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Abstract

Research interest in the use of adaptive experimentation has returned recently. This his-
toric technique adapts and learns from each experimental run but requires quick runs and
large effects. The basis of this renewed interest is to improve experimental response and it
is supported by fast, deterministic computer experiments and better post-experiment data
analysis. The unifying concept of this thesis is to present and evaluate new ways of us-
ing adaptive experimentation combined with the traditional statistical experiment. The
first application uses an adaptive experiment as a preliminary step to a more traditional
experimental design. This provides experimental redundancy as well as greater model ro-
bustness. The number of extra runs is minimal because some are common and yet both
methods provide estimates of the best setting. The second use of adaptive experimentation
is in evolutionary operation. During regular system operation small, nearly unnoticeable,
variable changes can be used to improve production dynamically. If these small changes
follow an adaptive procedure there is high likelihood of improvement and integrating into
the larger process development. Outside of the experimentation framework the adaptive
procedure is shown to combine with other procedures and yield benefit. Two examples
used here are an unconstrained numerical optimization procedure as well as classification
parameter selection.

The final area of new application is to create models that are acombination of an adap-
tive experiment with a traditional statistical experiment. Two distinct areas are examined,
first, the use of the adaptive experiment to determine the covariance structure, and second,
the direct incorporation of both data sets in an augmented model. Both of these applications
are Bayesian with a heavy reliance on numerical computationand simulation to determine



ii

the combined model. The two experiments investigated couldbe performed on the same
physical or analytical model but are also extended to situations with different fidelity mod-
els. The potential for including non-analytical, even human, models is also discussed.

The evaluative portion of this thesis begins with an analytic foundation that outlines the
usefulness as well as the limitations of the procedure. Thisis followed by a demonstration
using a simulated model and finally specific examples are drawn from the literature and
reworked using the method.

The utility of the final result is to provide a foundation to integrate adaptive experi-
mentation with traditional designed experiments. Giving industrial practitioners a solid
background and demonstrated foundation should help to codify this integration. The final
procedures represent a minimal departure from current practice but represent significant
modeling and analysis improvement.

Thesis Supervisor: Daniel D. Frey
Title: Associate Professor
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Chapter 1

Introduction

Many experimental situations require a setup, tuning, or a variable importance decision be-

fore running a designed experiment. If this other procedureis run as an adaptive experiment

there can be additional benefit to the subsequent designed experiment. The adaptive experi-

ment of focus is the adaptive-One-Factor-at-a-Time (aOFAT) experiment described in Frey

et al. (2003), to be combined with a number of different statistically designed experiments

including fractional factorial, Box-Behnken, Plackett-Burman, and D-Optimal as well as

other procedures including evolutionary operation, article classification, and unconstrained

optimization. The hypothesis is that there is an appropriate and beneficial place within

designed experimentation to combine an adaptive experiment with a traditional statistical

experiment.

Design-of-experiments (DOE) is a frequently used tool to understand and improve a

system. The experimental technique began as support for long-term agricultural projects

that allowed the development of methods such as blocking, randomization, replication, and

fractional factorial analysis (Box et al., 2005). Many of these practices are considered

fundamental to good experimentation, and are widely used today. The next advancement

1



2 Chapter 1. Introduction

to experimentation were achieved by industrial practitioners. In the chemical and man-

ufacturing industries experiments ran more quickly, but were still expensive. Sequential

experimentation specifically designed for regression analysis became the standard. The ex-

periment was tied to a particular underlying physical modeland could accurately estimate

the required model parameters with minumum excessive runs.In current experimentation

research design parameters are separated from noise parameters to allow robustness tun-

ing, with the most popular technique being crossed arrays (Wu and Hamada, 2000). These

methods rely on a single design paradigm, the statistical experiment. The previous method

of changing a one factor at a time (OFAT) (Daniel, 1973) has been discounted as lacking

the statistical power and requiring too many runs (Wu and Hamada, 2000). The advantages

of learning from each run and approaching a maximum quickly are under appreciated and

over criticized. This adaptive approach is also easy to explain and implement and does not

require an extensive statistical background.

The literature on experimentation (Wu and Hamada, 2000; Montgomery, 1996; Box

et al., 2005) is primarily from a statistical viewpoint and differing in paradigm from the

previous one-factor approach, as Kuhn (1996) would say, thediscussions between the two

options may be incommensurable. The arguments for the statistical approach are based on

a language and perspective that does not exist with the one-factor methodology. Even with

a preponderance of evidence in support of the one-factor approach in certain situations,

yielding slightly is tantamount to questioning the foundation for a statistical approach.

The suggestion forwarded in this work is partially that an opportunity exists to bridge the

paradigms of one-factor and statistical experiments. It isnot to belittle the advancement of

statistical experiments but to expand the framework to consider the system of application.

A parallel can be drawn to Newtonian and relativistic physics. While it is accepted that for

high speed and short time applications the Einstein view is more correct, for the majority of
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earth bound physics the Newtonian approach is more useful. Einstein (1919) also suggests

that his theory does not supersede Newtonian physics and finding accessible situations to

measure any difference is difficult. From a practical standpoint, accepting the validity of

Einstein does not reduce the ubiquitous utility of Newtonian physics in daily engineering

activities. The same approach could be taken in experimentation. While acknowledging the

validity of statistical experimentation there are situations where one-factor methodologies

are more practical. Taking this openness even further thereare opportunities to benefit from

both a one-factor design as well as a statistical experiment. The analogy would be initial

predictions using Newtonian physics to be later refined withrelativistic calculations. For

many instruments and situations the initial method would besufficient but the confirmation

and refinement using a relativistic approach would support the results.

Although the statistical and adaptive approaches are traditionally used in different sit-

uations this work will present opportunities to combine theresults from both types of ex-

periments into a complete testing framework. This combination is challenging to accept

by both the academic as well as the industrial community. Theacademics question the

pragmatic utility while most practitioners are unwilling to challenge the foundation of their

six-sigma training. Although it may be impossible to bridgethe incommensurate points of

view, this work is an attempt to present some specific examples that demonstrate the utility

of using both methodologies.

The first situation of interest is reusing runs from a prior adaptive experiment. By

reusing runs the intent is to increase the number of common runs between the two exper-

iments. The adaptive experiment cannot be preplanned and sothe potential reuse in the

subsequent experiment is stochastic. The procedure investigated begins with an aOFAT

experiment. The first follow-up experiment is a traditionalfractional factorial design. The

number of runs reused is dependent on the fraction used, the number of variables, and size
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of fraction. This number asymptotes to approximately twenty percent of the total adaptive

runs. This run reuse is demonstrated on a number of actual experiments as well as surrogate

experiments. If the follow-up experiment is more flexible indesign, one option investigated

was the non-balanced D-optimal design. As suggested in Wu and Hamada (2000), a fully

orthogonal non-balanced D-optimal design is a good alternative to a fractional factorial.

This change dramatically improves run reuse to all but one run, although it requires design

planning after the initial aOFAT is complete. In addition tosimulating the results of this

improvement the independence of the two resultant maximum settings is demonstrated.

Running an adaptive experiment before a statistical experiment creates an opportunity for

run reuse while providing an independent maximum setting estimates.

This adaptive approach could also be used on the manufacturing floor. The method

of evolutionary operation (EVOP) is revisited with a focus on utilizing adaptive experi-

mentation. The alignment of this continuous improvement technique with the sequential

maximization nature of an aOFAT provides a positive pairing. The use of these adaptive

procedures was discussed by Box and Draper (1969) to the conclusion that the methodology

was na ive. This conclusion is challenged here by investigating actual system responses,

and showing a place for sequential adaptive experiments. Instead of using small fractional

factorial experiments, repeated single steps in an adaptive procedure is shown to be more

robust to initial and subsequent variable selection. Because of the stochastic nature of the

repeated procedure a modified Gibbs sampler is introduced tominimize the additional runs

while converging to a better variable setting. An offshoot of this procedure is the use of an

adaptive experiment in computational function maximization.

The modified sequential simplex procedure was originally developed for evolutionary

operation (Spendley et al., 1962). This rank-based geometric procedure was used fre-

quently in the 1970’s and 1980’s although it languished in the 1990’s for more complex
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derivative-based methods. More recently it has returned topopularity with the increased

use of computer simulations. As a robust method it is able to handle discontinuities and

noise at the cost of more function evaluations. There are implementations of the simplex

in most numerical programs for unconstrained optimization. The typical initial setup is

based on changing one variable at a time (Press et al., 2007).This is improved by adding

an adaptive element and performing an aOFAT for the initialization. The aOFAT procedure

is modified to align the geometric center of the starting points to that of the non-adaptive

method to permit equivalent comparisons. The adaptive procedure improves the overall

convergence and reduces the number of function evaluations. Combining the adaptive pro-

cedure with the simplex starts the geometric procedure towards the maximum gradient for

improved convergence. The benefit of this change is demonstrated on a test suite for nu-

merical optimization (Moré et al., 1981).

Outside of the optimization another issue addressed here isvariable selection. Using

the Mahalanobis-Taguchi Strategy (MTS) from Taguchi and Jugulum (2002), data classifi-

cation is based on a statistical distance. One hurdle to using this system is in selecting the

best variables for classification. Traditionally orthogonal arrays are used to select a subset

of variables. This method can be improved by using an aOFAT experiment combined with

the Mahalanobis distance. This procedure is specifically applied to an image classification

system where the variables of interest are the coefficients of a wavelet transform. In this

case the addition of variables adds to the computational load of the classification system

reducing its performance. It is important to add the minimumnumber of variables while

maximizing their usefulness. The superior peroformance ofthe aOFAT combined approach

is demonstrated and has been published in Foster et al. (2009).

In addition to dual results and as a starting procedure, aOFAT can be used as one ex-

periment that combines the results into a single model. Combining two different types of
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data was approached in a Bayesian framework. The use of a correlated gaussian random

variable to make a posterior prediction has been used successfully by Joseph (2006). Part

of this methodology is to use a correlation matrix for the input variables. Instead of using a

larger experiment the information was divided between an early aOFAT experiment to cre-

ate the correlation matrix followed by a highly aliased Plackett-Burman design (Plackett

and Burman, 1946). The goal of this aspect of the work is to combine the relative strengths

of both the aOFAT and traditional experimental procedures.The aOFAT can be used to

create a variable ranking while the aliased design is able toefficiently define the model.

A procedure to define the correlation matrix is created that benefits from published data

regularities (Wu and Hamada, 2000) and variable distribution (Li and Frey, 2005). This

methods performance is equivalent to using an uninformed correlation matrix and a larger

experimental design with equal total runs. The procedure isdemonstrated on a number of

published examples as well as surrogate functions.

The last aspect of combined model building is to use experiments of different accuracy

such as Qian and Wu (2008). Combining computational and physical experiments is one

example of these different accuracies. The use of adaptive experiments uses a minimum

number of runs while increasing the likelihood of having points near the maximum. A new

method of calculating convergence is presented as well as a procedure to maximize each

simulated markov chain. The result is a procedure that provides a good model using both

data types that is more accurate at the maximum values.

The ultimate goal of this work is to create a foundation for the integration of adaptive

experimentation into statistical experiments. Simple techniques are presented for using

setup runs and getting benefit from those runs. This continues to manufacturing where

evolutionary operation (EVOP) can be improved and simplified with adaptive experiments.

A numerical maximization procedure is improved through a better starting approach, and
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a classification procedure is shown to benefit from an adaptive parameter selection tech-

nique. The final area focused on using data from an adaptive experiment and a traditional

experiment to build a single model. First, the covariance estimation was improved to yield

more accurate and smaller models with the same number of runs. Second, incorporating

data from two different accuracy sources is shown to benefit from making one of the exper-

iments adaptive. The overriding goal for all of these procedures is to extend the framework

for combining adaptive techniques with traditional experiments to reach a greater audience

and provide examples and tools necessary for their application.



8 Chapter 1. Introduction

Bibliography

Box, G. E. P. and Draper, N. R. (1969).Evolutionary Operation: A Statistical Method for
Process Improvement. John Wiley & Sons, Inc.

Box, G. E. P., Hunter, S., and Hunter, W. G. (2005).Statistics for Experimenters: Design,
Innovation, and Discovery. John Wiley & Sons.

Daniel, C. (1973). One-at-a-time plans (the fisher memoriallecture, 1971).Journal of the
American Statistical Association, 68:353368.

Einstein, A. (November 28, 1919). What is the theory of relativity? The London Times.

Foster, C., Frey, D., and Jugulum, R. (2009). Evaluating an adaptive one-factor-at-a-time
search procedure within the mahalanobis taguchi system.International Journal of In-
dustrial and Systems Engineering.

Frey, D. D., Englehardt, F., and Greitzer, E. M. (2003). A role for “one-factor-at-a-time”
experimentation in parameter design.Research in Engineering Design, 14:65–74.

Joseph, V. R. (2006). A bayesian approach to the design and analysis of fractionated ex-
periments.Technometrics, 48:219–229.

Kuhn, T. (1996).The Structure of Scientific Revolutions. University of Chicago Press, 3
edition edition.

Li, X. and Frey, D. D. (2005). A study of factor effects in data from factorial experiments.
In Proceedings of IDETC/CIE.

Montgomery, D. C. (1996).Design and Analysis of Experiments. John Wiley & Sons.
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Chapter 2

Experimental Background

2.1 Early Experimental Developments

The science and art of designed experimentation began as agriculture experimentation by

Ronald A. Fisher (Figure 2-1) at the Rothamsted Experimental Station in England where

he studied crop variation. The techniques that he developedwere the basis to test different

seed/soil/and rotation parameters in a noisy field environment (Fisher, 1921). This early

work cumulated in two important books on the use of statistical methods in scientific in-

vestigation (Fisher, 1925, 1935). A parallel development was being made by William S.

Gosset (Figure 2-2), also in agriculture but this time related to small samples of barley

for beer production. These two early pioneers developed some of the foundations of statis-

tics and experimentation including blocking, randomization, replication, and orthogonality.

Another contribution that was made was progress on small sample distributions, thus for

smaller experiments the estimates of significance and errorcould be calculated (Student,

1908).

The fundamentals of these early experiments were foundational to further experimental

11



12 Chapter 2. Experimental Background

Figure 2-1: Ronald A. Fisher

Figure 2-2: William S. Gosset
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development and continue to be utilized today. Replicationutilizes repeated experiments at

identical settings, although not run sequentially but at random. The principle of replication

allows for an overall experimental error estimate. If this error is low compared with with

the experimental response, the confidence is high that the experiment is representative of

the population in general. The reverse is also true that given a desired error margin (or risk),

it is possible to estimate the required number of replicates. Randomization suggests that the

order of changes should vary randomly. By making adjustments in random order, any sig-

nificance in the results is more likely due to the experimental variables and not some other

latent, or hidden, variable. A latent variable is somethingthat changes throughout the ex-

periment but is not directly changed by the experimenter. These variables could be obvious

like the temperature of the room, to something more hidden like the predilection of boys

to use their right foot. If the experimental changes are applied in a random fashion then

it is unlikely that these latent variables will affect the result. The next aspect introduced

is if there are some uncontrolled variables that are too difficult or expensive randomize.

One method to deal with these variables is through blocking.Identical sets of experiments

can be run in blocks, and the different blocks can be run at different settings of these un-

controlled variables. An example of blocking would be two different manufacturing plants

that would each run an identical experiment. Although the differences between plants are

large, the changes within a plant should be similar. The goalfor blocked experiments is

for the within block variation to be low compared with the between block variation. The

last aspect of early experimentation was input variable orthogonality. If the variables in an

experiment are arranged such that there is zero correlationbetween them they are consid-

ered orthogonal. Most designed experiments are arranged toguarantee this property, which

simplifies analysis.

The experimental designs that were developed began with full-factorial designs at two
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levels. These designs are complete enumerations of all variable combinations. The first

variable switches from the low to high setting every run, thesecond variable every two

runs, the third every four, etc. This led to 2n number of runs for each replication wheren

is the number of factors or variables. The runs should be randomized, blocked if possible,

and replicated. These large designs had sufficient runs to estimate the main effects, and

all interactions, the main drawback was they were too large for all but the simplest experi-

ments. To reduce the number of runs fractions of these experiments were developed. The

fractional designs begin with a smaller full-factorial design and to add additional factors

that are combinations of the existing factors are used. Eachfactor run is orthogonal to the

others so multiplying two or more factor runs together yields a new run that is orthogonal

to those. The design of these is complicated in finding good variable combinations that

yield orthogonal results to the greatest number of other factors. The factors that are not

separable are called aliased. For example, given a three factor, full-factorial design, multi-

plying the first, second, and third factors (ABC) gives you a fifth factor (D). This design is a

24−1 design with resolution IV, called so because the number of factors multiplied together

to get the identity is four (ABCD = I ). In general, a resolution IV design has no n-way

interaction with any other (5− n)-way interaction. This design is obviously aliased in any

effects ofABC would not be distinguishable from main effect D. There is a tremendous

research history on the fractional factorial concept and Yates (1935); Fisher (1935); Box

and Hunter (1961b,a) are some good starting points. Fractional factorial designs are the

workhouse of designed experimentation. Today research focuses on incorporating noise

variables, identifying concomitant or lurking variables,and exploiting covariats, through

such things as highly fractioned, non-replicated, or non-randomized designs (Sitter, 2002).

There are other techniques for designing an experiment, butmost industrial experiments

rely on the fractional factorial.
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One of the other techniques is called optimal design, it was first described by Smith

(1918) but the lack of computational power prevented its popularity until later. The pri-

mary motivation of optimal design was to focus on the inferential power of the design

versus the algebraic properties of its construction (such as rotatability) (Kotz and Johnson,

1993). This work will be limited to linear models and so a complete definition of opti-

mal designs is unwarranted. The basics are the comparison ofdifferent potential designs

against a criterion or calculation of merit. Numerical methods search through potential

designs before selecting one with the best criterion. Givena linear model:

Y = X ∗ β (2.1)

The best linear estimate ofβ is (XT ∗ X)−1XT ∗ Y and a measure of the variance on this

estimate (given uncorrelated, homoscedastic noise with varianceσ) is:

σ2 ∗ (X ∗ XT)−1 (2.2)

One measure of good design is the size of this matrix. There isno complete metric for the

size of this matrix and so a number of alternatives have been proposed. One popular one

is the D-optimality condition that seeks to minimize the determinant of this matrix. Oth-

ers are the A-optimality for the trace of the matrix, or E-optimality minimizes the largest

eigenvalue of the matrix. There are a number of other potential optimality conditions, here

the focus is on D-optimality because it offers a clear interpretation, and is invariant to scale

transforms. It is not the only choice for optimal designs buthas been suggested as good

starting location by Kiefer and Wolfwitz (1959). The main utility of optimal designs as

stated in more recent texts Wu and Hamada (2000) is to augmentprevious runs. The draw-
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back of this approach is the dependency on the underlying model before creating a design.

By limiting the cases to those where the linear-model determinant is a global minimum it

forces orthogonal models.

2.1.1 Higher Order Models

The previous models limited the analysis to linear and interaction terms. If it is desirable

to estimate quadratic effects then one obvious extension would be to run a 3n full-factorial

experiment. The drawback of this large experiment is that most of the runs are used to es-

timate high order, improbable, interactions. Given the principle of hierarchy from Hamada

and Wu (1992) which states that lower order effects are more important than higher order

effects and effects of the same order are equal, most of these terms are insignificant, and

so these runs are wasted. Utilizing fractional factorial designs has greater run economy

while normally yielding the same models. There are also situations where the number of

levels is a mixture of two and three level factors. This leadsto a large number of potential

experimental designs with different resolution and confounding structure. A small, but sig-

nificant, change in approach is to view the experiment as an opportunity to efficiently fit a

proposed model. If this alternative view is used then designs could be more efficient and

much smaller. In an early advance, Box and Wilson (1951) showed how to overcome the

problem where the usual two-level factorial designs were unable to find a ridge. These cen-

tral composite designs (CCD) were efficient and rotatable (Box and Hunter, 1957), meaning

that the variance estimate was comparable in any direction.The CCD consists of three ports

first the corner or cube points (2n) second the axial or star points (2∗n) and the center points

(≈ 3− 5 Montgomery (1996)). With a defined goal of building a quadratic model these de-

signs are highly efficient and are normally employed to search for more optimal operating
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conditions. One selection that needs to be made by the experimenter is the distance of the

star points. These points are locatedα times further than the corner points. The selection

of α = 1 is called the face centered cubic and has only three levels for each variable. An-

other popular selection is to make the design rotatable, or have a constant distance to the

center point, soα =
√

n. The last selection ofα makes the cube points and the star points

orthogonal blocks. This property is useful if they are goingto be run sequentially in this

caseα =
√

k(1+ na0/na)/(1+ nc0/nc), wherena is the number of axial points, andna0 is

the axial center points andnc andnc0 is the same for the corner points ofk variables. One

drawback of the CCD design is that the corner points are run atall the variable extremes,

and it is also not as efficient as some other deigns. If the experiment is going to be run at

only three levels an improvement is the Box-Behnken design (Box and Behnken, 1960).

This design is slightly more compact than the traditional CCD, and does not have any of

the corner points. It was created by combining a number of incomplete block designs, and

so also has potential for orthogonal blocking. For four variables the Box-Behnken design

and CCD (α =
√

n) are rotations of each other, one having points at the corners and the

other not. This feature is not the case for more variables.

The Plackett-Burman designs are very efficient experimental designs. The metric of

redundancy factor (Box and Behnken, 1960) is going to be usedto describe these designs.

If a designed experiment ofk factors is going to be used to fit a polynomial model of order

d then it has to be able to separably estimate (k + d)!/k!d! model factors. For example,

a full-factorial design ofp-levels (normally 2 or 3) can at most estimate a model of order

p−1. To estimate a quadratic model at least three points are necessary given a full-factorial

design haspk runs. The redundancy factor is the ratio of the number of runsto the number

of parameters that can be separately estimated. For the fullfactorial design it ispk(p −

1)!k!/(k+ p−1)!, which for a 25 design is 5.3 and for a 35 design is 11.6. The ratios for the
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N Vector
12 ++-+++---+-

20 ++--++++-+-+----++-

24 +++++-+-++--++--+-+----

36 -+-+++---+++++-+++--+----+-+-++--+-

44 ++--+-+--+++-+++++---+-+++-----+---++-+-++-

Table 2.1: Plackett-Burman Generating Row

full factorial designs are very large. For the Plackett-Burman designs with the number of

variablesk = 3, 7, 11, . . . , or 4i−1, the two-level (p = 2) require onlyr = 4, 8, 12, 16, . . . , 4i

runs. Thus their redundancy factor is unity. This minimal redundancy is normally not used

in practice as they have no residual data that can be used to check the validity of the model.

The primary area of utility of this design is in screening experiments. If it is known in

advance that a number of the variables will probably be unimportant then those extra runs

can be used for model validity checks.

The construction of a Plackett-Burman design is completed in a cyclic fashion. A gen-

erating row is used initially as in Table 2.1. This generating row is then shifted one entry

to the right, and the last entry is placed first. This procedure is repeated until the entire

generating row has been have cycled through. The final row of all -1’s is added to complete

the design.

All of these designs and the general process of making designdecisions are described

in the original classic text on experimentation of Box et al.(1978) which has been updated

in Box et al. (2005).

