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ABSORPTION SPECTROSCOPY USING OPTICAL MASERS

Including A Discussion of Early Investigations Into The-

Brocess Of Stimulated Emission of Radiation

by Michael Stephen Feld

Submitted to the Departments of Humanities and Physics on May 17, 1963 in
partial fulfillment of the requirement for the degrees of Bachelor of Science
and Master of Science.

ABSTRACT

PART I: The historical development of masers is discussed in order to

find out why they were not produced until the 1950,1 s. It begins with the

theoretical interpretation of the radiation process by Einstein in 1916.

Then follows the quantum mechanical interpretations and experiments

on the process of negative dispersion in the 1920s. In light of the

technological advancements of World War II, the EPR work of Bpch

and the negative temperature experiments of Purcell, Pound, and Ramsey

examined. The proposal for the maser is reviewed and the subsequent

development and extension of this device to optical frequencies is

described.

Part II: Optical spectroscopic techniques in gases are studiesl. The

complex susceptibility and absorption coefficient is calculated for the

case of a Stark absorption cell in the limit of a Doppler broadened

line. Resonance techniques are considered, and it is shown that an

enhancement in sensitivity by a factor of 200 is possibile utilizing

a two cavity technique; enhancements by a factor ii excess of 104

are possible using a single cavity method. Molecular beams are

examined as a means of reducing Doppler and collision broadening.

The possibilities of spectroscopic techniques employing tuneable

masers of GaAs type are also explored.

Thesis SUpervisors: A. Javan, Professor of Physics (Associate);G. de Santillana,
Professor of Humanities.



PART I

"But the history of science is not restricted to the enumeration of

successful investigations. It has to tell of unsuccessful enquiries, and

to explain why some of the ablest men have failed to find the key of knowledge,

and how the reputations of others has only given a firmer footing to the errors

into which they fell. "

James Clerk Maxwell

Inaugural Lecture as

Professor of Experimental

Physics, University of Cambridge

October, 1871



Section I: Introduction.

The maser is a device which makes use of the property of stimulated

emission of radiation. Generally, amr,inverted population' and resonant

cavity are employed. The resulting energy radiated is highly monochromatic

and coherent.

An inverted population occurs when more than half at the molecules

of the molecules of a substance are in the higher of two possible energy levels.

A resonant cavity is a physical structure which selectively enhances only a

few modes of electromagnetic radiation. This selection occurs because of

the boundary conditions imposed upon the electromagnetic radiation by the

structure. As a result, only a few modes of oscillation produced by the

emissive transitions of the inverted population are possible.

The gas maser is a simply constructed maser oscillator consisting of two

parallel reflecting surfaces between which a discharge tube containing a low-

pressure mixture of helium and neon is supported. The discharge is energized

by a 50 watt r-f generator. The physical simplicity of the system leads one

to wonder why such an arrangement was not constructed at a far earlier date

than the fall of 1960. The properties of Fabry-Perot reflectors have been

understood since the turn of the century, and gas discharges of similar nature

were thoroughly investigated in the early 1930's. In fact, one might conjecture

that at this particular period "the time was ripe". The existence of a mono-

chromatic optical source would certainly have been of value to the intensive

spectroscopic studies which were then in progress.

*In the Raman effect radiation is emitted only when the population is

not inverted. Masers can be constructed which utilize this principle.



In tracing the development of the maser, one must examine the

early stages of the development of modern physics. The discussion

begins with the theoretical intepretation of the radiation process by

Albert Einstein in 1916 and 1917. It then notes the quantum mechanical

interpretation of the process of optical dispersion in the mid-1920's.

On the experimental side, several experiments which measured

population inversions knd their related effects in the 1930's and later

shall be examined. The negative temperature experiments of Purcell,

Rund , and Ramsey will be mentioned. The microwave work of Charles

Townes and others which finally led to the construction of the first

microwave maser in 1955 shall be discussed. Hinally, the logical connections

which were necessary for the development of optical and infrared masers

will be discussed.

Throughout this work an effort has been made to eliminate much

of the mathematics which so often obscures insight into the problem at

hand.



Section 2: Early Theoretical Developments

In the year 1900 Max Planck correctly predicted the energy spectrum

of a radiating black body by postulating a discrete energy distribution for the

system. The subsequent development of the Bohr spectral theory in 1913 was a more

elaborate conception of the atom which gave a physical interpretation to the nature

of the radiative process. The Bohr theory impliedthat discrete transitions could

occur froma lower energy level to a higher one, as well as in the reverse

directions In 1916, and then in more detail in 1917, Albert Einstein developed "

the connection between the Planck law and the Bohr theory, laying the theoretical

groundwork for the principle of maser operation.

Einstein considered a system with two energy levels between which

radiative transitions could occur. He assumed the two levels to be in a bath of

radiation with a component Ej - Ei with Ej chosen as the upper level. It might

appear as if three disitinct radiative events could occur between levels. First,

a photon might be spontaneously emitted from the upper level, Ej , and absorbed

by the lower level E i . Second, through interaction with a field a photon could be

transported from E i to Ej thus raising the energy of the state by one quantum

of energy(stimulated absorption.) Finally a photon could be transported from

Ej to E i , thus lowering the energy of the state by one quantum of energy(stimulated

emission.) Einstein identified a probability coefficient with each process. It is

noted in passing that the introduction of these coefficients marked the first

systematic introduction of probability factors in the mathematics of quantum

mechanics.

According to the law of detailed balancinhg, awra, each

elementary process must be counterbalanced by its inverse in order to

maintain thermodynamic al equilibrium. Einstein therefore interpreted



the two kinds of emission, spontaneous and stimulated, as part of

the same process and balanced them agairs t the stimulated absorption.

This interpretation seemed rather strange at the time, in view of the fact that

stimulated emission seemed to be distinct from spontaneous emission. Only

when the detailed electrodynamical situation was considered by Dirac in

1927 were these processes shown to be different aspects of the same process.



Section 3: Negative Dispersion in the 1920ts and 1930ts

The implications of Einstein's considerations to the spectroscopy of

4.
gases were first realized by Kramers in 1924, and further developed by Kramers

and Heisenber gand then Bohr, Slater, and Kramers.

Dispersion is the phase change which occurs when a beam of light

passes through a "dispersive" medium. Classical theory describes a dispersive

medium as an assembly of microscopic damped harmonic oscillators. The

resulting equation for the dispersion involves only a single expression corresponding

to the response of these virtual oscillators to an electromagnetic field. This

assumption is not a bad one for many experiments have shown that the interatomic

potential is very close to harmonic for small disturbances. Furthermore,

from quantum mechanical considerations it can be shown that any radiating

dipole behaves like a radiating harmonic oscillator.

In& simple physical picture of the dispersion process one considers

the external light of a particular frequency which falls upon an assembly of

virtual oscillators of the dispersion medium. The radiation sets the oscillators

in motion with a corresponding loss of intensity(or absorption:.) However, when

Einstein's considerations are taken into account a negative term must be added

to the dispersion equation. Put in classical terms one mightisay t1hat when a beam

of light is incident on an assembly of atoms, some of them will begin to vibrate

and absorb the radiation, while others will somehow vibrate "negatively", producing

a negatve or reversed component of dispersion.

