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ABSTRACT

The use of superconducting electric machines for ship
propulsion offers several advantages in increased power den-
sity, flexibility of plant layout, and elimination of large
reduction gears and propeller shafts.

In this study large diameter, multipole synchronous
machines are modeled as linear machines with flat armature
and field windings. Full field, inductance, and power rating
expressions are developed for a linear geometry and compared
with corresponding cylindrical expressions.

A 29.82 M.W., 60 pole, 120 R.P.M. motor is designed from
this model and compared with a conventional synchronous motor
designed for a ship propulsion system. An analysis of motor
starting and synchronizing is also included.
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TABLE I

Glossary of Terms

Symbols

A

b

Bsat

D

Ef

E

g

Ia
If

Ja

Jf

k

K

L
La

Ld

L f

Lab

Lad

Ma

M

N

Nat

Nft

n

p

p

Cross-sectional area of one pole winding
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Magnetic flux density

Shield material saturation flux density

Outside diameter of rotor

RMS open circuit voltage

Electric field intensity

Magnetic force density

Air gap dimension

Magnetic field intensity

Rated RMS armature current

Rated field current

Rated armature current density

Rated field current density

Wave number, Chapter IV

Sheet current density

Pole pitch

Straight section length

Armature phase-a self-inductance

Damper shield self-inductance

Field winding self-inductance

Mutual inductance, phase-a to phase-b

Mutual inductance, phase-a to damper

Mutual inductance field to phase a

Vertical distance from origin to upper iron shield

Vertical distance from origin to lower iron shield

Number of armature winding turns

Number of field winding turns

Positive integers (1,2,3,...) indicating harmonics

Number of pole pairs

Power rating
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a
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TABLE I
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Superscripts

a Damper shield analysis, region between iron shield
and armature current sheet

b Damper shield analysis, region between armature
current sheet and damper current sheet

c Damper shield analysis, region below damper
current sheet



Chapter I. Introduction

The application of superconductors to rotating electric

machinery promises advantages over conventional electric

machine technology. This is especially true in the use of

superconducting electric generators and motors for marine

propulsion systems.

In general, superconducting electric propulsion plants

with gas turbine prime movers offer many advantages over

steam turbine systems and diesel engines in weight and

volume reduction of the overall system. Also, the elimi-

nation of large, direct mechanical reduction gears and long

propulsion shafts results in a highly desirable flexibility

of component placement. Gas turbine-generator set units can

be placed in positions readily accessible for easy main-

tenance, and intake and exhaust ducting lengths may be

considerably decreased. Motors can be directly coupled to

the propeller shafts. For certain high performance craft,

entire steerable pods containing motor and propeller may be

practical. In large propulsion systems the parallel oper-

ation of several generators and motors offers a wide range

of operating modes for different load, speed, and emergency

conditions.

The technical and economic reasons for considering

superconducting electric propulsion systems are many.

However, there are some important problems that must be



overcome. Ship drive systems must be capable of operating

at several different maneuvering speeds between zero and

normal cruising speed. In electric systems this can be

accomplished by several different methods. One of these is

by varying the electrical frequency of the motor by means of

a frequency or cycloconvertor. Another method is to have

the motor-generator speed ratio fixed by the field-pole

ratio of the two machines in a synchronous system and then

affect propeller speed changes by varying the prime mover

speed. This results in inefficient operation of the prime

mover during maneuvering operations involving many speed

changes. However, for normal commercial vessels, the time

spent maneuvering is only a small fraction of the time spent

at normal cruising speeds where the system is designed for

optimum efficiency.

This work is concerned with solving the problems en-

countered in the design of a large power rating, slow speed,

multipole, synchronous electric motor for use with a

synchronous generator. In this type of system a large speed

reduction is necessary for the efficient operation of a high

speed prime mover, such as a gas turbine, coupled with the

relatively slow speed propeller. This requires a large

number of field poles on the motor. For large power

requirements, the problem, then, is to get enough of the

flux created in the field windings to link the armature



windings. Electric machines with large air gap to pole

pitch ratios have a large amount of leakage flux if not

properly designed. Conventional machines have iron in the

rotor core and stator flux circuits to enhance flux linkage

with the armature windings and reduce leakage flux. Iron

is not used in superconducting machines because the high

magnetic fields created would exceed the saturation limit.

Early efforts in this study to solve this problem

centered on non-conventional geometries to improve flux

linkage, and these may be found in Appendix C. However,

this approach did not yield very encouraging results.

Therefore, the principal approach taken was to model a

large diameter, multipole, cylindrical machine as a flat

stationary armature and a flat, moving field winding. This

proved to be a good simplified model. The field expressions

developed from this model can be reduced to a very simpli-

fied form which is easy to use and understand. The effects

of changing certain design parameters are readily computed.

This yields a relatively easy method for the first rough

design of large, multipole synchronous electric machines.

The next step taken was the design of a superconducting

motor based on these results and a comparison of this design

with a conventional ship propulsion motor proposed by one

of the major electric machinery manufacturers. This is

primarily an electrical design with minimum consideration

given to the mechanical and thermal design.



Chapter II. Linear Analogy of Large, Multipole, Synchronous

Machines.

A linear (flat) stationary armature and moving linear

field winding were used to model the stationary armature

and rotating field winding of a large diameter, multipole,

cylindrical synchronous electric machine. Field expressions

were derived for a flat, three phase, armature winding and

flat field winding with ferromagnetic upper and lower

shields. Figure 1 shows the physical configuration. The

derivations are presented in Appendix A and the results are

summarized in Table II.

This is a two-dimensional analysis. The field ex-

pressions were done on a per-unit length basis, and actual

end-turn effects were not analyzed.

The actual physical arrangement of a superconducting

machine can be modeled mathematically by setting the lower

iron shield at an infinite distance from the field winding.

This leaves the moving field winding, stationary armature

and the upper iron shield as the components of the machine.

Except for the upper iron shield, there is no ferromagnetic

material in the machine. These expressions may be simplified

even further by placing the upper iron shield at infinity.