2.2 Adaptive Designs

During the second world war a number of statisticians and scientists were gathered by

the United States government to from the Scientific ResearchGroup (SRG). This group
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worked on pertinent war studies such as the most effective anti-aircraft ordinance size and

the settings for proximity fuses. One area of research that came from this group was the idea

of sequential analysis. Instead of running an entire experiment before analyzing the results

they considered the power of analyzing during the experiment (Friedman and Friedman,

1999). Out of the early work of Wald (1947) further researchers have proposed ways to

not just analyze but to modify the experiment sequentially such as yan Lin and xin Zhang

(2003). These methods are prominent in clinical trials suchas Tsiatis and Mehta (2003) and

Chow and Chang (2006). One of the ideas is now termed response-adaptive randomization

(RAR) Hu and Rosenberger (2006) which was introduced as a rule called ’play-the-winner’

by (Zelen, 1969). The idea is to bias the randomization of sequential trials by the preceding

results. This fundamental idea will be used in this thesis inthe chapter on evolutionary

operation (Chapter 4) and again in the chapter on aOFAT integrated improvement (Chapter

7).

An additional area of research that began with the SRG was using repeated experiments

to find a maximum by Friedman and Savage (1947). This was one ofthe foundations for

Frey et al. (2003) and Frey and Jugulum (2003) work on the subject. In the work here

repeated experiments are run with each subsequent experiment reducing the variable range.

In the end the variable range spans the function maximum for linear convex variables.

The statistical design approach has been used as a starting point to optimization pro-

cesses. One example is the question posed by Box (1957), could the evolutionary opera-

tion statistical experimentation procedure be made automatic enough to be run on a digital

computer. This original question drove Spendley et al. (1962) to develop a geometric opti-

mization procedure called the sequential simplex. This procedure will be investigated here

because it has properties of interest. First the objective is to maximize a few runs, an adap-

tive procedure will have the biggest effect. As the number of runs grow the ability of the
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statistical experiment to measure variable importance grows. The second reason that this

application is appropriate is the goal is to search for a maximum.

Those two areas will play an important role in this thesis andare the motivation for

much the work. A simple definition of these two main system aspects are those that first

use very few experimental runs and second desire function maximization. There are many

practical areas where these properties are desirable especially within the context of applied

industrial experimentation. Taken to an extreme the logical goal is to maximize the value

of each run and limit the total number of runs. As Daniel (1973) and Frey and Geitzer

(2004) point out, there are numerous experimental situations where adaptation is desirable

and stopping the experiment early is a frequent occurrence.

2.3 Background for One-Factor-at-a-Time (OFAT)

While it is almost impossible to investigate the history of the intuitive OFAT (one-factor-

at-a-time) experiment more recent investigations into comparative one-factor options is

available. Daniel (1973) was an early proponent of the technique within the statistical

community. He discussed the opportunity and the required effect size to make it worth-

while. His main concern was with changing each variable in order and the comparison to

a regular fractional factorial experiment. While the motivation for each of these different

types of experiments is disparate the runs and analysis is similar. Because of the risk of

time-trends and the inability to estimate interactions it was determined that the ratio of

effect to noise had to be around four. This high resolution gave sufficient power to this

historic method. There were five different types of one-factor experiments presented by

Daniel (1973). These five types are strict, standard, paired, free, and curved. Strict varies

each subsequent variable beginning with the previous setting. If the experimenter was test-
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ing a(where onlya is at the high setting) thenab(with both a andb) thenabc this is an

example of a strict OFAT. The advantages to this arrangementis that it transverses the de-

sign space and can be easily augmented by starting at the beginning and removing factors,

the experiment above could be extended by addingbcandc. The standard OFAT runs each

variable in ordera, b, c, andd. This order focuses the runs on one corner of the experiment,

which increases knowledge around that area but does not improve estimates of interactions.

The paired order is designed for runs that are typically run on parallel experimental setups.

Each setup completes a pair of runs that can estimate the maineffects and separate the in-

teractions. The first two runs for the first setup could bea and(1)(all values low) while the

second would runabcdandbcd. These two standard OFAT experiments are combined to

yield variable information after two runs of each setup, thus decisions can be made about

future experiments. The free OFAT is only touched on briefly but brings a level of adap-

tiveness. After a part of a traditional experiment is complete, some response assumptions

are made to reduce the additional runs. If the initial highlyfractioned experiment shows

A+BC is important then choose additional runs to separate out Afrom BC assuming the

rest of the effects are negligible. The final OFAT experiment is a curved design. This sep-

arates out easy to change from difficult to change variables. The easy to change variables

are swept through their range of values while the others remain constant. A subsequent set

would change all of the variables and run the sweep again. These five represent the basic

set of publicized OFAT experiments. The practitioners of this experimentation technique

often wanted an easy way to gain factor importance in situations where the experimental

error was low and results were quickly obtained.



22 Chapter 2. Experimental Background

2.4 Adaptive One-Factor-at-a-Time (aOFAT)

The one-factor-at-a-time (OFAT) experiment was once regarded as the correct way to do

experiments, and is probably the default in many non-statistical frameworks. Inside the

statistical framework it is possible to view full-factorial designs as a series of OFAT exper-

iments. Given a 23 experiment in standard order runs (1, 2, 3, 5), (8, 7, 6, 4) are two OFAT

experiments that yield the same runs as a full-factorial experiment.

Daniel (1973) discusses this option and the utility benefitsof OFAT to experimenters.

It is possible to learn something after each experimental run, and not require the entire set

of runs to be complete. The power of this analysis requires the effect to be three or four

times as great as the noise, and in many situations these are the only effects of interest.

The four basic issues brought up against OFAT experiments, and repeated in different

contexts are (Wu and Hamada, 2000):

• Requires more runs for same effect estimation precision

• Cannot estimate some interactions

• Conclusions are not general

• Can miss optimum settings

These are legitimate issues with the methodology but the effect in practice depends

significantly on the experimental purpose and scope. Takingeach of these points out of the

experimental context to blindly support a statistical based approach ignores some situations

where this methodology has clear advantages.

These same negative arguments are repeated in (Czitrom, 1999) where the author give

specific examples where the choice of a OFAT experiment is inferior to a regular statistical
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experiment. First, the discussion does not address realistic experimentation nor does it

discuss additional information sources. Both of these possibilities are discussed in this

work (Chapter 3 and 7). To support the statistical experiment the author gives an example

of two variables where the experimenter wants to run an OFAT of three points, temperature

and pressure. The number of replicas was decided in advance as well as the variable range.

The first concern is around how that data was collected and howit could be combined

with the experimental results. Second, the entirety of all the experiments are planned in

advance, if the outcome is to search for a maximum, there are better options (as discussed in

(Friedman and Savage, 1947)). There is no argument against the majority of the examples

presented in (Czitrom, 1999) (examples two and three), and the statistical experimental

framework is superior to a traditional OFAT approach. The reality that OFAT is inferior

in certain situations does not eliminate the possibility that OFAT has a useful place in the

experimental toolbox. This work explores a handful of thoseopportunities.

The uses forwarded in this work augment, instead of replace the statistical experimenta-

tion. There are many situations that benefit from an adaptiveframework, important example

situations include:

• Insufficient planning resources

• Immediate improvement needed

• Variable ranges and effect magnitude unknown

Although there may other specific situational examples, these are the situations described

in Frey and Geitzer (2004) and Daniel (1973).

If the resources to plan the experiment and layout and perform the runs are not available

is no experimentation possible? Some situations are limited by time and resource pressure
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and only overhead-free experimentation, such as OFAT, is possible. There are other sit-

uations that demand some immediate improvement to the running condition. Additional,

and more complete, experiments can be run afterwards to tunethe system but an initial

change needs to be made that has a high likelihood of succeeding (such as adaptive-OFAT

(aOFAT)). Many experiments are run on processes and factorswhere little is known. It

may not be possible to determine the variable ranges for the experiment with a reasonable

degree of confidence. The only way to determine the possible ranges is to experiment on

the system, and a OFAT framework can determine the maximum and minimum settings.

These general situations have specific examples that have shown to benefit from the OFAT

approach. There are potentially many other situations where this technique may be benefi-

cial, but there has not yet been a serious inquiry. For example, one area may be to reduce

the number of variable changes. The OFAT and aOFAT experiment could be compared to

options such as Gray codes (Gray, 1953). It is infeasible to predict all the opportunities but

as the technique gains greater publication its use should expand.

As the statistical approach is accepted, many authors (Wu, 1988; Box et al., 2005;

Myers and Montgomery, 2002) suggest an adaptive framework where a sequence of exper-

iments is performed. These experiments could be changing because of newly discovered

interactions or to change the variable ranges to search for abetter operating condition. The

minimum experimental process suggested is a two or three factor experiment (in Box et al.

(2005), for example), but if this is reduced to the extreme then their procedure also reduces

to an aOFAT sequential experimentation procedure. The procedure outlined in Myers and

Montgomery (2002) uses this sequential procedure and as thevalue nears a maxima, the

experiment is expanded to study more of the interactions or quadratic effects. This adaptive

sequential procedure is revisited in this work with the initial experiment being the minimal

aOFAT followed by a statistically based procedure.
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There have been some recent comparisons between the aOFAT methodology and more

traditional orthogonal arrays in Frey et al. (2003). They found that for the same number of

runs, the aOFAT was able to discover the maximum setting withhigh probability. The suc-

cessful resultant of the procedure should be limited to those situations where the maximum

number of runs is small (limited to the number of variables plus one). Thus the compari-

son is normally between aOFAT and Resolution III FractionalFactorials (later in this work

Plackett-Burman Designs will also be included). If there are additional resources there is

limited information about what would be the next steps. If the goal is to match a standard

factorial experiment, Daniel (1973) suggests running a series of OFAT experiments. These

experiments cover the runs for a reduced factorial design and so an adaptive addition is

unnecessary. Friedman and Savage (1947) suggest that a series of adaptive experiments

can be used to search for a maximum. More recently, Sudarsanam (2008) proposes run-

ning a number of aOFAT experiments and ensemble the results.Most authors are silent on

the subject of additional runs and instead offer direct comparisons to specific experimental

designs. One could conclude that the current methodology for sequential experimentation

could be utilized just replacing the fractional factorial design with an adaptive design. This

extension has yet to be demonstrated in practice and does notprevent methodologies that

combine aOFAT experiments and other experiments.

Frey et al. (2006); Frey and Sudarsanam (2008); Frey and Wang(2005) have looked

into the mechanism behind aOFAT that leads to improvement. This research is empirically

based and shows that for low levels of experimental error or relatively high amounts of

interaction aOFAT is superior to Resolution III FractionalFactorial designs (Frey et al.,

2003). The comparative advantage with high interaction suggests that there might be a

complementary relationship between aOFAT and Fractional Factorial designs. Given this

relationship are there other options for additional resources? Some possibilities are inves-
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tigated in this work including, run reuse in another experiment and searching for a maxima

through a sequential simplex. The other area of investigation was utilizing the relation-

ships in Frey and Wang (2005) to apply a Bayesian framework tomaximize the utility of

the aOFAT experiment as a prior predictor.

The underlying system structure requires low noise for goodsystem estimates. Daniel

(1973) suggests that the effect magnitude should be 4σ while Frey et al. (2003) suggests

that 1.5σ is sufficient. These estimates are based on different data sets and may be different

for a particular experiment. The other requirement was the speed to collect data samples,

both Daniel (1973); Frey et al. (2003) suggest that samplingshould be quick. This re-

quirement limits the effect of drift or time series effects. It is possible to account for some

of these effects by running multiple experiments, but the lack of randomization limits the

extent of this improvement.

There are many experimental techniques the two presented here are adaptive-one-factor-

at-a-time (aOFAT) and statistical experiments. Both have situations where they are superior

but due to an adversarial relationship there is limited research on the combination of the

two methodologies. This research begins to bridge the OFAT and specifically aOFAT ex-

periments with statistical experimental techniques. The areas of application are run-reuse,

maxima seeking, variable selection, and applications in a Bayesian Framework including

prior prediction and dual data integration.

2.5 aOFAT Opportunities

The combination of statistical and adaptive experiments isseen as a starting point that can

leverage the strengths of each technique. Instead of choosing between the two techniques

the goal is to combine the two to improve the outcome. As mentioned previously the areas
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under investigation are for system maximization where there is little risk of time trends af-

fecting the results. The initial approach is to improve the traditional industrial experiment.

These experiments are normally part of a six-sigma process such as Breyfogle (2003).

Given some process variables, noise, and an output variablejunior-level engineers design

an experiment to improve their process. This has been instituted in companies such as GE

with the green-belt and black-belt certification (GE, 2009). Within these experiments the

application areas are broad but the experiments of interestrequire some physical setup and

should have relatively low expected levels of time dependent noise. Many of these sys-

tems could be replaced completely with adaptive experimental techniques although there

are added benefits to look at experimental integration. Adaptive experiments can augment

these traditional experiments to provide additional benefit with little experimental risk. This

integration is initially presented in Chapter 3 to run an adaptive experiment during setup

or to initially test the system. This is then followed by a traditional statistical experiment.

The integration of these two methods is presented as the ability to reuse some of the runs

from the adaptive experiment in the subsequent statisticalexperiment. This combination

does not integrate the analysis but provides two experiments with fewer runs than both

separately. This technique is general enough to be applied to most experimental situations

without affecting the results of the designed experiment. It is also possible to integrate the

results from both experiments into a single prediction. There are two ares explored here

and both are Bayesian. The use of classical statistics was poorly equipped because the

problem integrates two sources of data to estimate the model. If the system knowledge is

sufficient to choose a system of models then a traditional approach may be used, although

the experimental setups would differ. Many others have also investigated this data integra-

tion including Qian et al. (2006); Kennedy and O’Hagan (2001); Goldstein and Rougier

(2004) who have looked at mostly empirical Bayesian approaches. This technique will be
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employed here in using the initial prediction for the covariance matrix as in Chapter 8 well

as for the use of two different experimental costs in Chapter 9. The empirical approach

is one method, some of these models could also use a closed form posterior distribution.

For academic implementation the empirical approach is flexible and interpretable, further

industrial use could gain speed and computational flexibility by calculating the posterior

distributions. There are many other areas of application tocombine two sources of data.

The goal in this work was to investigate the breadth of looking at additional runs in an ex-

periment and combining multiple different experiments. One could investigate additional

models options outside of the linear models explored here. One option is the kringing

models such as Joseph et al. (2008), or other patch models such as radial basis functions in

Yang (2005). The general models used here should provide a background to drive greater

complexity and application specific model options. Outsideof model building the oppor-

tunities extend to replacing the use of orthogonal arras or other extremely fractionated de-

signs. In Chapter 6 an investigation was made into a classification system that historically

used orthogonal arrays. Replacing the aOFAT in these situations improves the resolution

at minimal cost. The application of tuning a classification system fits with the previous

requirements, there are few available runs compared with the number of variables, and the

goal is to maximize the ability of the classifier. This example emphasizes the strengths

of the aOFAT technique within a classification context. In addition to traditional response

model the classification model can also be helped with the adaptive experiments. There are

other classification techniques, such as Yang et al. (2008),that could be investigated to use

an adaptive data collection approach. Outside of modeling,a promising area of application

is in simple optimization.

The opportunity within the optimization field is around techniques that are relatively

simple and do not use need to calculate derivatives. Originally the investigation focused on
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optimization techniques that started as statistical experiments. Box (1957)’s evolutionary

operation (EVOP) procedure is a particularly good startingpoint. There are many op-

portunities within the optimization literature and some identified as statical optimization

techniques in Nocedal and Wright (1999). To demonstrate theadaptive application a his-

torically related unconstrained optimization procedure known as sequential simplex was

selected. This technique was originally developed from theEVOP procedure but is now

popular with computer simulations. This fundamental technique is well publicized and

aligns well with an adaptive opportunity. Other opportunities have not been investigated

although there may be a handful of possibilities outside of the intersection of statistical

experimentation and numerical optimization.

2.6 Prediction Sum of Squares (PRESS)

When comparing different experimental model-building methods it is difficult to assess

‘better’. One model may be larger and more accurate, but the other uses fewer variables.

The predicted sum of squares (PRESS) from Allen (1971b), also known as the predicted

residual sum of squares (Liu et al., 1999), is a metric for model variable selection. This met-

ric originated when Allen (1971a) improved upon the traditional residual sum of squares

with a metric that would not always suggest additional regression variables improve ac-

curacy. The accuracy of a prediction point that was not in theregression would decrease

as the model was over-fit. This metric would increase as the fitimproved at that point

and then decrease after it was over fit. This new approach to model building focused on

prediction accuracy. The model was now sensitive to the point choice for this calculation.

His procedure was to take each point individually in the dataset, fit the model without that

point, and check the error at that point. In the statistical learning community this is known
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as leave-one-out cross-validation. Tibshirani (1996, pg.215) recommends the low-bias

and high variance properties for this method but warns that the calculation burden could be

significant. The major motivation in using this method is that a time-saving shortcut exists

for linear models.

Given a model

Y = X · β + ε (2.3)

with dataX of dimensionnxp andY of dimensionnx1, the least squares predictor ofβ

would be

β̂ = (XXT)−1XTY (2.4)

soŷi = xT
i ∗ β̂ and letβ̂(i) be the estimate ofβ with theith observation removed. The PRESS

is defined as

PRESS=
n

∑

i=1

(yi − xT
i β̂(i))

2 (2.5)

This would be computationally challenging without this simplification.

PRESS=
n

∑

i=1

yi − ŷi

1− Hii

2

(2.6)

WhereHii ’s are the diagonals of theH, hat matrix (because it puts a ‘hat’ ony).

H = X(XXT )−1XT (2.7)

The diagonals are equal to the leverage of the observationi. This simplification requires

only a single calculation ofH and then using the diagonals and ˆy = HY, the PRESS

statistic is a summation. To compare with other measurements of error such as Root-Mean-

Square-Error (RMSE) and Standardized-RSME (SRSME) this work will frequently report
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2.7 Empirical Bayesian Statistics

Given datax a goal is to determine the most probable underlying error distribution that

would yield that data. In practice we assume that the form of the distribution is known

but, based on some unknown parameter (λ). This distribution parameter is assumed to be a

random variable from a known distributionG.

The unconditional probability distribution onx is given as:

p(x) =
∫

p(x|λ)dG(λ) (2.8)

Our goal is to determinepostereridistribution onλ given the datax. This is accom-

plished by looking at the error to any given estimator functionψ(x).

E(ψ(x) − λ)2 = E[E[(ψ(x) − λ)2|λ]]

=

∫

∑

x

p(x|λ)[ψ(x) − λ]2dG(λ)

=
∑

x

∫

p(x|λ)[ψ(x) − λ]2dG(λ) (2.9)

for a fixedx we can solve for the minimum value if the expected value by solving for

the interior equationI (x)-

I (x) =
∫

p(x|λ)(ψ(x) − λ)2dG(λ) (2.10)

fixing x soψ(x) = ψ this equation can be expanded given a constant functionψ(x) = ψ
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-

I = y2

∫

pdG− 2ψ
∫

pλdG+
∫

pλ2dG

=

∫

pdG(ψ −
∫

pλdG
∫

pdG
)2 +

[ ∫

pλ2dG−
(
∫

pλdG)2

∫

pdG

]

(2.11)

and is at a minimum when

ψ(x) =

∫

(p|λ)λdG(λ)
∫

p(x|λ)dG(λ)
(2.12)

This is the posterior estimate ofλ. This is the empirical Bayesian approach to estimate

the distribution parameter given the datax. The biggest challenge to this approach is to

determine a valid initial distributionG to yield a good estimate of the distribution param-

eter. Gelman et al. (2003) discourages the term empirical Bayes for this method because

it implies that the full Bayesian approach is somehow not empirical although they both are

experimental.

2.8 Gaussian Process (GP)

The Gaussian Stochastic Processes, or Gaussian Process (GP), is also known as a Gaussian

Random Function Model. Given a fixed input space that is greater than a single variable, an

outputY is a GP if for any vectorx in the input space the outputY has a multivariate normal

distribution. In practice the GP correlation function is selected to be non-singular. Thus

for any given input vector the covariance matrix as well as the output distribution is also

non-singular. The GP can be specified by a mean function and a covariance function. The

mean is typically constant and normally zero although for one process in this work it is one
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instead. The covariance function determines the relationship between the input variables.

This is a stationary process and so only the difference in the input values is needed. There

are two main choices for the correlation function, first choice is the Gaussian or power

exponential:

R(x1 − x2) = exp(−θ · (x1 − x2)
2) (2.13)

The second correlation function changes the square to an absolute value and the resultant

GP is called a Ornstein-Uhlembeck process (Santner et al., 2003). Both of these correlation

functions will be used in this work. The Gaussian is infinitely differentiable at the origin

and is useful to represent smooth processes. The Orstein-Uhlembeck process has more

random fluctuations and is more representative of observed data with random error.

2.9 Hierarchical Probability Model

A realistic and representative model generator will be usedto test the different method-

ologies presented in this thesis specifically in Chapter 3 for reusing aOFAT runs as well

as Chapter 7 where the aOFAT in incorporated into a correlation matrix. This model, and

the coefficients used here, come from Frey and Wang (2005). The basic idea is taken from

Chipman et al. (1997) with the intent of generating a population of models that exhibit data

regularities from Wu and Hamada (2000) such as effect sparsity, hierarchy, and inheritance.

Using Equations 2.14 to 2.23 a large population of functionscan be generated that mimic

actual experimental systems. The coefficients (p, pi j , pi jk , βi, βi j , βi jk , c, σN, σε, s1, s2)

come from an analysis of 113 full-factorial experiments (ofsizes 23, 24, 25,and 26) that

come from published journals.
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y(x1, x2, . . . , xn) = β0 +

n
∑

i=1

βi xi +

n
∑

i=1

n
∑

j=1
j>i

βi j xi xj +

n
∑

i=1

n
∑

j=1
j>i

n
∑

k=1
k> j

βi jk xi xj xk + ε (2.14)

xi ∼ NID(0, σ2
N) i ∈ 1 . . .m (2.15)

xi ∈ {+1,−1} i ∈ m+ 1 . . .n (2.16)

ε ∼ NID(0, σ2
ε) (2.17)

Pr(δi = 1) = p (2.18)

Pr(δi j = 1|δi , δ j) =



















































p00 if δi + δ j = 0

p01 if δi + δ j = 1

p11 if δi + δ j = 2

(2.19)

Pr(δi jk = 1|δi , δ j, δk) =







































































p000 if δi + δ j + δk = 0

p001 if δi + δ j + δk = 1

p011 if δi + δ j + δk = 2

p111 if δi + δ j + δk = 3

(2.20)

f (βi |δi) =































N(0, 1) if δi = 0

N(0, c2) if δi = 1

(2.21)

f (βi j |δi j ) =
1
s1































N(0, 1) if δi j = 0

N(0, c2) if δi j = 1

(2.22)



2.10. Opportunities 35

f (βi jk |δi jk ) =
1
s2































N(0, 1) if δi jk = 0

N(0, c2) if δi jk = 1

(2.23)

There are important attributes of this model that should be noted. The model encapsu-

lates the three data regularities published in Wu and Hamada(2000); sparsity, or the fact

that only a few effects will be significant; hierarchy, or that the biggest effects are main ef-

fects followed by two-way and then three-way interactions;and finally inheritance, or if a

variable has a significant main effect it is likely to be significant in a two and three-way in-

teractions. Next, the effects follow a normal distribution and so have an equal probability of

being positive or negative. This model includes only main effects and interactions, higher

order effects and other model non-linearities are not present. The use of a multi-variate

linear model is appropriate in this case because the experimental design under study is very

low order. The resulting experimental model is of lesser complexity than the model used to

create the HPM.

The HPM is going to be used in a number of studies in this thesisto test the effectiveness

of different experimental routines. Along with the HPM analysis ofa proposed method,

actual examples are pulled from the literature to demonstrate the method. The use of the

HPM is designed to test a variety of models and determine the robustness of the different

methods, while the example is used to ground model in one specific example.

