterer types (e.g. fluid-like, elastic-shelled, gas-bearing), as well as

invert for specific parameters (e.g. animal size, animal orientation), based on the signature

information contained in the return spectra of broadband insonifications of the animals (Martin et

al. 1996; Martin Traykovski et al. submitted). Such a classification approach was applied to the

echo spectra collected from E. superba during these scattering experiments to investigate the

feasibility of inverting broadband acoustic returns for angle of orientation for these fluid-like

zooplankton.

The Covariance Mean Variance Classifiers (CMVC) (Martin Traykovski et al. submitted) are a set

of advanced model based techniques which classify observed echo spectra based on the

correspondence between the observations and model predictions. Theoretical or empirical

scattering models are used to construct a model space, which consists of model realisations
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representing predictions of the models for particular parameter values spanning the entire

parameter space. For the E. superba data, the objective of this classification is to invert observed

echo spectra for a specific parameter value: angle of orientation. The CMVC techniques can be

implemented in several alternative configurations, one of which may be employed to search the

entire physical model parameter space for the best-match model realisations for a set of

observations, and report the parameter values of interest. Determination of the best match is based

on the CMV metric (C), which quantifies the correspondence between an ensemble of observed

echo spectra (D) and all the model realisations (M) based on their covariance (K, which compares

their spectral structure), weighted by the similarity of mean echo levels (X) and the variance

similarity (U), so that:

C = CMV(M, D) = K X -U (EQ 5.5)

Note that in (EQ 5.5), C,1 = D kMk i X, 'U,, since K = DTM is the covariance (0 K, <1)
k=1

between the observed data matrix D and the model space matrix M. Each column of D contains a

mean-subtracted, energy-normalised observed echo spectrum, whereas each column of M contains

a mean-subtracted, energy-normalised model realisation. X and U are the mean and variance

similarity matrices (0 _ X,,, U, _ 1, where X,, = 1 indicates that the ith observation and the jth model

realisation have the same mean echo levels, and U, = 1 indicates that the ith observation and the jth

model realisation have identical variance), nP is the number of points in each echo spectrum, and

"-" indicates element-wise multiplication of matrices. The best-match model realisation for the ith

observed echo spectrum is found by determining the column m in which the maximum value in

row i of C occurs, for example, for the first observation, i = 1 and the best-match m is the

realisation for which C,m = max(Cl) over all j. The inversion result for observation i is then the

angle of orientation associated with the model realisation m that best predicts that observation.

The ability of the classifier to invert echo spectra for angle of orientation depends to a large extent

upon the representativity of the model space, that is, whether it accurately predicts the scattering

over the entire observed range of the parameter values with sufficient resolution. In this inversion

of krill echo spectra for angle of orientation, two theoretical model spaces and two empirical

model spaces were employed. The theoretical model spaces include a size-constrained generic

model space for all animals, and 11 animal-specific model spaces, one for each animal; both types

consist of model realisations generated from predictions of the DWBA model (EQ 5.4). For the

generic model space, five distinct discretisations of the animal body, representing five different
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animal shapes (each approximately the size of the animal) were used as input into the DWBA, and

model predictions were made as described in the previous section. The animal-specific theoretical

model space generated for each animal consisted of realisations generated from the DWBA in the

same manner, except the discretised shape was digitised from an image of that particular animal,

so that it corresponded with the exact size and shape of that krill. The empirical model spaces

included both a generic empirical model space, constructed by interpolating the echo spectra

received from Animal 01 over angle of orientation (with 1' resolution), and four animal-specific

empirical model spaces (for Animals 01, 03, 05 and 09), generated by interpolating the empirical

data in the same manner, but based on the observed echo spectra for each animal. Only Animals

01, 03, 05 and 09 exhibited a sufficiently wide range of orientations to generate a model with nearly

complete angular coverage (see orientation distribution histograms in Figure 5-10).

5.3.3 Results and Discussion

Variability in Echo Spectra with Angle of Orientation

Acoustic returns from the krill varied considerably with angle of orientation (Figure 5-10). Echo

spectra from animals near broadside incidence relative to the incident acoustic wave ((p = 90) were

characterised by widely-spaced deep nulls (often 20 dB or greater), usually separated by 200 kHz,

whereas the frequency response of off-broadside echoes exhibited a more erratic structure, with

several closely spaced (< 50 kHz) nulls of variable depth. The scattering from elongated, fluid-like

zooplankton at broadside incidence is thought to be dominated by the constructive and destructive

interference between the echo from the front interface and the echo from the back interface of the

animal (see Figure 5-15 CASE 1). At off-broadside angles, contributions from other scattering

features of the animal body are believed to become more significant, resulting in a more

complicated/erratic interference pattern with many nulls (Stanton et al. 1994b; in press b).

The effect of orientation on average echo levels was investigated by computing the mean target

strength (arithmetic mean over all frequencies) of the echo spectra received at each angle of

orientation (p. Spectrally-averaged TSs (not shown) were found to be about 5 dB higher near

broadside incidence vs. off-broadside for most animals. For the larger animals (e.g. Animals 02, 03,

05, 06, 11), average target strengths over the frequency band were approximately -70 dB at

orientations near broadside vs. -75 dB off-broadside, whereas for the smaller animals (e.g. Animals

01, 08, 09, 10), the average TS near-broadside incidence was about -75 dB, versus off-broadside

spectrally-averaged target strengths of approximately -80 dB. These observations are consistent
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with what is expected based on the physics of scattering from elongated objects (Stanton 1988a,b;

1989a, 1993a,b) since at broadside incidence, an elongated krill presents a much larger

backscattering cross-section to the incident acoustic wave than at any other angle of orientation.
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There is a maximum of ±150 uncertainty in the calculation of c( using the video analysis method

described to extract angle of orientation from two-dimensional images of the animal. Some of this

uncertainty arises from possible error during measurement of the video frames, as a result of the

limited pixel resolution of the image and the curvature of the animal body, both of which can affect

the measured projected length of the animal. Measurement error is greatest when the animal is

broadside to the camera and decreases non-linearly at angles off-broadside, since very small

changes (errors) in the measured length when the projected length is maximum result in greater

changes in computed angle relative to measurement errors made when the animal is off-broadside

relative to the camera. An additional source of error in the calculation of p arises from small

changes in the value of a (the angle between the camera line of sight and the transducer line of

sight, see Figure 5-9 B) due to uncertainty in the exact fore-aft camera position relative to the

transducer bank. The maximum uncertainty of ±150 is a conservative estimate based on a

sensitivity analysis of the effect of these sources of error on the calculated values of (p. In the

experiment, not all animals assumed all orientations during insonification, as is evident from the

histograms of the orientation distribution measured for each animal (Figure 5-10); Animals 01, 03,

05 and 09 were insonified at the widest range of angles (p. As a result of the extreme sensitivity of

the measurement technique to very small changes in projected length near broadside incidence,

many of the histograms exhibit low echo counts at or near (p = 900. It should be noted that for an

animal oriented broadside to the camera, (p can take on values between 900 + a and 900 - a, so that

the animal is not necessarily at broadside incidence relative to the acoustic wave.

Comparison to DWBA model theoretical predictions

Experimentally measured echo spectra versus angle of orientation (p were compared to theoretical

model predictions based on a DWBA model for each animal. Two examples are presented: Animal

01 (Figure 5-11) and Animal 03 (Figure 5-12). Results for these animals are shown because they

assumed the widest range of orientations during insonification, providing the best angular

coverage over which to visualise the comparison between observations and theory. The pattern of

changes in echo spectra with (p is very similar for the experimentally measured data and the

DWBA model predicted spectra for all 11 krill, with only one or two nulls apparent in the

frequency responses near broadside incidence, whereas the spectra become much more oscillatory

(more peaks and nulls) off-broadside. Although the patterns agree qualitatively, the DWBA model

predicts a much greater drop in TS (about 20 dB) as orientation changes from broadside incidence
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to off-broadside (i.e. 20" - 60 , and 120" - 160*) than was actually observed for these animals as they

changed orientation (about a 5 dB drop going from broadside incidence to off-broadside). Another

feature of the theoretical model predictions not observed in the data is a subsequent increase in

echo-levels closer to end-on (head-on and tail-on). In fact, the DWBA model consistently under-

predicted off-broadside echo levels for all 11 animals, but model predictions of TS values near end-

on were more consistent with the observations.

The DWBA theoretical model, which predicts scattering based on a highly simplified outline of

the animal body by approximating it as a deformed cylinder, does not account for contributions of

other scattering features of the complex animal body (e.g. rapidly moving legs). These

unaccounted-for scattering features appear to make significant contributions to the observed echo

levels at off-broadside angles of incidence for these krill. Examination of the time series of angle

of orientation throughout the experiment revealed that for some animals orientation was rapidly

varying (e.g. Animals 01 (see Figure 5-11 D), 02 and 05), whereas other krill changed orientation

slowly (e.g. Animal 03 (see Figure 5-12 D), 09 and 10)), and still others (especially Animal 07)

remained close to the same orientation throughout the experiment. Constraining the krill by

tethering around the mid-section likely affects their activity level by eliciting an escape response.