The form of the field expressions demonstrates explicitly

the field variations in the x and y directions.
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TABLE II

FIELD EXPRESSIONS FOR LINEAR WINDING GEOMETRY

N < y < -t /2
- f
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22
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+tf/2 < y < M

-2nvN
4J Z n7TS
H 4J f n wf (1+e k )

xfo n odd 2 2s 2 -2n M -2nvN
[e k -e k ]

nTft
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2k
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nI(2M -n7T[e ( y - 2 M) + e 9 ]

TABLE IIB

FIELD EXPRESSIONS WITHOUT LOWER SHIELD
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f

H E 4JfZ
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nT[
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nT Swf
sin( 29 )2 A

4Jf nS wf
2 2 sin( 2, )2 2 2n Tr

ntf
sinh (- n-)

finh
sinh( )

2R

-2nM nry

[(l+e )e ] cos ( )

-2nTM nry
[(1+e 9 )e , ] sin(-- )

k

-t f/2 < y < +tf/2

xfw =
4J f

n odd 2 2
nTr

H yfw odd
yfw n odd

nTrS ny t n 2M -nT tf

sin( - )[sinh(--- )e--( y - 2M)-sinh(n )e- -] cos( )

4Jf, nTS nTt nTr -nTt f
f wf f (y-2M) (nTy f
2 in( )[+sinh(-- )e (y-2M)-cosh(n T)e ] sin(nx

nT
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+t f/2 < y < M

4J f nSwf n7T t nTr -,ny T
H E sin(f ) sinh(T- - e ] cos(nrxxfo n odd 2 2 2 P 2 

nw

4J f n7TS nTrt n 27T -n7T
Hyfo od sin( ) sinh( ) [e - ( y - M+ e x sin(x

H yfo n odd 2 2 2Y 2s n

TABLE IIC

FIELD EXPRESSIONS WITH NO IRON SHIELDS

(lim M - oo)
(lim N -* -)

y <_-t /2

4Jwf nS nTt n7
Hxf odd 22 sin( ) sinh(--) e cos
xfi n odd 2 2 2R 2R Rn 7

4Jf n Swf n t n s )

H 4 sin( ) sinh( n t) e T sin( )
yfi n odd 2 2 sin( 2 sinh(

nu

-tf/2 <_ y < +tf/2
-nft

4Jft n wf i . y ,x
H n= -sin( ) sinh ) e 2Y cos(--)
xfw n odd -2 2 2 

H = sin( ) [1 - cosh(ny e ] sin(-)
yfw n odd 2 2 2nlT



y < +t /2f

4J f
H = -
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n 7
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nT
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sin (----- 2
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sin( 2
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e cos
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TABLE III

SELF AND MUTUAL INDUCTANCE EXPRESSIONS FOR LINEAR WINDING GEOMETRY
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t t
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n 7
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2
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Figures 2 and 3 show graphically how field intensity, H,

varies in these directions. The variation of the field in-

tensity in the y direction is shown in Figure 2. Figure 3

demonstrates the field variation in the x direction. The

angular orientation of the field is displayed in Figure 4.

Expressions for the self and mutual inductances of

the field and armature windings are derived by integrating

the fields over the area of the windings. This is done

in Appendix A and presented in Table IL These expressions

are also based on a per-unit straight section length.

The field intensity expressions contain terms for

armature current density and field current density. These

are given by:

Nft If Nat Ia
f Swf t and a Swa ta

where Ia is the r.m.s. value of armature terminal current.

Power Rating

With these expressions we can now derive a power rating

for the linear geometry machine.

Vt
P = 3VtIt = 3EfIt(E-)

Vt is rated terminal voltage, It is related to current

density by the armature winding geometry and Ef is gener-

ated internal voltage, given by:

E= eMlIf = Vtip
f e
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Ef is the r.m.s. value and Vtip is the velocity of the

moving field winding. Power then is:

-2'iM 1
48 w 'P J J L 9 S f kwa l+exp( )

P - o5 sin )sin(eofa

tf
where y = g+ - + ta

rttf -27 rM T

X sinh(f e (e ) + (e
-e

- e (f-)
f

- e

"f
and 8 = g +--

As there is no iron within the field winding of a super-

conducting machine, we can simplify this by removing the

lower iron shield.

lim N --

48 4 T wf awa tf)
P - eo J J aL sin(-2T-) sin( 2 ) sinh(2R X

-r2 r f( Z- 2 2

-27 M ,e T(ee " (e
7IT) - Tr

- e )+ (e

vt
- e) (Ef)

f
v 2

and (E ) =1 - Xa cos - Xasin
f

(See Figure 5 )

Cos i is the power factor and Xa is per-unit synchronous

reactance with Ef as base voltage.

Xal ax =Ef

e (La - Lab)Ia _
a Ef

4~(La - Lab )Ia
M If

Figure 5 shows the voltage-current relationship.

- 7Y



For first harmonic terms only, and no iron shields

(lim N -- M - , M -- + W), this expression becomes:

utwa ta 7rta
La Ja sin 2a a - eg/

a  L m Jf sin( wf - al -7fmf 2 ) l-e -- l-e

This expression, along with the simplified power rating

expression (lim __ _ utf _ Tt aw- - - a
p 24 Z 4 PL J J sin( wf) sin(TS wa (-e )(-e )

- 'Tg V
X (e ) ( -)

f

First we can see that the power falls off exponentially with

the characteristic air gap dimension, E . It becomes

obvious that we should design a machine with the minimum

air gap necessary for mechanical clearance.

The term that contains the armature geometry effects,

- Ita

(1-e k ), indicates that there is a point of diminishing

effectiveness for increases of armature thickness, as shown

in Figure 6. Pm is the power output from a machine with an

armature of infinite thickness. An armature thickness can

be chosen for the initial design that gives, perhaps, a 90%

or 95% effectiveness.

Although the power rating expression has a similar term

for the field winding thickness, (1-e Z ), the same criterion

of effectiveness cannot be used to determine an optimum field
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winding dimension. This dimension must be determined by

taking into account the maximum field density which occurs

within the winding volume.

A superconductor may be driven into the normal region

by an excessively strong magnetic field. Therefore, the

magnetic characteristics of the superconductor must be

known to choose the maximum value of flux density, with

sufficient operating margin from the transition line between

normal and superconducting regions. The field winding

thickness required to achieve this operating point can then

be calculated from the field intensity expression for the

region within the winding volume.

Power Density

The linear dependence of power rating (or power density)

with field current density demonstrates a major advantage of

superconducting machines over conventional machines. This

is because superconductivity allows the use of much higher

field current densities than are possible in conventional

machines. Figure 7 demonstrates this point. Power density

is the power per active volume of one pole pair.