This picture of "negative virtual oscillators" was first suggested by

Kramers in a letter to Nature in 1924. In this letter he coined the phrase

"negative dispersion" which was to become well known in the years that followed.

Starting in 1925 much experimental effort was focused on verifying

new developments in physics. On the basis of the quantum mechanics a number

of discrepancies which had occurred between experiment and the Bohr-spectral



theory could be accounted for. A wealth of experiments suggested themselves.

Physicists were interested in investigating such phenomena as the lifetime of

excited states, atomic structure, the vector model of the atom, LS and jj coupling,

and the occupation of energy levels in gases. Many of these experiments involved

spectroscopic techniques and spectroscopy became one of the powerful experimental

methods of the 1920ts and 1930s.,

Beginning in the 20's Ladenburg and his collaborators performed a

number of experiments using hydrogen and neon and other gases. In particular,

in an experiment in 1928 Carst and Ladenburg tried to measure accurately a

discrepancy which had previously shown upqbetween expimental determination

of relative intensities in excited gases and theoretical values predicted by a

dispersion formula that Ladenburg himself had advanced in 1921.

It should be mentioned that the actual measurements Ladenburg and

his colleagues performed were dispersion measurements. In such experiments

the light source is split into two beams by a half-silvered mirror. One beam

passes through the absorbing gas and the other through an equal optical path-

length of a non-dispersive medium. The two beams are then brought back

together and the interference pattern observed. By measuring the phase shift

between the source and the light tranmnitted through the gas, the intensity(and

therefpre the relative population of various energy levels) can be determined

using the Kramers-Kronig relations developed in 1927.

The result of the Carst-Ladenburg measurements was that the phase

change detected as a function of frequency was smaller than that change given by

the Ladenburg expression. It could be explained ,however, on the basis of the

Kramers dispersion theory. What this meant in terms of relative population

of energy levels was that, in addition to the usual absorptive transitions, a

number of competing emissive tranr Mons were taking place, having the effect

of decreasing the net absorption.

~ I



This was the first experiment in which negative dispersion was noted.

Further experiments were made throughout the thirties by both the Ladenburg

group and other workers. They tried to increase the effect of negative dispersion

in several ways, includil increasing the pressure and excitation level of the gas.

In every case , however, they found that the inverted population was small and

existed in the presence of a larger uninverted population.

Ladenburgs interest in negative dispersion seems to have lasted over

a period of about five years, culminating in a review article in the newly

introduced Reviews of Modern Physics. There were a large number of other

phenomena to be investigated, however, and it is not surprising that he eventually

turned to other areas.

Other spectroscopists of the 1930's also noticed negative dispersion.

Oldenberg, while working with OH ions appears to have noted an inverted population

on several occasions in 1934 and 1936, b% appears not to have pursued this wor k.

Houtermans, in 1960, recounts having observed negative dispersion

in his work on the predissociation of molecules in 1932. He explained this in

terms of a "photon avalanche" and even considered constructing a single pass

amplifier based on the effect. But he was eventually discour aged from this work

by colleagues, and never returned to it.

There are several important points concerning these early negt.tive

dispersion experiments which should be noted:

1. The effect of negatve dispersion had been observed independently by at least

several physicists.

2. In every case, the inverted population was small and existed in the presence of

a larger uninverted population.

3. The discovery of negative dispersion represented an important verification of

the newly developed quantum theory.

4. The possibility of further applications of this phenomenon were scarcely considered
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Section IV: The War and Postwar Developments.

With the passing of the 1930's, the areas of interest to physicists

changed. A primary reason for this change was the advent of World

War II. The role of science was relatively minor in World War I. As

an illustration, upon entry of the United States into the war, the American

Chemical Society wrote a letter to the War Department offering its services.

The War Department declined explaining that it already had a chemist. The

situation in World War II was quite different. During the war there were

many scientists working for the government on military applications and

making technological achievements in the fields of jet propulsion, radar

guidance systems, and the atomic bomb.

Two important consequences of the war from the present point of view

were the merging of electrical engineering and physics, and the invention

of radar. This point shall be returned to in a later section, but it is mentioned in

passing that a familiarity with electrical engineering techniques acquainted

the physicist with the process of regeneratign, while the techniques of radar

brought familiarity with the theory and application at microwave, the

phenomenon at resonance, and the resonant cavity.

Freed from their wartime scientific responsibiliti es, and filled with

technological momentum, physicists were anxious to turn their attention

to the many new areas that had been uncovered during the war years. One

of the first post-war developments in physics was the successful exploration

in 1946, of the phenomenon of electron paramangetic resonance by Blochf.

This was made possible by advanced microwave technology developed during

the war. The theoretical and experimental success of Bloch's work led to

an understanding of the phenomenon of paramagnetic resonance in solids

_ I __ ____ __1_~_ _~I_~ I _ _ ____I _



which is the analog of absorption in gases.

Bloch, in the course of his work, apparently achieved a population

inversion, but did not attach any importance to it. It remained for Purcell,

POund, and Ramsey to demonstrate conclusively the possibility of total-

population inversion. The "negative temperature" experiments they

performed represent the first deliberate attempt to produce net inverted

population. Before going into their work, the concept of negative temperatures

is briefly discussed.

According to the Boltzmann statistical distribution, when a system is in

thermodynamical equilibrium, the number Ni of atoms in the corresponding

energy state Ei is distributed exponentially as a function of energy#

The population ratio between two states Ei and Ej, where we define Ej Ei

is given by N1

It is thus mathematically convenient to measure the relative population of

two energy levels in terms of temperature:

The population of spin systems has been measured in this way at least as early as

1938 . Usually Nj > Ni and the temperature is a positive quantity. However,

in the event that the population is inverted, the temperature will be negative.

The initial experiment which produced negative temperatures was

carried out by Purcell and Paund in the latter part of 1950. A crystal of

lithium fluoride was placed in a strong magnetic field in order to align the

_ I __ LI~ --LL -- P~L___
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nuclear spins. When the system reached steady state, the crystal was

removed from the field and the spins inverted with respect to the field in a time

interval short compared to the Larmour precession period. The crystal

was then replaced in the field and the demagnetization was measured. For

about five minutes, the spins returned to steady state, passing from the

negative into the positive temperature region.

*Some intersting properties of negative temperatures should be mentioned.

Negative temperatures are "hotter" than "ordinary" temperatures, giving

up heat when they are brought into thermal contact with bodies of positive

temperature. As the body passes from negative to positive temperature,

it passes through infinite temperature. An attempt has been made by

Ramse o generalize the laws of thermodynamics to include the effects of

negative temperature. Care must be excerised in dealing with them, however,

since it is not at all clear that there is physical significance associated with

them.

~~_ ---- .________ J.
Lam.-,



H,

Section V: Comparison of the 30's and the 50's: Some Conclusions.

We now come to a central issue in the development of the maser. The

scientists of the 1930's had technology sufficiently developed to construct

an optical maser of the gaseous type. They had thoroughly explored the

properties of gas discharges; Fabry-Perot interferometers of high quality

could be constructed. Yet it was thirty years later that the optical maser

came into being. At this stage it may be useful to approach- the problem from

a different point of view. Let us compare the work on absorption in gases in

the early thirties with the study of electron paramagnetic resonance and

related phenomena in solids in the late forties and early fifties. Some

similarities are immediately evident. Both phenomena exhibit similar kinds

of phase and amplitude relations. In both cases absorption was initially

of interest, and the realization that emission was possible followed later in

both cases.