2.10 Opportunities

The use of adaptive experimentation has a long past, and historically it was the only way

to experiment. After the current statistical movement eliminated nearly all adaptive exper-

iments, a new found place has been emerging for these experiments such as in (Frey et al.,
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2003) and (Frey et al., 2006). This work focuses on the more pragmatic experimentalist that

finds a good place for the intuitive adaptive experiment along with the statistical fractional

factorial, CCD, or Box-Behnken design. As the computational processing techniques ad-

vance, the potential to use the Gaussian process in an Empirical Bayes framework extends

the utility of these adaptive experiments combined with traditional statistical experiments.

When comparing multiple experimental techniques the cross-validated PRESS statistic will

be employed to help differentiate the models with different numbers of factors.
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Chapter 3

Reusing Runs

3.1 Introduction

In many industrial and research experiments the experimenter first tests a number of runs to

determine if the variable settings are correct and if the setup is functional. These early runs

are then discarded and the designed experiment is completed. Instead of throwing away

these runs, is there potential for them to be reused in the actual experiment? This chapter

advocates one strategy for utilizing these early runs, and thus reducing the length of the

overall experiment. If these early runs are arranged in an adaptive-One-Factor-at-a-Time

(aOFAT) experiment then in addition to the setup function the experimenter can garner

information about the system maximum as well as reduce the total number of runs. Early

screening experiments offer the best application to realize improvement. In other words,

when the experimenter is trying to determine the important main effects while accepting

an alias effect or an unbalanced design to reduce experimental runs. In these situations the

early set-up runs may be a significant fraction of the total experimental runs and potential

for reuse may be worthwhile. With so few runs there is a possibility that the experiment

41
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may be overly influenced by noise; a measure of this possibility is available in the aOFAT

without completing a replicate and would be useful. This chapter will focus on setting up

and running these two experiments. The analysis is focused on the number of runs that

could be reused and the interactions between the two analysis types. This is one basic way

of combining the aOFAT experiment with a statistical experiment. Later chapters (Chapters

7 and 8) will look at combining these data into a single, consistent, model.

3.2 Background

The setup runs in an experiment normally consist of varying each parameter separately to

the high and low experimental value. Although this procedure is not widely discussed in

the experimental design literature it has been observed in numerous actual experiments.

These early runs are traditionally thrown out because they are not necessarily orthogonal

or balanced and could lead a traditional regression analysis to incorrect model coefficients.

If these early runs have slightly more structure, while being intuitive for the operator, they

could be incorporated into some of the follow-up analysis. The experimental runs discussed

here are D-Optimal and fractional factorial designs. The D-optimal designs are orthogo-

nal but, not necessarily balanced. The fractional factorial designs are both balanced and

orthogonal. An unbalanced design has fewer runs in one factor setting, this could be prob-

lematic in systems with heteroscedastic noise. But in most homoscedastic early screening

designs the utility of balanced, un-replicated designs maybe unnecessary. With few runs,

there is insufficient data to estimate parameter variance and the biggest benefit of repeated

high and low settings is a better mean estimate. It would be possible to add balance to this

design by repeating necessary points as Parker et al. (2007)showed in their analysis. The

biggest drawback to having unbalanced data is the inabilityto use standard analysis tech-
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niques. There are some suggestions to utilize approximate methods (Montgomery, 1996),

but with modern computational resources it is assumed that the access to exact methods

using a general linear model (GLM) and distribution estimates (McCullagh and Nelder,

1989) is possible as in Chapter 7. If there is too little data then creating a GLM has too

little resolution and a Gibbs sampler (Chapter 8) could be utilized.

3.3 Initialization

The process for setting up an experiment is usually left to a technician who prepares for

useful, accurate data through an iterative trial process. Starting the experimental process

with an adaptive experiment is straightforward to the technician as well as useful in esti-

mating the maximum experimental setting. After initially connecting all of the hardware

and testing the data collection, the system is run at a few settings to be sure that everything

is functioning correctly. These setup runs are not previously planned and serve as a baseline

to check the functionality of the system. The suggestion in this chapter is to run though all

of the variables that will be used in the experiment and checktheir high and low settings.

The purpose is two-fold, first it is good to validate that the variables are responding and to

check that the range is appropriate for the experiment. Second this practice allows one to

reevaluate the planned experiment to make sure that each setting is achievable and measur-

able. There are a two major historical choices for running this setup; a one-factor-at-a-time

(OFAT) approach or a fractional factorial approach. The fractional factorial is balanced,

orthogonal, and could possible measure interactions, it isthe primary suggestion of any

statistician. A major drawback is that it obfuscates the results to the technician. Multiple

variables are changed with each run and so a problem with the limit, or with the hardware,

is difficult to diagnose; it also requires the whole experiment to becompleted before any
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analysis. Another option is to run an adaptive OFAT (aOFAT) and sequentially change

each variable between the high and low settings. The resulting experiment is not balanced

or orthogonal; and it is impossible to identify interactionterms. The benefits are simple im-

plementation for the technician and allows real-time diagnosis of problems or mismatched

variable settings. The non-adaptive OFAT can be planned in advance but cannot identify

the maximal settings nor benefit from interactions.

Running an adaptive experiment also has the benefit that it has a high probability of

achieving the highest setting for the system. This will helpin testing the extremes of the

system settings and validating the high/low settings of the variables. If this added exper-

imental step of an initialization aOFAT is used, one important concern is the number of

additional runs required. Some of the aOFAT runs can be incorporated into the subsequent

design although determining the number of reused runs is notstraightforward.

3.4 Reusing aOFAT runs in a Fractional Factorial

To reuse the runs from this setup aOFAT experiment (n + 1 runs) in a fractional factorial

experiment (2(n−k) runs), the choice of the selected fraction as well as the aOFAT is impor-

tant. If the aOFAT starts with a set of conditions that is verydifferent from the final set

the multiple changes will increase the number of runs that could be reused in the factorial

experiment. The drawback of this starting set is that the aOFAT was so far from the best

setting, it was probably unable to take advantage of interactions and would be less likely to

achieve the maximum setting.

If the choice of the fraction is made in advance then for a seven run experiment, on

average, 10% of the aOFAT runs can be reused with an equal sized fraction. This estimate

depends on how far the random starting location was from the final run location, the number
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Figure 3-1: Fractional Factorial Run Reuse

of runs exhibits an asymptote as the size of the fraction increases to usen of then+ 1 runs.

If there is no fraction preference and any fraction is acceptable, then for a seven run

experiment, nearly 20% of the runs can be reused with an equalsized fraction. Again, as

the size of the fraction increases, the reuse runs asymptotes to a maximum ofn runs. This

maximum, and notn+1, is due to the fact that the variable combinations in the aOFAT can

never be completely independent, and thus cannot fit into an orthogonal fractional factorial

experiment.

The analysis of the subsequent fractions that were producedafter an aOFAT experiment

were analyzed using the HPM. This model is well suited to study different fractional fac-

torial designs and the analysis reflects the reality of industrial experiments. Analyzing the

results from this model, two fractional-factorial designsthat reuse an equal subset of aO-

FAT runs have no difference in the performance of those fractions to select the maximum

setting. The determination of the maximum setting was conducted through an ANOVA

analysis of these experiments to select the highest variable setting (Montgomery, 1996). A

full linear model was not created because the goal was to select the maximum setting from
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the possible experimental points.

Including the aOFAT experimental runs did not influence the outcome of the fractional

experiment. There are a couple of potential problems when including the aOFAT experi-

ment in the fractional experiment. First, the aOFAT may limit the selection of fractions to

a certain set; and second the non-random run order could limit the experiment to lurking

variables. In comparing the results of the best reuse fraction with the remaining fractions

using the HPM, there was no difference between the results. This statistical comparison

was completed on the 27−4, 27−3, and 27−2, fractions; the results are in Table 3.1. It should

be noted that reused aOFAT runs were rarely sequential and the location in the fraction also

varied. So while the aOFAT runs are ordered their use in the fraction comes from a random,

non-adjacent subset that is used in different locations in the fraction. Although the runs in

the fractional factorial experiment are not truly random, they are not ordered and should

minimize the effect of lurking variables.

Differences -
Difference=mu (Lv4MaxFrac) - mu (Lv4MinFrac)
Estimate for difference: 0.001455
95% CI for difference: (-0.003278, 0.006187)
T-Test of difference= 0 (vs not=): T-Value= 0.61 P-Value= 0.543 DF= 85
Difference=mu (Lv3MaxFrac) - mu (Lv3MinFrac)
Estimate for difference: 0.008909
95% CI for difference: (-0.012706, 0.030525)
T-Test of difference= 0 (vs not=): T-Value= 0.82 P-Value= 0.415 DF= 85
Difference=mu (Lv2MaxFrac) - mu (Lv2MinFrac)
Estimate for difference: 0.012955
95% CI for difference: (-0.083642, 0.109551)
T-Test of difference= 0 (vs not=): T-Value= 0.27 P-Value= 0.790 DF= 85

Table 3.1: aOFAT Reuse Comparison

The number of runs that can be reused is dependent on the size of the fraction. The

relationship is best described by a power function Reusedpercent= β0− β1 ∗1.1−TotalRuns. The

asymptote was at 20% and 30% for the average fraction and the best fraction, respectively.
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Figure 3-2: Asymptotic Runs Function

To reach 95% of the possible number of reused runs it required19 and 20 runs for a seven

variable experiment.

For reference theβ parameters for this model wereβ0 = 0.1962, β1 = 0.2930 for

the average fraction andβ0 = 0.3304,β1 = 0.3360 for the best fraction. The number of

runs that are needed to reach an asymptote can be calculated from this equation. So given

to use twenty percent of the best fraction would require 10 runs because Reusedpercent =

0.3304− 0.3360∗ 1.1−10 = 0.20

3.5 D-Optimal Augmentation

Another augmentation scheme is to use a D-Optimal design to add runs to an aOFAT.

Runs are added to a subset of the aOFAT runs that maximize the determinant (hence the

D) of the XTX matrix. We restrict the selections to be orthogonal D-Optimal designs.

The use of orthogonal runs minimizes the cross-correlationbetween variables and greatly

aids in interpretation by allowing for more parsimonious models to be constructed. A big

difference is that the D-Optimal design is not balanced and so a general ANOVA analysis
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can not be used and a regression approach is normally employed.

The orthogonality requirement is particulary appropriatein early screening designs be-

cause common aliasing could make creating a follow-up experiment impossible. The se-

lection of the additional D-Optimal designs is done by a selection algorithm. There is no

exhaustive search over all of the potential runs as this is practically impossible once there

are more than a few variables (approximately seven). A disadvantage to this procedure is

similar to the random choice of fractional factorial design, it is not possible for the practi-

tioner to make choices about a desirable aliasing structure.

If the variables have unknown relationships and there is a large number (> 10) of them

this aliasing may not be problematic. This is frequently thecase for computer experiments.

The procedure outlined here is most appropriate for large physical experiments such as

turbofan engines, where a screening run is desired. Anotheroption to consider, a space

filling design, is not addressed here because it is primarilyused to build more complex

models, and not for screening experiments.

The selection of a D-Optimal design may not be unique and there are a number of

choices for different subsets of the aOFAT experiment. One suggestion is to begin the

selection with the lattern runs in the aOFAT and progress forward eliminating the earlier

runs. This attempts to include as many of the higher value aOFAT runs as possible. There

are other criteria to select the best D-Optimal experiment for the situation and the selection

is left to the experimenter.

A final warning is necessary around the use of D-Optimal designs. The creation of

these designs is algorithm dependent as in OPTEX program in SAS (Institute, 2000) or

cordexch in MATLAB (Math Works, 2007). Because the design space is potentially large

an exhaustive search is impossible, or at least impractical, and these algorithms use different

sequential optimizers to look for the best points. The risksof those methods are that they
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Figure 3-3: D-Optimal Run Reuse

get trapped in local minima or reach a divergent set of possible maxima. Although here the

procedure is limited to sets of orthogonal designs there maybe multiple solutions for each

candidate set. Each of the potential, and equivalent, candidate sets may lead to different

system models. As with any experiment it is good practice to follow the guidelines of a

experimental statistics book in analyzing the results and iterating as necessary (Wu and

Hamada, 2000; Montgomery, 1996; Box et al., 2005).

With this non-balanced procedure, the number of runs for theD-Optimal runs increases

the percentage of reusable runs over the fractional factorial. Note that the runs still asymp-

tote ton, the number of variables.

3.6 Maximum Value Choice

One of the benefits from using two experimental methods (aOFAT and a designed exper-

iment) is having two ways of determining the maximum experimental point. The aOFAT

model selects the best point based on the last or second to last run. This can be compared

with the best predicted experimental point for the fractional factorial model. The analysis
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for the fraction can be completed with a traditional ANOVA procedure. Analyzing the D-

Optimal experiment requires a regression analysis becausethe experiment is not balanced.

The Fractional Factorial, D-Optimal, and AOFAT methods were judged on the per-

centage of times that the maximum experimental value was predicted out of a thousand

simulations. The experiment was conducted with seven variables and fractions of 27−3,

27−4, and 27−5 runs, the results are averaged over all simulations. The D-optimal exper-

iment used the same number of runs as these fractions. In all of these runs the number

of reused runs were maximized. This means that the fraction with the largest number of

reused runs was selected; as expected the orthogonal, non-balanced, D-Optimal design had

the largest number of common aOFAT runs.

To accurately portray real experiments noise was added to this model as a 0, 5, or 10

times the average effect magnitude times a random number between zero and one. This is

a significant amount of variance that accounts for the poor performance of the prediction

capabilities of these experiments. It should also be noted that the ability of each of these

experiments to predict the maximum is limited because the HPM model has two-way and

three-way interactions that cannot be modeled by these reduced run designs.

The results are shown in Figure 3-4. A couple of interesting facts are initially obvious.

First the overall performance is quite low, between 20 and 50percent in predicting the

maximum. Again, these are extremely reduced fractional designs and this low performance

is expected, but as screening experiments they are still valuable. The second interesting fact

is the performance of the aOFAT is comparable to that of the relatively larger fractional

factorial and D-Optimal designs. These results are consistent with the previous work on

aOFAT also using the HPM model (Frey and Wang, 2005).
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Figure 3-4: HPM percent correct compared with noise

3.7 Sheet Metal Spinning

A specific example was run to demonstrate the run reuse. This example of a sheet-metal

spinning process has been used numerous times in the experimental literature; the original

data is available in Göbel et al. (2001). The same procedurewas run on this data; and the

number of reused runs fits the trend seen before. In addition to looking at the number of runs

that could be reused, the resulting prediction of the maximal setting was also calculated.

This example resulted in an average of only three to five percent correct predictions of

the maximum setting. This low fraction is slightly misleading because the values do not

change much at the peak. Figure 3-6 shows the average result for the percent of maximum

that the experiment predicts. All three predictions are high and make good estimates of the

maximum value. As expected, the aOFAT is not dependent on thenumber of runs in the

follow-up experiment.
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Figure 3-5: Sheet metal spinning repeated runs
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3.8 Using Both Models

In addition to being a good practice during experimental setup, there are additional reasons

to run both of these experiments. The simplest reason is to serve as insurance. If the exper-

iment fails to run correctly or there are problems such as program cancelation, equipment

breakage, or resource limitations then there still exists agood estimate of the best setting.

It would also be possible to make a good estimate of the critical variables by looking at the

progression of the aOFAT. By looking at the change for each variable and making a correc-

tion for possible two-way and three-way interactions, it ispossible to get a good estimate of

variable effects. This method will be utilized in a later chapter to generate a better variable

covariance matrix. In this situation those variable effects could be used to plan follow-up

experiments if the first experiment failed.

If this is a production related experiment, a short term improvement could be made

by using this setting while waiting for the remainder of the experiment and analysis to be

completed. These two different estimates of the maximum have been achieved in different

manners and could strengthen or weaken the case for the accuracy of the final model.

3.9 Conclusion

Setting up an experiment through an aOFAT procedure still allows for system understand-

ing while creating potential for run reuse and an independent estimate of the maximum

setting. If the maximum number of runs is reused then this extra effort will only cost be-

tween.2n and.5n additional runs, depending on the experimental method and total number

of runs. The final result is an additional estimate of the maximum that can serve as a tem-

porary stop-gap, insurance to other experimental problems, or as a metric of confidence in
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the final model estimates.

This procedure is straight-forward to implement, and selecting the optimal fractional

factorial experiment only involves a lookup table. The choice of the cordexch algorithm

for finding an orthogonal D-Optimal design is currently veryslow and in the cases here took

an hour per aOFAT. In applied practice this may be prohibitive and alternative algorithms

should be investigated.
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Chapter 4

Evolutionary Operation

4.1 Introduction

Evolutionary operation (EVOP) was introduced in the 1950’s, popularized by Box and

Draper (1969) and grew in use well into the 1980’s. The numberof academic papers around

EVOP has dropped dramatically in recent years although someof the inspired optimization

methods continue to flourish. Using recent research on the data regularities in experimental

data by Li et al. (2006), the distinction between empirical and scientific improvement will

be updated to show that repeated runs are not as detrimental to the system cost and EVOP

still has a place in the experimental framework

A suggested framework of single-factor repeated experimentation runs is presented

based on computer modeling advances as well as results from adaptive-One-Factor-At-a-

Time (aOFAT) experiments (Frey et al., 2003). The method is easy to implement; delivers

significant improvement; and incorporates system level considerations. The use of adap-

tive experiments fits nicely into the overall EVOP process. Taking a larger system view

the EVOP is either preceded by, or precedes a traditional statistical experiment. Using an

57



58 Chapter 4. Evolutionary Operation

aOFAT fits well into the framework of the larger system and complements the traditional

statistical experiment. If the statistical experiment is run first then the variable order can be

selected to maximize the aOFAT result as discussed in Frey and Wang (2005). If the aOFAT

precedes the experiment the runs can be reused as shown in Chapter 3 or used to generate

a combined model as in Chapters 7 or 8. Using the aOFAT in the EVOP process provides

a good method to improve the response while providing a complement to the preceding or

proceeding statistical experiment.

4.2 Background

The evolutionary operation procedure was introduced as a production improvement tool

that can extend pre-production improvement efforts onto the production floor. The proce-

dure consists of making small variable changes that do not significantly influence product

quality. With a sufficient number of these changes, statistical evidence buildsto justify

making a permanent variable change. This procedure can be thought of as supplying a

square-wave between the current and proposed setting of a process variable, or a num-

ber of process variables. Although the output remains within performance criteria, given

enough time, evidence may accumulate to justify the change.The change justification is

based upon a significance test (in most cases a t-test).

The original method defined the goal as searching for scientific feedback to under-

stand the underlying system physics. Although Box and Draper (1969) discussed empirical

feedback, their emphasis was on scientific feedback and thatis the reference used here.

Experimental designs of one to three variables were used repeatedly to drive down the

error and improve the manufacturing performance. The method is simple enough to be im-

plemented by manufacturing personnel and accomplished without the need for computer
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resources. The process variables under consideration as well as the determination of future

experiments is determined by an EVOP committee (Box and Hunter, 1957).

The scientific feedback method differs from optimization or an empirical approach.

The goal of scientific feedback is to gather sufficient evidence to be confident in a system

model. For empirical evidence the goal is to maximize the system improvement, this could

be in terms of profit or another performance metric. The difference in execution of these

two goals is the need for run replication.

In implementation, the aOFAT method discussed by Frey et al.(2003) is the same as

repeated empirical feedback experiments. Using repeated runs between the settings aligns

with the Box and Draper (1969) EVOP procedure for a single factor. It may also be possible

to incorporate other models with these single factor EVOP experiments to improve the

scientific model while allowing for simple implementation.The use of repeated aOFAT

runs is similar to the use of inner noise arrays in Frey and Sudarsanam (2008) when they

added a goal of robustness to the experiment.

4.3 Other Models

The traditional EVOP procedure does not use prior system knowledge in the analysis and

only requires a variance estimate. There is a suggestion in the end of Box and Draper

(1969) that the system knowledge could be used to determine variable transformations.

Determining the appropriate variables is part of the responsibility of a committee that orga-

nizes the EVOP and they should be aware of the variables used in development. Besides the

variable transforms, this near zero starting knowledge foreach experiment has the advan-

tage of not making any damaging assumptions but, if the goal is scientific understanding,

then the experiments may be inefficient for model exploration. The advantage to scientific
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feedback is the general applicability of the knowledge. Other product lines and future de-

velopments can draw upon that knowledge to begin with bettersettings and understanding.

The implementation of scientific feedback allows for model refinement in generic man-

ufacturing models and thus better prediction of performance. When the original method

was developed in the 1960’s these models resided largely in the heads of engineers. The

manufacturing advances since then have brought about a profound change in the use of

computational power and ubiquity. It is rare to find a manufacturing floor today without a

computer, computer controlled operations, and manufacturing simulations.

The goal of EVOP should fit into the larger picture of model improvement and refined

understanding of the manufacturing process. Ideally the initial experiments would be per-

formed on a system simulation before being run on the actual processes. These simulations

would provide knowledge of the important variables and expected improvement, which

would be validated on the actual system. This is different than the initial process set-up

with fewer factors investigated and smaller magnitude of changes. When the manufactur-

ing line is initially ‘tuned’ to run the new product there is normally some experimentation

and adjustment to get an acceptable setting. With few runs there are many factors that

are insignificant over the noise. These less significant factors could represent significant

improvement given greater experimental replication.

Additional models complicate the analysis. Running a larger experimental design in

the computer model could then be validated by a final EVOP experiment. There are tech-

niques to merge these computational and physical experiments such as Qian and Wu (2008)

which will be explored in later chapters. The complexity andscope of the EVOP exper-

iment should take into account these additional resources.Running a two or three factor

experiment as suggested in Box and Draper (1969) may be excessive and a single factor

experiment such as Box et al. (2005) may be just as informative. The single factor ex-
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periment is suggested here for the simplicity in execution while providing information to

more complete computer models. While the single factor experiment is not able to predict

interactions Frey and Wang (2005) showed that it has a high probability of benefiting from

them.

4.4 Run Size

The criteria for selecting the run size is dependent on the size of the effect and the amount

that the variable is changed. The normal test for detecting these differences is the student-t

statistic (Box et al., 2005). In Box and Draper (1969) the useof the normal significance

tests is preferred based on a standard deviation from a number of EVOP cycles (> 15).

Another perspective is that the run size will be dependent onthe amount of acceptable

variance that can be introduced into the system without detriment to the output. Taking the

approach of a system view, determining the run number based on the acceptable increase in

variance seems most appropriate (a similar analysis is performed in Box and Draper (1969,

pg. 211)).

Givenei as the estimate of the effect at iterationi then the ratio of that to the variance,

e2
i /σ

2
e χ

2
p follows a Chi-Squared distribution. Given the actual values Ei, and assuming no

interactions then this follows a non-central Chi-Squared distributionχ2
p(
∑

(E2
i /σ

2
e)). Given

the probability of type-I error (incorrectly including a significant effect) atα and the type-

II error (missing a significant effect) atβ, these probabilities can be used to solve for the

sample size.

The overall variance can be estimated asσ2+1/4
∑

(E2
i ). If the standard deviation is set

to change byk · σ and using the fact thatσ2
e = 4 ∗ σ2/n2p, then the non-central parameter
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Figure 4-1: EVOP Terms Repeated

can be calculated as:
∑

(E2
i /σ

2
e) = n2p(k2 − 1) (4.1)

Setting the two errors equal to each other it is possible to solve for the minimum number

of samples.

χ2
p
−1

(1− α) = χ2
p(n2p(k2 − 1))

−1
(β) (4.2)

This estimate is accurate if the interactions are insignificant, and will provide a good

estimate of the required runs. The result is shown in Figure 4-1, the number of runs de-

creases dramatically as the acceptable standard deviationincreases. With two variables the

number of points repeated decreases by 40 percent due to the shared variance estimate.