P
Lm2 k (tf+g+ta) = Power Density

For this particular study certain parameters were fixed.

ar Swf
The winding dimension, -2 -- , was chosen so as to make

third harmonic fields zero. From Figure 6 the armature
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thickness that gave a ninety percent effectiveness was chosen,

i.e. (ta = .735 a). For simplicity, the air gap dimension

was assumed to be zero. The characteristic field winding
'it

thickness, ---- , that gave a maximum field density of 40

kilogauss, was used. This ratio of field thickness to pole

pitch varied with different values of k, but for the large

pole pitches it is small compared with the armature thickness
ta

to pole pitch ratio (--). The power density could then be

approximated by:

Power Density

22 Lm

Other parameters held constant were the electrical frequency,

We = 377 radians/sec, and the current densities,

Ja = 2.5 X 06 Amps/m 2 and Jf 1.25 X 10 Amps/m 2

Also, no iron shields were used. A family of curves could

be plotted by varying any one of these parameters indepen-

dently of the others. The curve for a conventional machine

would have a similar shape but a much smaller slope due to

the lower values of field current density that may be used.

The curve is nonlinear at the smaller values of pole

pitch because the field thickness to pole pitch ratio is not

negligible here. The power density goes to zero at some

finite value of pole pitch because the synchronous reactance

approaches unity at this value of pole pitch. This is really

an artificial situation because Xa can be changed by ad-

justing the field current to a new value, thereby moving to



a new curve. The approximations and assumptions break down

in this lower region, but good approximations of power

density can be made from the larger pole pitches in the

linear region.

This curve may be used to determine several different

parameters of the machine. There are several expressions

relating machine parameters which may be used in the approx-

imation of a large cylindrical machine.

TV£ _ tip TR V = WR
W p tip m

e

With these relations and the pole pitch versus power density

curve (Figure 7) we can determine the machine dimensions.

Usually the electrical frequency, we , at which the machine

will be operated is known. Also, the mechanical speed is

known from the speed requirements of the load. These two

frequencies then will determine the number of the poles

required on the motor. If a tip speed is known, this, along

with the mechanical speed, will fix the rotor diameter and

the pole pitch.

We have thus far determined the electrical frequency,

rotor speed, tip speed, rotor diameter, number of poles, and

the pole pitch. A power density of the machine can then be

determined from Figure 7 for the corresponding pole pitch.

Thus, an approximate power rating per unit length is deter-

mined. This linear analysis demonstrates the ease of deciding

machine parameters for a first approximation.



Chapter III. Design of a Motor

With the linear geometry model complete, the next step

is the design of a large power rating, multipole, synchronous

motor based on this new model. First, however, the validity

of the model must be determined. The accuracy of the linear

expressions for the field intensities and the inductances

was checked by taking the limit of the corresponding

cylindrical geometry expressions as the number of pole

pairs and the radius approach infinity. By careful use of

power series expansions it can be shown that;

Lim L(r,e) = L(x,y) Lim H(r,O ) = H(x,y)

R -+ 0 R -

This limit-taking process is done in Appendix B.

Once the accuracy of the expressions has been checked,

it must be shown that they are good approximations of the

cylindrical expressions for multipole machine designs. This

can be done by comparing the power rating expressions over

a range of pole pairs. The results of this analysis are

shown in Figure 8 where the ratio of the flat power rating

to the cylindrical power rating is plotted versus pole pairs.

To actually compare the two expressions numerically,

certain parameters were fixed. A family of such curves can

be plotted by changing one of the independent parameters.

For this study the speed was chosen as 75 feet per second
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which is to be on the linear portion of the power density vs.

pole pitch curve, Figure 7. The electrical frequency was fixed

at 60 hertz. These two parameters, then, fixed the pole pitch,

k, at .1905 meters (7.5 inches). To maintain a constant pole

pitch, the diameters of the machine had to vary directly

proportional to the number of pole pairs. In Figure 8, as we

move to a higher number of pole pairs, we get increasingly

larger diameter machines.

R= EL where R (Rfi + tf/2) = (R tf/ 2 )
m Tr m fi f fo

The armature thickness, ta , was chosen from Figure 6 to yield

a ninety percent effective armature. The field winding

thickness, tf, gives a maximum field flux density of

1.25 X 10 A/m 2 . The air gap dimension, g, was arbitrarily

chosen as one inch. Effects due to iron shields were

neglected, and Vt/Ef was held constant at unity.

The results of this analysis were consistent with the re-

sults of the limiting case of the cylindrical expressions. The

linear analogy yields poor results for small diameter machines

with a low number of pole pairs, but rises asymptotically to

unity as the pole pair number and machine diameter approach

infinity. This plot indicates that simplified linear power

rating expressions give results of ninety percent accuracy for

machines with fourteen pole pairs, a pole pitch of 7.5" and a

radius of 33.4". The conclusion is drawn that a linear anaysis



yields a good approximation of large diameter, multipole,

cylindrical machines.

Motor Design

The linear analysis is now used to design a large,

superconducting, propulsion motor. The motor is required to

match the performance of a conventional synchronous motor

proposed by the General Electric Co. for an electric ship

propulsion system with gas turbine prime movers and speed

control by varying prime mover speed. Comparisons of the

two designs can then be made.

The motor is required to have a power rating of 40,000

horsepower (29.82 MW) at a shaft speed of 120 revolutions

per minute. Gas turbine design speed is 3600 revolutions

per minute. The direct coupled synchronous generator is a

two pole, 60 hertz machine. This requires 60 poles on the

motor for sychronous speed reduction to 120 r.p.m. The

three steps of the design procedure are: 1) determine

primary machine dimensions from the linear expressions

for the initial design; 2) utilize the dimensions determined

in step one in the cylindrical expressions for the actual

machine design; and 3) compare the superconducting machine

design with the conventional design. Table IV lists the

machine parameters determined from step one and step two.

In the linear analysis the tip speed of seventy-five feet

per second was chosen from the linear portion of Figure 7.