There are also important differences. One lies in the characteristics

of the two media. Under normal conditions, inversion of population in gases is

a small effect occurring in the presence of a larger absorption. In solids,

on the other hand, it is relatively easy to produce a net population and in some

cases, total inversion is possible. We shall return to this point presently.

A second important difference is that the two studies were conducted during

different eras of scientific interest. The physicists of the early thirties

were carried along with the wave of new developments in quantum theory. They

were immersed in the problem of predicting and verifying the properties of

atoms and molecules and their interactions with radiation which could not be



predicted from the Bohr spectral theory. They investigated such areas

as the occupation of energy levels in gases, the lifetimes of excited states,

and the structure of atoms. The physicists of the late forties more or less

understood these problems; that is to say, the more easily solvable problems

had been resolved. Physicist' interest in optical spectroscopy thus declined, and

the techniques developed in this field were applied to the realm of chemistry

and physical chemistry.

The physicists of the late forties were largely motivated by the scientific

consequences of World War II. In particular, two changes which are important

in the present context were the merging of physics and electrical engineering

and the rapid developnent of microwave technology. The origin of microwave

technology can be traced to the development or radar; the merging of physics

and electrical engineering was a more comprehensive change, due not so much

to any particular technique as toaa new attitude towards physics and its

relationship towards technology. Both changes stimulated interest in the

phenomenon of resonance.

Rephrasing the original question, one can ask why the optical gas maser

was not a natural outgrowth of the work of Ladenburg, Oldenberg, and their

colleagues. Was it only an "accident '" that they did not hit upon the principle

of maser action, or would it have been an accident if they had hit upon it?

Perhaps the answer to this question is related to the fact that in the thirties

the scientisits were talking about absorption in gases while in the fifties they

they referred to paramagnetic resonance in solids.



There are two m~es requisites for maser action: (i) the creation of

an inverted population, and (ii) the utilization of a suitable resonator to enhance

the coherence of the radiation emitted as a result of population inversion. The

possibility of hitting upon the principle of maser action is strongly dependent

upon a thorough understanding of the concepts presented by (i) and (ii).

As far as condition (ii) is concerned, the phenomenon of resonance was

being dealt with and rOkb the interest level was high in the late forties and the

fifties. On the other hand, this area -'was of no particular interest in 1930.

The situation with regard to requisit is more complex. Greater population

inverlions are realizeable in solids than in gases, although this fact alone

does not show that the maser was not feasible in 1930, since both gaseous

and solid media have subsequently been used as sources of population inversion.

The scientists of the 1930's were aware of population inversion as a valid

quantum mechanical effect which accounted for certain discrepancies between

experiment and older theory, nevertheless, they failed to extend the idea

beyond this. Perhaps the reason for this is that they were not really comfortable

with the concept of a non-thermodynamical process. A scientist in 1930

would, of course, recognize the fact that negative dispersion led to a non-

thermodynamical situation (in the sense that the population of molecular

energy levels deviates from the Maxwellian distribution). But in their

experimental situations the deviation was small and the full import of negative

dispersion was never forced into the open.

Contrast this with the situation in 1950: the dramatic demonstration of

Purcell, Pound, and Ramsey was that total population inversion is possible.

This brought home, with full force, the fact that non-thermodynamical

equilibriums (appropriately measured in "negative" temperatures) were

---_



important physically realizable situations which could be worked with, and

perhaps, harnessed to do useful work.

We, therefore, suggest that at the core of the situation, the reason that

the principle of maser action was not proposed in the 1930's. because of the

mental climate of the science of the times the particular prejudices which

characterized the physics of the 1930's. Ladenburg and his colleagues knew of

the Fabry-Perot interferometer, not of the Fabry-Perot resonator. They

dealt with the absorption gases, not with the resonance properties of them;

and although they recognized the existence of non-thermodynamical situations,

they were unable to deal with them. It is therefore understandable that the

principle of maser action was not conceived of in 1935. Although the necessary

technology for construction of an optical maser of the Helium-Neon type was

at hand, the time was not ripe for the invention. By the same token, the

invention of the maser can be understood in terms of the natural evolution

of scientific thought in the late forties and early fifties.

-U



Section 6: Development of the Microwave Maser

By the end of the 1940's. am understanding of the two conditions

necessary for molecular amplification had been attained. First, physicists

had become familiar with the concepts and methods used in microwave

technology; they had attained an understanding of the resonance phenomenon

and the resonant cavity. Secondly, it was a well established experimental

fact that total population inversion was possible. Consequently, it is not

surprising that within a year, three independent proposals for the maser

were made. Prior to that time, population inversion had been achieved,

but no net gain or amplification had been observed.

The first proposal came from C. H. Townes, in May, 1951. He

proposed that the upper inversion states of a beam of ammonia molecules

be selectively focused by a non-uniform static electric field, and then

directed into a resonant cavity, in which downward transitions could be

induced, thus emitting coherent microwaves.

Independent proposals came from N. G. Basov and A. M. Prokharov;

of the Soviet Union*in May, 1952, and J, Weber, in June, 1952. Weber's

proposal, unlike the other two, did not make use of the resonant cavity.

In 1954 and 1955, succesful amplification and oscillationf microwaves

were reported by Townes and co-workers. The molecular amplification

achieved by Townes thus represented a synthesis of ideas that can be traced

to the early years of the present century.

The Soviet Union cites as a pertinent reference to inverted populations,
the doctoral thesis of V. I. Fabricant, written in 1940. The refernce can be

found in footnote)2.

__ __



Section 7: The Development of the Optical Maser

Once the ammonia maser had been made to operate, phsyicists

attempted to extend maser techniques to the visible and infrared regions.

The problem they faced was one of mode selection. Population inversions

were known which would radiate visible light; to support this inversion,

howev r, it seemed necessary to have a resonant cavity which would

enhhnce one or at the very most several modes. A cavity of this kind

would have to have physical dimesions the order of a wavelength of the

radiation. It therefore seemed that coherent light below one centimeter

wave length could not be producel.

The situation was finally resolved in 1958 when Townes and

Schawlow ptoposed using a multimode optical cavity of the Fabry-Perot

type; that is, the plane parallel mirrors. The problem of mode selection

in this case was shown to be easily solvable. Workers immediately began

to apply this idea, and in 1960 a continuous wave optiml maser had been

constructed by A. Javan which employed the inverted population within

a gas discharge(of helium and neon) of the kind well known to Ladenburg

and his colleagues*

There is a span of about five years between the development of

the microwave maser and the subsequent proposal for the optical maser.

The question now to be raised is why the connection was not immediately made betwee3

* A typical attidute was expressed by Hans Mueller of M. I. T. as far back as 1930. 1

Dr. Mueller lectured his optics students that it would be possible to produce co-
herent radiation at wavelengths of several cm. but that the resonant cavities
required to produce visible light would be impossible to construct because of their
microscopic dimensions. He stated that "if someone could train the atom to emit
coherently in the visible region it would represent a sizeable achievement. "

*A pulsed solid state optical maser was announced by Maima n 1959.



resonant microwave cavities and resonant optical cavities. A part of the

answer lies in the problem of mode selection. There is another point,

however, which must be notedo The Fabry-Perot interferometer

was well known since 1898. It was introduced, though, as an interference

device and was not thought of as a resonant structure. It was only when the

realization of its applicationasx as a resonator was made that it could

be applied to the maser principle. This, then, was the underlying signifbiance

of the (Downes - Schawlow proposal, and can help to account for the delay

between microwave and optical masers.