Run randomization is implicit in these results. Sets of runsbetween the two settings are

conducted with random order. The suggestion in Box and Draper (1969) that the random-

ization is not critical is proven in Box (1954) for serial correlation. The foundation of that

paper is a correlation between runs and a wide variance for sets of runs. Generalizing those

results is cautioned as the tri-diagonal correlation matrix is a full matrix for two settings.
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The serial correlation from run to run also affects the correlation between sets of runs.

Before using a regular repeating experimental pattern the assumption that the sets of runs

are independent needs to be verified. Additionally, latent variables could complicate the

experiment and may even lead to erroneous conclusions. The maximum inferential power

requires run randomization.

Ideally the knowledge gained from the EVOP is utilized to improve a manufacturing

model. If there is no model to improve, or the knowledge gained will not be reused, an

empirical feedback, or an optimization goal is more appropriate. If the EVOP commit-

tee wants to use scientific feedback the experiments should explicitly take advantage of,

and benefit from, any current manufacturing model. The planning committee should min-

imally utilize variable sensitivity analysis along with any previous tuning results. Further,

these models could assist in variable selection, interaction estimation, range and variance

prediction, and output estimation. An efficient method of extracting useful data out of a

computer model is through computer experimentation for oneexample methodology see

Santner et al. (2003). The result should be a candidate list of likely important parameters.

This list should be augmented by the practitioners knowledge of potential opportunities and

non-optimal parameters. Running a scientific EVOP on these parameters may reveal sur-

prising interactions and improve the effect precision. In addition to improving production,

this information is used to improve and update the model. It is these model improvements

that are the most valuable to continually improving the performance of the organization.

There are also many methods to incorporate the computer model and the experimen-

tal data to make a dual predictive model for that particular system. The best known are

Kennedy and O’Hagan (2001); Qian et al. (2006), if the computer model is also stochastic

then the approach of Qian and Wu (2008) works well. These methods rely on a Bayesian

approach of combining both types of data to produce better prediction. Although specific
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to a particular production line, these models can be used to suggest better operating condi-

tions, and quantify model deviations.

4.5 Comparison to Optimization

Production improvement differs from true numerical optimization in a number of impor-

tant ways. The terms improvement and optimization have beenused loosely here but the

difference is important. In production improvement, the objective function is unknown and

changing, the number of input variables is not fixed, and the range of input variables is not

fixed. Optimization requires an objective metric over whichto maximize (or minimize),

using a fixed, known, set of variables. In the production world the precise objective func-

tion can change periodically as the production rate, material cost, overhead burden, and

corporate profit needs change. Thus for each cycle of the EVOPdifferent criteria may be

used to measure success. The number of input variables is notfixed, and given a desirable

improvement direction it may be feasible to add variables that can help with that improve-

ment. For example if a particular temperature increase improves performance then it may

be deduced to add other temperatures from a range of other locations. Finally, it may be

possible to change the range of each of the variables if an improvement is noted. This could

be as simple as changing a process sensor (with a higher temperature rating) to changing

the mechanics of the system (inductive heaters from ceramic). The difference to an opti-

mization procedure is evident in the details of the implementation, and the complete system

is critical to the improvement. This reinforces the importance of an EVOP committee to

have a system perspective and continually monitor and reactto the changing environment.
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4.6 Empirical Improvement

Empirical based improvement or feedback has also been referred to as ‘idiot’ feedback by

Box and Draper (1969). The negative connotation about this improvement methodology is

that afterwards, although it may yield an improved setting,there is no additional knowledge

about the system model. The experimenter must decide if the effort to get a more complete

model outweighs the cost of experimentation or delaying theimplementation of improve-

ments. The models that are generated maybe limited in time and scope to the particular

problem at hand and may or may not be valid in a more general future problem. Only if

the model has general utility could it be reused and the resulting improvement could have

multiplicative benefit to the organization. An experimenter should also consider the risks

of following an empirical feedback plan where many of the changes are detrimental.

There are two general methods for gathering feedback. Firstgetting multiple data points

for any change, and thus gaining statistical confidence in the scientific foundation of that

change; or second reacting to every data point to make as manyvariable changes as possi-

ble, thus making many more changes. Box and Draper (1969) proves that the most prof-

itable method is to utilize a single data point to make a decision on a variable setting. This

analysis is aligned with the published aOFAT technique in Frey et al. (2003), although with

differences for the amount of noise in the system. The original analysis does not consider

other costs associated with making a production change including retraining, updating man-

uals, or changing production drawings. The final cost may also include some of the risks

that occur during a transition such as extra scrap or lower productivity. The suggestion here

is to utilize scientific feedback to improve production models and gain greater benefit to the

organization. This section attempts to show the potential loss for using scientific feedback

versus empirical or optimization feedback. The surprisingconclusion, using more accurate
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effect distribution is that the incremental cost of replicatesis small. If a validation run is

made for the other system considerations before implementing empirical feedback then the

cost of continuing on to statistical significance is minimal, the mathematical details follow.

Given that effects have an exponential probability distribution (Li and Frey, 2005) and

that the ability to detect the effect follows a normal distribution a monetary loss can be

calculated for switching one variable. In choosing a loss function the calculation is not

dependent on the number of variables examined or on the totalnumber of experiments.

The frequently used cumulative normal distribution is historically used to estimate the

probability of detection:

F(ζ) =
∫ ∞

ζ

1√
2π

e−z2/2dz (4.3)

Research into variable distribution points to an exponential distribution withλ ≈ 0.007,

from Li and Frey (2005):

f (ζ; λ) = λe−λζ (4.4)

Given experimental noiseσ, along with a cutoff value,ξ andn runs an estimate of the

loss in delaying any variable change can be determined. Given a large possible number of

changesK.

L =
K

∑

i1

n+ i ·
∫ ∞

−∞
u f(|u|; .007)F(

√
n(ξ − u)
σ

) (4.5)

This summation can be expanded, and the value ofσ can be approximated as 1/1.2 · λ,

as determined by Box and Draper (1969) as a large variance relative to the variable changes.

L = K · n+ K2 + K
2

·
∫ ∞

−∞
u f(|u|; .007)F(

√
n(ξ − u)
σ

) (4.6)

Depending on the value ofK this loss increases as the number of samples increases; this
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Figure 4-2: Repeated Runs

can be seen in Figure 4-2. Both the traditional and this new analysis show monotonically in-

creasing loss with additional runs. This result led to the conclusion that the fewest possible

number of runs before switching maximizes the profit or minimizes the loss. The major as-

sumption built into this analysis is that the expected improvement is centered around zero.

This means that any change has equal probability of making animprovement or causing

a detriment, this seems like the most pragmatic situation, as Box and Draper (1969) also

concluded. In this analysis theξ value was chosen to minimize the loss given any number

of runs, in this case (λ = .007, σ = 1/1.2 · λ) the value is close to zero.

If no runs are repeated a large number of the changes will be incorrect, this is out-

weighed by the correct changes, and will minimize the total expected loss. The difference

from the original analysis is the exponential distributionshows a faster asymptote towards a

fixed loss. The exponential distribution has more effects near zero; these benefit from a few

additional runs. The normal distribution has enough weightin the tails that the best strategy

is to get through as many as possible to find these big effects. In general, both results show

that the strategy to achieve the greatest gain in a fixed period of time is to get through as
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Figure 4-3: Single Variable Probability Incorrect

many variables as possible. However, there is a difference in the benefit of a few repeated

runs in selecting the winner. Most pragmatic managers are not willing to make frequent

changes to their operation without some evidence that the benefits would outweigh the

risk. There are additional risks with the single run strategy of seeing a nonlinear response,

a change in variance, or an uncontrollable condition.

As a practical suggestion for empirical improvement, the cost of making small change

in profit should be compared with the confidence with additional runs as shown in Figure

4-3. If the cost and probability of negative effects is minimal then the single run strategy

might be best. If the costs may be significant or the profit difference is not practically

significant then additional runs should be considered.

The ability of empirical improvement to reach a better solution with exponentially dis-

tributed variables and a normally distributed confidence has been shown. Adding a second

run increases the loss (or reduces the profit) by 7.4%, this change should be weighed against

reducing the probability of an incorrect variable by 20.7%.If the variance is the same, this

compares with the original method which increases the risk of loss to 15.5%; and it reduces

the probability of an incorrect variable by 21.6%. Determining the number of repeated runs
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Figure 4-4: Single Variable Loss Standard Deviation

should be based on the manufacturing environment as well as the managerial tolerance of

risk. The empirical feedback remains the best strategy to achieve the greatest gain in min-

imal time and these results show that the cost of repeating runs is not as severe as initially

proposed. If the acceptable system standard deviation increase is high enough, the loss due

to the repeated runs is minimal as seen in Figure 4-4. If thereis a one standard deviation

acceptable increase then the loss is comparable to one repeated run. Considering the orga-

nizational risk tolerance and the acceptable amount of variance, the empirical and scientific

feedback may overlap.

4.7 Additional Runs

Box and Draper (1969) suggests experimental sizes of two to three variables, that are re-

peated until achieving effect significance. There are conflicting ideas when considering the

amount of noise in an experiment. Reducing noise calls for additional runs, this is tradi-

tionally viewed as a reduction ofσ/
√

n in the standard deviation. In the experimental case
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of 2− 3 variables, to reduce the variance by half requires 2n+1 extra runs while the aOFAT

only requires 2∗ (n + 1), optimally. This number of extra runs indicates homoscedastic

conditions that are rarely seen in actual experiments. In practice, there is series correlation

between the variables when deciding on the number of runs. One way to capitalize on the

improvement and stay close to the minimum number of variables is to adjust stochastically.

A procedure might be arranged like this:

1. Choose between two-variable settings (High and Low) randomly with probability

based on the number of points that already existphigh = 1− Num. High Points
Total Points .

2. Run the experiment

3. Complete a paired t-test between the two settings.

4. At probability equal to t-value (t) run another experiment changing the next variable,

with the current variables at their current expected maximum setting.

5. Choose a threshold (.9) over which thet value is significant and the experiment is

advanced to the next variable.

This procedure is similar to a Gibbs sampler on a uniformly distributed random vari-

able. Gelman et al. (2003) gives a good description of why this procedure generates a

long term stationary distribution that mirrors the variable importance probability. A key

difference in the usual Gibbs implementation is the short run duration. In this case we only

run for the number of variables, in most Gibbs conditions thesample number approaches

the thousands. In the limit of very few runs Tanner and Wong (1987) has shown that the

direction of the runs is still correct.

When this procedure is run against the traditional factorial experiment the results are

similar for resolution and power. For example, when this procedure was run against a half-
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Figure 4-5: Response with noise variation, aOFAT is blue on the left and Fractional Facto-
rial red on the right.

fractional factorial to get the same resolution for six variables, each experiment required

the same number of runs. Afterwards the adaptive procedure had an estimate of the maxi-

mum but the fractional experiment could also create a model of the system. The situation

changed when a series of experiments were made in a typical EVOP framework. In this

case two sequential full-factorial experiments of three variables were compared with a sta-

tistically significant aOFAT experiment. Both of these experiments required approximately

the same number of runs (≈ 12− 16). For this comparison both procedures considered

predictions for each variable of high, low, or unknown. Thisunknown prediction utilized

the t-test for the aOFAT and variable significance (F-test) for the factorial experiment.

The results of the experiment for different levels of noise are shown in Figure 4-5.

These results are consistent with the work of Frey et al. (2003) - at low levels of noise the

aOFAT procedure has a higher likelihood of selecting the best setting. At higher levels of

noise the procedures are comparable.
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Figure 4-6: Number of modeled variables, aOFAT is blue on theleft and the Fractional
Factorial red on the right.

The reason for the disparity in performance is due to the sequential nature of the experi-

ment. As suggested in Box and Draper (1969) deciding on the next sequence of runs should

be made by committee. If the probability of interaction is high for variables between fac-

torial experiments then this procedure does a poor job of estimating the maximum. While

the number of runs was comparable, a committee may have chosen a better arrangement

given the six variables under investigation. Using the model building approach by result

significance led to fewer important variables in the factorial experiment compared with

the aOFAT t-test approach. The reduction in the number of variables is dependent on the

amount of noise added to the system. This can be seen in Figure4-6, as the amount of

noise increases the number of significant variables decreases.

The aOFAT methodology offers a less intensive approach to determining improved

manufacturing conditions. Through sequential measurements and straight forward t-tests,

there is a high likelihood of selecting the best operating conditions. This result is better

than running a series of factorial experiments on the same variables. The best situation

is to rely on the accumulated experience to make good variable selections and implement
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them through an EVOP committee. In this well run situation anaOFAT is also the quickest

way to the preferred conditions. As Frey and Wang (2005) showed, if the variable order is

known then an aOFAT will benefit from interactions and offers the quickest path to check

every variable.

4.8 Conclusion

Evolutionary operation (EVOP) is a statistical method for process improvement during

manufacturing. Utilizing small repeated experiments the operating condition can reach

more preferred conditions. The foundation for this method should be to refine the manu-

facturing models and system understanding. With the increase in computational and simu-

lation power more manufacturing processes have accurate models that assist in the design

and parameter settings. The validation and verification of these models is challenging and

run size limitations may yield unacceptable meta-models (Irizarry et al., 2001).

Evolutionary operation can improve these models while improving the current manu-

facturing system. The cost of this improvement strategy is an increase in short-term pro-

duction variation. A six-sigma production facility is designed for a 1.5 sigma long-term

shift. If a fraction of this margin is used to improve the process it can result in better future

models, cost savings and quality improvement.

The suggested feedback mechanism here is empirical aOFAT experiments that are sta-

tistically significant. With more accurate effect distribution information, gathering statis-

tically significant feedback increased the loss by 7.4% for two runs versus one, compared

with 15.5% with the historic normal distribution. Additional repeated runs have an even

smaller profit reduction and should be used in context with the organizational risk toler-

ance and change cost. The small difference between empirical and optimization feedback
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drives model based experimentation that can offer long term corporate wide benefit at little

increased cost. It has been shown that running repeated factorial experiments has poten-

tial accuracy and variable size drawbacks compared with a Gibbs based aOFAT sampling

technique.

The use of evolutionary operation has a place in the manufacturing environment to im-

prove production as well as validate models. Sequential Gibbs-based aOFAT experiments

offer a practical and efficient way to implement empirically-based EVOP.
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Chapter 5

Sequential Simplex Initialization

5.1 Introduction

An improved sequential simplex starting routine is presented based on adaptive-One-Factor-

at-a-Time (aOFAT) experimentation (Frey et al., 2003). Theadaptivek + 1 points as a

starting simplex improves convergence as well as reduces the number of iterations. The

proposed method generates an initial simplex by adjusting each parameter by a small delta

sequentially and leaving any parameter change that brings the function closer to its target.

This initialization is permitted in the original Nelder-Mead procedure (Nelder and Mead,

1965) with the only limitation that any initial simplex is non-degenerate. In addition to the

change in the starting simplex, the delta is adjusted to account for an increased distance be-

tween experimental points and the centroid. The proposed delta adjustment is based on the

probabilistic variable selection which sets the step equalto that of the old routine. A suite

of 35 test routines provided by Moré et al. (1981) is used to demonstrate the effectiveness

of this change in improving convergence and reducing the number of iterations.

77
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5.2 Background

The original simplex procedure is from Spendley et al. (1962) it provided a sequential

unconstrained optimization procedure that is geometrically based. This procedure was

limited by a fixed step size and was quickly replaced by the variable step size procedure of

Nelder and Mead (1965). Although the procedure is now over forty years old, it still is seen

in numerous applications. Both MATLAB and Mathematica use the routine in fminsearch

and NMinimize, respectively. The routine is also presentedin the book Numerical Recipes

as the amoeba routine (Press et al., 2007).

The exact details of the numerical procedure and its convergence is not discussed here

because there are many good references available (Press et al., 2007; Walters et al., 1991;

Lagarias et al., 1998) although, a short outline of the procedure is provided for familiarity.

The sequential simplex starts withk+ 1 initial data points arranged in a geometric simplex

pattern, and the function evaluation at those points. Thereare five steps to iterate the

procedure, in this case given for a function minimization:

1. Order. Put thek+ 1 points in descending order of their function valuesfi. Ties may

be broken by looking at the index value (Lagarias et al., 1998).

2. Reflect.Compute a reflection pointxr = (1+ α)x̄− αxk+1. Note that ¯x only includes

points up tok. If the new value falls within the current values,f1 ≤ fr ≤ fk, then

iterate. Nelder and Mead useα = 1

3. Expand. If fr < f1, thus it is a new minimum, expand the simplex by calculating an

expansion pointxe = γxr + (1− γ)x̄. If fe > fr then accept the expansion point and

iterate otherwise, acceptfr and iterate. Nelder and Mead usedγ = 2.

4. Contract. If fr ≥ fk+1, it is the worst pointxc = βxk+1 + (1 − β)x̄, if fk ≤ fr < fk+1
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thenxc = βxr + (1 − β)x̄. Nelder and Mead usedβ = .5. If fc ≤ fk+1 then acceptfc

and iterate.

5. Shrink. If fc > fk+1 then the contraction failed and all points except forx1 should be

replaced byxi ← δxi + (1 − δ)x1. Nelder and Mead usedδ = .5, but other authors

suggestδ = .9 (Barton and Ivey, 1996).

This procedure is gradient free and determines future points only based on the rank

order of the values. It has been shown that this procedure does ultimately converge to

a minimizer for general (non-convex) functions of one dimension (Lagarias et al., 1998).

There is still work remaining as to why this procedure works so well in practice. For

example, there is no known function inℜ2 for which the procedure always converges

to a minimizer. A number of degenerate situations have been demonstrated where this

algorithm does not converge, which may be dependent on the starting simplex (McKinnon,

1998).

5.3 Initializing the Simplex

In previous work on this iterative procedure an initial simplex is often assumed and the

generation of those initial points has not been very well studied in the literature. Spendley

et al. (1962) begin the procedure with a regulark-dimensional simplex. A simplex of

dimensionk can be defined as the convex hull of a set ofk+1 affine independent points in

Euclidean space of dimensionk or higher. The regular simplex is a regular polytrope, and

so all points are separated by a common edge length. Althoughthe Nelder-Mead algorithm

nominally starts with a regular simplex successive simplices do not remain regular due to

the Expand and Contract steps.
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In the algorithmic implementation the suggestion for getting the initial simplex points

begins with a single starting pointP0 andei unit vectors. The remainingk initial points

just represent small orthogonal deviations from that point, calculated from Equation 5.1 as

suggested by Press et al. (2007).

Pi = P0 + ∆ei (5.1)

The∆’s could either be a single value for all variables or specificvalues for each di-

rection. The MATLAB (Math Works, 2007) implementation onlyuses this freedom when

P0 = 0 and sets∆ = .00025, and for all other values∆ = δ ·P0 ·eT
i andδ = 0.05, or a change

of 5% of the current variable value. This is noted in the code as a suggestion of L.Pfeffer

at Stanford (further reference could not be found).

This widely used starting procedure does not generate a regular simplex. This can be

shown in two dimensions when three points form a right triangle and not the regular 2-

simplex of an equilateral triangle, this is also true for higher dimensions. Having a regular

simplex is not required because given any non-degenerate (volume,0) starting simplex all

following simplicies are also non-degenerate; for the proof see Lagarias et al. (1998). This

implies that any non-degenerate simplex may be a starting point and will not affect the

algorithms degeneracy.

5.4 Proposed Improvement

The method proposed here to improve this initialization consists of first, a better choice of

starting conditions and second, choosing the step-size based on the distance to the reflected

point. Initially, the variables are changed in order, as before, but, if a change yields an

improvement then the remaining variable changes progress from this point. This procedure
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is identical to performing an aOFAT experiment (Frey et al.,2003). Thesek+1 runs would

‘aim’ the simplex in the most likely direction of improvement. Given that this is a hill-

climbing algorithm, this would ideally decrease the numberof additional runs. An added

benefit may be that a directed starting simplex will move awayfrom cyclic, or stalling

points. There are essentially no theoretical results for the sequential simplex in dimensions

greater than two, and so better initialization may help avoid the problems pointed out by

McKinnon (1998) and Hall and McKinnon (2004).

The simplex procedure is geometric, and the next trial pointis based on the distance

from the current worst point to the centroid of the remainingpoints. To match the traditional

algorithm’s distance the increase∆ would have to be set dependent on the number of x-

variablesk as follows:

∆ ∝ 1
k

√

k2 +
1
k
− 1 (5.2)

The traditional procedure is not a regular simplex and so this value is the weighted average

of the origin and the orthogonal points. This distance asymptotes to one, or towards the

desired delta. With the aOFAT procedure this distance correction is more probabilistic. If

the probability of any variable making a positive change isp (nominally assumed to be

0.5), and givenk variables, then the expected distance value can be given by the following.

∆ ∝ 1
k

√

p · k3

3
− p · k2 − p · k

3
+ p+ k2 +

1
k
− 1 (5.3)

This is the weighted distance for the largest and smallest points in the simplex. For each

variable change there is ap probability for making a change and moving the centroid, asp

goes to zero the results are the same as in Equation 5.2.

The original method asymptotes while the modified approach does not. Most imple-

mentations do not include this asymptote based on the numberof variables. The reasoning
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Figure 5-1: Distance to Centroid

can be seen in Figure 5-1; after about five variables the valuedoes not change substantially.

The modified approach will have to take into account the number of variables as the delta

continues to grow without asymptote.

The starting step-size will be modified before the algorithmruns based on the number of

variables. The step-size could be modifiedin-situbased on the acceptance of a variable but,

if we only want to run each setting once it could only modify the subsequent variables. This

would add a dependency to the algorithm based on the order of the variables, something to

avoid for this generic solver.

5.5 Improvement Considerations

It is possible to say very little about this procedure without some assumptions about the

function over which it is applied. Given a strictly convex function in two dimensions with

bounded level sets and coefficientsα = 1, γ = 2, andβ = 1/2, Lagarias et al. (1998)

showed that given simplicies (∆n) generated at thenth iteration of the algorithm the limits

are as follows:
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lim
n→∞

vol(∆n) = 0 (5.4)

and

lim
n→∞

diam(∆n) = 0 (5.5)

The convergence is dependent on the volume and diameter change at each step. It is not

possible to determine if a greater or lesser volume or diameter will improve convergence at

each step but that the overall convergence is sensitive to volume and diameter changes.

For both starting simplicies the ratio of the volume change is the same, it is only de-

pendent onα, γ andβ. This is true because the amount that a point changes is proportional

on the distance between that point and the centroid, which balances out the smaller volume

change for points further from the centroid. Although the change in volume is the same

and thus the rate of convergence at that point, the volume of the two initial simplicies are

both proportional to∆k. The volumes are similar until the difference in the delta’s becomes

large. As seen in Figure 5-2, the modified starting simplex has a reduced starting volume

that may increase the number of iterations although the rateof volume change is the same

and so this should not affect the convergence.

This smaller volume is a tradeoff to keep the distance of the initial simplex move the

same as the original routine. Each move, either expand or contract, is dependent on the

distance from the centroid to the reflection point. The original algorithm had two possible

values for that distance either the origin or any other point. In the proposed algorithm we

used the final point and the middle point in the aOFAT simplex to calculate an average

delta. This is a simplification, although the smallest pointis in the middle, the largest step

may also be one of the first two points. If the first few variablechanges are accepted versus

the final few, then the centroid is far from the start and closeto the end, and the biggest
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step is in the first point. On the other hand the final variable is only changed once and so

the final point is the furthest from the centroid of thekth variable. These two counteracting

effects are compared by the percentage of times this point is greater than the last point, and

the amount that it is greater. The relationship between the percentage of other points as

well as the error is shown in Figure 5-3. This gives a weightederror between 0.7% and

3.7%, for the proposed method depending on the number of variables. The second problem

is taking a weighted average of the middle (smallest) point and last (largest) point does

not reflect the distribution of these variables. If the beginning point is larger than the final

point the weighted average is too small and underestimates the average distance. Because

these two errors are both small and occur in opposite directions they are not included in the

proposed model.