The impact of animal activity on echo levels is unknown, although some correlation between rapid

swimming and elevated echo levels has been observed by the authors.

Inversion for angle of orientation

The information contained in the broadband echo spectra collected from the krill was used to

invert the acoustic returns for animal angle of orientation. To accomplish this, a classification

inversion using the Covariance Mean Variance Classification approach was performed on the krill

echo spectra. This model based inversion was applied using both theoretical and empirical model

spaces (Figure 5-13 shows raw and bin-averaged Animal 03 inversion results for both theoretical

and empirical model spaces). The raw inversion results tended to be quite variable, particularly for

the theoretical model spaces, whereas the bin-averaged results (obtained by averaging over five

nearest neighbours) were less sensitive to outliers, and more clearly delineated how each model

space performed in inverting for angle of orientation. Surprisingly, inversions obtained for most of

the 11 krill using the animal-specific DWBA model space were no more accurate than could be

achieved with the size-constrained generic DWBA model space. This indicates that the frequency

response of the acoustic return, although sensitive to animal size, is relatively insensitive to animal
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Figure 5-13 Inversion of echo spectra from Animal 03 for angle of orientation using the CMVC inversion

technique, assuming symmetry about broadside incidence (90'). Observed angle of orientation

(p (solid line) shown together with inversion results (points) achieved using four different model

spaces: generic DWBA model space constrained to approximate size of Animal 03 (top);

animal-specific DWBA model space for Animal 03 (2nd row); generic empirical model space

(based on data from Animal 01, 3rd row); animal-specific empirical model space (based on data

from Animal 03, bottom). Raw results shown at left, bin-averaged (over 5 echoes) results shown

at right, including scatter plot of inverted vs. observed angle of orientation (dashed 45' line

indicates perfect correspondence between inversion results and observations).

shape; the animal-specific model space was generated using the digitised shape of each animal

scaled to the exact measured size, whereas the generic DWBA model space, although constrained

to be approximately the same size as the animal, was generated using five arbitrary shapes

digitised from different euphausiid zooplankton. Although the generic DWBA theoretical model

space was not able to accurately invert for angle of orientation for these animals, this generic

theoretical model space has been shown to be quite powerful in discriminating between different

types of scatterers; the DWBA model has been employed in conjunction with two other theoretical
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model spaces to classify several different species of zooplankton into three scattering classes (i.e.

elastic-shelled, fluid-like, gas-bearing) based on broadband echo spectra (Martin Traykovski et al.

submitted). While the resolution of the generic DWBA theoretical model space is sufficient for

identifying krill and other euphausiids as elongated, fluid-like scatterers, it is possible that

modelling these animals as simple deformed cylinders is not adequate if the goal is to invert single

broadband echoes for a particular parameter (e.g. angle of orientation).

For most of the krill, the animal-specific DWBA theoretical model space did not perform as well

as the generic empirical model space (which was based on acoustic returns collected from Animal

01); it would appear that a generic empirical model space based on data collected from an arbitrary

krill is better able to invert for angle of orientation than an animal-specific theoretical model space,

which predicts the scattering based on the actual size and shape of that particular animal. Although

the generic empirical model space was based on data collected from an animal of different size and

shape, it did account for contributions of other scattering features of the complex animal body not

included in the simplifying theoretical model. Orientations predicted using the animal-specific

empirical model space were the most accurate overall for Animals 01, 03, 05 and 09, providing a

more robust inversion than that achieved with the generic empirical model space (Figure 5-14

shows generic and animal-specific empirical model space inversion results for these animals).

For these inversions (which are based on choosing the global maximum best-match echo spectra),

symmetry about broadside incidence was assumed since both the observations and the theoretical

model predictions for all animals exhibited considerable symmetry around 90* (see Figures 5-11 F,

G and 5-12 F, G), so that a good match to a 45' model realisation will likely also be a good match

to the similar 135' model realisation. In applying the CMVC inversion algorithm, the mean

similarity (as represented by X in (EQ 5.5)) was included only for inversions using the animal-

specific empirical model space. This mean comparison was suppressed when classifying with the

other three model spaces, since the theoretical models had been shown to under-predict mean echo

levels at many angles of orientation, and an empirical model based on a different-sized animal will

exhibit different mean echo levels. In these cases, the inversion was based only on correlation in

spectral structure between the observed echo spectra and the model realisations in the model

space, as well as the variance similarity of the observations and the model realisations.

For elongated, fluid-like zooplankton such as krill, the structure of the frequency response depends

on both size and orientation, so that it is not possible to invert broadband echo spectra for angle of
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model space (based on data from Animal 01, left) and the animal-specific empirical model space

(right). Observed orientation (p (solid line) shown together with inversion results (points); 45animal may h/180ave a structure similar to that received from a much smaller animal0/180 at a different

orientation relative to the incident acoustic wave. To illustrate this, consider a simple scattering

model which includes a summation of only two rays (Stanton et al. 1993a,b), accounting for the

constructive and destructive interference between the rays reflected from the front and back

interfaces of a weakly scattering target such as a krill. The null spacing of the frequency response
predicted by this two-ray model depends on the apparent size of the animal, that is, the distance

the acoustic wave travels between the front and back interfaces of the animal. Apparent size is a
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function of both animal radius and angle of orientation, so that the echo spectrum of a large krill at

broadside incidence can exhibit the same structure as that of a smaller animal oriented off-

broadside relative to the direction of insonification (Figure 5-15).

CASE 1:
krill of radius a1  p P

(broadside) Pb
TS

frequency
CASE 2: CASE 3:

krill of radius a2  krill of radius a1
(broadside) (off-broadside) p, pf

P1 f PPb

TS

, -IAfijl

frequency

p, = normally incident ray
pf = ray scattered from front interface (in receiver direction)

Pb = ray scattered from back interface (in receiver direction)

Figure 5-15 Comparison of echo spectra received from krill insonified at high frequency (X << a) for a small

animal (radius al) at broadside incidence (CASE 1) and off-broadside (CASE 3), and a large

animal (radius a2 > a,) at broadside incidence. Nulls in the echo spectra result from destructive

interference between the echo from the front interface pf and the echo from the back interface pb

of the animal, which occurs when the phase difference between them 4f/b is it radians; for the

three cases shown: f/b = t = (2ntAf 1/c)d 1 = (21tAf 2/c)d 2 = (27rAf 3/c)d 3, where d is the distance
the ray travels inside the body in each case, and c is the speed of sound in the body. When an

animal is at broadside incidence (CASE 1 and CASE 2), d1 = 4a, and d2 = 4a 2, but off-broadside
(CASE 3), the apparent size (to the acoustic wave) of the small krill is greater than a1 , so that d3
# d1. Here d3 = d2 so that the null spacing is the same for CASE 3 as for CASE 2 (i.e. Af 3 = Af 2).

Knowledge of animal orientation during insonification could significantly improve acoustic

biomass estimates of zooplankton, particularly for aggregations of similarly-sized individuals of a

single species, for example, swarms of Antarctic krill in the Southern Ocean. The in situ

orientation distribution of Euphausia superba has not been measured quantitatively. Observations

of freely-swimming E. superba in an aquarium indicated that they assumed a wide range of

orientations (corresponding to (p varying between 40 and 180°), but spent most of the time
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swimming upward at a steep angle, so that they would most often be oriented within 60" of end-on

incidence relative to a downward-looking echosounder (Kils 1981). It is probable that the animals

in Kils' aquarium (as well as the tethered krill insonified in these scattering experiments) assumed

a much wider range of orientations than would be observed in the field by a downward-looking

sonar system. In fact, qualitative in situ observations of E. superba by Hamner et al. (1983)

revealed that all individuals in a school assumed the same orientation, and that krill in an

aggregation usually swam horizontally; descending at angles of less than approximately 10"

relative to the horizontal.

Information obtained via broadband insonification of individual zooplankton in the field,

combined with ground-truthing of animal size (from net samples), could be inverted for angle of

orientation with the CMVC inversion technique using a generic empirical model space (e.g. the

one constructed based on data collected from Animal 01, or alternatively, one based on data

collected from krill at known orientations in situ). Technological challenges that must be overcome

to permit field implementation of a classification inversion based on broadband echo spectra

include variable beam width and variable SNR over the bandwidth of current broadband sources

suitable for field use; development of constant beam width broadband transducers is underway by

others. Orientational information obtained through inversion of the frequency response of

broadband echoes may then be used in conjunction with single-frequency acoustic survey data to

make more accurate biomass estimates of Antarctic krill stocks in the Southern Ocean.