Conclusion

With the helium-neon maser of Javan the connection finally was

completed between the negative dispersion experiments of the 1930's and the

principle of maser action. It has been seen that structures of the helium -

neon type were not previously developed because of three reasons:

1) The full recognition of population inversions was not m ade until 1950.

Z)Resonance techniques did not suggest themselves in the 1930's.,

3) The FabryPerot device was thought of an an interferometer and not a resonator.

At first glance it might appear that the failure to develop a maser in

the 30's was mere "bad luck". It has been the thesis of Part I that in fact, in

view of the interests and attitudes of physicists at that time, times were not

"ripe" in the 30's. It is understandable that the ideas fundamental to the maser

did not suggest themselves then.

c
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PART II



Chapter I: Some Aspects of the Process of Absorption

Section 1: General Considerations.

The process of absorption of electromagnetic energy in a molecular gas

may correspond to photon transitions between rotational and vibrational levels.

At microwave frequencies the transitions generally occur between nearby

rotational levels; in the optical region the level spacing is larger and absorption

lines may correspond to transitions between different rotational and vibrational

states.

High resolution details of absorption at optical frequencies can lead to

a wealth of information, including knowledge about molecular collisions,

matrix elements, and information about atomic and molecular wave functions.

Such resolution can be obtained by utilizing continuous-wave optical and

infrared masers in spectroscopic techniques.

One technique which immediately suggests itself is sweeping the

frequency of the electromagnetic radiation through the resonance of the

gas and observing the intensity change resulting from the molecular

absorption. Resolution is limited by the frequency breadth of the source.

Prior to the advent of the optical maser, the utility of this technique

was limited since no coherent sources were available, It has long been utilized

in the microwave region, however, since monochromatic sources have

been available since 19461. Unfortunately, the limited tuneability of optical

masers prevents the direct application of the technique in the optical region.*

* This technique may be feasible with the gallium arsenide maser-diode.

See Section 6 .



However, the number of discrete frequencies at which optical masers

oscillate is large. For example, over 70 different transitions in the optical

and near infrared have been made to oscillate so far in the helium - neon

maser alone. At the present state of the art, a large number of optical

absorpti on lines can be closely approached. This suggests the related tech-

nique of choosing a maser transition, and then shifting the ab s or pt i on

line its elf by utilizing either Stark or Zeeman tuning.

The Stark effect is usually experimentally more suitable for our

purposes. * Considerations from perturbation theory2 show that certain

molecular energy levels present a first order Stark shift given by

AW - E 1 - (1 1)

where J is the quantum number corresponding to total rotational angular

momentum, K is the quantum number corresponding to the projection

of J on the molecular axis, and M is the quantum number corresponding to

the projection of J on any fixed spatial axist14 is the electric dipole moment

and E is the electric field.

Transitions can occur between levels, following the selection rules

J =
K (1.2)
M =1, 0

The frequency of such transitions is given by

A lh ,44K w&'KA) v(3K, M) (1.3)

-8
A typical value of. is a few debeyes ( 1 debeye 10-8 e. s.u. ). Choosing

an electric field of 2 Kilovolts per centimeter ( 7 e. s. u. ), we obtain from

equation (1. 1)

* In cases where the upper state is other than ', particular levels may present

sizeable magnetic dipoles, in which case magnetic tuning may be possible.

I



S RA I kMC SEC (1. 4)

Hence, if a maser transition can be found within 1 kilomegacycle per second

of the absorption line in question, this high resolution technique will be

applicable.

In principle, much higher fields may be applied, with a corresponding

increase in the frequency shift of the spectral line. The practical limitation

is, of course, the breakdown of the Stark field, which becomes more likely

at high pressures. One must choose a pressure low enough to support a

large Stark field, and yet sufficiently high to yield a strong absorption signal.

It will be shown that certain spectroscopic techniques can increase the sensi-

tivity to absorption, enabling extremely low pressures to be realized. Conse-

quently, much greater Stark fields can be applied, thus extending the range

of the technique.

Spectral Line Shape:

Details of shape and width of an absorption line depend upon a number of

factors. A single, undisturbed and motionless molecule would absorb energy

only over a verynarrow range of frequencies. In a gas, we must associate

a natural lifetime with each excited state. Because the molecules are in

constant motion, Doppler broadening occurs. Because they are constantly

colliding with one another, they undergo collision (or pressure) broadening.

It is of interest to estimate the magnitudes of these various effects.

Natural Broadening:

In any radiative process, there is an inherent natural lifetime,Tn,

during which a photon may be absorbed or emitted. It is, in principle,

impossible to localize the exact time within the interval when the photon was



absorbed, without suffering a corresponding decrease in information about the

localization of its energy. The Einstein A coefficient, which is the reciprocal

of Zr, is given by

A = 64t (1. 5)

where . is the wavelength at which the radiation is spontaneously emitted,

and /. is the matrix element connecting the two levels. The natural broad-

ening is Lorentzian. For a typical value of/A (5 debeyes) and a wavelength

of one micron,

A 1.2 mc/sec. . (1.7)
2I7T

Collision broadening:

On the basis of kinetic theory, we can associate a collision lifetime,

with the molecules in a gas:

(1. 8)

wherel C is essentially the mean velocity (there is a small correction

factor), 'M is the molecular density. of the gas, and ( is the scattering

cross section. The number of collisions is distributed exponentially in time:

o4e , ) (1.9)Z7

-- C



where n(to) is the probability that the molecule made its last collision

betweent-t andt-t 0 +dt0. From this it can be shown that the broadening

will be Lorentzian 3 , with a breadth

LLuJ¢= j d •
(1. 10)

It is evident that collision broadening is a pressure dependent process. At

room temperature, the molecular density, n, is related to the pressure,

p(mm. Hg.), by

lb

(1. iI)
-15

The cross section, d, might be of the order of 10 cm. 2, and consequently,

at room temperature, we expect a broadening of the order

Ave. 41S -30 A4. 12)

Doppler broadening:

Because the gas molecules are in motion, the radiation they emit

and absorb will have a spread in frequency distribution. Suppose that the

molecule has a component of motion along the direction of the observer(the

photodetector in the present case.) Then it will undergo a frequency shift

SO '(1. 13)

where v is the velocity component in the direction of the observer, andMo

is the radiation frequency of the molecule at rest. The distribution of

velocities is Maxwellian:

t (1. 14a)



where

2 2KT

Substitution of equation 1. 11 into equation 1. 12, yields the distribution as a

function of frequency:

( ) ei) .. (1.15)
(W.1C.) /i

which is Gaussian with a half-width at half-maximum

LSW = *~o -/; (1.16)
2 r

At room temperature W 1/2 will be of the order of 400 megacycles

per second.

It is clear that at pressures below 10 millimeters of mercury, the

spectral width will be completely determined by equation 1. 16 (figure 1. 2).

It is therefore of interes o consider a technique for reducing L4/A . Such

a consideration is carried out in section 6.