5.6 Test Cases

The aOFAT starting condition as well as the step-size changewere implemented in MAT-

LAB by changing the current fminsearch routine and run against the standard test suite by



5.6. Test Cases 85

4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of Variables

P
er

ce
nt

ag
e

 

 
Pct of Runs Greater than Last Run
Average Pct Greater

Figure 5-3: Centroid Distance Comparison

Moré et al. (1981). These 35 functions were designed to testthe extremes of unconstrained

optimization and have been used as a metric for changes to theNelder-Mead procedure a

number of times (Nazareth and Tseng, 2002; Price et al., 2002). The procedure was run

with a maximum number of iterations of 105, a maximum of 108 function evaluations, a

tolerance of 10−12 on the output and a tolerance of 10−9 on thex values, the results are

shown in Table 5.1.

These results show a benefit for the new method. One proposed comparison metric

has been the log(̂f − f ) (Barton and Ivey, 1996). The original method was -13.37 with

the proposed method -14.46. Although the change was only made in the startingk + 1

simplex points, this yielded an improvement to the accuracyof the final results. Two of the

test problems that originally did not converge now converged correctly with the modified

procedure.

Looking at the runs with a similar metric log(n) shows the improvement with the new

procedure. For this calculation the two problems that reachthe maximum number of iter-

ations were left out (10 and 16). When the procedures reacheddifferent local minima or
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failed to converge those problems were also not counted in the run metric (problems 18,

20, 21, 25, and 26). Removing these problems favored the original routine because there

is no penalty for not converging or using the maximum number of iterations. The original

routine had a log-run value of 2.73 and the modified routine 2.72. In the test problems this

represents a 2% savings in runs or an average of nine fewer iterations.

In this difficult test suite of functions the improved convergence is evident to a greater

degree than the iteration decrease. This is attributed to the challenge of this problem set,

and the fact that without a good starting direction it is easyto get trapped in cyclic or stalling

situations. In the majority of smoother, and more realistic, applications it is predicted that

the decrease in runs may be larger. The proposed routine did not lead to any major decreases

in performance. The modified routine sacrificed some of the possible run reduction by

making the initial step sizes similar. If instead, the volumes were maintained, the step size

would have increased lowering the number of iterations.

The code for this modified routine is available from the Matlab file exchange website

(http://www.mathworks.com/matlabcentral/fileexchange/).

5.7 Conclusion

An improved sequential simplex starting routine based on adaptive-One-Factor-at-a-Time

(aOFAT) experimentation was proposed. Starting with this new simplex improved the

eventual convergence (on two of the 35 test cases) as well as reduced the total number

of iterations by 2%. The proposed method generates an initial simplex by adjusting each

parameter sequentially and leaving any parameter change that brought the function closer

to its target. This starting simplex is permitted in the original Nelder-Mead as long as it is

non-degenerate. In addition to the change in the starting simplex the delta is adjusted to
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account for an increased distance between experimental points and the centroid. This delta

adjustment based on the probabilistic variable selection and decreases the initial volume of

the simplex. A suite of 35 test routines provided by Moré et al. (1981) is used to demon-

strate the effectiveness of this change in improving convergence and reducing the number

of iterations.



88 Chapter 5. Sequential Simplex Initialization

Bibliography

Barton, R. R. and Ivey, Jr., J. S. (1996). Nelder-mead simplex modifications for simulation
optimization.Management Science, 42(7):954–973.

Frey, D. D., Englehardt, F., and Greitzer, E. M. (2003). A role for “one-factor-at-a-time”
experimentation in parameter design.Research in Engineering Design, 14:65–74.

Hall, J. A. J. and McKinnon, K. I. M. (2004). The simplest examples where the simplex
method cycles and conditions where expand fails to prevent cycling. Mach. Pragram.,
100:133–150.

Lagarias, J. C., Reeds, J. A., Wright, M. H., and Wright, P. E.(1998). Convergence proper-
ties of the nelder-mead simplex method in low dimensions.SIAM Journal of Optimiza-
tion, 9(1):112–147.

Math Works (2007). Matlab. The Math Works, Natick, MA.

McKinnon, K. I. M. (1998). Convergence of the nelder-mead simplex method to a nonsta-
tionary point.SIAM Journal of Optimization, 9(1):148–158.
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Minimum Function Value Total Iterations
Num Name Order Actual fminval Modified Original Modified

1 Rosenbrock 2 0 8.85E-20 6.85E-20 123 130
2 Freudenstein and Roth 2 48.9842† 48.98425 48.98425 95 96
3 Powell 2 0 1.03E-27 2.07E-27 419 379
4 Brown 2 0 3.43E-19 9.30E-20 183 208
5 Beale 2 0 8.72E-21 1.52E-20 91 88
6 Jennrich and Sampson 2 124.362 124.3622 124.3622 78 71
7 Helical valley 3 0 1.84E-19 5.74E-19 205 177
8 Bard 3 8.21487E-03 8.214877E-03 8.214877E-03 182 178
9 Gaussian 3 1.12793E-08 1.127933E-08 1.127933E-08 130 124
10 Meyer 3 87.9458 87.94586 87.94586 100000‡ 100000‡
11 Gulf 3 0 3.64E-29 4.21E-29 1806 1513
12 Box 3 .0755887† 7.558874E-02 7.558874E-02 307 226
13 Powell 4 0 1.29E-34 5.09E-35 670 660
14 Wood 4 0 1.41E-18 7.22E-19 405 526
15 Kowalik and Osborne 4 3.07506E-04 3.075056E-04 3.075056E-04 247 259
16 Brown and Dennis 4 85822.2 85822.20 85822.20 100000‡ 354
17 Osborne 1 5 5.46489E-05 5.464895E-05 5.464895E-05 696 531
18 Biggs 6 0 5.66E-03† 2.455E-22 705 1100
19 Osborne 2 11 4.01377E-02 4.013774E-02 4.013774E-02 3534 3014
20 Watson 20 0 3.98E-03∗ 3.22E-03∗ 2214 2404
21 Extended Rosenbrock 10 0 5.37∗ 3.63E-18 9103 17466
22 Extended Powell 10 0 1.29E-34 5.09E-35 670 660
23 Penalty 4 2.24997E-05 2.249978E-05 2.249978E-05 826 623
24 Penalty II 4 9.37629E-06 9.376293E-06 9.376293E-06 2299 2433
25 Variably Dimensioned 10 0 1.25∗ 1.11∗ 4861 5523
26 Trigonometric 10 0 2.80E-05∗ 4.22E-05∗ 2187 2188
27 Brown Almost Linear 10 0 1.73E-20 5.62E-20 3730 4897
28 Discrete BV 10 0 1.91E-19 6.93E-20 1355 1150
29 Discrete Integral 10 0 7.11E-18 7.09E-18 1320 1518
30 Broyden Tridiagonal 10 0 1.94E-17 2.00E-17 1350 1277
31 Broyden Banded 10 0 2.68E-17 1.32E-16 1388 1513
32 Linear Full Rank 10 10 10.0 10.0 1679 1958
33 Linear Rank 1 10 4.634146341 4.63E+00 4.63E+00 386 389
34 Linear Rank 1 with 0’s 10 6.135135135 6.14E+00 6.14E+00 378 409
35 Chebyquad 9 0 3.06E-19 1.13E-18 2494 1801
† Solution converged to local minima
∗ Solution failed to converge
‡Maximum iterations reached

Table 5.1: Unconstrained Optimization Test Functions





Chapter 6

Mahalanobis Taguchi Classification

System

The use of adaptive experimentation can be extended beyond the traditional experimental

domains. In this situation, historic use of highly fractionated orthogonal arrays created

an opportunity to benefit from adaptive variable selection.The goal of this chapter is to

present a classification system that incorporates adaptiveexperimentation for variable se-

lection. The probable exploiting of interactions and very few runs make up for an inability

to build a model and accommodate potential non-random effects. Analyzing images, or

other data processing and statistical learning techniquesprovide unique challenges, as well

as numerous tools. The background, techniques, and direction of this area of research will

not be discussed here and the interested reader should see Hastie et al. (2001). The idea pre-

sented in this chapter has been expanded with an additional example and further discussion

in Foster et al. (2009).
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6.1 Introduction

The Mahalanobis Taguchi System (MTS) is a pattern analysis technique, which is used to

make accurate predictions in multidimensional systems. This methodology has continu-

ously evolved through the research effort led by Genichi Taguchi. This system has found

industrial use as a data analytic approach that can be used toclassify multiple systems.

Examples have been given in medical diagnostics, inspection systems, sensor syetms, and

even marketing applications (Taguchi and Jugulum, 2002).

The Mahalanobis distance (MD), which was introduced by a well-known Indian statis-

tician P.C. Mahalanobis, measures distances of points in multidimensional spaces. The

Mahalanobis distance has been extensively used in several areas, like spectrographic and

agricultural applications. This distance is proved to be superior to other multidimensional

distances like Euclidean distance because it takes correlations between the variables into

account. In MTS the Mahalanobis distance (actually, a modified form of the original dis-

tance) is used to represent differences between point and pattern groups in quantitative

terms. It can also be used to classify different objects in multidimensional systems. If

this distance is above a certain threshold then the data point is not part of that data set

that belongs to normal or reference group. The Mahalanobis distance is a multiple of the

Hotelling T2 that has been used in the statistics literature for many years. It is frequently

used to identify statistical outliers as in Hawkins (1980).Here , the signal-to-noise (S/N)

ratios are used to determine the accuracy of the Mahalanobisdistance with respect to pre-

dictions or classification.

To compute the distance one first has to calculate the mean vector (µ) and the covariance

matrix (K ) of the training population (this is usually referred to as normal or reference
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group). The distance for any sample in the space (f ) is given by a scalar:

D =
1
n

(f − µ)TK−1(f − µ) (6.1)

The sample vector (f ) is comprised of a number of features or variables that are important

to the classification.

To begin with all the features or variables that may be important for pattern analysis

are included. Usually, the number of features is large so thenext step is to use orthogonal

arrays (OAs) and S/N ratios to determine the reduced set of important features or variables.

The basic steps in MTS can be summarized as follows:

Stage I: Construction of a Measurement Scale

• Select a Normal group or reference group with suitable features or variables

and observations that are as uniform as possible.

• Use this group as a base or reference point of the scale.

Stage II: Validation of the Measurement Scale

• Identify the conditions outside the reference group.

• Compute the Mahalanobis distances of these conditions and check if they match

with decision-maker’s judgment.

• Calculate S/N ratios to determine accuracy of the MTS system.

Stage III: Identify the Useful Variables (Developing Stage)

• Find out the useful set of variables using Orthogonal arraysand S/N ratios.

Stage IV: Future Diagnosis with Useful Variables
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Figure 6-1: Steps in MTS

• Monitor the conditions using the scale, which is developed with the help of the

useful set of variables. Based on the values of Mahalanobis distances, appro-

priate corrective actions can be taken.

Figure 6-1 is another presentation of the different steps in MTS (Foster et al., 2009).

From the steps it is clear that role of orthogonal arrays are prominent in MTS analysis.

Each experimental run in the orthogonal array design matrixuses a subset of variables; the

resulting S/N ratios of these subsets are calculated using the distancesfrom the reference

group and S/N ratios are then used to determine the best variables.

The selection procedure using the OA is to run the entire matrix and then use a variable

addition procedure to determine if any variable should be included. At the end of the

procedure the appropriate subset of variables has been selected that give the maximum S/N

ratio. Typically in MTS, either larger-the-better type or dynamic type S/N ratios are used.

But this work is restricted to the larger-the-better type, which is given by:
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η j = −10 log10

n
∑

i=1

1
(

D ji

D j j

)2
(6.2)

Where the sample (D ji ) is the Mahalanobis distance to classificationi from a population

n for each of thej classifications. This S/N ratio maximizes the distance between the

different classifications. Givenj classifications the distances for all of the permutations

are added together to form a composite S/N ratio for the choice of variables and the test

population. For complete identification all permutations need to be considered, and thus

are added together.

The comparison of an orthogonal array (OA) search method will be made with adaptive

One-Factor-At-a-Time (aOFAT) and forward search selection procedure.

6.1.1 Description of Experimentation Methodology

Each string of variables can be between 10-50 individual variables long. Thus a complete

run of all variable combinations yields 210 to 250 experimental runs, excessive for all but

the simplest of simulations. To overcome this limitation reduced factor experimentation is

normally used.

The OA is a fractional factorial experimental design technique where for the entire

experiment, any two variables will have each possible combination run an equal number

of times. Only symmetrical designs of strength two are considered. An orthogonal array

OA(N, 2N−1) is the same as a Level-III 2k−p fractional factorial design.

aOFAT is compared with two-level, strength 2 symmetrical orthogonal arrays, and with

a forward selection algorithm. The forward selection algorithm was proposed by Abraham

and Variyath (2003) as an alternative to the OA in an attempt to decrease the computation

time in variable selection.
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In the forward selection algorithm, each individual variable is arranged by its contribu-

tion to the output. Then each variable is combined in descending order of importance until

the change in the S/N ratio is insignificant.

6.1.2 Image Classification System

In many contexts, it is necessary to classify an image into one of several categories despite

noise and distortion of the image. Some applications of sucha capability include:

• Target recognition in autonomous military applications

• Matching evidence from a crime scene with a database

• Searching image databases via samples of images rather thankeywords

• Classifying medical diagnostic scans

The system here classifies gray-scale∗ representations of fine art prints. Given a small

bitmap, the goal is to classify it from a comprehensive database. For purposes of this study,

four well known portraits were chosen: Da Vinci’s ‘Mona Lisa’, Whistler’s ‘Portrait of the

Artist’s Mother’, Peale’s ‘Thomas Jefferson’, and Van Gogh’s ‘Self Portrait with Bandaged

Ear’. The low resolution bitmaps (32 X 32) used in the study are depicted in the top row of

Figure 6-2.

In practice, if one were given an image to identify, it would likely be affected by various

types of noise. The image may have been taken by a camera and the possibility exists

that the image will be out of focus. The image may have been broadcast and so there

may exist some degree of either white noise or ‘snow’ superimposed upon it. The image

∗In gray-scale, a value of zero represents black while a valueof 255 represents white. All the integers
between are smoothly varying shades of gray between those extremes
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may have been scanned into a computer and therefore it is possible for the image to be

framed off-center. Further, it may be desirable to correctly identifythe image without

prior knowledge of whether the image is a negative or a print.To simulate such noise

conditions, the following operations in the following order were performed on each image

to be classified:

1. The image was blurred by convolving the image with a pixel aperture whose size

varies randomly among 3, 4, and 5 pixels square.

2. The image was superposed with ‘snow’ by switching each pixel to white with prob-

ability 0.75.

3. The position of the image in the ‘frame’ was shifted by either -2, -1, 0, 1, or 2 pixels

with equal probability. The shift was made both horizontally and vertically but the

amount of the shift in the x and y directions were probabilistically independent.

4. The images were transformed into a negative with probability 0.5.

Examples of the effects of these noises are depicted in Figure 6-2. The first row contains

bitmaps of all four portraits without noise. Below each portrait are three noisy versions of

the same portrait. The degree of noise is intended to be severe enough to make classification

of the images difficult.

6.2 Feature Extraction Using Wavelets

Wavelets were chosen for this application to extract features from the images and create

the variables. The goal of this section is to provide enough background to allow the reader

to understand the case study. The treatment will therefore be qualitative. For a more de-

tailed mathematical introduction to wavelets in engineering, the reader may wish to read
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Figure 6-2: Fine art images before and after application of noise

Williams and Amaratunga (1994), or specifically concerningimages Williams and Ama-

ratunga (1993).

A wavelet transform is a tool that cuts-up data, functions, or operators into different fre-

quency components with a resolution matched to its scale (Daubechies, 1992). Therefore,

wavelets are useful in many applications in which it is convenient to analyze or process

data hierarchically on the basis of scaling.

To demonstrate that the wavelet’s property of cutting up data based on scale is useful

in image processing, let us consider the effect of wavelet transforms on the image of the

Mona Lisa. Wavelet coefficients from a 32 X 32 gray-scale bitmap of the Mona Lisa (on

the left in Figure 6-3) were extracted using a two dimensional wavelet transform based on

the Daubechies four coefficient wave filter. These wavelet coefficients are represented by

a 32X32 matrix. The entire set of coefficients was used to reconstruct the image using an

inverse wavelet transformation (the image second from the left in Figure 6-3). One can

see that this reconstruction preserves essentially all of the detail of the original bitmap. To

generate the next image, we discarded all but the 16 X 16 coefficients in the upper left then
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Figure 6-3: The Mona Lisa reconstructed from its wavelet transform after all but the N X
N coarsest levels of scale have been discarded

padded the matrix with zeros back to 32 X 32, and reconstructed the image. The resulting

image (third from the left in Figure 6-3) reveals that the first 16 X 16 elements contain

information describing the rough features of the original image. This process was repeated

by removing more elements of the wavelet coefficients resulting in successively coarser

images.

The ability of wavelets to cut up an image on the basis of scalehas made them very

useful in image compression. By discarding wavelet coefficients below a certain threshold,

the amount of information to be stored or transmitted can be significantly reduced without

significantly degrading the perceived quality of the image.This strategy succeeds because

the features that allow people to identify an image tend to becharacterized by length scales.

The overall proportion and balance of Van Gogh’s portrait isvery different from that of the

Mona Lisa. Thus, the two portraits can be distinguished on the basis of features with

medium length scales. However, it is also quite possible to distinguish the two paintings on

the basis of features on a much smaller scale. The style of thebrush strokes in Van Gogh’s

portrait is very different from that of the Mona Lisa; most people could distinguish the two

paintings with only a one inch square sample of the original paintings.

The properties of wavelets that make them useful for compressing images also make

them useful for recognizing images in the presence of noise.When snow is superimposed

on an image, it will tend to disrupt the finest details so that the information at that scale

may actually hamper recognition. Similarly, the coarsest levels of resolution may contain
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very little information useful for image recognition. The image on the right in Figure 6-3 is

uniformly gray. This shows that the painting has uniformly distributed patterns of dark and

light at the coarsest level, but this is a property of most fineart because people appreciate

paintings that appear balanced. Therefore, the coarsest levels of wavelet coefficients may

not be useful in distinguishing the Mona Lisa from other portraits. It is possible that the fea-

tures that best allow one to distinguish the Mona Lisa from other fine art prints (especially

in the presence of noise) are found at intermediate scales.

Given the power of wavelets in extracting key features of an image based on a hierar-

chy of scales, they were selected for this image recognitionsystem. The matrix of wavelet

coefficients were used to construct the Mahalanobis distances andcompare the three ex-

perimentation routines. Each image was 32 X 32 the wavelet transform was also 32 X 32.

To reduce the vector size and, considering that the art medium is more interesting at larger

scales, only the first 8 X 8 matrix were used and the rest zero padded before the inversion.

This vector was then 64 bytes long, the last byte was also removed to give a convenient

length of 63 bytes, the same length as a traditional orthogonal array.

6.3 Comparing Results of the Different Methods

Each method was trained with a set of noisy pictures. After the training routine each of

the three routines produced a vector of the ideal variables for identification. These ideal

vectors were then applied to another set of noisy pictures, and the results compared.

The aOFAT performed with the highest average identificationpercentage, and utilized

an average training time. It was able to take advantage of thetwo-factor and higher inter-

actions and the noise was not sufficient to effect the results. The aOFAT scaled well with a

reduction in the number of training images.
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Figure 6-4: Results of the three search methods for the imageclassification

In the OA they were able to utilize the first and second order interactions but not take

advantage of higher level interactions. The OA chose a pointthat was less optimal than

the aOFAT because it did not include anything greater than two-level interactions. Even

though the OA was run with multiple arrays it might prove to beadvantageous to run some

that focus on the two- and greater level interactions because of their importance.

The third method, the forward search, was the most efficient to run, and proved to be

equal to the OA when the number of individual was greater thanfifty. This method was

highly dependent on a strong hierarchy of effects that was not as evident in this problem.

In situations with a large hierarchical bias it would perform well at low computational cost.

As the number of classifications grow the routine should showan improvement of a

similar magnitude to that shown in the reduction of the training population. It may be pos-

sible, using non-wavelet routines, to reduce the dependence on the higher level interactions,

but the current experimentation shows that realistic problems have higher level interactions,

and low noise. This situation is the ideal application of an aOFAT experiment.
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6.4 Conclusion

There is an appropriate place for an adaptive experiment combined with classification tech-

niques, here the Mahanalobis-Taguchi Strategy (MTS). Whenthe number of classification

variables are too numerous to enumerate all possibilities,choosing the best sub-set is simi-

lar to the maximum seeking experiment that aOFAT has demonstrated utility. This adaptive

experiment is used as a variable screening procedure as partof a complete classification

framework. Within published classification procedures such as linear regression, logistic

regression, and discriminate analysis the use of an adaptive selection experiment can im-

prove results and reduce the computational burden.

Compared with the other available methodologies such as OA or forward search, aO-

FAT is shown to yield a better result. aOFAT produces S/N ratios that are significantly

greater than the other routines while incurring similar experimental cost. As Daniel (1973),

and other experimentalists agree; in most experimentationtoo much time is spent on unim-

portant and uninteresting regions, aOFAT is a technique that focuses interest into the im-

portant and interesting areas and then allows for sub-set analysis. More information about

this particular application including more examples is available in Foster et al. (2009).



BIBLIOGRAPHY 103

Bibliography

Abraham, B. and Variyath, A. M. (2003). Discussion of ‘a review and analysis of the
mahalanobis-taguchi system’.Technometrics, 45:22–24.

Daniel, C. (1973). One-at-a-time plans (the fisher memoriallecture, 1971).Journal of the
American Statistical Association, 68:353368.

Daubechies, I. (1992). Ten lectures on wavelets. InCBMS-NSF Regional Conference
Series, SIAM.

Foster, C., Frey, D., and Jugulum, R. (2009). Evaluating an adaptive one-factor-at-a-time
search procedure within the mahalanobis taguchi system.International Journal of In-
dustrial and Systems Engineering.

Hastie, T., Tibshirani, R., and Friedman, J. (2001).The Elements of Statistical Learning.
Springer.

Hawkins, D. (1980).Identification of Outliers. Chapman and Hall.

Taguchi, G. and Jugulum, R. (2002).The Mahalanobis Taguchi Strategy: A Pattern Tech-
nology System. John Wiley and Sons.

Williams, J. R. and Amaratunga, K. (1993). Matrix and image decomposition using
wavelets. InProceedings MAFELAP ‘93, Eighth International Conferenceon the Math-
ematics of Finite Elements, Brunel, England.

Williams, J. R. and Amaratunga, K. (1994). Introduction to wavelets in engineering.Inter-
national Journal of Numerical Methods in Engineering, 37:2365–2388.





Chapter 7

aOFAT Integrated Model Improvement

An overall purpose to the procedures discussed in this thesis is to increase the overall utility

of experimentation by combining statistical methods with adaptive experiments. One goal

may be to utilize the aOFAT experiment combined with future experimental data to build

a composite model. There is one specific method that will be investigated here and will

benefit from our prior knowledge within the aOFAT. A subsequent chapter will investigate

a general method that can build models from adaptive experiments without assistance from

data regularities or other application specific information. Utilizing the aOFAT experiment,

outside of superficially comparing the results, is important in leveraging the experimental

cost to improve the system and enhance resultant models.