5.3.4 Summary

Acoustic scattering experiments involving simultaneous acquisition of broadband echoes and

video footage from several Antarctic krill were carried out to determine the effect of animal

orientation on echo spectral structure. Video images were analysed to determine the angle of

orientation of the krill corresponding to each insonification. This analysis revealed that echo

spectra from animals near broadside incidence relative to the incident acoustic wave were

characterised by widely-spaced (-200 kHz) deep (>20 dB) nulls, whereas the frequency response of

off-broadside echoes exhibited a more erratic structure, with several closely spaced (< 50 kHz)

nulls of variable depth. Spectrally-averaged TS was found to be about 5 dB higher near broadside

incidence vs. off-broadside for most animals. Experimentally measured echo spectra versus angle

of orientation were compared to theoretical model predictions based on a DWBA model for each

animal. The orientation-dependence pattern exhibited by the experimentally measured echo
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spectra for all 11 krill is very similar to the pattern predicted by the DWBA model for each animal;

however, the theoretical model predicts a much greater (by about 15 dB) drop in echo levels as

orientation changes from broadside incidence to off-broadside than was actually observed for

these animals as they changed orientation. Information contained in the broadband echo spectra of

the krill was exploited to invert the acoustic returns for angle of orientation by applying the

Covariance Mean Variance Classification approach, using generic and animal-specific theoretical

and empirical model spaces. The animal-specific empirical model space (based on data collected

from the appropriate animal) was best able to invert for angle of orientation. Notably, the generic

empirical model space (based on data collected from an arbitrary krill) was better able to invert for

angle of orientation than the animal-specific theoretical model space (which predicts the scattering

based on the actual size and shape of that particular animal). The CMVC inversion technique can

be implemented using a generic empirical model space to determine angle of orientation based on

broadband echoes from individual zooplankton in the field. Pending technological development of

a broadband sonar for deployment in conjunction with single-frequency acoustic surveys of

Antarctic krill, extraction of this orientational information has the potential to significantly

improve biomass estimates of krill stocks in the Southern Ocean.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

This final chapter includes a first-order comparison of the performance of the different

classification techniques developed in this thesis. Some guidelines are given for the

implementation of these classification approaches based on the strengths and weaknesses of each

technique. Some thoughts on the requirements for implementation of these classifiers with field-

collected data are outlined, and recommendations for future research arising from this thesis work

are made. The final section includes a summary of the contributions of this thesis.

6.1 COMPARISON OF CLASSIFICATION TECHNIQUES

In the course of this thesis work, a feature based classifier and several model based classifiers were

developed for the purposes of classifying broadband acoustic echoes from zooplankton. The

feature based Empirical Orthogonal Function Classifier (EOFC) discriminates scatterer types

based on differences in echo variability without relying on the predictions of theoretical scattering

models. The majority of this thesis work was focused on developing and refining model based

approaches in order to best exploit the existing set of theoretical forward models, which express

the relationship between backscattered echo spectra from individual zooplankton and the physical

model parameters. The Model Parameterisation Classifier (MPC) depends on comparison of

observed echo spectra with simplifying parameterisations of the theoretical scattering models for

each class, assigning a given acoustic return to one of the three scattering classes. The Covariance

Mean Variance Classifiers (CMVC), which include the Integrated Score Classifier (ISC), the

Pairwise Score Classifier (PSC) and the Bayesian Probability Classifier (BPC), are a set of more

advanced model based techniques which exploit the full complexity of the theoretical models by

searching the entire physical model parameter space without employing simplifying

parameterisations. This more sophisticated CMVC approach not only allows inversion for

scatterer class, it also has the potential to invert for certain physical characteristics of the scatterer

represented by the model parameters (e.g. size, orientation).

The performance of the various classifiers was evaluated with data collected during scattering

experiments conducted in a ship-board tank on animals collected from Georges Bank and the Gulf

of Maine. Classification results achieved with the different approaches for the entire 1993 dataset,

as well as for a selected subset of the highest quality 1993 data, are compared (Table 6-1). The

165



high quality (high SNR) 1993 data subset consisted of 50 echoes each from a single representative

of each class: for ES a pteropod Limacina retroversa 93-29; for FL a euphausiid Meganyctiphanes

norvegica 93-33; for GB a siphonophore Agalma okeni. With this high quality data, feature based

and model based classifiers both gave excellent results overall. The EOFC and MPC were better

able to correctly classify data from the FL class than were the CMVC classifiers, with the

exception of the best-match (max C) CMVC-PSC classifier, which produced 100% correct

classifications for the high-quality data from all three classes. For both CMVC-ISC and PSC,

using the best match (max C) criterion yielded better results overall than those achieved using the

maximum score (max S) criterion; however, the opposite is true with the BPC, for which the

maximum score results were considerably better than the best-match results.

Table 6-1 Comparative performance of classification techniques developed in this thesis. Results (%
correctly classified) shown for entire 1993 dataset (right) as well as for selected subset of highest
quality 1993 data (left, same subset as that shown in Figure 2-3, Figure 3-4 and Figure 4-10). For
the entire 1993 dataset, spectra from the ES class were collected from 8 individual pteropods
Limacina retroversa, FL spectra were collected from a single euphausiid Meganyctiphanes
norvegica, and spectra from the GB class were collected from 9 individual siphonophores
Agalma okeni, as described in Section 1.3. For the CMVC techniques, max S results are those
based on assigning observations to the class with maximum score; max C results are those based
on assigning echoes to the class containing the best match model realisation. ISC and PSC
implemented with A and Wv; BPC implemented with TYPE II class-support fP)'. For the high
quality data, n=10 (EOFC), n=50 (MPC), n=25 (CMVC) for ES, FL, and GB. For all 1993 data,
EOFC: n=80 (ES), n=200 (FL), n=90 (GB); MPC: n=400 (ES), n=1000 (FL), n=450 (GB);
CMVC: n=200 (ES), n=350 (FL), n=225 (GB) (1993 validation dataset).

1993 HIGH QUALITY DATA ALL 1993 DATA

CLASSIFIER: ES FL GB OVERALL ES FL GB OVERALL

M1-EOFC 100% 100% 80% 93% 95% 88% 73% 86%

MPC 100% 94% 92% 95% 37% 85% 40% 64%

CMVC-ISC: max S 100% 40% 100% 80% 16% 53% 88% 53%

max C 96% 68% 96% 87% 13% 72% 64% 54%

CMVC-PSC: max S 100% 64% 100% 88% 34% 73% 96% 69%

max C 100% 100% 100% 100% 43% 100% 100% 85%

CMVC-BPC: max S 96% 76% 100% 91% 15% 71% 79% 59%

max C 12% 84% 32% 43% 2% 95% 24% 50%

Comparing the results for the entire 1993 dataset, which includes data of variable quality (some

with considerably lower SNR than the high-quality subset), the best classification performance is

achieved with the feature based EOFC. The lower overall success rates of the model based MPC

and CMVC result from poor performance with the L. retroversa data (ES); much of this data
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exhibited a greater degree of noise contamination compared to data from the other 2 classes. The

CMVC techniques represent an improvement over the MPC for some data (e.g. GB, FL), since the

CMVC model spaces encompass a wider range of signal variability for each class than the MPC

model spaces, resulting in more accurate classifications. Although a high overall success rate was

achieved with the best-match (max C) CMVC-PSC, classification of ES data for this classifier was

quite poor.

Those acoustic returns that are not as well-predicted by the theoretical models, particularly those

with significant noise contamination, are expected to be more difficult to invert correctly with a

theoretical model based inversion scheme. Although the MPC and CMVC performed very well

with the high-quality sub-sample, these model based classifiers were less successful in classifying

the complete dataset, in which many of the echoes had lower SNR than the high-quality subset. In

particular, the model based classifiers were less successful with the Limacina retroversa data; this

is most likely due to the presence of sufficient noise contamination so that the data did not closely

resemble the theoretical model predictions. Since the MPC and CMVC rely on matching the

acoustic return to predictions of the theoretical models, noise contamination is particularly

troublesome for this type of classifier.

A feature based classifier such as the EOFC has the advantage of not relying on model predictions

to guide the classification, and has been found to be less sensitive to noise contamination in the

signal. Better results may be achieved by discriminating based on the intrinsic features of the

echoes, particularly if some of these features remain unaffected by noise contamination, or can be

easily distinguished from noise features (as in the case of the EOFC, where signal modes are often

quite distinct from noise modes). The overall performance of the feature based EOFC was

considerably better than the model based MPC, particularly for ES and GB returns. The modal

feature, which represents the dominant variability in the signal, appears to be much stronger than

the noise contamination in the L. retroversa data, contributing to the improved performance of the

EOFC over the model based MPC and CMVC (EOFC: 88% correct vs. MPC: 37% correct;

CMVC-PSC (max C): 43% correct). In fact, with the EOFC, most of the 5-ping ensembles for a

given L. retroversa were assigned to the same dominant mode, indicating that returns from an

individual share the same signature components. For A. okeni returns, the EOFC was able to

discriminate the oscillatory spectra as GB even though the MPC classed them as FL, indicating

that the dominant mode of variability for A. okeni was different than that for M. norvegica. Since
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the EOFC classifies based on the modes of variability present in small ensembles of echoes, it may

perform better than the model based classifiers when there is a high degree of within-class

variability in the echoes; by considering a small group of echoes at a time instead of only one,

some of the ping-to-ping variability will be captured in the modal features derived from this

ensemble of echoes.