ChapterII: Methods For Optical Maser Spectroscopy

Section 2: Stark Absorption Cell

In this section we shall develop in some detail the considerations

outlined in section 1. Consider the arrangement illustrated schematically

in figure 2. 1. The beam of a continuous - wave optical maser passes through

the transparent end-windows of a Stark absorption cell and impinges upon

a photodetector.

The Stark cell is essentially a parallel plate capacitor, arranged so that

the optical beam passes through the strong electric field produced between

the plates. In principle a D. C. field may be applied. The signal to noise

ratio can be sizeably enhanced however, by applying a sinusoidal signal of

several kilocycles per second. In this situation, the absorption signal is

modulated, but the scattered light is not. The output is then fed into a

receiver tuned to the modulation frequency. In this way most of the

absorption signal is passed while most of the noise is rejected. Hence the

signal to noise ratio is increased.

Sus ceptibilitiy:

If the molecules in a gas are polarizable in an electric field, E(,

we can associate a complex susceptibility, , with the gas as a whole.

In general, % will be a function of the frequency of the electric field, as

well as the molecular resonant frequency. We therefore define

where(~o is the resonant frequency of the molecule. The relationship between

and the polarization P (the dipole moment per unit volume) is given by
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P = X E

The susceptibility, X, contains information about both the phase relationship

and amplitude of the absorption of electromagnetic energy from the field by

the molecules of the gas.

Absorption coefficient:

The absorption coefficient, , is defined such that

I() =I e - x
o

(2.3)

where I(x) is the intensity of the radiation after it has traversed a distance x,

and I( 0 ) = IN If the loss is small, then

AiL

Ia,
(2.4)

where we have defined I L I - I(x) as the intensity loss= o in an interval x.

Also, since intensity is proportional to power,

AP
(2.5)

where PL is the power loss in the interval x and Po is the initial power.

Power loss may be expressed in terms of the polarization P and the

Electric field, E7.

APL P-E (2.6)

Also, the time average of the total power per unit a-rea , Pa' may be

written as

877
(2.7)

O 6

Using equations 2. 5, 2. 7, 2. 1 and 2. 2, and the fact that

(2, 2)



<AB>time = Re*B (2.8)

we finally obtain the absorption coefficient as a function of X :

S= .- 47" X/ . (2. 9)
C

Calculation of X and :

In order to obtain a solution of equation 2. 9, it is necessary to

express X in terms of the physical characteristics of the gas molecules.

Such an expression may be obtained on the basis of the time - dependent

perturbation theory4 . The details are treated in Appendix A and the results,

including the saturation effect, are quoted here:

I i
26: £ (2. 10)

Equation 2. 10 has already been averaged over to, the time elapsed

since the last collision. Substitution of equation 2. 10 into equation 2. 9, yields

the result that is well known in the microwave region:

~2 _ _ ,(2. 11)

where W is the collision width introduced in equation 1. 8, / is the

dipole matrix element of the transition, E is the electric field of the maser

beam, and n is the density of molecules in the lower of the two states

involved in the transition. The quantity n will be discussed in Appendix B.

It is important to note that equation 2. 11 is valid only if the Doppler

width is much smaller thah the collision width; i. e., if

~ e W ( 7 . (2. 12)



From the order of magnitude estimates given in section 1, it is seen that

at room temperature,

and (2.13)

Hence equation 2. 11 will be valid at pressures larger than 100 millimeters
-I,

of mercury. However, for pressures of the order of 10 millimeters of

mercury and lower, condition 2. 12 is violated. In order to obtain a realistic

description of the line shape, Doppler broadening must be included in the

expression for the susceptibility. We must, therefore, average(, which is

given by equation 2. 10, ove rhe Gaussian distrikbution given by equation 1. 15:

-o
where0(is the variable of integration, andWLo is the center frequency of

the Doppler-broadened line. This integration has been carried out5

the result is _ - ("a) l

TiC d D0(2. 15)

_kb(LW 16)

* In the microwave region, pressure broadening limits the resolution in

almost all cases of interest.



Substitution of equation 2. 16 into equation 2, 9 yields an

2. 2.

C W &c1

The range of validity of equation2. 17 is given by:

LWp
>> 1 (2. 18)

Discussion of absorptea .iAmEshape:

We will now investigate the behavior of I. For ease of comparison,

equations 2. 11 and 2. 17 are rewritten:

(2.17)

WvC

2t/( I

(2.11) P ,>/"

7r, L-1 e0

where the subscript onfindicates its predominant source

(2. 17) p 10

of broadening.

Unsaturated case:

Consider the case in which

Equations 2 17 and 2 11 then simplify to:

Equations 2. 17 and 2. 11 then simplify to:

t(deAr

(2. 19)

expression for )

, A; IV 2
'A &WP)

,I •

IIA 40
MM4 tB
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and

c4 LK~~Wj~

(~u. - iiojcr~ ) 2.

e ,luaW
I p

At optical frequencies, the ratio of either,&VDorlC, toW is an extremely

small quantity, so that Wremains nearly constant over the frequency range

in which absorption occurs. Hence, equation 2. 20 is Lorentzian in form,

and equation 2. 21 is Gaussian in form.

At resonance,

S7T/ I1L/ WO.4 711z F~4W

SLW/f

(2. 22)

(2. 2;)

These lines exhibit different pressure dependencies ( see figure 2; .at a given

temperature,ku is fixed, while T Thus ()is a linearly increasing

function of pressure, whilek(W.)is unchanged by variations of pressure*.

*This is because A((W) ' -. The density of molecules, n, varies directly with

pressure, while C varies inversely with pressure. Thus (W)remains constant.

At very high pressures begins to depart from its inversepressure dependency

and this statement no longer holds.

3 Vh

(2.20)

(2. 21)

and

b~~~

g Il(lo)=



For pressures intermediate between 10 and 100 millimeters of mercury,

the lineshape will be given by an expression somewhere between the limiting

cases of equations 2. 20 and 2. 21. This is shown graphically in figure 2. 2.

Saturated case:

In the event that

(2. 24)

we cannot ignore the dependence of the absorption coefficient upon E 2 . This

effect can become sizeable in optical maser spectroscopic techniques, since

very high energy densities can be developed.

It can be seen from equations 2. 11 and 2. 17 that this E Z dependence has

the effect of reducing the net absorption. One can interpret this saturation

effect as a result of the fact that when large fields are applied, the molecules

cannot make use of all the energy available to them. The rate of radiative

transitions increases with field intensity, and as a result the average population

of the two interacting levels tends to equalize.

Regardless of whether the absorption is Doppler limited or pressure limited,

the saturation parameter,/3 , is given by

. aw (2.25)

In the pressure limited case the effect of saturation results in additional

broadening of the absorption line. Inspection of equation 2. 11 reveals that the

full width at half-maximum is

WS W (2.26)
V1 E2I
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In the case of the Doppler broadened line, it is seen from equation 2. 17 that

there is no additional broadening due to saturation.

Further Observations:

(i) The saturation parameter P can lead to information about the matrix

element if is known. Knowledge of Z can be obtained from the shape of

the collision-broadened line or, alternatively, from information about molecular

cross-sections. Data concerning the latter information are not very accurately

known at present. It is hoped, however, that experimental determinations of

collision-broadened- lineshapes may lead to knowledge about P.