The tip speed, along with the electrical frequency, determine

the pole pitch. The pole pitch and the pole pair number

determine a mean radius (Rm).

m rr

The superconducting machine in this design has a

maximum field of 40 kilogauss in the winding with a field

current density of 1.25 X 108 A/m2 . This requires the field

winding to be 2.29 inches thick. An air gap dimension of

one inch was chosen to allow for mechanical support structure

and an electro-thermal damper shield. A magnetic iron shield

was positioned just behind the armature winding. The minimum

thickness required is determined from Bmax < Bsaturation

within the magnetic shield. Saturation of iron occurs at a

flux density of about 15 kilogauss. An armature current

density of 2.5 X 106 Amp/m2 is assumed. All of these para-

meters can be then used in the power rating expression to

determine the straight section length required to produce

29.82 megawatts.

With these parameters determined, the equivalent dimen-

sions were substituted into the cylindrical power rating

expression. A new machine length, shorter than the flat

rating length, was calculated. Results are listed in Table IV

Step three of this procedure entails a comparison of

this new superconducting motor design with a conventional

motor design for similar performance requirements.



TABLE IV

Electrical and Mechanical Machine Parameters

Power Rating: P

Shaft Speed: N

Electrical Frequency: we

Power Factor: cos P

Number of Poles: 2 p

Rotor Tip Speed: Vtip

Pole Pitch:k

Field Winding Thickness: tf

Armature Winding Thickness: ta

Air Gap Dimension: g

Inside Field Radius: Rfi

Outside Field Radius: Rfo

Inside Armature Radius: Rai

Outside Armature Radius: Rao

Magnetic Shield Radius: Rs

Magnetic Shield Thickness: t s

Armature Radius Ratio: X

Field Radius Ratio: Y

Maximum Field in Winding: Bmax

Effective Length: Lm

Synchronous Reactance: xa
(Normalized to Ef)

Armature Current Density: Ja

Field Current Density: Jf

Linear
40,000 HP
(29.82MW')
120 R.P.M.

60 Hertz

1.0

60

75 fps

7.5 inches

2.29 inches

5.56 inches

1.0 inch

1.35 inch

40 kilogauss

.52855m 20.blin.

.169

2.5x106 Amp/m2

1.25x10 Amp/m
2

Cylindrical
40,000 HP
(29.82 MW)

120 R.P.M.

60 Hertz

1.0

60

75 fps

7.5 inches

2.29 inches

5.56 inches

1.0 inch

69.23 inches

71.52 inches

72.52 inches

78.08 inches

78.05 inches

1.35 inch

.9293

.9650

.27

2.5x106Amp/m
2

1.25x10 8Amp/m2
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The General Electric Company has a design for a

40,000 HP, 60 pole, 120 R.P.M. synchronous motor for a ship

propulsion system. Exact electrical and mechanical para-

meters are not available, but overall physical size can be

compared with the superconducting design. The conventional

motor has an overall outside diameter of twenty-six (26)

feet compared with fifteen (15) feet for the superconducting

design. The rotor lengths are of about equal dimensions;

approximately four (4) feet. Figures 9 and 10 demonstrate

the approximate physical sizes and the significant increase

in power density that can be obtained with superconducting

machinery.

Another conventional propulsion motor design by the

General Electric Company has approximately the same physical

dimensions as this superconducting design. It is a 72 pole,

100 R.P.M., unity power factor, synchronous motor, but has a

power rating of only 12,500 horsepower.

The comparison of the superconducting motor dimensions

from this design with the large propulsion motors of the

General Electric Company demonstrates explicitly the advan-

tage of superconducting machinery in power density increases.

By this analysis, a size reduction of approximately one-half

is possible by use of superconductors.

A simple method of comparing all rotating electric

machines of varying dimensions, speed, and power ratings,

is by means of the average air gap magnetic shear stress (am).



TABLE V

Comparison of Magnetic Shear Stress Levels for Various
Superconducting and Conventional Electric Machines

Machine Power Mechanical Rotor Rotor (PSI)
Description Rating Frequency Diameter Length m

P(KW) OM D(in.) L(in)

1) AVCO, S.C. 8 1257 2.18 4.49 1.68
operating

2) First MIT 80 377 5.75 4.5 7.76
S.C. oper.

3) USSR S.C. 62 314 5.51 9.84 3.72
operating

4) USSR S.C. 1Xl03  157 20.3 21.4 4.07
operating

5) Second MIT 2X103  377 8.0 24.0 19.47
S.C. oper.

6) Westinghouse 5X103  377 10.2 17.6 40.81
S.C. oper.

6') Proj. capa- 1.5X10 377 10.2 17.6 147
bility Wvmod.

7) Westinghouse 3X104 18.85 87.25 27.0 43.4
S.C. Ship
Drive Design

8) MIT Design 3X104 12.57 143.04 20.0 31.0
of Thesis

9) IRD, S.C. 5X 10 5  377 41.3 145.0 36.29
Paper design

10) MIT, S.C. 1X106  377 35.2 123.3 97.7
Paper design

11) G.E., S.C. 2 X10 6  377 43.0 117.5 98
Paper design

12) MIT, S.C. 1X106 377 21.6 130.0 246.4
IEEE Paper
design

13) G.E. Ship 3X104  12.57 240 48 4.86
Drive Motor
Conventional

14) Westinghouse 5X103  1257 10 10.5 20.38
Airborne S.C.
Operational



Machine
Description

Power
Rating
P(KW)

TABLE V

(Continued)

Mechanical
Frequency

m

Rotor
Diameter
D(in.)

15)Various conventional alternators,
operating, mostly on

(1964) 3 x 105

(1953) 4.4 X 104

(1953) 1.12 105

(1953) 1.47 x 105

(1953) 1.25x105

(1970) 8.0 x 105

(1970) 8.0 X 105

1.3o0 x lO5

AEP system:

377

377
188.5

377
188.5

377
377

377 40.0

Rotor
Length
L(in.)

m(PSI)

37.0

29.0

54.0

38.0

56.0
44.5

43.0

200.0

125.o0

167.0

180.0
15o.o
150.0

290.0

245.0

16.4

6.26

20.82

26.4

__

179.0 6.79
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It is a measure of the machine size and the average magnetic

power transmitted across the air gap. It can be calculated

from the power rating and the machine dimensions.

P = T"

T = (shear stress)(surface area)(adius) = (m)(7TDL)()
2P

m r D2Lw
m

This gives a quite simple measure of power per unit volume.

A survey of various conventional and superconducting electric

machines has been made, including both machines already in

operation and proposed paper designs. These results are

listed in Table V and the corresponding values of magnetic

shear stress versus machine rating are plotted on a log-log

scale in Figure 11. This figure exhibits basically an

exponential growth in achievable shear stress levels with

increases in magnetic shear stress of up to approximately

an order of magnitude by superconducting machines over

conventional designs.