6.2 GUIDELINES FOR IMPLEMENTATION

Several approaches have been developed in this thesis for the classification inversion of

zooplankton based on broadband echo spectra from individuals. Evaluation of the classification

algorithms involved assessing the ability of each classifier to discriminate signatures in the

presence of noise, as well as to handle the inherent ping-to-ping and animal-to-animal variability

in the acoustic returns from individuals in the same scattering class. It is expected that no single

inversion approach will provide the best answer under all circumstances. Some guidelines for the

implementation of the various classifiers are outlined here. These guidelines are based on the

relative strengths and shortcomings of each classification approach, taking into account the

success rate of each classification algorithm with known data. Some of the factors considered

include the differential performance of each of the classifiers with noise-contaminated or

bandwidth-reduced data, success with highly variable echoes within a class, as well as differential

ability to discriminate echoes from members of each of the three scattering classes (as shown in

Table 6-1). Other considerations include whether or not a sound theoretical basis exists from

which to develop a scattering model for each class, what type of inversion result is desired, and the

computational resources available to perform the classification. The implementation guidelines are

summarised in the form of a decision matrix (Table 6-2).

In order to best make use of these guidelines to arrive at a decision regarding which classification

approach to implement in a particular situation, some a priori information is required. For

example, some knowledge of the presence and degree of noise contamination, the variability of

echoes expected from animals within a particular scattering class, the scatterer types present, and/

or the size and orientation of the scatterers, will serve as important a priori information, affecting

the choice of the most appropriate inversion technique for the problem at hand. In the absence of

any a priori information regarding data quality and/or scatterer types and attributes, the classifiers

must be considered equally effective in those regards, and the implementation decision must be

based solely on other criteria, such as the type of answer desired, or computational considerations.
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The guidelines given in Table 6-2 can be used to preferentially weight some approaches over

others in the presence of a priori information, while ruling out those alternatives that do not meet

the requirements for a particular classification problem.

Table 6-2 Decision matrix for implementation of the classifiers developed in this thesis. Criteria/constraints
listed at left. A circle "O" indicates the preferred option(s) for the criteria listed. A cross "X"
indicates that classifier does not meet criteria listed, and cannot be implemented for that purpose.
A dash "-" indicates that classifier was not evaluated with respect to the criterion. EOFC:
Empirical Orthogonal Function Classifier; MPC: Model Parameterisation Classifier; CMVC:
Covariance Mean Variance Classification techniques; ISC: Integrated Score Classifier; PSC:
Pairwise Score Classifier; BPC: Bayesian Probability Classifier; max S: classification based on
maximum class score; max C: classification based on best-match model realisation.

CMVC
EOFC MPC

CRITERIA / CONSTRAINTS: max S max C

Forward model for each class: theoretical O O O O

empirical O O

none O X X X

Type of answer desired: assign each echo to a class O O O O

error bounds on class assignment X X 01

probability/certainty echo in each class X X 01

invert for particular parameter value X X 02

Data quality: considerable noise contamination O

high signal variability within a class O O O

reduced bandwidth O

single echo per individual only X O O O

A priori information: predominantly ES individuals present O

predominantly FL individuals present 0 O 01

predominantly GB individuals present 0 3  02

Computational power (speed, RAM, storage) available: limited O

moderate O O

high O O O O

1. PSC or BPC preferred over ISC
2. PSC only
3. ISC or PSC preferred over BPC

For inversion problems where the theoretical or empirical basis from which to construct a

relationship between observed data and model parameters is not well-characterised, it is necessary

to employ a feature based inversion technique, such as the EOFC, which can operate

independently of a forward model. If the goal of the classification is to assign an echo to a

particular scattering class, any of the classifiers are capable of producing this result; however, only
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the maximum score CMVC approaches (max S) can provide error bounds on this answer, as well

as giving an indication of the probability or certainty that the echo belongs to each class. The

EOFC and MPC are not capable of inverting an echo spectrum for particular parameter values

such as animal orientation; for this application, the best-match (max C) Pairwise Score Classifier

(PSC) is the best choice. The EOFC is the preferred alternative for classification problems where

there is significant noise contamination, whereas both the EOFC and the CMVC techniques

perform better than the MPC in cases where there is considerable echo variability within a class.

Notably, the EOFC relies on the availability of several echoes from each individual to assign it to a

class, so that the availability of only a single echo per individual precludes classification with the

EOFC. As summarised in Section 6.1 (see Table 6-1 for details), some of the inversion techniques

give better classification results with certain scatterer types. As a result, an a priori estimate of the

relative abundance of the different scatterers (e.g. from net tows) would be very useful in guiding

classifier selection. Finally, computational considerations may place constraints on classifier

choice. The CMVC approaches, for example, are computationally intensive algorithms which

require a significant amount of memory (at least 100 megabytes of RAM) to implement, as well as

a fast processor, and sufficient disk space for storage of the model spaces, weighting functions, and

CMV metric matrices. On the other hand, the EOFC and MPC are more streamlined approaches,

and although they will run faster with a faster processor, these algorithms do not have the RAM or

storage requirements of the CMVC. The EOFC is more demanding of RAM and disk space (due to

the modal computations) than is the MPC, which requires only a small amount of disk space to

store the compact, parameterised model spaces. The decision of the most appropriate inversion

approach to implement for a particular classification problem may be arrived at by weighing each

of these factors based on the guidelines given in Table 6-2.

6.3 CONSIDERATIONS FOR FIELD DATA COLLECTION

The successful implementation of a classification scheme which will result in a more accurate

estimate of animal biomass in the water column through the inversion of acoustic returns from

zooplankton relies on the mode and quality of ocean sampling. Specific considerations include the

type of acoustic data required to apply the classification scheme successfully, including the

minimum data set on which these inversions could be carried out, as well as the technological

developments necessary to acquire this data set. Field application of some approaches may require

more than one single-target broadband insonification per individual. Spatial resolution adequate to
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resolve individuals may be achieved by casting the echosounder through zooplankton aggregations

in a tow-yo mode. Technological challenges that must be overcome to permit field implementation

of a classification inversion based on broadband echo spectra include variable beam width and

variable SNR over the bandwidth of current broadband sources suitable for field use; development

of constant beam width broadband transducers is underway by others. These issues must be

addressed to drive acoustic sampling technology in a direction that will facilitate the

implementation of this acoustic classification approach for the purposes of increasing the accuracy

of in situ zooplankton biomass estimates.

The classification techniques presented herein were developed using acoustic data collected from

captured animals, tethered and suspended in an experimental tank. There is a possibility that the

experimental conditions may have resulted in some acoustic returns, or features of these returns,

that rarely would occur under natural conditions in situ. For example, animal behaviour and

orientation in situ differs significantly from tethered behaviour, and it is likely that individuals

insonified in the scattering experiments exhibited a much wider range of orientations than they

would in situ. Certain artifacts may be introduced by removing the organisms from their natural

environment, including multiple bubbles resulting from embolism of the single gas inclusion of

siphonophores, and the retraction of pteropod feet and mucous web when captured. In the case of

animals kept in long-term storage before insonification, such as the Antarctic krill, which were

stored without food for about six months prior to the scattering experiments, the material

properties (sound speed contrast, density contrast) of the laboratory animals may differ from those

of animals under natural conditions. In addition, the experimental conditions may have introduced

noise contamination that is not necessarily representative of the noise likely to be present in field-

collected data. For example, many of the scattering measurements were made in a ship-board tank

while cruising at normal boat speed in sea states as high as 5; sources of electrical noise from ship

operations, as well as turbulence-induced temperature microstructure due to sloshing and/or

stratification of the tank water, may have introduced artifacts that would not be observed under

natural conditions. Although the laboratory data set may not be fully representative of in situ

acoustic echoes from these zooplankton, the classification inversion approaches outlined in this

thesis illustrate the potential of exploiting class-specific and individual-specific differences in

broadband echo spectra acoustic signatures for the purposes of automatic acoustic classification of

zooplankton.



The ultimate goal of acoustic sampling of the ocean is to elucidate the broad-scale distribution and

abundance of animal taxa, as well as the relationship between biological distributions and the

physical properties of the water column. As a result, approaches to the collection and analysis of

acoustic backscatter data for the purposes of zooplankton biomass estimation are evolving toward

a more integrated approach that will encompass a variety of acoustical, optical and standard

physical oceanographic measurements (see Wiebe et al. 1997). Complementary data sets are being

acquired using video techniques such as the Video Plankton Recorder (VPR), net tows with coarse

depth resolution such as the Mutiple Opening/Closing Net and Environmental Sensing System

(MOCNESS), as well as via environmental sensors for the measurement of micro-scale features

(e.g. conductivity, index of refraction, turbulence microstructure), and fine- to coarse- scale

features (e.g. temperature, salinity, optical beam transmittance, flourescence, downwelling

irradiance) of the water column. Acoustic sampling now includes measurements made at a variety

of frequencies, using both upward-looking and downward-looking transducers, towed at a constant

depth, and tow-yowed throughout the water column. Incorporation of broadband acoustic single-

target measurements into this integrated sampling regime will provide the data necessary to solve

the inverse problem. Application of the classification inversion techniques developed in this thesis,

in combination with the a priori information available from simultaneously acquired VPR imges

and net tow samples, will allow identification of scatterers based on their acoustic signatures.