(ii) In the case of the Doppler-limited lineshape, the interesting situation

exists where X is saturation dependent but X is not. Since the phase information

is completely contained in X, this suggests the possibility of making a dispersion

measurement of the gas. This dispersion experiment would be unaffected by

saturation, and a comparison could be made between the saturation-limited energy

absorption and the unsaturated dispersion effects.

(iii) When saturation is negligible, X and X obey the well known Kramers-

Kronig relations. When the non-linearities of saturation are included, the Kramers-

Kronig relations are violated and do not, therefore, hold.



Section 3: Spectroscopy Using An Optical Cavity Resonator.

The spectroscopic technique of containing a gas to be studied in a tuned

cavity resonator has been utilized successfully in the microwave region. In

the present section the possible application of this technique to the optical

region will be discussed.

A suitable experimental arrangement is shown in figure 3. 1. The maser

beam is incident on one surface of a Fabry-Perot resonator tuneable in the

absorption region of the gas in question. Gas may be admitted into the cavity by

means of the inlet value. The isolator I decouples the maser from the optical

cavity. A suitable isolator utilizing the Faraday effect has been recently

constructed in this lab.&

Optical Cavity:

Consider an open resonator of the Fabry-Perot type: two identical highly

reflecting plane mirrors of area A are rigidly supported parallel to each other

and separated by a distance D. If D>A the normal modes of the cavity

may be treated as plane waves reflecting back and forth between the mirrors.

Silvered, dielectric, or other types of reflecting surfaces can be used; in

any case, the tangential component of the electric field within the resonator

will, for most practical purposes, have a mode at the surface of each mirror.

Diffraction losses can be considered small compared with transmission losses.

Power from the maser is coupled into the resonator in the form of an

almost monochromatic beams of light impinging up on one mirror. Power is

coupled out to the detector by transmission through the other mirror. It is

evident that if the surfaces were perfect reflectors no power could be coupled



STA4R K
Po WER

SuPPLy7

RES o NA 70 R
, M/RRoA..

OPTICAL MA*S ER

MULTI PLE

/:QLA4 TOR

P4SS ABSoR ProA/
AN EX TERVA-L

FABREY- PEROT
RES OVATO k

(C OAI IN N G
G,4s A B SR P 7TI

CELL

ExPE/H E/VT
Ro .5o0AT I

FIGURE

11 1lA
PHo ro

DErEc TlbR

UrT L I-2 //G

REcoRDE R

3.7

--- ----------~



into or out of the cavity. In practice, mirrors can be made which reflect

as much as 99% of the light incident upon them. Most of the remaining light

will be transmitted through the mirror. A small percentage will be lost

due to scattering and imperfections.

Empty Cavity:

From electromagnetic theory it can be shown that in the case when the

resonator is empty7

where P. a and P 0 are, respectively, the power coupled into and coupled out of
1 o

the optical cavity, is the frequency to which the cavity is tuned, and is

the frequency of the incident radiation; Pi, po and PL are respectively, the

coupling factors for Pi, Po and the power lost in the cavity, and

P = Pi + Po + PA

Equation (3. 1) is a general result and is well known for the microwave

region where, of course, the coupling factors are dependent upon the different

coupling techniques which are employed. In the optical region the coupling

factors, which are characteristics of the mirrors, are given by

C

o. = a.2)

Power transmitted by incident mirror alone
where T. =1 Total power

Power transmitted by output mirror alone
0Totlpoeo Total power



4Sz-

Power loss due to scattering or other sources in the cavity
Total power

(3. 3)

and D is the mirror separation. In our case, the mirrors are identical, ie

pi = Po, and TL is negligible; thus, equation (3. 1) reduces to

O-P
C

(3. 4)

-4 0)a W. * ?
Filled Cavity:

In the case where the optical resonator is filled with a gas of susceptibility

~ , eq. (3. 1) is modified:

1 O

P'L

0 PL .5)

WO - W - a a Ox 601~ 5

Thus, the saturation effect gives rise to both a frequency dependent power

decrease and a "frequency-pullingt" off resonance.

Power absorption at resonance:

From equations (3. 1) and (3. 5), and the standing wave . susceptibility relations

to be given below, we see that at resonance,

empty cavity

and

filled cavity

PO . Ip-

PO

(3. 6)

(3. 7)

.- -
G r

(I-urre" ~)



By subtracting (3. 7) from (3. 8) we obtain the interesting result that the

change in absorption ( 4,) due to the presence of the gas in the cavity

is just

S.(3.8)

Comparing equation (3. 8) with equation (2. 9), we see that

o P c. T (3. 9)

where we have written()for the fractional power loss in the absorption

cell. Taking T = 1%, equation 3. 11 shows that by utilizing an optical cavity

we can obtain increased sensitivity by a factor of 200 over the absorption cell

technique of section two. This increased sensitivity enables us to carry out

absorption measurements at much smaller pressures than was possible with the

absorption cell.

Standing Wave Susceptibility:

The susceptibility given by equations (2. 15) and (2. 16) holds for a running

wave, but is not valid for the case of the standing wave which is set up in the

optical cavity of figure 3. 1. W. Lamb has calculated the standing wave

susceptibility by considering a Doppler broadened atomic line'. By expanding

the optical maser field in the normal modes of the cavity and treating the

inverted population as a quantum mechanical assembly, he obtains the

macroscopic polarization. A. Szoke has derrived the same expressions

from other considerationswhich are given in appendixC. In any case, it

follows that in the limit of a Doppler broadened line,



that is, where 4 mC*. SD, the susceptibility is given by

(& LO C), L(3. 10)

and

fu-uoj

in which
LoALODE

8~r

I ( -L 4ItI

(3. 12)
-? 4

Lineshape

Since

-P (3. 13)

we may determine the absorption lineshape from equation3. 11. It is of

interest to study the change in intensity as the absapr ption line is swept

through the maser frequency W. (figure 3. 2) AtW =0o the coefficient

of E2 is a maximum; therefore, when the maser frequency coincides with

the center frequency of the atomic line, the intensity will not be maximum

as it is in the traveling-wave case. (compare figures 2. 2 and 3. 2) In fadf

this point will be the center of a relative minirimi. This unexpected

behavior can be understood by noting that a standing wave can be resolved

into two traveling waves of equal intensities but propigating in opposite

directions. It is seen from equation 3. 11 that the coupling between the

eledcic field and the molecules increases asWa-Wodecreases. For

optimum coupling in a traveling wave field,W-Wo is proportional to the

relative velocity of the molecules. Therefore, at "0where the relative

molecular velocity vanishes for optimum coupling), the molecules couple

to both travelling waves with a consequent increase in the overall coupling

and therefore the saturation.

a×
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Problem of Stability

In the technique suggested in this section the tuning of the optical

cavity is critical: sizeable vib-rton noise is anticipated due to instabilities

both in the absorption cavity and in the maser. These instabilities may be

due to small temperature variations and other transient effects.

There are a number of ways in which one might compensate for

these instabilities. In any event it is of interest to simplify the experimental

arrangement. One might consider the possibilities of utilizing a single

cavity. Sitch considerations are carried out in section four.

-M



Section 4: Method Utilizing A Single Optical Cavity

In view of the remarks made at the close of section 3 we are led to

examine the possibility of inserting the absorbing gas within the maser cavity.