7.1 Introduction

Experiments can be used for a variety of purposes including optimization, model develop-

ment, factor identification, and robustness exploration. The academic approach is to use

experiments to build a model followed by model optimizationand validation as in Wu and

105



106 Chapter 7. aOFAT Integrated Model Improvement

Hamada (2000). This contrasts the stated objective of most industrial optimization exper-

iments as in Montgomery (1996) or Myers and Montgomery (2002). The purpose here

is to combine these two activities with two specific experiments to achieve an optimum,

followed by the creation of a parametric model. Both of theseindividual experiments have

numerous approaches and different techniques, the challenge is to benefit from the first ac-

tivity in completing the second. Providing both the optimumas well a parametric model is

pragmatic in that many times the optimum is found to be insufficient in some unforeseen

aspect and a more complete model is needed. Finding an optimum or near-optimum ini-

tially is also desirable as many designed experiments are left unfinished when equipment

fails, priorities change, or budgetary limits are met. In addition to the precautionary, de-

signing an experiment to seek out an optimal point initiallymay create savings by using

that point while the remainder of the experiment is run. The savings could be substantial

and with high likelihood, no further changes may be needed. The use of designed experi-

mentation has been championed by a few firms although the development of the techniques

comes from the statistical community. This combined technique bridges the gap between

the intuition of the practitioner and the statistical framework.

7.2 Background

The traditional classification of the different types of experiments by Wu and Hamada

(2000) are: treatment comparisons, variable screening, response surface exploration, sys-

tem optimization, and system robustness. These classifications are based on developed

techniques while, in practice, industrial experiments arerun to meet a specific objective,

perhaps to improve a product or to eliminate a defect. These objectives normally requires

a number of traditional experiments, first a variable screening experiment may be used to
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determine the important factors, followed by a rough systemoptimization experiment to

move around in the design space and a final response surface experiment for higher order

effects. The noise variables may need to be addressed through a specific robustness experi-

ment to finalize the setting. If there is financial or scheduling pressure an initial experiment

may be used to determine an immediate setting that can then beadjusted when the larger

experiment is complete. It is also possible that there will be a decision to end the experi-

ment early if a satisfactory setting is found in the initial runs. Experiments may also end

early if the test unit fails, or the project has budgetary or scheduling problems. Getting

useful knowledge out of those incomplete experiments is difficult and may be impossible.

The procedure outlined here is targeted for a dual target of optimization with a goal

of building a system model for alternative setting options or robustness studies. The first

stage of traditional optimization is to decide on an experimental design. The number of

runs determines the number of parameters that can be estimated. As described in Chapter2,

givenn+1 experimental runs it is possible to, at most, estimaten model parameters. Larger

experiments are frequently used to estimate two-way interactionsX1 · X2 or three-way in-

teractionsX1 · X2 · X3 as well as to understand system noise and error. Most experiments

are design to be balanced with equal number of high and low settings, orthogonal between

the different variables, and finally, run in a random order to try and minimize time depen-

dent noise effects. Because of the sensitivity of noise, most designed experiments are much

larger than necessary compared with the maximum parametersthat can be estimated, some

alternatives to this inefficiency will be addressed.
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7.3 Procedure

To begin the initial optimization search an adaptive One-Factor-At-a-Time (aOFAT) ex-

periment is performed. This is an adaptive optimization procedure that has been recently

described in the literature by Frey and Sudarsanam (2008) and Frey et al. (2006). This

procedure utilized here is as follows, an initial random variable setting is run. Then se-

quentially through each variable a single change is made andthat new setting run. If the

result is improved then the new variable setting remains, ifnot, it is returned to its original

value. This experimentation technique requiresn+1 runs, one for the initial setting and one

for each variable. Although this procedure has been discounted in a number of books such

as Wu and Hamada (2000), it has shown to be effective in achieving an optimum under

normal levels of noise and a typical ratio of interactions tomain effects. If the noise is too

high or if there are too many significant interactions, then amore traditional approach may

be more effective. The other potential problem is an absence of run randomization and any

time or order dependency could lead to poor results. In a study of 113 published experi-

ments, this method had a very high likelihood of producing the optimal setting compared

with other alternative procedures using a similar number ofruns (Frey et al., 2006).

To quantify this improvement we will use a hierarchical probability model (HPM) that

was constructed by Li and Frey (2005) using the aforementioned 113 industrial experi-

ments, and described in detail in Chapter 2. This HPM createsa response that mimics

one of the 113 original experiments; it can be used to gauge the initial improvement of

an aOFAT experiment over the best possible variable setting. The biggest influence to this

response is in the pure error which is defined here as a ratio tothe factor effects (FE). Even

with large amounts of experimental error an aOFAT experiment yields 90% of the possible

improvement as shown in Figure 7-1. A ratio of 0.2 is typically found in experiments.
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Figure 7-1: aOFAT Percentage Improvement

This technique requiresn + 1 experimental runs and provides a good method for de-

termining the optimal variable settings. In addition to searching for an optima the other

outcome of this experiment is an estimate of each variable’simportance. The challenge

with using aOFAT results is the significant probability of exploiting interactions as well

as main effects, which are not possible to estimate with onlyn + 1 runs. To make a more

accurate estimate of the importance of each variable, probable interaction effects will be

removed.

Using these 113 experiments Frey and Wang (2005) have lookedat the expected im-

provement for each variablexk for completing an aOFAT experiment; this expected value

givenn runs is shown in Equation 7.1
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(7.1)

Where the standard deviation of the main effects, interaction terms, and the error are

given byσME, σINT, andσε respectively. Some assumptions are made about the size of

the different effects, which are based on the results seen in the industrial experiments.

AssumingσINT = σME/3,σε = σME/4, and because we are only interested in the relative

influence of each variableσME = 1. This reduction leads to a reduced form shown in

Equation 7.2.

E(Y(∆xk)) =
.889− .178k+ .089n√

.11n+ .92
+

.089k− .089
√

.11n− .11k.32 arctan(.33/
√
.11n+.81)+.5 + 1

(7.2)

This expected improvement information can be used in the covariance matrix of a

Gaussian process that will model the follow-up experiment.The interaction information

is needed in addition to the response because the later variables are more likely to bene-

fit from interaction effects than earlier ones. The complexity of this equation is normally

unnecessary with a small number of runs, and a linear approximation will be used instead.

With seven variables and thus eight experimental runs the expected improvement of a linear



7.3. Procedure 111

Figure 7-2: Expected Improvement Comparison

estimate is compared with the equation as shown in Figure 7-2.

This linear approximation is described by the slope of this line. Increasing the variables

decreases the slope byO(n2) and thus approaches zero rapidly with a large number of

variables. To predict the slope for a specific number of variablesn, the log-log plot yields

this relationship,S = 0.081 · n−1.842, as can be seen in Figure 7-3. Now, after running

the aOFAT experiment, an optimal or near optimal point is known as well as the relative

contribution of each variable with the interactions ignored.

The second, follow-up, experiment used here is an orthogonal array (OA) based ex-

periment that was introduced in Chapter 2 and also used in Chapter 6. An OA is a set

of linearly independent run columns for each variable. Eachcolumn is orthogonal to the

other columns in the set and so can estimate the main effects easily. Depending on the

design and the size of the OA it can also estimate a number of interactions. The choice

of designs are Plackett and Burman (1946) designs, and are well known in the statistical

literature and introduced in Chapter 2. The designs can be easily constructed and are of

lengthN = 4k, k = 1, 2, . . . whereN is not a power of 2. The Plackett-Burman designs



112 Chapter 7. aOFAT Integrated Model Improvement

Figure 7-3: Additional Variable Slope

have a useful property - if there are only a few significant terms the remaining columns can

estimate interactions. This design property along with theprior information available from

the aOFAT will be useful in the Bayesian analysis.

After completing the aOFAT experiment followed by the Plackett-Burman experiment

the data collection procedure is complete. At this point it should be noted that there

are other experimental methodologies to collect the data including running repeated aO-

FAT experiments, or other types of designed experiments including fractional-factorial,

D-Optimal, A-Optimal, and minimum abberation designs. These methodologies may be

more appropriate given a particular area of application or understanding of the underlying

physics. The following analysis is more general than the Plackett-Burman design and any

experimental design could be substituted.

7.4 Analysis

The Plackett-Burman OA design will create the foundation for a model estimate. It is

not possible to use traditional analysis by combining both sets of experimental runs into a
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large matrix, because this matrix would be singular. This isdue to the fact that the aOFAT

matrix is singular. Removing the singularity can be accomplished by removing runs from

the aOFAT, but this normally requires removing half of the runs, and then leads to little

improvement.

The analysis method used here is a Bayesian procedure that ismodified from the pro-

cedure of Joseph (2006), that is based on what is referred to as an empirical Bayesian

analysis. Additional information on the mathematics behind empirical Bayesian analysis

are available in Chapter 2.

Given a linear estimateF = XT · µ + ǫ(X) whereX consists of thek most important

variables, and the error is a Gaussian process,ǫ ∼ GP(0, σ2
kΨ) without loss of generality

we can sayF = XT ·µ+XT ·βwhereβ ∼ GP(0, σ2
kΨ). TheΨ term is the correlation matrix.

The most frequent correlation functions are product or exponential correlations.

Ψ(X1,X2) =
p

∏

i=1

Ψi(X1i ,X2i) (7.3)

This correlation function looks more simple than the traditional exponential function be-

cause the experimental values here are assumed to be only -1 or 1. In this functionp is the

number of runs for a full factorial experiment. Here it is assumed thatΨ is stationary for

all p and that our variables are∈ (−1, 1), soΨi( ~X1, ~X2) = Ψi(|X1i − X2i |/2) that has only

two valuesΨi(0) = 1 andΨi(1). This differs from the traditional empirical analysis but, is

consistent with the approach. In Chapter 8 the full exponential correlation function will be

employed because the data is not from a designed experiment.
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The expected values and variances can be determined from these definitions.

E( f ) = µ (7.4)

Var( f ) = σ2
kΨp (7.5)

and

E(β) = E(X−1
p · (F − X · µ)) (7.6)

= 0

Var(β) = Var(X−1
p · (F − Xµ))

= X−1
p σ

2
oΨp(X

−1
p )T

= σ2
kX

T
ΨX (7.7)

This last expression can be simplified using the structure ofthe product correlation

function. A full-factorial experiment can be defined in a recursive fashion whereX0 = 0

and additional terms defined by:

Xi =
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(7.8)

And noting that the last column is half negative followed by half positive, with the remain-

ing columns identical between the halves, both haves are correlated by theΨ(1) value. The
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entire product correlation equation can be expressed as:

Ψi =























Ψi−1 Ψ(1)Ψi−1

Ψ(1)Ψi−1 Ψi−1























(7.9)

Substituting these into the variance ofβ:
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(7.10)

whererp =
1−Ψp(1)
1+Ψp(1) and definingτ2 =

σ2
k

∏p
i=1(1+r i )

we know thatXT
0Ψ0X0 = 1 so

Var(β) = τ2 · R (7.11)

whereR is the diagonal matrix for the variables inp:

R =
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(7.12)

This matrix from the product correlation function, has two properties hierarchy and

heredity from Wu and Hamada (2000), that are often discussedin the experimental liter-

ature. Hierarchy is defined as having largest factors as maineffects, followed by smaller

two-way interactions, and smaller three-way interactions. In this matrixr i < 1 and so this
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property holds true for the covariance matrix. Heredity is defined as a property where a

significant main effect is more likely to have interactions that are also significant. This

property is also apparent in this matrix, ifr i is large then interactions withr i will also be

large.

Given that we are estimating the parameters in this model from a reduced run set, there

are too many parameters inR. Here we will reduce the model by including a predetermined

weight vector,w.

r i = r ∗ wi (7.13)

This still makes
∏

(1 + r i) unique and not reducible, and if we have fixedwi such that

max(wi) = 1 then it is necessary to only determine a single parameter ˆr. In the original work

Joseph (2006) used a single valuer i = R, thus the properties of hierarchy and heredity hold

but the variables are all weighed equally. The experimentalmatrix was used as a posterior

to this information to create a model. One drawback to this approach is that all of the

variables are weighted equally and so the data has to be sufficient for the posterior estimate

to change. In the experimental work by Li and Frey (2005) it was found that variables

are exponentially distributed and so a uniform assumption of Joseph (2006) would require

substantially more data to reach the same posterior accuracy.

Taking the approach of Robbins (1956) that greater effort used to create a better prior

model will benefit the overall performance of the resulting estimate. The aOFAT experi-

ment was used to estimate the variable ranking (as well as estimate the maximum). This is

incorporated into thewi weight variable is from Equation 7.2 wherew0 is set to the mean

value ofwi. There is no estimate of the error of the aOFAT variable weights, so the error

around thewi ’s is unknown. To control this affectwi is reduced as arg maxr∈[0,1) approaches

1.0. The influence of thewi ’s drivesr → 1.0 then thewi ’s are iteratively reduced, by setting
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w = w0.9. This can be justified by noting that larger values are driven by large disparities

between the weights and the experimental values. This covariance shrinkage maintains the

hierarchical and heredity variable properties while reducing undue influence of the aOFAT

error.

Giveny|β ∼ N(X~µ+X~β, σ) and without enough information we considerσ to be small

compared with theβ variance-β ∼ N(0, τ2
R). By applying the properties of the normal

distribution we can determiney.

y ∼ N(X~µ, σ2
kΨ) (7.14)

The log-likelihood of this distribution can be used to determiner from Sargan (1964):

l = constant− 1
2

log det(σ2
kΨ)−

1
2

(~y− X~µ)T(σ2
kΨ)−1(~y− X~µ)

(7.15)

which yields: ˆr = arg maxr∈[0,1) l

A stepwise addition procedure is used to add variables to~µ. And from the distributions

aboveβ can be estimated:

p(β̂|y) ∼N(RXT
Ψ
−1(~y− X~µ)

τ2

σk
,

τ2(R − τ2

σk
RX

T
Ψ
−1
XR))

(7.16)

To determine the variables to add we can look at the interval of β. The interval is given

by β̂i ± Φ−1(1− α/2) whereΦ−1 is the inverse normal distribution, if this interval does not

contain 0 then it would be a credible addition. This can also be expressed such that the
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absolute value of the normalized score must be greater thanΦ−1(1− α/2).

ti =

∣

∣

∣
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∣

∣
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∣

β̂

diag(
√

Var(β̂|y))

∣

∣

∣

∣

∣

∣

∣

∣

∣

(7.17)

After choosing the most probable variable to add,µk andσk need to be found by sub-

stituting the new value:

µ̂k = (XT
Ψ
−1
X)−1
X

T
Ψ
−1y (7.18)

and

σ̂2
k =

1
n

(~y− X ~mu)T
Ψ
−1(~y− X ~mu) (7.19)

There is another stopping condition used in literature, thetraditionalR2 value (multiple

correlation coefficient).

R2
k = 1− (~y− X~µ)2

(~y− ~µ)2
(7.20)

Theti values are criticized as underestimating the variance and thus overestimating the

confidence, and including too many variables. This is because theσ̂k predictor is a biased

estimate of the true mean squared prediction error. TheR2 estimate has another criticism

that it always increases with added variables, and thus alsoincludes too many variables.

There is a correction forti (Zimmerman and Cressie, 1992) but it is not used here because,

for the general linear model, this error has been shown to be asymptotically insignificant

(Prasad and Rao, 1990). The use of an adjusted-R2 is also not used here because the over-

fitting estimate based solely on the number of predictors versus the number of data points is

misleading by not including the influence of the covariance matrix. The forward selection

procedure is a frequently used method for variable addition. Other options include a back-
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ward elimination, stepwise, all subsets (forn . 7), or other algorithmic best subsets. The

Cp statistic was not used because iterating all possible combinations was not possible with

n = 11. There are many good procedures available to determine the important variables, in

the examples selected here we were limited by our imposed number of runs. The number

of coefficients was maximum for the number of runs and so less dependent on the adding

criteria. These routines were developed to limit the extra variables suggested important by

a predicted residual sum of squares (PRESS) approach. In these examples we are limited

by the maximum amount of information and so that limit is not applicable.

To summarize: the procedure initially has no variables. First estimate ˆr, determine the

largest significantti, add that to the model by finding ˆµk andσ̂2
k. Repeat this procedure as

long as the neŵti is significant, thePRES Sstatistic is decreasing, or the maximum number

of variables is reached.

7.5 Results

Three examples of this augmented method are presented, the first uses the Hierarchical

Probability Model (HPM) introduced in Chapter 2. This modelhas a significant probability

of two and three-way interactions, and stretches the use of the Plackett-Burman designs in

detecting interactions. The second example is drawn from ananalytic model presented by

Wu and Hamada (2000) to show the challenge in identifying confounded variables. The

third example is a physical experiment of a wet-clutch design presented originally in Lloyd

(1974). For each of these examples the primary focus is on comparing the results in model

building, and not the optimization search.
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7.5.1 Hierarchical Probability Model (HPM)

Using the HPM generated model, a dual approach with an aOFAT followed by a 12 run

Plackett-Burman design was compared with a 24 Run Plackett-Burman design. Both of

these designs had 11 variables of interest and were run 200 times total with four different

randomly generated HPM models. The PRESS (Prediction Sum ofSquares from Chap-

ter 2) statistic was used to compare the selected models. Theresults of both methods are

shown in Figure 7-4. The larger experiment is able to generate slightly smaller PRESS

values while the dual method uses fewer variables. The comparison statistic was run on

all of the points in the full factorial experiment. This experiment was run with both theβ

significance criteria as well as theR2 criteria and they both gave similar results. Because

these models are so limited, the performance limitation is the number of experimental runs.

Given the limited number of runs the dual method performs well compared to the larger

method. There are two additional cases that will be investigated, first adding runs to both

experiments and second, running the same sized second experiment. As the PRESS statis-

tic shows in Figure 7-4, the run limitation indicates more terms are necessary to fit the

model. The experiment lacks sufficient resolution to completely fit the best model. The

runs could be increased either through a fractional-factorial experiment or larger Plackett-

Burman design. Although they both yield similar results, here Plackett-Burman designs of

32 and 48 runs were used. In total the dual method has four fewer runs. The result with

these larger run matrices is shown in Figure 7-5. The use of the aOFAT runs reduces the

runs in the model while still achieving a similar PRESS statistic. It is expected that there

is a limitation to adding more variables through the covariance matrix. This forced ranking

of the inputs limits the number that can be added to the model.As the number of runs grow

a reduced correlation matrix can increase the influence of these few runs on the final result.
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Weighing the prior experiments is used to reduce the influence on the runs as a ratio of the

number of initial runsk+ 1 to the runs in the experimentn.

wi = w
k+1

n
i (7.21)

The result from this weighing is shown in Figure 7-6; the dualmethod has a reduced

variance but a difference in the number of terms is still seen due to the difference in exper-

iment size. The goal behind this methodology is for screening experiments and not large

run experimentation. The weights influence the entire correlation matrix and lacks suffi-

cient support for this rank in the entire experiment. As the ratio of data that determines the

correlation structure is small compared to the run information the assumption of accuracy

is no longer valid. The covariance matrix with a singler is justified in Joseph (2006) for

a constant correlation coefficient; he indicates that assigning different weights can only be

justified by knowing the relative weight of some effects. It is not assumed here that we

‘know’ the relative weights only that the guess is appropriate given the data. As the relative

amount of data grows the weight differences are reduced.

In practice there are many initial or set-up runs that are normally discarded before the

screening experiment is run. These runs can be used to help influence the covariance matrix

that is followed by the actual experiment. If the run sizes are identical then the covariance

matrix will improve the outcome. The result of using a 24 run Plackett-Burman design

for both systems is shown in Figure 7-7. The dual method reduces the PRESS using the

same number of variables. This higher performance for the dual method is expected and

has utilized runs that are normally discarded. One caution when using these methods is that

the extra runs need to reflect the correlation between the input variables for the experiment.

Different variable ranges and locations should be corrected, asnecessary.
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Figure 7-4: Hierarchical Probability Model (HPM) Comparison

Figure 7-5: HPM Large Experiment
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Figure 7-6: HPM Weighted Large Experiment

Figure 7-7: HPM Same Second Experiment Size
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7.5.2 Analytic Example

The second example attempts to identify an analytic model presented by Wu and Hamada

(2000, pg. 362). This analytic example is used to demonstrate a difficulty in evaluating

experiments with complex aliasing. The model isy = 2A + 4C + 2BC− 4CD + ǫ where

ǫ ∼ N(0, .5). The objective is to correctly identify this four variable model in an experiment

with 11 variables (A-K). In the original analysis the models(C,CD,A) and (C,CD,BC), both

which contain three of the four correct variables, and no incorrect variables were found to

explain the data well. They also identified three other three-variable models that only have

one correct variable, and three two-variable models with only one correct variable. The

conclusion was that the analyst may find many equally plausible models. Here a more au-

tomatic procedure is presented based on Bayesian priors. A similar model to this was also

used by Joseph (2006) to demonstrate his approach to Bayesian analysis. The objective is

to match the performance of both of these previous methods using a dual approach consist-

ing of an aOFAT and a 12-run Plackett-Burman experiment. To keep the number of runs

comparable a comparison will use a 24-run Plackett-Burman experiment.

A comparison of the Bayesian analysis to the procedure givenin Wu and Hamada

(2000) is presented in Joseph (2006) and will not be repeatedhere. Each procedure was

run two hundred times on different random sets of data. All of the variables were permuted

before each run, so variable order was not significant. The criteria for adding variables is

critical to the performance. The PRESS statistic was used here, and as long as it decreased

variables were added.

There were two main competing models, these two areas can be seen in Figure 7-8.

The goal is to have a small PRESS statistic with few model variables. The dual method

was able to leverage the correlation information to add variables that resulted in a better
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Figure 7-8: Wu and Hamada (2000) Analytical Experiment

model. The high aliasing in this experiment led to many equally compelling model options.

A more informed covariance structure improved the probability that the correct selections

were being made.

One complicating aspect of this selection is that models with an average of two ex-

tra variables better fit the data compared with models with fewer variables. The complete

model would have beenA, B,C,D, BC,CD, whereB andD are extraneous variables. These

additional variables are used to reduce the noise component. In real systems there is ob-

served a regularity of inheritance where a significant interaction component normally has

significant main effect. In this situation adding those components, even if superfluous,

reduces the cross-validated PRESS error. This performanceis similar to the predicted per-

formance by Wu and Hamada (2000) while automatically selecting the model. If the mod-

eler would like to actively participate in model selection the relative choice of important

variables could be done outside of the physical experiment.
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Figure 7-9: Wet Clutch Example

7.5.3 Wet Clutch Experiment

The final experiment used the results from a full-factorial wet-clutch experiment for analy-

sis from Lloyd (1974). A wet clutch is used to disengage two shafts, an example is shown

in Figure 7-9. For this particular experiment there were seven variables of interest, oil flow

(A), pack clearance (B), spacer plate flatness (C), frictionmaterial grooving (D), oil viscos-

ity (E), material friction (F), and rotation speed (G). The original experiment was created

to optimize and improve the design of wet clutches.

Because this was an actual experiment there is no exact answer, and the true model is

unknown. One “solution” was generated by using a Bayesian analysis on all of the runs

from the full-factorial experiment. The significance levelof the Bayesian analysis is set to

1%. This gives the model of A, C, D, E, F, G, BC, BD, BG, CE, CF, CG, DE, EF, FG.

For this non-replicated experiment another method of analysis is Lenth’s method (Lenth,

1989). The main effects and important two-way interactions was provided by Li et al.