Information about scattering class, animal orientation, and size obtained through inversion of the

frequency responses of broadband echoes may then be used in conjunction with simultaneous

single-frequency acoustic volume backscatter survey data to make more reliable, accurate

estimates of zooplankton biomass.

6.4 RECOMMENDATIONS FOR FUTURE RESEARCH

This thesis work will serve as a departure point for future research into techniques for solving the

inverse problem in zooplankton bioacoustics. A natural extension of the classification approaches

developed herein is the application of these techniques to field-collected data. Pending

technological development of suitable broadband acoustic transducers, each of the classification

algorithms should be evaluated with data collected from known individuals in situ. Depending on

the representativity of the tank-collected data, application of the classifiers to field data may

necessitate some "re-training", particularly with respect to the validation sets used in the CMVC

techniques, and possibly the modal libraries for the EOFC, since these were based exclusively on
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tank-collected echoes. For example, the probability mass functions (PMF) employed in the

Bayesian Probability Classifier (BPC) may need to be re-constructed based on the the underlying

probability distribution of a field-observed validation set of echoes from animals in a given class,

since differences between tethered and natural orientation distributions may cause this field

distribution to differ from the tank-observed probability distribution. Upon field implementation,

each of the classifiers should also be evaluated in light of the particular signal-to-noise (SNR)

considerations experienced during field deployment, as these may differ considerably from the

types and levels of noise contamination experienced in the tank. It is anticipated that classifier

implementation on in situ echoes will be accompanied by ongoing algorithm development and

refinement, so that the techniques may be fine-tuned for particular classification applications as

they arise.

The preliminary results achieved with the feature based EOFC are very promising, particularly in

terms of its performance in the presence of significant noise contamination and signal variability.

The modal libraries for the EOFC could be supplemented using data collected during the 1994

cruise as well as the 1995 UCSC scattering experiment (for the fluid-like class only). Field

deployment of this classifier may also require further development of these libraries based on the

echoes collected from each scattering type in situ. With a large enough data set, the modal libraries

should be constructed using half the data, and the other half should be employed for classifier

evaluation and fine-tuning. Further investigation into alternative feature based classifers is likely to

prove productive, given the success achieved with the EOFC. The development of a suite of

feature based classification techniques will complement the model based classifiers, since the two

approaches have different strengths. Future work should involve seeking other characteristics of

the signatures (in addition to the modes of variability) that have the potential to uniquely identify a

particular scattering class. Features that are the most discriminating may then be selected to be

used in the classification.

Distance based classification techniques should be explored further, since a comprehensive

statistical framework exists for the development and implementation of such classifiers. These

techniques will allow exploration of a wider range of features, from which the best discriminators

may be identified by means of a rigorous feature extraction process. Based on an extensive

clustering analysis, statistical decision rules may be derived. These decision rules could be based

on the multivariate probability density functions for the features for each class, as well as derived
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directly from the distribution of known samples in feature space. The possibility of using

ensemble-type features (possibly based on statistical analysis of several echoes) should also be

explored, so that if several echoes from a single individual were available, the information

contained in this ensemble of echoes could be exploited to best advantage.

In preparation for applying the classification inversion techniques on data collected in situ, further

understanding of the limitations of each classifier in terms of sensitivity to signal degradation may

be useful. In particular, the CMVC techniques could be evaluated more rigorously in this regard by

applying them to simulated echoes possessing different known levels and types of noise

contamination or bandwidth reduction, in much the same way the EOFC and MPC were evaluated

in Sections 2.4 and 3.4. The effects of other types of signal degradation, for example, correlated

additive noise, or signal contamination due to the presence of multiple zooplankton scatterers in

the insonified volume, could also be investigated. The synergistic impact of the presence of more

than one source of signal degradation bears investigation; for example, the effects of simultaneous

bandwidth reduction and decreasing SNR (due to additive uncorrelated noise contamination) on

classifer performance could be evaluated. Armed with this understanding of the performance of

each classification technique under a suite of signal degradation conditions, the most suitable

inversion approaches for in situ data may be chosen based in part on the particular signal

degradation issues that arise in the field.

Another issue that has important implications for field application of these classifiers involves the

data requirements for successful classifier implementation. In addition to the minimum bandwidth

and SNR requirements for signature discrimination already discussed, other considerations include

the number of echoes required per individual, as well as the spectral resolution necessary to

sample the signatures. For the EOFC for example, although the classifier was evaluated based on

an ensemble size of 5 echoes, a sensitivity analysis could be carried out to determine the effect of

ensemble size on classifier performance, so that the suitability of this approach for applications

with smaller or larger ensemble sizes may be judged. The EOFC, MPC and CMVC techniques

were developed for application to broadband echoes for which sampling across the frequency band

is continuous. To assess their applicability to situations in which only a finite number of discrete

samples of the echo spectrum are available, the effect of decreasing spectral resolution on classifier

performance should be evaluated to determine the degree to which classification performance

degrades as the echo spectra are increasingly under-sampled.
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Acoustic sampling platforms have been deployed that provide a number of discrete frequency

samples, for example, MAPS (Multifrequency Acoustic Profiling System), which uses 21

frequencies from 0.1 MHz to 10 MHz (Pieper et al. 1990). The advanced version of BIOMAPER

has 5 frequencies from 43 kHz to 1 MHz (Wiebe et al. 1997), but sampling in the 350-750 kHz

band is limited to the data from a 420 kHz transducer. Even if the single-echo theoretical models

could be extended down into the Rayleigh scattering regime for all three classes of scatterers, it is

probably not possible to successfully invert for scatterer class with only these 5 frequency samples

of the echo spectra (spanning approximately 5 octaves) using the model based MPC and CMVC

classification approaches. The feature based EOFC is also unlikely to resolve different scatterer

types from BIOMAPER data, since the structure in the echo spectra observed for the animals in the

three scattering classes varies over a fairly narrow frequency range (nulls can be less than 50 kHz

apart), so that the spectral resolution achievable with BIOMAPER is probably insufficient to

adequately sample the modes of variability of the echoes. It is possible to chose the 5 frequencies

to minimise the power aliased, but this will not guarantee an optimal signal for classification. For

classification problems in which the available information content of the data is limited (e.g. with

only 5 frequencies, the signal will be aliased), distance based classification techniques (as

described in Section 2.1.1) are the most promising. The target strength at each of the 5 frequencies

may be projected in five-dimensional feature space, and following feature extraction, decision rules

can be applied to classify the echoes using classical statistical pattern recognition approaches.

Preliminary work with this distance based approach has shown promise for identifying different

water types and classifying waters containing different phytoplankton species based on satellite-

derived water-leaving radiances in only three narrow spectral bands (Martin Traykovski and Sosik

in prep.). It is likely that similar success could be achieved using this approach for the inversion of

zooplankton echo spectra for scatterer type based on only a few discrete frequency samples.

Inversion for particular model parameter values (e.g. animal size or orientation) using the CMVC

techniques has proven quite successful, particularly for elongated, fluid-like zooplankton.

However, in order to further evaluate and refine the techniques developed to invert echo spectra for

angle of orientation, more accurate orientational data needs to be collected during insonification.

The single-camera video system used record animal orientation during the 1994 cruise and the

1995 workshop scattering experiments cannot provide the same accuracy as that obtainable by

measuring animal orientation with a two-camera or a stereo-camera system. Future measurements

of all three scatterer types would benefit from the implementation of a more sophisticated camera
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system. The time required for analysis of the video data could be reduced significantly if the

camera system were triggered by the outgoing acoustic signal. In this manner, every frame

captured would give the orientation of the animal at the time of an insonification, eliminating the

time-consuming task of sorting through thousands of frames to locate those of interest. It may be

desirable to record the experiment on conventional video also, to provide a continuous record of

animal movement, which in some cases can serve to resolve ambiguities.

Although the 1995 workshop experiment at UCSC focused on individuals from the fluid-like class,

video data are available for individuals representing the other scattering classes from the

experiments performed on the 1994 cruise. In particular, analysis of the video data for the elastic-

shelled animals would be a valuable first step toward quantifying the relationship between shell

orientation relative to the incident acoustic wave and changes in acoustic signature. The shape of

the echo spectrum received from this animal is largely influenced by the relative contributions of

the specular reflection and the energy shed by the circumferential wave, as parameterised by Fspec

and F1 respectively in (EQ 4.13). It should be possible to quantify the relationship between these

parameters and shell orientation using video data, particularly for Fspec, which is dependent upon

the point of incidence of the acoustic wave on the shell (e.g. if the animal is oriented in such a way

that the acoustic wave is incident on the opercular opening instead of the hard shell, Fspec is much

reduced). Correlations between F, and shell orientation may be more difficult to establish, since

this parameter is largely dependent on the manner in which the circumferential wave propagates

around the shell, including whether or not it experiences attenuation due to intersection with the

opercular opening, which may not be obvious from orientational information obtained from the

video. Detailed analysis of the effect of animal orientation on echo spectra for all three scattering

classes should be accompanied by an analysis of the effects of other factors, for example, the

impact of changes in density contrast g and sound speed contrast h on the acoustic signatures.