Chapter IV: Motor Starting

An important requirement in the design of a synchronous

motor is that it possess the ability to start itself by

induction motor action. This can be accomplished with

short-circuited damper or amortisseur bars imbedded in the

field pole faces to form a squirrel cage rotor. A cylindrical

copper damper shield also serves the same purpose. With the

unexcited field winding circuit closed through a large

resistance the motor should approach synchronous speed by

induction motor action. Then when the external resistance

is removed from the field winding circuit, and the field is

excited, the rotor should pull into synchronism with the

armature field.

In a synchronous system for ship propulsion this is

difficult because the motor must be started under load,

directly coupled to the propeller. During maneuvering

operations the motor must be capable of being repeatedly

brought up to about one quarter of full speed ahead or astern

and then synchronized, without excessive rotor heating. It

would not be feasible to bring the speed of the motor up

from zero with the field energized by raising the gas turbine

speed, because the turbine has a minimum idling speed.

This motor design utilizes a cylindrical conducting

copper shield for induction motor starting and for use as

an electrical damper winding during machine transients and



faults. An analysis of this damper shield was done to

determine its induction starting capabilities and its ability

to be pulled into step. The analysis consists of three parts.

The first step involves the solution of the fields created

by the armature winding and the induced asynchronous currents

in the damper shield during starting. These fields are then

utilized in part two to solve for the magnetic forces on the

shield by application of Maxwell's stress tensor. These

forces can then be converted into a torque-speed character-

istic curve to analyze the motor's induction starting

capability. The third part of the analysis is to determine

whether or not the rotor will pull into synchronism when the

field is energized.

Solution of the Magnetic Fields

The damper shield can be modelled as a flat sheet with

surface conductivity as permeability o and moving with

velocity V. The armature is modelled as a flat traveling

wave of surface current K;

K = K cos(w t - kx)T

where ws is the synchronous frequency of the armature

currents and k is the wave number. There is no contribution

to the magnetic fields from the field winding because it is

unenergized and short circuited through a large external

resistance during starting. Figure 12 shows the geometric

configuration of the flat model.



2 7N HE // /)
TRAVELING WAVE

V

I V4 Xr-*
-CONDUC TING SHEET

2 I

L
3

FIG.12 CONFIGURATION FOR SOLUTION OF

FIELDS AROUND DAMPER SHIELD

FIG. 13 CONTOUR FOR CALCULATION OF E FIELD

I



We must solve for the B fields in the three regions

a) between the armature and the upper iron boundary;

b) between the armature and the shield; and c) below the

shield. One other unknown is Kf, the induced current in

the moving shield conducting sheet. Maxwell's equations

give us governing equations which apply in the three

current-free regions, a, b, and c.

VXH = o and V.B = o

We know one other constitutive relation from the application

of Ohm's Law in the moving current sheet:

K = E'
f s

Primes denote quantities measured in the moving frame.

With the field transformations this becomes:

K = s(E + VxB)

K' = Kf

E' = (E + VxB)

Now we can write H as the gradient of a scalar potential 0.

H = -V

Therefore, Laplace's equation applies in the three regions.

V 2 = 0

We can assume variable separable solutions of the form,

P = X(x)Y(y)T(t).

In this analysis we assume there are no variations in the

Z direction. We also assume the time varying part of the

solution has the same form as the time part of the driving

function.

T(t) = A cos w t + B sin t
S s



By substitution into Laplace's equation, the form of the

solution for H then becomes:

x = k {(cl ek+c 2 e-ky)cos st sinkx- (ceky+c e-ky)sin 
t coskx

+ (c5eky+c6e-ky)sin Ust sinkx- (c7ek+ce-ky)cos wst cos kx} ix

H = k {(cleky-c2 e-ky )cos w st sin kx - (ceky+c e-ky)sin t cos kx

+ ky -ky (ceky -ky
+ (c7ek -c 6e-k)sin st cos kx + (c7ekc 8e -k)cos s t sin kx } y

The boundary conditions that must be satisfied are:

1) at y =

Ha =0x

2) at y = a

x(a bnx(H-H ) K

-a -b
x x

= -K

3) aty= a

S a b

H a -H b
y y

4) at y = 0

x (b -c
nX (H -H)Kf

b c
H - Hx x = -Kf

5) at y = 0
-b

n . (B

Hb c H
Y Y

6) at y =

fc) = 0

- 00
!T



One other equation is necessary to complete the

solution. When applying Ohm's law on the moving current

sheet we must carefully apply the integral form of Maxwell's

equation to determine the E field on the sheet.

Choose a contour c in the fixed reference frame with

the current sheet moving through the contour.(see Figure 13).

The contour bounds an area length L in the z direction and

differential widthdx) in the x direction. Assume components

of the E field in the z direction only as we assume that

currents only flow axially (z direction) in this analysis.

g d i = - n da

E d
EzL - (FE + 'x dx)L = - d (By dx L)

aE _dBy

ax dt

Integrating this, we get:

E = f dx

Ohm's Law at y " 0 becomes:

Kf = I's 5 )4()dx zi + VB

We can now solve for the unknown constants in each of

the three regions. These operations are quite involved.

The constants for regions b and c are listed in Table VI

in their full form. These may be simplified further by



TABLE VI

b k(a- 2)) -ka [a -2kg s - kV
b {K(e + e )[((o0s)(1+e )( s )]

1 [4k2+(p a) 2 (1+e-2kB) 2 (ws- kV) 2

K(ek(a - 28) -ka [a -2kS w - kV
b =K(ek(a - 28+ e-k )[( o s) (1+e- 2k)( X s  )

3 (+e 4k2+(poa S ) 2 (+e-2k ) 2 (s - kV) 2]

cb =K(ek(os - 28)+ ekLA)[( os) (l+e-2k )( s - kV)

S k(+e - 2) k2+( ) 2 (e -2k) 2 ( -  kVb K(e + e )[( o s)(1+e )( s )]
4 (1+- 2k)[ 4k

2+( a) 2 -2kB 2 2

b = K(ek(a- 28)
- L

-ka 2  -2k8 uo 2 -2k 2 0 2k - kV 2+ e )[4k (l+e )+( o s) (1+e ) ( s ) ]'
-2k) 2 2 -2k2 s - kV) 2