(2006) as A, B, C, E, G, AD, AG, BD, BG, CD, CG, DE, and EG. The difference is pri-

marily in the fact that Li et al. (2006) included three-way and four-way interactions in his
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Figure 7-10: Wet Clutch Comparison

analysis, although the model only includes main and two-wayinteractions.

The results for this system are similar to the two previous examples. The dual approach

is able to perform well against the larger model although dueto the experiment size it iden-

tifies fewer terms as shown in Figure 7.5.3. The number of significant terms is surprising

and followup experiments would have to decide on the number of parameters to include.

The larger model was able to predict a greater percentage of the important variables and did

not show the typical bimodal characteristic of the dual approach. In addition to the PRESS

statistic,β significance and theR2 procedure, an adjusted-R2 calculation was also used and

did not change the results.

7.6 Conclusion

In this chapter a method to augment current experimentationtechniques through a dual

approach was demonstrated. The initial experiment is an adaptive One-Factor-At-a-Time

(aOFAT) search for the preferred setting followed by a supersaturated designed experiment.

The initial aOFAT procedure finds the optimum result with 90%confidence and provides
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covariance information. This experiment is followed by a highly saturated two-level ex-

periment, in this case a Plackett-Burman design. The two results are combined through

an empirical Bayesian procedure that utilizes hierarchical and heredity system characteris-

tics. An adjustment improves the results when the two experiments differ in size. When

faced with an industrial problem that requires both an optimum determination as well as

a parametric model this dual approach can maximize the utility of each experimental run

while accurately meeting both requirements. It is not necessary to select a optimum seeking

experiment at the expense of a model building experiment.
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Chapter 8

Combining Data

This chapter expands the utility of adaptive experimentation to situations where two ex-

periments are run on different systems. The two systems under experimentation may have

different costs, timing, or quality. A frequent application is when one system is a computer

experiment and the other a physical model. Finite element analysis (FEA) and computa-

tional fluid dynamics (CFD) are two examples of computer software that have good rela-

tive comparative value but have difficulty predicting absolute values. A small number of

physical experiments are needed to correctly place the scale and bias of these computer

estimates. These situations create unique challenges to experimenters, in selecting the best

experiment for both conditions, as well as appropriate methodologies for combining the

data. Here the focus will be on situations where the goal is tomaximize the response while

building the best model of the physical system.

131
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8.1 Background

The foundation for this work is the ability to combine experiments from different sources.

This is an area of active research and the procedure used hereis a Bayesian Hierarchical

Gaussian Process model similar to the one described in Qian and Wu (2008). This pro-

cedure was started in Kennedy and O’Hagan (2000), when they looked at combining two

deterministic computer models. The real world experimental noise could not be included.

In Kennedy and O’Hagan (2001) an extension was made to include physical models in

addition to the computer models. These activities are knownby different names including

computer model calibration and surrogate model building. The most recent additions have

been a model combination in a Bayesian framework (Qian et al., 2006; Reese et al., 2004).

The Qian and Wu (2008) approach is generally applicable and could be applied to two com-

puter models, a physical and computer model, or two physicalmodels. The investigation

here will focus on one physical model and one computer model.The only difference to two

computer models is the inclusion of a noise term in the low quality model.

With the different costs of the low-quality and high-quality process thegoal is to min-

imize the number of high-quality runs while getting the mostaccuracy in the combined

model. Two different procedures will be used to create the set of high-quality run points-

a standard all-variable procedure and an adaptive method that utilizes the results from the

previous runs. The process used to combine the two data sets will be covered in detail

before getting to the procedure specifics.
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8.2 Process

The output of this technique is a conversion from a lower accuracy computer model with

a bias and scale error to a higher accuracy physical model. The end result is a combined

model that is tuned to that particular physical model. The generalization of this model

to other physical instances should be evaluated carefully.The assumption behind this ap-

proach is that the computer model captures the general process characteristics but may be

inaccurate for particular values or scale. Correcting the computer model based on physical

points could be done by standard regression, however the problem is complicated by the

disparate size of the computer experiment compared with thephysical model. The underly-

ing physics also may have complex interactions and few data points. One popular approach

is to view the model as a hierarchical Gaussian random field model:

Ŷc(X) = FT ∗ β + ǫ(X) (8.1)

Whereǫ(·) is a Gaussian random process with zero mean and variance equal toσ2
c and

correlation functionR(·|θc). WhereF is the input matrix, either a column of ones for an

intercept model or a matrix ofF(xi) = (1, xi1, xi2, . . . , xik), i = 1 . . .n for a linear model. The

inclusion of the linear effects assists in estimating the correlation coefficients as the number

of runs grow. The reason behind this is clarified by looking atthe likelihood estimate:

l = −1
2

[n logσ2
z + log(det(R)) + (y− f β)TR−1(y− f β)/σ2] (8.2)

As the number of runs grows the (y− f β) term dominates the likelihood and the estima-

tion of the coefficients ofR is proportionally less accurate. Adding the linear terms reduces

this error making the calculation significantly easier. Joseph et al. (2008) found that many
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physical systems follow this linear effect property between the inputs and outputs.

The last consideration here is the correlation function. Tobe able to draw statistical

conclusions from the gathered data some assumptions need tobe made about the underlying

process. Here it is assumed that the random process is stationary, thus for any time and

spatial offset the cumulative distribution function (CDF) remains unchanged. Given the

particular underlying function setω from the population of possible functionsΩ the output

Y can be expressed as a function:

Y(x, ω) = Y(x ∈ Rk;ω ∈ Ω) (8.3)

Specifically, the assumption of second-order stationary (or identical CDF’s) is used to es-

timate the model. Second-order or strong stationary requires that the first and second mo-

ments are time (and spatially) invariant. This results inω as a particular realization of an

outcome inΩ, that givesE(Y(x)) = µ for all x ∈ R. This condition requires that, for some

functionC(·), the covariance matrix satisfies:

Cov{Y(x1),Y(x2)} = C(x1 − x2) (8.4)

In the implementations here, the function is also isotropicand is only dependent on||x1−x2||.

Given the process stationary requirement is a popular choice of correlation functions is the

Gaussian correlation function. Bochner (1955) shows that any correlation function can be

written in the form:

R(h) =
∫

Rd

cos(hTw)dF(w) (8.5)

whereF is a finite, positive, symmetric function. If the Gaussian distribution (N(0, 2θ2)) is
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used forF then the following can be shown:

R(h) =
∫ ∞

−∞
cos(hw)

1

θ
√

2π
√

2
exp−w2/θ24dw (8.6)

= exp(−(h/θ)2) (8.7)

This function is a specific implementation of a larger familyof correlation functions known

as the power exponential correlation functions:

R(h) = exp(−|h/θ|p) (8.8)

The choice ofp = 2 gives the Gaussian function, althoughp = 1 has also been well-

studied. The main choice of a correlation function corresponds to the desirable smoothness.

Deciding between the different options should be made based on the underlying process.

There are numerous definitions of continuity or smoothness but the general view is that as

p→ 2 and the scale parameterθ → 1.0 the smoothness increases. Here, becausep = 2, the

only changes in smoothness will be due to changes in the correlation parametersθ. There

is one other correlation function that should be mentioned for completeness. The Matérn

correlation function was introduced by Matérn (1960). Thechoice of the t-distribution as

F leads to the Matérn family of correlation functions.

R(h) =
1

Γ(ν)2ν−1
(
2
√
ν|h|
θ

)νKν(
2
√
ν|h|
θ

) (8.9)

WhereKv is the modified Bessel function of orderν. As ν → ∞ the Matérn correlation

function becomes the Gaussian correlation function. The additional parameterν gives this

correlation function tremendous flexibility in adjusting the smoothness. This parameter is

specifically called the smoothness because the function is continuously differentiable up to
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orderν − 1.

The choice of high smoothness is a conservative choice without additional information

about the system under investigation, and is popular in the literature (Santner et al., 2003).

8.3 Hierarchical Two-Phase Gaussian Process Model

This implementation of a Gaussian process model begins witha low accuracy (and low

resource) modelYc from the previous section. The output of this model is the input to the

second phase.

Ŷp(x) = ρ(x)Ŷc(x) + δ(x) + ǫ(x) (8.10)

This model takes in thêYc model and makes a correction for scale (ρ) and for bias (δ).

Both of these parameters are also Gaussian process (GP), ρ = GP(ρ0, σ
2
ρ, θρ) and δ =

GP(δ0, σ
2
δ, θδ). The hierarchical aspect of this model is in selecting the distributions for the

model parameters,β,σ2, andθ for each Gaussian Process. The choice of a prior distribution

is important in the final sampling procedure. As pointed out by Gelman et al. (2003) the

improper choice of priors can lead to misleading results. The priors that are used here are

of a standard class. With a known mean and an unknown variancethe likelihood for a

n-vector ofy observations is given as aN(y|µ, σ2):

p(y|σ2) ∝ σ−n exp(− 1
2σ2

n
∑

i=1

(yi − µ)2) (8.11)

= (σ2)−n/2 exp(− n
2σ2

ν) (8.12)
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whereν is the known parameter:

ν =
1
n

n
∑

i=1

(yi − µ)2 (8.13)

The unknown parameters follow a conjugate prior distribution of the inverse gamma:

p(σ2) ∝ (σ2)−(α+1) exp(β/σ2) (8.14)

=
γα

Γ(α)
(σ2)−(α+1) exp(β/σ2) (8.15)

WhereΓ() is the Gamma function. Theα and β parameters are known as the hyper-

parameters, and this is what leads to the hierarchical designation. These hyper-parameters

will be chosen before running the simulation, and are ideally chosen with some knowledge

of the system. After the variance is determined the mean parameters are drawn from a

normal distribution. If the assumed mean is incorrect then this prior is no longer valid, and

a different model is required.

The final parameters that must be determined are the correlation parameters. To deter-

mine the final distribution all of the individual probabilities are combined:

p(β, σ2, θ) = p(β, σ2)p(θ) = p(β|σ2)p(σ2)p(θ) (8.16)

Determining thep(θ) is challenging as it is independent of the scale and location parame-

ters. The first choice is to integrate directly given information onβ andσ2.

p(Ŷ|Y) =
∫ ∫ ∫

p(β, σ2, θ|Y)dβdσ2dθ (8.17)

Drawing samples from a distribution of that complexity was only found feasible if the
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priors for β andσ2 were uninformed and improper. That direction led to problems with

improper posterior distributions. As computational powerincreases sampling from this

complex distribution may be feasible, but at nearly double the resources there may be some

alternative options. Handcock and Stein (1993); Santner etal. (2003) both looked at this

integration for systems of dimension two and found that a plug-in predictor has about 90%

of the variance of this full Bayesian approach.

A plug-in estimate ofθ is, in most cases, a Maximum Likelihood Estimate (MLE)

of θ given the data. Zimmerman and Cressie (1992) showed for a kringing surface (or

any Gaussian process) that the plug-in predictor underestimates the true variance. This

situation is most problematic whenθ is small. The amount of the underestimation is shown

by Prasad and Rao (1990) to be asymptotically negligible forgeneral linear models. The

plug-in procedure is used here and caution is due when interpreting the variance estimates.

If variance estimates are critical, Zimmerman and Cressie (1992) provide a correction that

reduces the bias of the estimator.

In the situation here the following likelihood estimate is provided:

p(θc, θρ, θδ|Yc,Yp, β, ρ, δ) ∝ p(θc, θρ, θδ) ·
∫

σ2
c ,σ

2
ρ,σδ

2

∫

β,ρ0,δ0
p(β, ρ0, δ0, σ

2
c, σ

2
ρ, σδ

2) ·

p(Yc,Yp|β, ρ0, δ0, σ
2
c, σ

2
ρ, σ

2
δ, θc, θρ, θδ)

d(β, ρ0, δ0)d(σ2
c, σ

2
ρ, σ

2
δ) (8.18)

Instead of expanding this into the full MLE form and then taking the integrals the

reader is referred to the Appendix of Qian and Wu (2008). Before getting to the details of

the MLE the prior distribution forθ still needs to be determined. The previous priors were

determined to yield a proper posterior distribution, but for these variables the MLE makes

that difficult. With the Gaussian correlation function used here, theunknown parameterθ
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follows a Gaussian distribution so a proper prior is an inverse gamma distribution. With

the MLE the prior distribution may be informative and dominate the results. The MLE

results are always checked for a dominate prior and the variance of the prior distribution

is increased as needed. Another approach is to use an uninformed prior,p(θ) = c, this is

discouraged as the resulting MLE may result in improper posterior estimates.

The lists of prior distributions include:

p(σ2
c) ∼ IG(αc, γc) (8.19)

p(σ2
ρ) ∼ IG(αρ, γρ) (8.20)

p(σ2
δ) ∼ IG(αδ, γδ) (8.21)

p(β|σ2
c) ∼ N(uc, νcI k+1σ

2
c) (8.22)

p(ρ0|σ2
ρ) ∼ N(uρ, νρσ

2
ρ) (8.23)

p(δ0|σ2
δ) ∼ N(uδ, νσ

2
δ) (8.24)

θc ∼ IG(ac, bc) (8.25)

θρ ∼ IG(aρ, bρ) (8.26)

θσ ∼ IG(aδ, bδ) (8.27)

Becauseβ includes linear terms it is of lengthk+1, wherek is the number ofx variables.

The power exponential correlation function requiresk terms soθc, θρ, andθσ are all of

lengthk. These are all of the hyper-parameters that need to be specified for the model.

Using these hyper-parameters we can determine the conditional distribution.
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Given the general model:Y = F · β, andp(β|σ) ∼ N(u, vσ) solving for p(β|Y):

p(β|y) = p(Y|β)p(β) (8.28)

∼ exp(
1

2σ
(Y− Fβ)TR−1(y− Fβ)) · exp(

1
2σv

(u− β)2) (8.29)

∼ exp(
1

2σ
∗ (βT(FTR−1F + 1/v)β + (u/v+ FTR−1y)Tβ)) (8.30)

This is a multivariate normal distribution, substituting:

Σ−1 = (FTR−1F + 1/v)
1
σ

(8.31)

p = (u/v+ FTR−1Y)
1
σ

(8.32)

The final distribution isβ ∼ N(Σp,Σ). This will be used for the distributions ofβ, ρ0, and

δ0.

p(β|·) ∼ N([ 1
vc

I + FTR−1
c F]−1(u/v+ FTR−1

c Y),

[ 1
vc

I + FTR−1
c F]−1σ2

c) (8.33)

WhereRc is the power exponential correlation matrix usingθc that is found by a maxi-

mum likelihood estimate later in this section.

To simplify the equations the convention of Qian and Wu (2008) will be used. τ =

σδ/σρ andM = ARρA+ τRδ whereA is a diagonal matrix witĥYc(xp) on the diagonals and

Rρ andRδ are the correlation matrices ofθρ andθδ.
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p(ρ0|·) ∼ N(
uρ/νρ+Ŷc(xp)M−1(Yp−δ01np)

1/νρ+Ŷc(xp)T M−1Ŷc(xp)
,

σrho2

1/νρ+Ŷc(xp)T M−1Ŷc(xp)
) (8.34)

p(δ0|·) ∼ N(
uδ/(νδτ)+1np M−1(Yp−ρ0Ŷc(xp))

1/(νδτ)+1T
np M−11np

,

σ2
ρ

1/(νδτ)+1T
np M−11np

) (8.35)

The conditional distributions on the remaining terms combine an inverse gamma and a

normal distribution. Given an inverse gamma,p(σ2) ∼ IG(α, γ), and a normalp(y|µ, σ2) ∼

N(y|µ, σ2), with the continuing assumption thatµ is known, then:

p(y|σ2) ∝ (σ2)−n exp(
1

2σ2
(Y− µ)T(Y− µ))

p(σ2) ∝ (σ2)−(α+1) exp(γ/σ2) (8.36)

Combining these:

p(y|σ2)p(σ2) ∝ (σ2)−(α+1−n/2) exp(
(Y− µ)T(Y− µ)

2σ2
+ γ/σ2)

∝ IG(α + n/2, γ + (Y− µ)T(Y − µ)/2) (8.37)
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Applying this to the remaining variables the conditional distributions are:

p(σ2
c|·) ∼ IG(

nc

2
+

k+ 1
2
+ αc,

(βc − uc)T(βc − uc)
2νc

+
(Yc − Fβ)TR−1

c (Yc − Fβ)
2

+ γc) (8.38)

p(σ2
ρ|·) ∼ IG(

np

2
+

1
2
+ αρ + αδ,

(ρ0 − uρ)2

2νρ
+ γρ + γδ +

(Yp − ρ0Ŷc(xp) − δ01np)
T M−1(Yp − ρ0Ŷc(xp) − δ01np)/2) (8.39)

The last conditional distribution is forτ, the simplification (τ = σδ/σρ) leads to an

irregular form:

p(τ|·) ∝ 1
ταδ+3/2

∗

exp(−1
τ

(
γδ

σ2
ρ

+
(δ0 − uδ)2

2νδσ2
ρ

))
1√

det(M)

exp(−(Yp − ρ0Ŷc(xc) − δ01nc)
T M−1(Yp − ρ0Ŷc(xc) − δ01nc)/2σ

2
ρ) (8.40)

After expanding all of the integrals and substituting the simplifications, the final likeli-
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hood equations is:

L = p(θc, θρ, θδ)
∫

τ

τ−(αδ+3/2)1/
√

det(A)

1√
det(Rc)

1√
det(M)

· 1√
DE

(γc +
4C − BTA−1B

8
)−(αl+nc/2)

·(γρ + γδ/τ +
4 ∗ EG− F2

8E
)−(αρ+αδ+np/2)dτ (8.41)

where:

A = ν−1
c I + FT

c R−1
c Fc (8.42)

B = −2ν−2β0 − 2FT
c R−1

c Yc (8.43)

C =
1
νl
βt

0β0 + YcR
−1
c Yc (8.44)

D = ν−1
ρ + Ŷc(xp)

T M−1Ŷc(xp) (8.45)

T = (ν−1
ρ + Ŷc(xp)

T M−1Ŷc(xp))(1
T
np

M−11np) −

(Ŷc(xp)
T M−11np)

2 (8.46)

U = −2[(ν−1
ρ + Ŷc(xp)M

−1Ŷc(xp))(1
T
np

M−1Yp) −

(uρν
−1
ρ + Ŷc(xp)

T M−1Yp)(Ŷc(xp)M
−11np)] (8.47)

V = (ν−1
ρ + Ŷc(xp)

T M−1Ŷc(xp))(u
2
ρν
−1
ρ +

YT
p M−1Yc) − (uρν

−1
ρ + Ŷc(xp)

T M−1Yp)
2 (8.48)

E = (νδT)−1 + TD−1 (8.49)

F = −2uδ(νδτ)
−1 + UD−1 (8.50)

G = u2
δ(νδτ)

−1 + VD−1 (8.51)
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This problem can be separated forθc and (θρ, θδ).

θ̂c = max
θc

p(θc)
1√

det(Rc)

1√
det(A)

(γc +
4C − BTA−1B

8
)−(αc+nc/2) (8.52)

This equation can be solved using a standard nonlinear optimization algorithm. Due to the

sensitivity of the prior distribution and the discontinuous properties near zero a log trans-

form is normally performed onL. The robust Nelder and Mead (1965) sequential simplex

was found to provide good convergence although it was more resource intense compared

with the quasi-Newton Broyden (1970); Fletcher (1970); Goldfarb (1970); Shanno (1970)

(BFGS) method.

The the second part still has the integration:

θ̂ρ, θ̂σ = max
θρ,θδ

∫

τ

p(θρ)p(θδ)

τ−(αδ+3/2) 1√
det(M)

1√
DE
· (γρ + γδ/τ +

4 ∗ EG− F2

8E
)−(αρ+αδ+np/2)dτ)(8.53)

There are a number of ways to solve this integration, the method used here and by Qian

and Wu (2008) is the Sample Average Approximation (SAA) method of Ruszczynski and

Shapiro (2003). The procedure is used to determine the expected value of a function by

drawing values from a specific distribution. The goal is to begin by finding a suitable

distribution forτ−(αδ+3/2):

τ−(αδ+3/2) ∝ 2(α+1/2)

Γ(a)
τ−(α+1/2+1) ∗ exp(−2/τ) ∗ exp(2/τ) (8.54)

= p(τ) ∗ exp(2/τ) (8.55)
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Givenτ ∼ IG(α + 1/2, 2) then using the SAA method:

∫

τ

p(τ) f (τ) ≈ 1
S

S
∑

s=1

f (τ) (8.56)

And the functionf (τ) for this summation is:

f (τ) = p(θρ)p(θδ) exp(2/τ)
1√

det(M)

1√
DE
· (γρ +

γδ

τ
+

4 ∗ EG− F2

8E
)−(αρ+αδ+np/2) (8.57)

and putting everything together:

θ̂ρ, θ̂σ = max
θρ,θδ

1
S

S
∑

s=1

f (τ<s>) (8.58)

where τ<s> is a vector ofs independent draws from the inverse gamma distribution -

IG(αδ+1/2, 2). This method has been shown to be is asymptotically accurate in Shapiro and

Nemirovski (2005). To solve this equation the Nelder and Mead (1965) sequential simplex

was used, since the BFGS quasi-Newton method failed frequently when the determinant

was close to zero.

8.4 Simulation Procedure

The procedure under evaluation is the use of the statisticalprocedure outlined above to

combine two data sets. The first low quality data set is drawn from a space-filling Latin

hypercube. The second data set is either a adaptive-One-Factor-at-a-Time (aOFAT) or a

traditional star pattern run from a high-quality experiment. Both of these procedures min-

imizes the number of runs to adjust every variable. Each of the high-quality points is also

run in the low-quality model, this improves the convergenceby requiring fewer augmented
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points. The procedure is as follows:

1. Create Artificial Response Surface (Krigifed Surface)

2. Generate Gibbs Draws from Conditional Distributions

3. Generate Metropolis Draws for the irregular distributions

4. Generate Metropolis Draws from predicted distribution (data augmentation)

5. Check Convergence and repeat if necessary

The details of the krigified Surface and the convergence checks are provided in a sub-

sequent section. In this section the details of the Gibbs sampling, the Metropolis-within-

Gibbs and the data augmentation approach will be discussed.

The Gibbs algorithm (Geman and Geman, 1984; Casella and George, 1992) is a method

to implement Markov Chain Monte Carlo (MCMC) sampling. MCMCsampling requires

sequential draws from an approximate distribution that is corrected as the chain progresses.

Each sampling step is only dependent on the previous step, making it a Markov Chain.

Each draw is designed to get the distribution closer to the target distribution. The Gibbs al-

gorithm divides the update into a sampling vector, in this caseψ = (β, ρ0, δ0, σc, σρ, τ, Ŷp).

This vector is updated in random order using the current values of the vector until the

update is made. As the length of this chain grows it approaches the desired stationary

distribution. Two variables,τ andŶp cannot be sampled from a conditional posterior distri-

bution. These two variables will be sampled through a Metropolis draw. This algorithm is

an acceptance/rejection method based on a random walk. A random draw is madearound

the current point from a selectedjumping distribution. The probability of both the new

point and the current point are calculated and if the ratio isgreater than a uniform ran-

dom draw on [0, 1] then the new point is accepted. The target acceptance rateis around
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0.44 in one dimension, forτ, and 0.23 in multiple dimensions, for̂Yp. The reasoning

behind these acceptance rates and further information about the Gibbs, Metropolis, and

Metropolis-within-Gibbs can be found in Gelman et al. (2003).