Finally, implementing the CMVC (as described in Section 5.3) for the inversion of echo spectra for

specific parameter values such as angle of orientation in situ may require implementation of an

empirical model space representative of natural conditions, particularly if the in situ orientation

distribution differs from that observed in the tank. In general, a much better understanding of in

situ zooplankton orientation is necessary. This will require dedicated studies of natural animal

behaviour. Quantification of the orientation distribution of the scatterers of interest under natural

conditions would provide important a priori information to help constrain the classification

inverse, contributing to improvements in the accuracy of zooplankton biomass estimates.
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6.5 CONTRIBUTIONS OF THIS THESIS WORK

* Establishment of a comprehensive framework for the development of feature based and model

based classification techniques for the inversion of broadband echo spectra for zooplankton

scatterer class.

* Development of a feature based classifier, the Empirical Orthogonal Function Classifier

(EOFC), which discriminates between scatterer classes by identifying the characteristic modes

of variability in the echo spectra for each class.

* Development of a streamlined theoretical model based classification approach, the Model

Parameterisation Classifier (MPC), which exploits the predictive power of the theoretical models

for each scatterer class, distinguishing the echo spectra by relying on simplified

parameterisations of the theoretical model predictions.

* Detailed study of the sensitivity of the feature based (EOFC) and simplified model based (MPC)

classifiers to signal degradation, including the effects of contaminating noise and bandwidth

reduction on classifier performance.

* Development of a suite of sophisticated theoretical model based classification techniques, the

Covariance Mean Variance Classifiers (CMVC), which rely on comparisons of observed echo

spectra to theoretical model generated model spaces (encompassing theoretical model

predictions for particular parameter values spanning the entire parameter space) to classify

broadband echoes from zooplankton into scattering classes based on similarities in covariance,

mean, and variance, while accounting for ambiguity between model spaces as well as model

validity (representativity). The CMVC is a general formulation, applicable to a wide variety of

classification problems in oceanography.

* Development of an approach for the determination of angle of orientation at the time of

insonification employing a novel video data analysis technique, and application of this technique

in combination with acoustic data analysis to elucidate the effects of animal orientation on

acoustic signature.

* Development of theoretical and empirical model spaces for the inversion of broadband echoes

from elongated fluid-like zooplankton for angle of orientation.

* Specification of guidelines for the implementation of the classification inversion techniques.

177



ACKNOWLEDGEMENTS

There are many individuals without whom this thesis work would not have been possible, and I

would like to thank them by acknowledging their contributions to my work. My co-advisors Tim

Stanton and Peter Wiebe, and my thesis committee Penny Chisholm and Jim Lynch, have supported

me in this work over the last five years; their advice and encouragement is much appreciated.

There were many individuals involved in the collection of the data used in this thesis during the

1993 and 1994 cruises, as well as the 1995 Bioacoustics Workshop at UCSC. For the 1993 and

1994 cruises, my advisor Tim Stanton spearheaded the research program, lead every aspect of the

experiment, and was fully involved in the data collection activities. Special thanks to Dezhang

Chu, who was always happy to answer questions about the data. Many thanks also to Mark
Benfield, Nancy Copley, Charlie Corwin, Bob Eastwood, Duncan McGehee, Lori Scanlon, and the

captains and crews of RV "Oceanus" and RV "Endeavor" for helping to collect such a great data

set. Thanks to Bill Lange for the underwater video camera equipment. A warm thank you to Chuck

Greene from Cornell University for organising the three Bioacoustics Workshops I attended; these

provided a stimulating, interactive, and productive atmosphere in which to accomplish

experimental work and data analysis, and an opportunity to meet a group of talented colleagues,
among whom are those who contributed to the krill experimental work: Karen Fisher, Kathy

Vigness, Janice Jones, and Andrew Remsen; and those who provided resources: Langdon Quetin

and Robin Ross (who provided the krill), and Dan Costa, Bernie LeBoeuf, and Betsy Steele (who
provided laboratory space). A very special thank you to my co-authors Duncan McGehee and

Richard O'Driscoll for all their hard work and their careful review of the manuscript.

Many people at WHOI were very generous with their time and resources, providing a welcoming

and supportive environment in which to work. Special thanks to Hal Caswell for providing me
with lab space, computer resources, and funding support over the last five years. Past and present
members of the Caswell lab have been very kind in sharing their space, and have always been there

to discuss my ideas with me: Mike Neubert, Mark Hill, Jesus Pineda, Mercedes Pascual-Dunlap,
Myriam Barbeau and Sarah Little. Thanks also to Dan Smith, who has provided patient computer

support, including solutions to any roadblocks I encountered in my data analysis. And a special
thank you to Andy Solow, who has always been generous in his support, and in sharing his time
and ideas, and Heidi Sosik, whose support and encouragement have been important to me.

Thanks to the WHOI/MIT Joint Program Education Office for partial funding, as well as their

friendly staff; thanks also to the past and present educational coordinators for their dedication to

helping the students. Other sources of funding for my thesis work include the Ocean Acoustics,
Oceanic Biology and URIP programs of the Office of Naval Research grant numbers N00014-89-
J-1729, N00014-95-1-0287 and N00014-92-J-1527, and the Biological Oceanography program of

the National Science Foundation grant number OCE-9201264. Thanks to John Steele and Van

Holliday for arranging funding for me to attend the ICES Bioacoustics Symposium in Aberdeen.

My friends and family have been a foundation of support for me over the last five years. Thanks to

my dear friends Ewann Agenbroad-Berntson, Becky Coverdale, Dave Demer, and Lisa Garland,

whose support has meant so much to me. A warm thank you to my parents, my brother Eric and

his family, my Nonna, and my parents-in-law, who have been unfailing in their confidence in me.

A pat on the head for my steadfast companion the Blue dog, who attended lectures with me, took

excellent notes, and still loves me despite the walks I missed when I put this work ahead of him.

Finally, a very special thank you to my husband Peter for all his love, patience and encouragement

over these past five years.

178



REFERENCES

Aki, K. and P.G. Richards. 1980. Quantitative Seismology. Theory and Methods Vol. II. Chapter
12. W.H. Freeman and Co. San Francisco.

Anderson, V.C. 1950. "Sound scattering from a fluid sphere". J. Acoust. Soc. Am., 22: 426-431.

Backus, G. and F. Gilbert. 1967. "Numerical applications of a formalism for geophysical inverse

problems". Geophys. J. R. Astron. Soc., 13: 247-276.

Biggs, D.C. 1977. "Field studies of fishing, feeding and digestion of siphonophores". Mar. Behav.
Physiol., 4: 261-274.

Brown, M.G. 1984. "Linearised travel time, intensity, and waveform inversions in the ocean sound
channel - A comparison". J. Acoust. Soc. Am., 75: 1451-1461.

Chiu, C.S., J.F. Lynch and O.M. Johannessen. 1987. "Tomographic resolution of mesoscale eddies
in the marginal ice zone: A preliminary study". J. Geophys. Res., 92(C7): 6886-6902.

Chu, D., T.K. Stanton and P.H. Wiebe. 1992. "Frequency dependence of sound backscattering
from live individual zooplankton". ICES J. Mar. Sci., 49: 97-106.

Chu, D., K.G. Foote and T.K. Stanton. 1993. "Further Analysis of target strength measurements of
Antarctic krill at 38 and 120 kHz: Comparison with deformed cylinder model and
inference of orientation distribution". J. Acoust. Soc. Am., 93: 2855-2988.

Clay, C.S. and H. Medwin. 1977. Acoustical Oceanography: Principles and Applications. John
Wiley and Sons, N.Y. 544p.

Croxall, J.P., T.S. McCann, P.A. Prince, P. Rothery. 1988. "Reproductive performance of seabirds
and seals at South Georgia and Signy Island, South Orkney Islands, 1976-1987:
Implications for Southern Ocean monitoring studies". pp. 261 - 285 in D. Sahrhage ed.

Antarctic Ocean and Resources Variability. Springer-Verlag, N.Y.

Demer, D.A. and Martin, L.V. 1995. "Zooplankton target strength: Volumetric or areal
dependence?". J. Acoust. Soc. Am., 98: 1111-1118.

Deuser, L.M., D. Middleton, T.D. Plemons and J.K. Vaughan. 1979. "On the classification of
underwater acoustic signals. II. Experimental applications involving fish". J. Acoust. Soc.
Am. 65: 444-455.

El-Sayed, S.Z. 1988. The BIOMASS program. Oceanus, 31: 75-79

Everson, I. 1982. "Diurnal variations in mean volume backscattering strength of an Antarctic krill
(Euphausia superba) patch". Journal of Plankton Research, 4: 155-162.

Everson, I., J.L. Watkins, D.G. Bone, and K.G. Foote. 1990. "Implications of a new acoustic target

strength for abundance estimates of Antarctic krill. Nature, 345: 338-340.