2k(1+e )[4k +(v i ) (1+e ) (w- kV)

b  K(ek( - 2)_ e -k)[( oCs) 2 (1+e 2k) 2 ( s - kV) 2]

6 2k(l+e-2k )[4k2+( ) 2 (l+e-2k) 2 (w- kV)2

Cb =_ K(ek(a - 28)+ e-k1 ) [4k2 (l+e-2 k)+( Iops) 2 (l+e- 2k ) 2 (ws-kV) 2 ]

2k(l+e- Z Y ) [ 4k+ (p oas)z (1+e-LK)L (w - kV) ]
OS S

b  K(ek(t - 28)+ e-k )[( po s)2 (+e )2k2s- kV( s 2]
8 -- 2k 2

2k(l+e-2k)[4k2+(o a)2 (l+e-2k 2 (W- kV)

I

, f



TABLE VI

(Continued)

C = K(ek(a- 28)+ e-ka )[(os)(l+e-2kB)( s - kV

[4k +(pI aOs) 2 (l+e-2k) 2 (s- kV) 2]
c o

Cc _ K(ek( - 28)+ e-k)[(Pofs) (l+e-2k) (s- kV)]
3 [4k2+(a ) 2 (+e-2kB) 2 (w- kV) 2

C = 0
4

c
5

C
C6

c

7

k(a- 28) -ka2kK(e - 2 + e-k )2 S 2 -2k2 (w- k) 2

2kK(ek( - 2)+ e-k)

[4k2+(a) 2 (1+e-2k) 2 (w -kV) 2
os (s

c =0



TABLE VII

0< y< a

-k-k S 2-ky
-+ b 2ke S K -ka ky+ SeH = sinh(ky)sin(wst - kx) + e [ek+ -]
x 4k2+S 2 s 2 4k2+S 2 cos(w st- kx) }Is x

-ka S2e-ky- b 2kKe kS K -ka ky S 52H = 2 cosh(ky)cos( t- kx)- - e [e- sin(w t- kx)}1
H 4k2+S 2  s 2 4k2+S2 s y

y< 0

eka kySc kKe-k e k y

x 4k2+S 2

c kKe-k [S

y 4k2+S
2

sin(wst- kx)+ 2k cos(w t- kx)]} i
sn(ws t s I I x

cos(wst- kx) - 2k sin(w st- kx)]}l

-2kBS = (y 0)(l+e )(cs - kV)

No upper iron shield (lim -* )

-ka
{ Keka 2

f 4k= {2 [kS sin(~st - kx) - S cos(w t - kx)]} 4
4k2+S Z



removing the upper iron shield and by defining a slip factor

S, where S = (po~s)(le2kB) - kV).

The simplified field expressions are listed in Table VII.

The phase velocity of the traveling wave is -S, and S is

zero when the velocity V of the conductor is equal to the

phase velocity. At this velocity, the rotor is moving in

synchronism with the armature field, and there are no in-

duced currents in the damper shield. At speeds other than

synchronous speed the induced currents have a frequency

proportional to the difference in the speeds, (u - kV).

Figure 14 demonstrates the damping effect of the shield

on the magnitude of the magnetic fields. As S approaches

zero, the shield speed approaches the phase velocity of the

armature wave. When they are in synchronism there are no

induced currents in the shield and, therefore, no attenuation

of the fields passing through it. As the slip increases the

induced currents in the shield increase in an attempt to

keep the flux passing through it constant. An important

assumption of this model is that the actual shield thickness

is less than the skin depth of the material. For this

design the shield thickness was chosen to be 0.50 inch,

which is less than the skin depth of 0.667 inch. This is

the skin depth corresponding to a maximum asynchronous

frequency of 94.25 radians/sec during starting.
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Magnetic Forces on the Damper Shield

With these expressions for the fields surrounding the

moving shield we can apply Maxwell's stress tensor to

determine the forces of magnetic origin acting upon the

shield. Choose a surface that encloses the damper shield

as shown in Figure 12. We calculate the force per pole by

enclosing one pole with an axial depth L. Surfaces 1 and 2

are E , one wave length,apart. This is equivalent to
k 9

encompassing one pole. Surface 3 is very far below the

shield where the fields are of zero magnitude. The traction

on this surface is zero and contributes nothing to the

force's acting on the shield. Surface 4 is at an infinit-

esimal distance above the shield but in the region b. The

tractions on surfaces 1 and 2 are of equal magnitude, being

one pole apart, but of opposite direction, therefore

cancelling each other. Hence the only.contribution to the

force is due to the tractions on surface 4. Surfaces 5 and

6 (in the x-a plane) also have tractions of equal magnitudes

and opposite direction.

fm = Tmnnda

fx =f Txxda - Txxda + Txyda - Txyda

1 2 4 3

On surfaces 1 and 2: On surface 3:
c2

Txx ( x + H c2) T 0
xx 2 y xy



On surface 4:

b b
T = H Hxy ox y

f = L fo 2 k PoHxbHyb/l =o dx

Total force per pole in the x-direction is:

poLK 7Se S2

x k2  2 2(4k + S )1 4k +S
S

This force can be non-dimensionalized and plotted versus k

as shown in Figure 15.

fx S [4+2S)

LK e [4 + (k)2

The curve displays typical induction motor characteristics.

For starting purposes of this particular machine synchronous

speed was chosen to be one-fourth of normal operating speed.

For zero rotor speed then, S/k = 5.38.

To determine the motor's capability to start itself as

an induction motor it is necessary to plot the torque speed

characteristics of the load. The intersection of the two

curves will determine the asynchronous speed at which the

rotor will turn. Certain assumptions were made to determine

the torque-speed characteristics of a typical propeller load.

The propeller is required to transmit 40,000 horsepower at

120 revolutions per minute. This corresponds to a normal

cruising torque of 1.75 x 106 ft.-lbs. The optimum propeller
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diameter for this speed and power, 23.5 feet, was computed

from the following approximation:

D = (50)(SHP)
0 2

0.6
(N)

This may not be the actual propeller diameter that would be

used for this ship drive as it neglects many other propeller

design parameters such as tip velocity and submergence

under water. However, this value was used for a first

approximation. Also a normal cruising speed of 17 knots

was assumed. The expression relating torque, speed, and

propeller diameter is:

T = CQp D 2 + N2D 2

where p is the density of sea water (1.94 slugs/ft3),

C is the torque coefficient, and Vp is the speed of advance

of the propeller. It is defined by:

V = (1 - w)V

where V is the ship speed and w is the wake ratio,

w = (V - V p)/V

The torque coefficient, C., was determined from the

operating torque delivered at normal cruising speed and

propeller R.P.M. Two values were computed for wake ratios

of zero and unity, and the average value was used (C =.0312).