This can be most easily done by increasing the distance between the two mirrors

so that the absorbing gas can be included. (See figure4.)

The solution of the cavity problem is simple in principle, but the

actual details are complicated by the fact that the standing wave susceptibility

expressions (equations 3. 10 and 3. 11) are complicated expressions in E and

U), andS)0 . A careful analysis, which will require the aid of a computer, hC5

been planned for the near future. It is worthwhile in the present section to consider

some of the qualitative features of the single cavity technique.

Qualitative Operation

Consider the situation when the gas is far away from resonance. This is

essentially the same situation as when the gas is not present since the suscept-

ibility of resonance is extremely small. In this situation the maser, suitably

adjusted, will oscillate in a normal fashion.

Now let the Stark filled shift the line towards resonance. As 4)

approaches )o the gas susceptibility, and in particular X", increases in

magnitude, with a corresponding increase in power loss per unit length.

If the maser is close enough to threshold, the Oa)ption will become so large

at some W 0-(W-.O) that the condition for oscillation will no longer be met

and the maser will cease to oscillate. As thelsorption frequency shifts

past £)o , the susceptibility will decrease and finally, vhen it is sufficiently

farI So that the condition for oscillation is restored, the maser will

begin to oscillate again.

At the present time techniques are available which enable the helium-

neon maser to be set at the threshold of oscillation within one part in 104. In

this case relative absorptions as low as 10-4 (for example, absorption coefficients
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of 10- 4 /meterif a one meter column of gas can be contained in the cavity)

would be detectable. This is a sizeable increase in sensitivity and would

allow extremely low gas pressures to be utilized. (See section 5).

Experimental Procedure

One possible procedure would be to reset the maser at various levels

above threshold. At each setting the gas would be Stark shifted through the

desired frequency range, noting the relative frequencies(as a function of

Stark voltage) where the maser broke into and out of oscillation. .r. this

way the relative magnitude of the various absorption lines cauld be ascertained.

K _ ___ _ _ _



Chapter III: Supplementary Techniques

Section 5: Molecular Beam Technique.

It has been notedin Sejction. II that Doppler broadening, which limits

the spectral resolution obtainable at optical frequencies, can be greatly

reduced by employing molecular beam techniques. Such techniques have

long been used in the microwave region. In this section we consider their

possiblec i 4IMto the methods developed in Part II.

The molecular beam technique is based on the fact that the Doppler shift

of a radiating or absorbing molecule depends only upon the component of motion

in the direction of the observer. In the event that the molecule is moving normal

to the direction of observation, there is no Doppler shift. It is therefore of

interest to consider an arrangement in which the maser beam, MI, passes through

a beam of molecules, B, such that M and B are perpendicular. Such a molecular

beam can be produced by allowing the gas to enter, through a series of

collimating slits, a region evacuated by continuous pumping (fig.5$.). Using

such an arrangement, it is possible to reduce the angle of divergence, i ,
-2

of the beam to the order of 10-2 radians. The Doppler shift is thus reduced

by a factor of 100, since

A(A)Yfn S 4, (5.1)

where AWs the Doppler width of the molecular beam. Hence, the Doppler

broadening may be reduced to the order of several megacycles per second,

and if the uncertainty broadening is small, the resolution of the spectral line

may approach the theoretical limit determined by natural broadening.

i
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(It should be noted that in a molecular beam we can assume inter-molecular

collisions to be negligible, and therefore inWm >> 4 C ).

The uncertainty broadening is a consequence of the fact that in the

experimental arrangement of figure 5. 1, the molecule spends only a small

time, ts, in the beam. Since the molecule, in effect, "sees"t the beam only

during ts, it may or may not have sufficient time to receive a photon from

the maser beam, depending upon whether the fraction tf/t,is much larger than,

or smaller than, unity. In any case, the broadening due to uncertainty is given

by

r. (5.2)

In our particular geometry,

's (5.3)

where ' is the mean speed of the escaping molecule, and d is the diameter

of the maser beam. For the helium-neon maser, d is of the order of several

millimeters, hence, at room temperature,

ti ; 10 Sec. , (5.4)

which from equation 2. 13 is seen to be a full order of magnitude larger than T.

In this case, the molecule has ample time to absorb a photon.



We are therefore justified in using the absorption coefficients previously

derived , where we must now interpret n as ne , the effective density of molecules

within the beam. This number is given by

C(5.5)
where C is the rate at which molecules impinge upon the flat wall in which the

slit is located, and Ais the area of the slit. The rate ris given by kinetic theory

to be

(5.6)

where n is the density of moldeIes in the oven which is, as in equation 1. 11

given by

~ 'c. (5. 7)

The effective density is therefore given by

- (5.8)

which in our case is of the order of 1014 molecules/cm 3 . This low density

corresponds to 10- 2 mmHg in the static cases previously considered. We thus expect

a very small signal, and the methods of sections 3 and 4 seem most suitable

when molecular beam techniques are to be utilized.

* Although the Doppler width has been reduced, the collision width has been also,
and we are still in the limit in which A LL i.

II wD



Section 6: The Gallium Arsenide Maser-Diode
1-2

The recent development of GaAs maser-diodes suggests the

attractive possibility of a tuneable maser source. The frequency of the

maser line, which is essentially determined by the energy gap of the semi-

conductor, is temperature dependent. Typical values of the oscillation

frequencies are 8400Ao at liquid nitrogen temperature (77 0 K) and

9000 Ao at room temperature. The diodes also oscillate at liquid helium

temperature.

Because of the tuneability of Ga As no Stark fibld would be necessary

and a very simple spectroscopic technique might be employed. However, the

mere fact that GaAs is tuneable by temperature sets an inherent limitation

on the stability of the oscillation frequency. Because of this fact it is not

at all clear at the present time to what extend GaAs would be of use in

extreme high resolution spectroscopy. Experiments involving this

tuneable-source technique are planned in this laboratory inthe near future.

. . . .. .



Appendix A: Running Wave Susceptibility from Qaantum -Mechanical

Considerations

Consider the quantum -mechanical system, {, describing a single

molecule which has two states, uaand Mb, with corresponding energies

Wa and Wb , Wa >Wb , between which radiative transitions can occur.

These transitions may be stimulated by an electromagnetic wave which will

be treated as a time dependent penetration on the time-independent system.

The Schr'6dinger equation in this case is

O I (Al1)

where Ho is the unperturbed Hamiltonian of the system and H' is the time

dependent perturbation Hamiltonian. The time independent energy

eigenfunction of the unperturbed system satisfy

T tt a ny tinb

The wave function at any time can by expressed by

O=L Ct)e LL C btL, ab) tb

where QC(;a d are the transition probabilities associated

ua and ub , and

(o C+)) + (6Co

(A. 3)

with states

(A. 4)

and

(A. 5)
\40. = USL

The matrix elements of the Hamiltonian are

z~ L3
ZLL4 \A1o~ ~A-'* *Ii= i

I (A. 6)

(A. r)



Then by multiplying equation A. 1 by ui

obtains

and integrating over all space, one

LQ; I I \, >- (A. 8)

which, using equations A. 3, A. 6, and A. 7, can be reduced to

_ _

It go 6 b

and

Perturbation Hamiltonian

Perturbation Hamiltonian

; QU-N
**

CLAJb' . uj 6)

(A. 9)

(A. 10)

We take

(A. 11)

as the perturbation applied to the system from to to t.

electric field strength and/ the dipole moment. Then

Here E is the

GWiut
(eLo (A, 12)

where

and
UI = ZuAl 'lL

since L is the average of the dipole

of E connecting the two states.