Flagg, C.N. and S.L. Smith. 1989a. "On the use of the acoustic Doppler current profiler to measure
zooplankton abundance". Deep-Sea Res., 36: 455-474.

179



Flagg, C.N. and S.L. Smith. 1989b. "Zooplankton abundance measurements from acoustic
Doppler current profiling". Proceedings of Ocean '89, Mar. Tech. Soc. and I.E.E.E.,
Seattle, WA, September 18-21, 1989.

Foote, K.G. 1990. "Speed of sound in Euphausia superba". J. Acoust. Soc. Am., 87: 1405-1408.

Foote, K.G. 1991. "Summary of methods for determining fish target strength at ultrasonic
frequencies". ICES J. Mar. Sci., 48: 211-217.

Foote, K.G., I. Everson, J.L. Watkins and D.G. Bone. 1990. "Target strengths of Antarctic krill
(Euphausia superba) at 38 kHz and 120 kHz". J. Acoust. Soc. Am., 87: 16-24.

Fox, C.G., R.P. Dziak, H. Matsumoto and A.E. Schreiner. 1994. "Potential for monitoring low-
level seismicity on the Juan de Fuca Ridge using military hydrophone arrays". Marine
Technology Society Journal, 27: 22-30.

Fraenkel, G.S. and D.L. Gunn. 1940. The Orientation of Animals. Oxford University Press.

Fukunaga, K. 1972. Introduction to Statistical Pattern Recognition. Academic Press, N.Y.

Gilmer, R.W. and Harbison, G.R. 1986. "Morphology and field behavior of pteropod molluscs:
feeding methods in the families Cavoliniidae, Limacinidae and Peraclididae (Gastropoda,
Thecosomata)". Marine Biology, 91: 47 - 57.

Goodman, L., J. Oeschger and D. Szargowicz. 1992. "Ocean acoustics turbulence study: acoustic
scattering from a buoyant axisymmetric plume". J. Acoust. Soc. Am., 91: 3212-3227.

Greene, C.H., T.K. Stanton, P.H. Wiebe and S. McClatchie. 1991. Acoustic estimates of Antarctic
krill. Nature, 349:110.

Greenlaw, C.F. 1977. "Backscattering spectra of preserved zooplankton". J. Acoust. Soc. Am., 62:
44-52.

Greenlaw, C.F. 1979. "Acoustical estimation of zooplankton populations". Limnol. Oceanogr., 24:
226-242.

Hamner, W.M., P.P. Hamner, S.W. Strand and R.W. Gilmer. 1983. "Behaviour of Antarctic krill,
Euphausia superba: chemoreception, feeding, schooling and molting." Science, 220: 433-
435.

Haykin, S. 1988. Digital Communications. John Wiley & Sons, Inc., N.Y.

Hewitt, R.P. and D.A. Demer. 1991. "Krill Abundance". Nature, 353: 310.

Hewitt, R.P. and D.A. Demer. 1996. "Lateral target strength of Antarctic krill". ICES Journal of
Marine Science, 53: 297-302.

Holliday, D.V. 1977. "Extracting bio-physical information from the acoustic signatures of marine

organisms" In N.R. Andersen and B.L. Zahuranec (eds.) Oceanic Sound Scattering
Prediction. Plenum Press, N.Y.

Holliday, D.V. 1980. "Use of acoustic frequency diversity for marine biological measurements".
Pp. 423-460 in F.P. Diemer, FJ. Vernberg and D.Z. Mirkes (eds.) Advanced Concepts in

180



Ocean Measurements for Marine Biology. Belle W. Baruch Library in Marine Science
#10, University of South Carolina Press, Columbia, S.C.

Holliday, D.V., R.E. Pieper and G.S. Kleppel. 1989. "Determination of zooplankton size and

distribution with multifrequency acoustic technology". J. Cons. int. Explor. Mer, 46: 52-
61.

Huntley, M.E. and M.D.G Lopez. 1992. "Temperature dependent production of marine copepods:
a global synthesis". The American Naturalist, 140: 201-242.

Johnson, R.K. 1977. "Sound scattering from a fluid sphere revisited". J. Acoust. Soc. Am., 61:
375-377.

Kargl, S.G. and P.L. Marston. 1989. "Observations and modeling of the backscattering of short

tone bursts from a spherical shell: Lamb wave echoes, glory, and axial reverberations". J.

Acoust. Soc. Am., 85: 1014-1028.

Kils, U. 1981. "The swimming behaviour, swimming performance and energy balance of
Antarctic krill, Euphausia superba". BIOMASS Scientific Series, 3: 122pp.

Kristensen, A. and J. Dalen. 1986. "Acoustic estimation of size distribution and abundance of

zooplankton". J. Acoust. Soc. Am., 80: 601-611.

Lasker, R. 1966. "Feeding, growth, respiration and carbon utilization of a euphausiid crustacean".
J. Fish. Res. Bd. Can., 23: 1291-1317.

Lebourges, A. 1990. "Utilisation de la spectroscopie ultrasonore en vue d'identifier les especes de

poisson". These de doctorat de l'Universit6 Paris VI.

Love, R.H. 1977. "Target strength of an individual fish at any aspect". J. Acoust. Soc. Am., 62:
1397-1403.

Lynch, J.F., S.D. Rajan and G.V. Frisk. 1991. "A comparison of broadband and narrow-band
modal inversions for bottom geoacoustic properties at a site near Corpus Christi, Texas". J.

Acoust. Soc. Am. 89: 648-665.

Macdonald, R. 1927. "Food and habits of Meganyctiphanes norvegica". J. Mar. Biol. Assoc. U.K.,
14: 753-784.

Mackie, G.O. and D.A. Boag. 1963. "Fishing, feeding and digestion in siphonophores". Pubbl.
staz. zool. Napoli, 33: 178-196.

Madin, L. P. 1988. "Feeding behaviour of tentaculate predators: in situ observations and a
conceptual model". Bulletin of Marine Science, 43(3): 413-429.

Marston, P.L. 1988. "GTD for backscattering from elastic spheres and cylinders in water and the

coupling of surface elastic waves with the acoustic field". J. Acoust. Soc. Am., 83: 25-37.

Marston, P.L., S.G. Kargl., and K.L. Williams. 1990. "Rayleigh, Lamb, and Whispering Gallery

wave contributions to backscattering from smooth elastic objects in water described by a

generalisation of GTD". Pp. 211-216 in S.K. Datta, J.D. Achenback, and Y.S. Rajapakse

(eds.) Elastic Wave Propogation and Ultrasonic Nondestructive Evaluation. Elsevier,

Amsterdam.

181



Martin, L.V., T.K. Stanton, P.H. Wiebe, and J.F. Lynch. 1996. "Acoustic classification of
zooplankton". ICES Journal of Marine Science, 53: 217-224.

Martin Traykovski, L.V., J.F. Lynch, T.K. Stanton, and P.H. Wiebe. submitted a. "Model based
Covariance Mean Variance Classification techniques: Algorithm development and
application to the acoustic classification of zooplankton". IEEE J. Oceanic Eng.

Martin Traykovski, L.V., R.L. O'Driscoll, and D.E. McGehee. submitted b. "Effects of orientation
on broadband acoustic scattering of Antarctic krill (Euphausia superba): implications for
inverting zooplankton spectral acoustic signatures for angle of orientation". Limnol.
Oceanogr.

Martin Traykovski, L.V. and H.M. Sosik. in prep. "Optical classification of water types from
remotely-sensed water-leaving radiance data".

Mauchline, J. and L.R. Fisher. 1980. "The biology of Mysids and Euphausiids". Advances in
Marine Biology, 18: 1-681.

McGehee, D.E., R.L. O'Driscoll, and L.V. Martin Traykovski. accepted. "Effects of orientation on
acoustic scattering from Antarctic Krill". Deep-Sea Res.

Menke, W. 1989. Geophysical Data Analysis: Discrete Inverse Theory. Academic Press Inc. San
Diego.

Miller, C.B. and D.C. Judkins. 1981. "Design of pumping systems for sampling zooplankton, with
descriptions of two high-capacity samplers for coastal studies". Biol. Ocean., 1: 29-56.

Morse, P.M. and K.U. Ingard. 1968. Theoretical Acoustics. Princeton University Press, Princeton,
N.J.. 927 p.

Morton, J.E. 1954. "The biology of Limacina retroversa". J. Mar. Biol. Ass. U.K., 33: 297-312.

Morton, J.E. 1964. "Locomotion". pp. 383-423 In K.M. Wilbur and C.M. Yonge. (eds.)
Physiology of Mollusca. Academic Press, N.Y.

Munk, W. and C. Wunsch. 1979. "Ocean acoustic tomography: a scheme for large scale
monitoring". Deep-Sea Res., 26: 123-161.

Nemoto, T., M. Okiyama, N. Iwasaki and T. Kikuchi. 1988. "Squid as predators on krill
(Euphausia superba) and prey for sperm whales in the Southern Ocean". pp. 292 - 296 in
D. Sahrhage ed. Antarctic Ocean and Resources Variability. Springer-Verlag, N.Y.