A torque-speed curve was then determined over a range of

speeds from zero to 30 R.P.M. For this curve, ship speed

was assumed to be zero. The curve was then normalized by



the motor rotor radius, number of pole pairs, and the

product (£L 0oK
2 e-2 ka). The load curve was then super-

imposed on the induction starting characteristic curve as

shown in Figure 15. This was done for starting currents

of one per-unit and two per-unit. These values of starting

current are conservative. The induction motor action of

the damper shield should quickly accelerate the propeller

to approximately 26 R.P.M., or 13.5% slip.

Synchronizing

To synchronize the rotor with the armature field, the

field winding should be energized at this steady state

speed. To determine whether the rotor will be pulled into

step it is necessary to know the weight and inertia of the

rotor and the inertia of the load. These quantities were

not determined in this preliminary electrical study.

However, 13.5% slip appears to be a relatively large value

of slip from which to synchronize. This can be improved

be increasing the stator current. But the problem of shield

heating and heat dissipation by rotor cooling must be

analyzed. The length of time the motor is run as an

induction motor before synchronizing must also be taken into

account.

One of many possible methods to synchronize this motor

is by performance of the following steps:

1) With the field winding de-energized, bring the rotor



speed up by induction motor action to a value greater than

synchronizing speed. If you wish the motor to be synchro-

nized at 30 R.P.M., bring the speed to just over 30 R.P.M.

by running the prime mover and the generator at the required

speed greater than 900 R.P.M.;

2) Slow the prime mover speed quickly to 900 R.P.M. for a

corresponding synchronous frequency of 15 hertz;

3) The motor will begin to slow down. When the rotor is

turning at exactly 30 R.P.M., energize the field winding.

The motor will now be synchronized.

This type of operation is somewhat delicate and more

complicated than a straightforward, conventional synchronizing

operation. However, it is a feasible method of insuring

motor synchronism without slipping poles. It appears that

it is possible to start this motor by induction motor action

on the damper shield and synchronize it.



Chapter V. Conclusions

The linear geometry machine proved to be a good model for

large diameter, multipole, synchronous electric machines.

Field and power rating expressions for flat geometry machines

are good approximations of the corresponding cylindrical ex-

pressions when applied to large, multipole designs. The flat

power rating is approximately 90% of the value determined from

the cylindrical power rating for a machine with fourteen (14)

pole pairs, a tip speed of 75 feet per second, and a diameter

of about 5 1/2 feet.

An important advantage of the flat model over the cylin-

drical model is the simplicity of the field and power rating

expressions in the basic form. The field expressions demon-

strate explicitly the field distribution. The results of

changing the basic design parameters such as armature thick-

ness, field thickness, and pole face angle, air gap dimension,

and field and armature currents, are readily computed. Their

effect on the machine power rating gives the designer a

relatively simple method of determining good approximate values

of these parameters for the initial design.

The significant parameters for machine design are the

pole pitch, k, and the dimensionless parameters:

r g tf t a  and H

2-- sin( -)

The power rating falls exponentially with an increasing air

gap dimension. The machine output is also limited by these



other design parameters. The effective coupling with the

armature is demonstrated in Figure 6. With existing super-

conductors the field current density, and thus machine rating,

is limited by the maximum field allowed in the winding.

Figures 2 and 3 show these maximum values. From the power

density versus pole pitch curve, Figure 7, we can see that,

without careful design, a machine may be designed with finite

dimensions and zero power output. This could occur when

certain design parameters such as field current and armature

current densities are chosen at optimum values, but the

synchronous reactance causes zero terminal voltage.

This analysis has also shown that large multipole synchro-

nous machines can be designed with significant power density

increases over conventional machines. The 29.82 M.W., 60 pole,

120 R.P.M., superconducting motor designed in this study has

a diameter of approximately one half that of a conventional

electric motor for similar performance requirements.

The analysis of starting the motor on the damper shield

by induction motor action has shown that it may be possible

to start and synchronize the motor in this fashion. However,

in a ship propulsion system where rapid speed and directional

changes are common during maneuvering operations, this damper

shield will undergo a heavy duty. Further study should be

devoted to careful design of the shield and rotor cooling

requirements during transients. This coincides with a more

detailed analysis of the propeller load to which the motor

is coupled.



APPENDIX A

Field Analysis for Linear Geometry

I. Solution of the Magnetic Field

The problem is to solve for the magnetic field dist-

ribution in free space due to a linear field winding of

finite thickness between two plane parallel magnetic iron

boundaries. The first step is to solve the problem for a

current sheet between the two iron boundaries and then

expand the sheet by superposition into a winding of finite

thickness.

Eirst the current sheet is represented as a summation

of cosine functions in a Fourier analysis. The current

distribution in the current sheet is shown in Figure 16.

f(x) = K cos
n=l

where +K 0 <x < -

S S
f(x) 0 F < x < 2 +b

-K + b < x < R

Kn is determined from standard Fourier's methods to be

0 n = 2,4,6,p,...
Kn =Kn= n'rS,

K sin n = 1,3,5,7,9,...

Now the field solutions must be found. The differential

forms of Maxwell's equations in current free space are

written as: V . B = 0 , Vx H = 0



I 4- ,A

CURRENT DISTRIBUTION IN

CURRENT SHEET

FI G. 16



This allows us to define a scalar potential, 9 , such that:

H = - V

In current-free space, we then have Laplace's equation:
2
V 4) =0

and, in a linear coordinate system:

2
ID +- =0

Sx2  Dy2

In our two-dimensional model there is no variation of

the field in the z direction, i.e. - 0. Our solution

is independent of z. We can assume variable separable

solutions.