(A 13)

matrix element along the direction

&

.......................................... l

' u I

~



Transition Probabilities

Equations A. 9 and A. 10 can now be written as

eCu.C)- o)t
& > 4Ik.

(A. 14)

- ,c u- W.t

(A. 15)

where W( 1 A. 6 LO and we have neglected the

term because of its rapid change in phase. Equations

to . . 0 *.
0. - 0 a.(WLQ

. 14 (W +. Ct
A. 14 and A.15 reduce

) G..

(A. 16)

which has a solution of the form

Q. A
4

-L--

j& JC

and A and B

that at t=t o

are two constants of integration. As initial conditions we assume

the molecule is in the lower state:

L.

Then equation A. becomes

(A. 19)

(A. 20)=I

J2. (A. 21)

and using equation A. 16 we can obtain

'-0& -_A

where

& (A. 17)4
(A. 17)

Ok (A. 18)

c3- 61(1t/-x L rj
jr?... to 14 i-t1)

(A. 22)

-f- ( -:1 K

OX

cCt ~

(W-(30
at

)t/2

~h \O

6 Ct) .L6 Z

0--t)



Calculation of p

The dipolemoment of the molecule at a time t can be written

as

(A. 23)

Hence

- (A. 24)

If we have an assembly of molecules, we can relate the average dipole moment

p of a single molecule with the polarization P:

un;) rU0 une. * (A. 25)

As is discussed in sectionl, the molecules are in constant collision with one

another. In calculating we must therefore take into consideration the fact

that a molecule can, on the average, interact with the field only for a mean time

c. without being disturbed by a collision. We assume these collisions to be

"hard"r; that is, after undergoing a single collision the M8lecule loses all

"memory" of past collisions, and the phase relatio nship between the field

interactions before and after a collision is random. The normalized distribution

function of the time t- to since the last collision is given by equation 1. 9:

to) A 0. (A. 26)

The dipole moment must therefore be averaged over all possible times since the

last collision occured:

S(A.27)

Performing the integration, we obtain

_ ---*- -- --'1
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Calculation of X

Using equation A. 25 and taking n as the molecular density it follows that

L4 Q+
I

1. CyJ2. (A. 2 9)

Finally, noting that

C A S Lo
1 -t

and remembering from equation 2. 2 that

P =XE

we obtain

V CW4
(Ld WO

which is recognized to be equation 2.10 in the text.

* W-;Uj

Ce I (A. 30)

(A. 31)
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Appendix B: IVolecular Density of the Lower State of a Transition

The quantity n which appears in equation 2. 10 and subsequent

equations can be written

n= Nf (B. 1)

where N is the molecular density of the gas in the absorption cell and f is

the fraction of these molecules in the lower of the two states involved in the

transition. The exact value of f is given by 13

4) h 34L f h U 'L. e 3 (T+
/IT W ( (B.2)

where we have considered the possibilities of transitions from rotational

and vibrational levels. At room temperature the following approximations

can be made: (B 3)

T O (B.4)
Also, in the optical region the energy gap between levels is large. The

relative population of the upper and lower states is given by

e - (B. 5)

where we have written nu and ne for the relative numbers in the upper and

lower states respectively. We therefore note that essentially all the molecules

are in the lower state.

Inserting(B. 3) and (B. 4) into (B. 2), and bearing in mind(B. 5), B. 2

reduces to

(B. 6)

which is of the order of 1/200 for )= and vanishes for all other .

We may thus conclude that an order of magnitude of n yields

AO ' Noo . (B. 7)

.a i~rrucx~caal~i- ~-li-r~-irrucrY~li---1
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Appendix C: Simplified Derivation of Standing Wave Absorption*

Consider a gas contained in an optical cavity in which a standing wave

is propagating. This standing wave may be resolved into two running waves of

equal intensity but propagating in opposite directions. The absorption cross-

section of a single molecule in a running-wave field characterised by frequency

2/ can be , written

where the constant factors have been absorbed intS, / is the velocity

of the molecule, and the other symbols are consistent with the text.

The total absorption M by the gas, except for a proportionality

factor, may be written

where nf ) is the excess population inthe lower state as a function of the molecular

velocity. If the applied electric field is small, then f ()will just be the

Maxwellian velocity distribution of equation 1. 14a.

am N_-v Ilu "
1'ObV/ ' , (C. 3)

To take the saturation into account we must solve a rate equation

(Boltzmann equation) for the population:

_ Ln__ _ - ___ /. nCv)

* We shall here calculate only the absorption which corresponds tox"; it is also
possible to calculate Xt on this basis.

(C. 4)

j. ._ ~

(c.4)

l
i
!
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where / I. is the depopulation of the state due to collisions, and

Vn is the natural lifetime of the state. Assuming that the saturation is small.

and therefore this term can be eliminated by considering the case with no

electric field; that is, the steady state:

The steady state solution

n~r)rA,#

is ion (c. 6)

of the rrte equation C. 4 is

^-no

(C. 7)

wahere we have made the assumption that the second term in thqkdenominator

is small.

Also from equation 2. 9,

hT?-4iu S "I

(C. 8)

where&i is the intensity gain in length L.

Solving equation C. 8 for X", substituting equations C. 2 and C. 7, and

finally integrating over velocity, we obtain

which is just equation 3. 11,

-A
lowO& W

I 

I I

~Y)O-cj~n EP

fF Ol~v)+b ~-K,\I)1

Ldl,v) - 0;



FOOTNOTES:PART II

1. Fisk, Hagstrum, and Hartman, Bell Systems Tech. J., 25 ,167(1946)

2. See, for example, Townes and Schawlow, Microwave Spectroscopy,
McGraw-Hill Book Company, Inc., New York, 1955, ChapterlO.

3. Ibid., Chapter 13

4. K. Shimoda, Proceeding s of the International School of Physics"Enrico
Fermi",XVM, i, (1960); Shimoda, Wang, Townes, Phys. Rev. 10, 1308,
1956.

5. J. Parks, Am. Phys. Soc. Convention, Washington, D. C., April, 1963

6. M. Pearlman, Bachelor's Thesis, M. I. T. , June, 1963.

7. A. Javan, class notes.

8. W. Lamb, 3rd Confernce on Quantum Electronics, Paris 1963.

9. A. Sz8ke, Physical Review, to be published.

10. See for example Strandberg and Dreicer,Phys. Review, 94, 1393, (1954).

11. Sears, Thermodynamics, Addison WesleyPub. Co. Inc., Reading, Mass. (1953).

12. Keys and Quist, Proc. IRE, 50 , 1976, (1962);Nathan, Dumke, Burns, Hill,
Lasher, A.Phys. Let., 1 6, 6(1962).

13. Townes and Schawlow, Microwave Spectroscopy , Chapterl.

14. An expression cannot be given in closed form; it has been given however
in terms of the error integral by K. Shimoda:Inst. Phys. Chem. Research, 55 , 1961.