Nicol, S. and W. de la Mare. 1993. "Ecosystem Management and the Antarctic Krill". American
Scientist, 81: 36-47.

Nishimura, C.E. and D.M. Conlon. 1994. "IUSS dual use: monitoring whales and earthquakes
using SOSUS". Marine Technology Society Journal, 27: 13-21.

Papoulis, A. 1991. Probability, Random Variables, and Stochastic Processes. Third Edition,
McGraw-Hill, Inc., New York. 666 p.

Penrose, J.D. and G.T. Kaye. 1979. "Acoustic target strengths of marine organisms". J. Acoust.
Soc. Am., 65: 374-380.

182



Permitin, Y.E. 1970. "The consumption of krill by Antarctic fishes". pp. 177 - 182 in M.W.
Holdgate ed. Antarctic Ecology Vol. I. Academic Press, N.Y.

Pieper, R.E., D.V. Holliday and G.S. Kleppel. 1990. "Quantitative zooplankton distributions from
multifrequency acoustics". J. Plankton Res., 12: 433-441.

Pugh, P.R. and G.R. Harbison. 1986. "New observations on a rare physonect siphonophore,
Lychnagalma utricularia (Claus 1879)". J. Mar. Biol. Ass. U.K., 66: 695 - 710.

Pugh, P.R. and M.J. Youngbluth. 1988. "A new species of Halistema (Siphonophora: Physonectae:
Agalmidae) collected by submersible". J. Mar. Biol. Ass. U.K., 68: 1 - 14.

Purcell, J.E. and C.M. Mills. 1989. "The correlation between nematocyst types and diets in pelagic
hydrozoa" In D.A. Hessinger and H. Lenhoff. (eds.) The Biology of Nematocysts.
Academic Press, N.Y.

Rajan, S.D., J.F. Lynch and G.V. Frisk. 1987. "Perturbative inversion methods for obtaining
bottom geoacoustic parameters in shallow water". J. Acoust. Soc. Am., 82: 998-1017.

Sameoto, D.D. 1980. Quantitative measurements of euphausiids using a 120 kHz sounder in their
in situ orientation. Canadian Journal of Fisheries and Aquatic Science, 37: 693-702.

Samovol'kin, V.G. 1980. Backscattering of ultrasonic waves by shrimps. Oceanology, 20: 667-
670.

Scalabrin, C., N. Diner, A. Weill, A. Hillion and M.-C. Mouchot. 1996. "Narrowband acoustic
identification of monospecific fish shoals". ICES J. Mar. Sci., 53: 181-188.

Shinozuka, M. and C.-M. Jan. 1972. "Digital simulation of random processes and its application".
Journal of Sound and Vibration, 25(1): 111-128.Smith, S.L., R.E. Pieper, M.V. Moore,
L.G. Rudstam, C.H. Greene, J.E. Zamon, C.H. Flagg and C.E. Williamson. 1992.
"Acoustic techniques for the in situ observation of zooplankton". Arch. Hydrobiol. Beih.
Ergebn. Limnol., 36: 23-43.

Simmonds, E.J., F Armstrong and P.J. Copeland. 1996. "Species identification using wideband
backscatter with neural network and discriminant analysis". ICES J. Mar. Sci., 53: 189-
195.

Stanton, T.K. 1988a. "Sound scattering by cylinders of finite length. I. Fluid cylinders". J. Acoust.
Soc. Am., 83: 55-63.

Stanton, T.K. 1988b. "Sound scattering by cylinders of finite length. II. Elastic cylinders". J.
Acoust. Soc. Am., 83: 64-67.

Stanton, T.K. 1989a. "Sound scattering by cylinders of finite length. II. Deformed cylinders". J.
Acoust. Soc. Am., 86: 671-705.

Stanton, T.K. 1989b. "Simple approximate formulas for backscattering of sound by spherical and
elongated objects". J. Acoust. Soc. Am., 86: 1499-1510.

Stanton, T.K. 1990a. "Sound scattering by zooplankton". Rapp. P.-v. Reun. Cons. int. Explor. Mer,
189: 353-362.

183



Stanton, T.K. 1990b. "Sound scattering by spherical and elongated shelled bodies". J. Acoust. Soc.
Am., 88: 1619-1633.

Stanton, T.K., R. D. M. Nash, R.L. Eastwood, and R.W. Nero. 1987. "A field examination of

acoustical scattering from marine organisms at 70 kHz". IEEE Journal of Oceanic
Engineering, OE-12(2): 339-348.

Stanton, T.K., C.S. Clay, and D. Chu. 1993a. "Ray representation of sound scattering by weakly
scattering deformed fluid cylinders: Simple physics and application to zooplankton". J.

Acoust. Soc. Am., 94: 3454-3462.

Stanton, T.K., D. Chu, P.H. Wiebe and C.S. Clay. 1993b. "Average echoes from randomly oriented
random-length finite cylinders: Zooplankton models". J. Acoust. Soc. Am., 94: 3463-
3472.

Stanton, T.K., P.H. Wiebe, D. Chu, M.C. Benfield, L. Scanlon, L.V. Martin and R.L. Eastwood.
1994a. "On acoustic estimates of biomass". ICES J. Mar. Sci., 51: 505-512.

Stanton, T.K., P.H. Wiebe, D. Chu, and L. Goodman. 1994b. "Acoustic characterization and
discrimination of marine zooplankton and turbulence". ICES J. Mar. Sci., 51: 469-479.

Stanton, T.K., D. Chu and P.H. Wiebe. 1996. "Acoustic scattering characteristics of several
zooplankton groups." ICES J. Mar. Sci., 53: 289-295.

Stanton, T.K., D. Chu, P.H. Wiebe, L.V. Martin and R.L Eastwood. in press a. "Sound scattering
by several zooplankton groups I: Experimental determination of dominant scattering
mechanisms". J. Acoust. Soc. Am.

Stanton, T.K., D. Chu, and P.H. Wiebe. in press b. "Sound scattering by several zooplankton
groups II: Scattering models". J. Acoust. Soc. Am.

Tang, X. and Stewart, W.K. 1994. "Texture classification using principle component analysis
techniques". Proceedings of the European Symposium on Satellite Remote Sensing, 26-30

September, 1994, Rome, Italy.

Turner, J.T. 1984. The Feeding Ecology of Some Zooplankters That are Important Prey Items of

Larval Fish. NOAA Technical Report NMFS 7, July 1984.

Vray, D., G. Gimenez and R. Person. 1990. "Attempt at classification of echo-sounder signals
based on the linear discriminant function of Fisher". Rapp. P.-v. Reun. Cons. int. Explor.
Mer., 189: 388-393.

Wiebe, P.H., S. Boyd and J.L. Cox. 1975. "Relationships between zooplankton displacement
volume, wet weight, dry weight and carbon:. Fishery Bulletin, 73: 777-786.

Wiebe, P.H., A.W. Morton, A.M. Bradley, R.H. Backus, J.E. Craddock, T.J. Cowles, V.A. Barber

and G.R. Flierl. 1985. "New developments in the MOCNESS, an apparatus for sampling
zooplankton and micronekton". Mar. Biol., 87: 313-323.

Wiebe, P.H., C.H. Greene, T.K. Stanton, J. Burczynski. 1990. "Sound scattering by live

zooplankton and micronekton: Empirical studies with a dual-beam acoustical system". J.

Acoust. Soc. Am. 88(5): 2346-2360.

184



Wiebe, P.H., D. Mountain, T.K. Stanton, C.H. Greene, G. Lough, S. Kaartvedt, J. Dawson and N.
Copley. 1996. "Acoustical study of the spatial distribution of plankton on Georges Bank
and the relationship between volume backscattering strength and the taxonomic
composition of the plankton". Deep-Sea Res. II, 43:1971-2001.

Wiebe, P.H., T.K. Stanton, M.C. Benfield, D. G. Mountain, and C.H. Greene. 1997. "High-
frequency acoustic volume backscattering in the Georges Bank coastal region and its
interpretation using scattering models". IEEE J. Oceanic Eng., 22:445-464.

Zakharia, M. and J.P. Sessarego. 1982. "Sonar target classification using a coherent echo
processing". Proc. IEEE International Conference on Acoustics, Speech and Signal
Processing, Paris, France.

VIDEO REFERENCES

"Blue Water": 1984 dives 1188, 98; 1214, 19, 35, 41, 49; 1985 dives 1329, 71, 80, 84, 96, 97; 1519
from the Gulf Stream, the Florida Current and the Bahamas, obtained from Larry
Madin.

"Johnson Sea-Link 1987": 9/29/87 from Gulf of Maine & S. New England canyons, obtained from
Peter Wiebe.

"Johnson Sea-Link CNN": 9/87 from Gulf of Maine, used for CNN clip, obtained from Chuck
Greene at Cornell University.

"Ocean Drifters": 1993 National Geographic Explorer program, obtained from Edie Widder at
Harbor Branch Oceanographic Institution.

"VPR": 5/24/92 from Georges Bank, obtained from Mark Benfield, Cabell Davis, Scott Gallagher.

185