= X(x) Y(y)

Therefore,

X" y X" 2 Y" 2- - 0 and X - X2, = + X
X Y X Y

These ordinary differential equations have solutions of

the form:

Xy -Xy
X = A cos Xx+ B sin Xx Y = Ce + De

nu
where = n

= (Cle + C2 e -)cos Xx + (Ce + C e-Xy)sin Xx

Figure 17 shows the geometric configuration of the current

sheet and the magnetic boundaries. Our solutions must hold

for two regions, one between the current sheet and the upper

iron boundary, and the other between the current sheet and

the lower iron boundary. Boundary conditions must be given

for these two regions at the iron boundaries and at the
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current sheet joining the two regions. They are:

1) n * (H - H*) = 0 across the current sheet

at y =0 H = H *

inside outside

2) n x (H* - H ) = K across the current sheet

n x
at y = 0 Hx* - H = -K cosx x n

inside outside

3) Hx* = 0 at upper iron boundary

y = M

4) Hx  = 0 at lower iron boundary

y=N

The equation -V x 1 y - 1T along with the
ax x ay y

boundary conditions gives us enough equations to solve for

the unknown constants, and thus for the fields. In the

region O< y <M,

KH n (+e-2X N (e Y-e(Y-2M))cos(Xx) T
- (e -e )

(e -2 XK e-2X N )x

-(X(y-2 M) +e - ) sin(Xx) ly

and in the region 0< y < N,

H - Kn (l+e - 2 ) (eXYeX(y2N))cos(xx) i
2 (-2 M_ -2XN x

(e -e )

- (eX(Y N) +e-Xy)sin(Xx) ]i

Full expressions for the fields are found by summing

the Fourier components of Kn and then integrating over all

of the differential current sheets to form a winding of

finite thickness (Figure 18). To find the fields within
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the winding the fields due to current sheets in opposite

regions must be superimposed, because the solutions are of

Laplace's equation in a current-free region. The solutions

for the fields in a current-carrying region may be solved

directly by solution of Poisson's equation. This is not

done here. An excellent treatment of these problems can be
[6]

found in a book by B. Hague

Region I)
+t/2

H. =-t/2 Hi dy N <y <-t/2
1) /-t/2

Region II)
y +t/2

H = -t/ H* dy + H dy -t/2< y < + t/2
-t/2 Y

Region III)

+t/2
H = /2 H * dy +t/< y < M

The results of these integrations are tabulated in Table

of Chapter II.

II. Inductance Expressions

Inductances are determined from the flux linked by the

armature and field windings. First the flux linked by a

differential full pitch coil element is calculated. The

differential number of turns in a differential element is

given by:

2 N
d2N - dAA

For this geometry see Figure .

2 Nt
d2N = S t du dy

wa a



This is for the mutual flux linkage between armature phase

"A" and the field winding. Field flux linked by this element

and its full pitch complimentary element can be found by

integrating the component of the field in the y direction

over the straight line contour between the two elements.

u+k
d 2 1 = L d2 N u+

u
oH yfo (x,y)du

Flux linked by the whole armature phase "A" winding can then

by found by integrating the flux linked by the differential

elements over the area of the whole winding.

f S wa
m a N u+

I t taL fg+I wa S t ~oHyfo(Uy) du du dy
2 wa a u

The self-inductance of the field winding and the mutual

inductance of armature phase "A" with armature phase "B" are

derived in a similar fashion.

f +tf/2 + s Nft x oHyf w(',y)d] dx dy
L -t /2 -S wf f

ab
IL

S-- +g+t 2Z + SwaNt a + k

tf 2 k Swa w aa
2 +g -T

The results of these integrations are listed in Table IM.

All of these expressions are inductances per pole pair and

per unit length.



APPENDIX B

Limiting Analysis of Cylindrical Expressions

The validity of the field and inductance expressions for

a linear winding geometry can be checked from the cylindrical

expressions. As the radius and the number of pole pairs of

a cylindrical machine increase, it should begin to look more

and more like a linear machine. We can show these two ex-

pressions are identical in the limit as the radius and pole

pairs approach infinity. This is true for all the field

intensity and inductance expressions. This limiting process

is done for one of the simpler field intensity expressions

as an example. The other expressions are done in a similar

manner, but they become quite involved and tedious. All of

the cylindrical expressions reduced to the corresponding

linear expressions in the limit.

We will use the expression for the radial field intensity

outside of the field winding volume, Hrfo , as an example.

In cylindrical coordinates, Rf < r < Rs

2J sin(npowf)sin np(o-) R np+2
2 foH rfo r(-) Xrfo nodd n7(2 + np) r(

(1-y n p +2 )[+( r 2np

let R = m + M Rfi = Rm - tf/ 2

and R = P
Rfo = Rm + tf/ 2 r = Rm + y m
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APPENDIX C

Alternative Designs

Optimum Winding Angle

Other attempts were made at designing large, multipole,

superconducting machines by optimizing the design and

placement of the active electrical components. An analysis

was done to determine the optimum field winding angle for a

given amount of superconductor. Optimum, in this case, was

the geometric configuration that created the maximum total

flux passing into the air gap. The field winding cross-

sectional area for one pole is:

@wf 2 2
- (Rfo - Rfi ) = A

We wish to maximize

9=,ff/2
S =0 B(,r = R )rde

We must fix one other independent parameter. For a given

tip speed and mechanical frequency we can fix the outside

field radius, R .
fo

The expression for total flux passing into the air gap

can be non-dimensionalized by defining a non-dimensional

parameter, 6.

2A where A = cross-sectional field

Rfo winding area of one pole.

To optimize I with respect to ewf ,

- 0, solve for wf"
a9 wf
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This can be determined implicitly,

np+2 npewf

np 1 1 - (1 - ) 2 tan( 2
(2+np) (1 - Bewf)np/ 2  ew

Figure 19 shows non-dimensional flux plotted versus winding

angle with B held constant. It demonstrates that there is a

winding angle that yields maximum radial flux in the air gap.

The curve is cut off on the left end due to the fixed area

constraint and on the right end because the inside field

radius goes to zero. If we compare the net flux increase we

gain by using the optimum winding angle for first harmonic

fieldswith the winding angle that yields zero third harmonic

flux, i.e. 120 electrical degrees, the percentage range of

increase is approximately zero to ten percent. The advantage

of increasing the radial flux into the air gap by careful

winding angle design is attenuated by the resultant third

harmonic fields due to winding angles other than 120 electri-

cal degrees. It appears that there is not much advantage in

using winding angles other than those required to eliminate

higher harmonic fields.
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