The points for thêYp predictions are calculated through data augmentation. Themethod

used here was presented by Tanner and Wong (1987) for determining the posterior distribu-

tion when the parameter distributions are still being determined. Although they claim that

the parameters posterior modes could be used, the highly correlated structure in this situa-

tion required continued sampling of the parameters from their converged distribution. This

approach has advantages over the first method in Qian and Wu (2008) in that the predicted

values are available at the end of the simulation without anyfurther calculation. A question

arises for this method- should it be included in the Gibbs loop or in a subsequent calcula-

tion? At any point in a Gibbs update there are some parameter values that are correct and

some that are incorrect. Because the updated values are not used in any other parameter of

the Gibbs process this update can be made at any time, including afterwards or before. If

these values are used in any other step then this would have tobe randomized to guarantee

a reversible chain and convergence towards the stationary distribution

There is a probability that the Gibbs and metropolis algorithms may not reach the sta-

tionary distribution. This is problematic if there are two disparate regions of the distribution

with similar probabilities. To detect these issues and other anomalies Gelman and Rubin

(1992) suggests that running multiple sequences from an over-dispersed starting condition

and measuring convergence is critical.
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8.5 Convergence

Convergence of the MCMC algorithm is challenging to assess.Brooks and Gelman (1998a)

describe many methods and problems in measuring convergence. The historic choice is

to monitor the the trend of a single simulation. Although logically congruent, Gelman

et al. (2003) shows that it is extremely difficult to distinguish convergence if the trend

is extremely slow. Another method that is less ambiguous is to compare many parallel

MCMC simulations. Gelman et al. (2003) propose taking a ratio of the total variance to the

within simulation variance. Givenmparallel simulations each with lengthn the simulation

draws areψi j (i = 1, . . . , n; j = 1, . . . ,m). The between (B) and within (W) variances can

be calculated.

B =
n

m− 1

m
∑

j=1

(1
n

∑

i=1

nψi j − ψ̄
)2 (8.59)

ψ̄ =
1

n ∗m

∑

i

∑

j

ψi j (8.60)

W =
1
m

1
n− 1

m
∑

j=1

(ψi j − ψ̄i)
2 (8.61)

ψ̄i =
1
n

∑

i

ψi j (8.62)

The posterior variance estimate is a weighted average ofW andB, and the ratio of that to

the within variance gives the monitoring factor.

R̂=

√

n−1
n W+ 1

nB

W
(8.63)

This is referred to as the Gelman-Rubin statistic (Gelman and Rubin, 1992) or the Potential

Scale Reduction Factor (PSRF). The convergence of this statistic to 1.0 avoids the pitfalls of
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Figure 8-1: MCMC Convergence

visual techniques. The drawback is the convergence is only in the limit (n→ ∞). A sample

of this convergence can be seen in Figure 8-1. Note thatR is not monotonically decreasing

with additional simulations. This is not unexpected but undesirable, and the particular

simulation used here is prone to that situation. First, the Metropolis-within algorithm has

a variance adjustment parameter. As that parameter is adjusted, the acceptance rate of the

Metropolis algorithm changes and the variance changes. Second, half of our parameters

have an inverse gamma distribution. The MCMC chains may not visit the tails enough, so

a small visit to the tail increases the between variance substantially.

To improve the convergence a number of options exist. First the convergence properties

could be measured from the model parameters and not the augmented data. These parame-

ters converge faster and then posterior sampling for the augmented data could be performed

at the mode. There are a couple of problems with this first, using the mode would eliminate

the complex scale and bias transitions, decreasing the accuracy of the model. Second, the

posterior distribution of the augmented data given the posterior mode of an earlier param-

eter simulation assumes that the distribution is degenerate with mass located at its mode.

This assumption is very significant by reducing the correlation influence and variance esti-
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Figure 8-2: MCMC Convergence Continued

mates.

Given the general Gaussian process model:

Ŷ = f0 · β̂ + rT
0 R−1(y− Fβ̂) (8.64)

β̂ = (FTR−1F)−1FTR−1y (8.65)

In this situation they’s are the predicted points from another model that is dependent on

the distributions ofσc andβ. σc is a random variable with an Inverse Gamma distribution,

andβ has a normal distribution. Reducing these to point estimates does not reflect the

long tail ofσc or β making both inaccurate. Gibbs (1997) goes into greater detail on this

influence.

Another way to demonstrate this problem. When the model in Figure 8-1 is run for

an additional 120,000 simulations with the Gelman statistic calculated, the results are not

consistent. The result of this is shown in Figure 8-2, and forthese additional 120,000 runs

the Metropolis-within algorithms had fixed variance parameters.

For this simulation, the lack of convergence can be addressed through a number of
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methods. First the initial sample needs to be dispersed. This is more challenging than

initially expected. If the samples are too dispersed then the first Gibbs sample drives all

values toward the distribution mean and now everything is under dispersed. Another way of

viewing this is that the autocorrelation for the different Markov chains affects the location

of the point estimates while the correlation between chainsat any particular location better

reflects the final distribution.

Because of this autocorrelated walk, each chain may visit a low probability location for

a disproportionate amount of time. This increases the between variation and not the within

variation, and can explain the divergence. The utility of this statistic is highly dependent

on the dispersion of the initial chains. Originally the problem was an inability to diagnose

convergence, that has now been substituted for a problem of setting up disperse enough ini-

tial conditions. The use of the PSRF has been criticized in non-normal conditions. Brooks

and Gelman (1998b) presents a number of alternative metrics, with the main suggestion

a range metric, but other order metrics were suggested. Theyshow that an average range

metric can have too large a variance within chain, yielding an over-optimistic convergence

statistic. The proposed method in this work extends this idea in two directions. First in-

stead of using a range or standard deviation estimate, a morerobust statistic of the Median

Absolute Deviations (MAD) orSn or Qn (Rousseeuw and Croux, 1993) is used and second

the predicted values will substitute for additional chains. A big disadvantage of using a

variance or range estimate is when the distributions are notsymmetric; the estimate is bias

and can be influenced by a few low probability points. MAD is a good metric that has a

50% breakdown point (i.e. 50% of the data could be incorrect or arbitrarily large before

the MAD metric was influenced), but it is symmetric and has a discontinuous influence

function (the amount of change given a change in a single datapoint). Sn andQn both

are more appropriate with non-symmetric distributions althoughQn has a smooth influence
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Figure 8-3: MCMC ConvergencêR

function.

Qn = d{|xi − xj |; i < j}(k)k =

(

h
2

)

≈
(

n
2

)

/4h = [n/2] + 1 (8.66)

The Qn statistic is thekth order statistic of the
(

n
2

)

inter-point distances, wherek is ap-

proximately the number of half of the data points. This can becombined as Brooks and

Gelman (1998b) did with other values into an order PSRFR̂ value.

R̂Q =

1
mnQn(i ∈ mn)

1
m∗(n) Qn(Qn(i ∈ n) ∈ m)

(8.67)

A comparison of the two metrics is shown in Figures 8-3 and 8-4. Note that both show

an artificial convergence at the same number of runs. The new metric is an improvement as

it does not have a centered parameter and is solely a dispersion measure. It is better suited

to non-symmetric distributions, like the ones here. Unfortunately, the computation time of

the two metrics differs. The Rousseeuw and Croux (1993) algorithm forQn takesO(n logn)

(an algorithmic improvement over expectedO(n2)) versus the variance calculation atO(n).

An extension was suggested in Brooks and Gelman (1998b) to reduce the multiple
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Figure 8-4: MCMC ConvergencêRQ

PSRF metrics to a single number. This was not used here because a slope characteristic

could be used to determine convergence. The suggestion thatBrooks and Gelman (1998b)

gave was to be sure that the variances (both within and between) had settled down. They

complete this through a graph of the variances. In the multivariate case shown here, if con-

vergence has not been reached if one PSRF is increasing in value. This statement suggests

a relationship between the number of estimated values and the number of simulated chains

in identifying convergence.

The benefit of the methodology used here is the comparison between the variance ratios

of within chains to between chains. This is a useful statistic in judging convergence as

long as the starting points are over-dispersed. The number of required chains is an open

problem. Gelman (1995) suggests that they should be sufficient (> 10). The number used

here is three but, the convergence of multiple predicted values increases the actual number

of unique starting points. The convergence of each of these points proceeds uniquely;

and although not exactly equivalent to separate chains theyprovide a useful additional

criteria. The biggest difference is that each predicted value uses the same values for the

other parameters. The overall location in that parameter space is the same but each point is
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in a unique part of that space.

The criteria for convergence is twofold. First each predicted parameter has to have a

RQ < 1.2; and second, the direction for each predicted value must decrease. Thus there

are 60 unique starting locations that must all be near convergence and continuing on a

convergent path. An indication of convergence for this metric offers sufficiency in all test

cases. This was tested on 10 different krigified surfaces by doubling the final number of

runs to check for any lack of convergence and non was found. Further investigation may

show that this metric is too conservative and requires excessive runs, that issue will not be

dealt with here.

8.6 Krigifier (Trosset, 1999)

Generating test cases to compare the different methodologies is difficult. The previous

Hierarchical Probability Model (HPM) methodology that wasused in other chapters only

includes linear and interaction terms. This methodology isdesigned to work outside of

the linear framework and is better suited to space filling designs. Data from real-world

deterministic processes are noisy. This noise originates from many sources including the

data-collection process, lurking variables, numerical roundoff, and process instability. This

correlated deterministic signal could be approximated by astochastic correlated signal.

The process selected to generate these much less intense stochastic signals is the kringing

procedure. This method was first developed by geostatisticians for interpolating a number

of data points with a specific stochastic process (Wackernagel, 2002). The parameters

for the stochastic process are first estimated and then used to fit the observed data. This

process is extremely flexible, which is convenient to fit a wide variety of data but can have

a frustrating number of parameters. To simplify the processhere the underlying function is
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a general second-order linear function. This was chosen to provide a maximum location,

or a ridge, as suggested as a frequent function seen in experimental design (Myers and

Montgomery, 2002). The noise was created using a stationaryGaussian process. The

correlation function was a power-type function withk = 1; this yields the absolute value

of the differences. This was selected over the more traditionalk = 2 because the surfaces

were noisier and Trosset (1999) suggests more realistic.

The procedure comes from Trosset (1999):

1. Create underlying quadratic trend

2. Create stationary Gaussian Process

3. Use Latin Hypercube to generate random points,x1, . . . , xn

4. Generatey1, . . . , yn from the quadratic function

5. Interpolatey1, . . . , yn from the Gaussian Process to generate the noise

6. Sum the noise and trend terms to get the finaly1, . . . , yn values

This process is used twice, once to generate the low accuracyand a second time to

create the high accuracy data. The noise is zero for the low accuracy data versus a third of

the signal for the high accuracy experiment.

8.7 Results

Both methods were run 250 times with different random krigified surfaces. Twenty random

low accuracy points were generated foryc using a latin-hypercube sampling method in

seven dimensions. The eight high accuracy pointsyp were generated with either method
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and then also fit with the low accuracy points . This simple problem in seven dimensions

took approximately 60 minutes on an Amazon-EC2 High-CPU Medium instance machine

from Amazon Web Services (2008). Further parallelization is possible as the chains are

currently run in series, but the computing resources would have to be increased.

After the chains converged for all of theyp values the mode was used as the predicted

value. The final results were normalized and the absolute error calculated. Each surface

was randomly generated and so some had greater variance, anda greater range than others.

Additionally, the star runs were started at a random point, which may have been close to

the maximum point already.

To compare the results between the two starting conditions aregression line was fit

to the data. A robust regression procedure was employed because of the large variance

between the different krigified surfaces. The advantage of a robust fit was a tolerance for

outliers. The robust fit procedure was an iteratively re-weighted least squares method using

a bi-square weighing function.

The results are shown in Figure 8-5. The general outcome is asexpected, there is a

more negative slope for the aOFAT method compared with the with the star initialization.

On average the aOFAT procedure moved to conditions of greater value, and thus made more

accurate predictions around the maximum. If the aOFAT started at a ridge or peak then the

runs were identical to a star procedure at that same locationso the difference between the

lines should not be too extreme.

If only the maximum for each run is compared, and not all of theruns, then this effect

is highlighted even more in Figure 8-6. The star procedure began in a random location and

so had a probability of starting at the maximum value and resulting in a lower error than

the aOFAT.

This procedure could be used in situations where two competing objectives of system
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maximization and model parametrization are desired. The aOFAT method would build the

model with a bias towards finding optimal points. Runs beyondthe initial aOFAT runs

presented here could be determined using a number of procedures such as Williams et al.

(2000), Santner et al. (2003), or Currin et al. (1991). The appropriate total number of

runs has been identified by both of these authors as an area of current research. There

are few arguments that the minimum number of runs should be less than the total number

of variables and this experiment is an appropriate method toinitialize an experiment to

prepare for further runs.

The procedure did not use a pairwise comparison as a time savings to implement the

procedure on a number of different machines simultaneously, and thus required more runs.

Future studies could compare some additional methodologies. One procedure could be

to use a highly fractionated designed experiment. This was not addressed in this case

because previous chapters of this thesis and Frey et al. (2003) looked at that comparison.

Future challenges exist to define a subsequent experiment that continues to build the model

after then + 1 runs are complete. One direction that Currin et al. (1991) pursued is for

each additional run to be selected to maximize the expected entropy reduction. A simple

modification to get this result would be to change the entropycalculation from:

H(x) = E(− log p(x)) − logdx (8.68)

to:

H(x) = E(− log(y(x) ∗ p(x))) − logdx (8.69)

which would be the same as maximizing the selection of|y ∗ σ‖. Currin et al. (1991)

states this is the same as minimizing the weighted posteriorvariance of the unknowns.
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8.8 Conclusion

Combining the experimental results from two different systems is a new and critical prob-

lem. In this work a method was presented to use aOFAT experiments for physical ex-

periments combined with latin hypercube computer experiments. A new metric of conver-

gence was presented, as well as a technique for using value predictions instead of additional

chains. It was shown that the aOFAT methodology creates a model that is biased towards

accuracy at the maximum values. This method is effective in creating a good model around

the system values of interest. The implementation potential ranges from physical and ana-

lytical models to different computer models or even human expert opinions. The Bayesian

technique presented in this chapter is one method that has proven useful in a number of

previous problems. There are different approaches to combine two experiments but, all

methods require some initial high-cost experimental points where the aOFAT methodology

provides good experimental value while focusing on the maximum.
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Chapter 9

Conclusions

This work focused on combining adaptive experiments with designed statistical experi-

ments. Each of the techniques involved using adaptive-One-Factor-at-a-Time (aOFAT)

experiments, as well as other standard statistical methodologies. Run reuse from a prior

adaptive experimentation was the initial area addressed. The adaptive experiment cannot

be preplanned and so the potential run reuse in the subsequent experiment is stochastic. A

number follow-up experimental options were investigated.First, the use of a traditional

fractional factorial design in the follow-up experiment where the fraction was pre-selected

or based on the greatest reuse. Depending on the number of variables and size of frac-

tion, the number of runs reused asymptotes to approximatelytwenty percent of the total

aOFAT runs. This run reuse was demonstrated on a number of actual experiments as well

as surrogate experiments. The second area of investigationwas non-balanced D-optimal

designs to increase run reuse. As suggested in Wu and Hamada (2000), a fully orthog-

onal non-balanced D-optimal design is a good alternative toa fractional factorial design.

This change dramatically improved run reuse to fifty percent, and fits in the framework of

planning the design after an initial aOFAT is complete.

163



164 Chapter 9. Conclusions

In addition to investigating the number of reused runs, the independence of the resultant

maximum estimates was also demonstrated. Running an adaptive experiment before a

statistical experiment creates an opportunity for run reuse while providing an independent

maxima estimate and some response information.

The adaptive experimental approach could also be used on themanufacturing floor. The

method of evolutionary operation (EVOP) was revisited witha focus on utilizing adaptive

experimentation. The alignment of this continuous improvement technique with the se-

quential maximization nature of an aOFAT provides a useful combination. Box and Draper

(1969) concluded that the use of this methodology was na ive.This conclusion is chal-

lenged by investigating actual system responses and showing a place for sequential adap-

tive experiments. Instead of using small fractional factorial experiments, repeated single

steps in an adaptive procedure was shown to be more robust to initial and continued variable

selection. Because of the stochastic nature of the repeatedprocedure a modified Gibbs sam-

pler was introduced to minimize the additional runs while converging to a better variable

setting. An offshoot of this procedure is the use of an adaptive experiment in computational

unconstrained function maximization.

The modified sequential simplex procedure was originally developed for evolutionary

operation. Although, this ranked-based geometric procedure was used frequently in the

1970’s and 1980’s, it was replaced by more complex derivative-based methods. More re-

cently it has returned to popularity with the increased use of computer simulations. As a

robust method it is able to handle discontinuities and noiseat the cost of more function

evaluations. There are implementations of the simplex in most numerical programs for

unconstrained optimization. The typical initial setup is based on changing one variable

at a time. This was improved by adding an adaptive element andperforming an aOFAT

initially. In this situation the aOFAT procedure was changed to align the geometric cen-
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ter to that of the non-adaptive method. Through the adaptiveprocedure and the step-size

improvement, the overall convergence is increased and the number of function evaluations

was reduced. The adaptive procedure is aiming the simplex, and thus reducing the distance

to the improved operating conditions. This improvement wasdemonstrated on a test suite

for numerical optimization.

Outside of the optimization another issue faced in computational methods is variable

selection. Using the Mahalanobis-Taguchi Strategy (MTS),data classification is based on

a statistical distance. One hurdle to using this system is inselecting the best variables

for classification. Traditionally orthogonal arrays are used to select the best variables.

This method can be improved by using an aOFAT experiment for variable selection. This

procedure was specifically applied to an image classification system where the variables of

interest are the coefficients of a wavelet transform. In this case the addition of variables adds

to the computational load of the classification system. It isimportant to add the minimum

number of variables while maximizing their usefulness.

To further the benefit of running an aOFAT experiment along with a statistical exper-

iment, methods to combine both data are investigated. Combining two different types of

data was approached in a Bayesian framework. The use of a correlated Gaussian random

variable to make a posterior prediction has been used successfully by Joseph (2006). Part

of this methodology is to use a correlation matrix for the input variables. Instead of using

a larger experiment the information was divided between an early aOFAT experiment to

create the correlation matrix followed by a highly aliased Plackett-Burman design. This

goal is to combine the relative strengths of both of these procedures. The aOFAT can be

used to create a variable ranking while the aliased design isable to efficiently define the

model. A procedure to define the correlation matrix was created that benefits from pub-

lished data regularities and variable distributions. Thismethod performs equivalently to
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using an uninformed correlation matrix and a larger experimental design. The procedure

was demonstrated on a number of published examples as well assurrogate functions.

The last aspect of adaptive experiments was to combine experiments of different accu-

racy. Combining computational and physical experiments isone example of these different

accuracies. The use of an adaptive experiment uses a minimumnumber of runs while likely

having points near the maximum. A new method of calculating convergence was presented

as well as a procedure to maximize each simulated Markov chain. The result was a pro-

cedure that provides a good model using both data types that is more accurate near the

maximum values.

9.1 Future Work

Demonstrating the potential of applied adaptive experiments should open up greater op-

portunities for their application in the overall experimental process. This work specifically

focused on aOFAT experiments but, there are other adaptive methodologies which could

be investigated. One area of investigation is to find an adaptive procedure that can also be

used outside of solely function maximization. Modifying Soból (1990) sequences to be

adaptive from the previous information may be one possibility.

The use of the Bayesian framework to combine multiple modelsis a current area of

investigation. The application is slow and incompatible with larger data sets, finding faster

methods for data combination would leverage greater opportunities for the method in indus-

trial practice. Creating an application as a web-based service is one possibility to overcome

the computational limitations.
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9.2 Summary

The goal of this work was to create a foundation for the integration of adaptive experimen-

tation and statistical experimentation in practice. Simple techniques were presented for

running the setup experiment and getting some benefit from those runs. This continues to

the factory floor where evolutionary operation was improvedand simplified with adaptive

experiments. A numerical maximization procedure was improved through a better starting

approach, and a classification procedure was shown to benefitfrom an adaptive parameter

selection technique. The final area focused on using data from an adaptive experiment and

a traditional experiment. First, the covariance calculation was improved to yield more ac-

curate and smaller models with the same number of runs. Second, incorporating data from

two different sources was shown to benefit from one adaptive experiment. The overriding

goal for all of these procedures is to extend the framework for adaptive techniques to a

greater audience and provide tools necessary for application.
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Appendix A

Adaptive Human Experimentation

The ability to understand the variance of an engineering system is historically done in a

design, build and test cycle (Pahl and Beitz, 1995). Newer technology has pushed the

envelope with computer simulation and virtual experimentation, but state-of-the-art vari-

ance prediction is limited due to necessary simplifying computational and mathematical

assumptions and by model inadequacy (Petroski, 1994). These assumptions limit the model

fidelity and can lead to unforseen, and early, product failures. There have been improve-

ments in greater statistical experimentation (the six-sigma process (Creveling et al., 2003)

and designed experimentation (Wu and Hamada, 2000)), and more complex mathemati-

cal modeling. Even with these methods, predicting failuresearly in the design process is

challenging. First, mathematical or computer models are incomplete, leading to underlying

assumptions that cannot test the true variance of the system. Second, early in the process

there are no physical prototypes to validate the computer models or conduct robustness ex-

periments. Moveover, the adequacy of any initial prototypes in reflecting the final design

as made is a large unknown. The current best method is to depend on expert estimates and

historic data to predict the future potential of alternative designs. This extrapolation has its
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limitations as Petroski (1994) discusses.

Humans are superior to computers in creative solutions, making loose associations,

thinking dynamically, and bringing in unique perspectives. Computers are better at organi-

zation, statistical computation, data storage and retrieval, and mechanistic processing. This

chapter discusses the possibility of combining the benefitsof both of these systems and

apply them to early process mechanical design and simulation problems.

A.1 Layout

It may be possible to improve the value, and quality, of predictive models in accurate system

estimation by using distributed human knowledge combined with statistical data analysis

techniques. Combining the tacit knowledge of a significant number of different viewpoints

is known to yield better estimates in other disciplines (Surowiecki, 2004) this has not been

applied to systematically exploring system characteristics. Additionally, correct use of de-

signed experiments within this distributed knowledge can lead to more powerful statistical

estimates. A similar approach, although to business problems, has been explored in a recent

MIT thesis by Tang (2006).

There are three levels of models for this combined system, first the model of the actual

mechanical system under investigation, second the combined model that has been created

from the lower fidelity models (using one of the previous methods mentioned in this thesis)

and third the model of the interactions of the individuals and their interpretation, biases,

and previous knowledge. The most challenging for future research is this third model,

it is needed to explore the important aspects of combining human knowledge. Ideally,

the fidelity of this model should be sufficient to understand group cognitive ability when

solving these problems. A number of different model types could be explored to find one



A.2. Background 171

that best represents this situation. To validate this model, experiments could be created

that are based on academic environments and industrial settings. The long term research

benefit of this combined human performance model will be to understand the potential

of this technique as a tool to improve robustness, discover its application limitations, and

create guidelines for use.

The experiments need to be built in a manner consistent with current research in human

psychology, expert and leadership studies, and designed experimentation. It is important to

be able to distinguish able users, identify problems and guessing, and provide reasonable

judgment bases.

Research should focus on different aggregation techniques to deliver a capable model

based on distributed knowledge. There are many options to combine opinions and create

accurate models of the system variation with respect to the variance in opinions. Questions

of interest include how to weigh the different opinions, how to create an accurate model of

variance, and how to disassociate the system from the observer variance and to what degree

does the model represent the system versus human variance. The result of this model can

then be used as a surrogate system model, be used to plan experiments, and to validate

existing results.

It will be necessary to create a tool that interacts with users, performs the calculations

and returns these combined opinion models. The output from this tool will be used to train

the combined human knowledge model.

A.2 Background

Combining the distributed power of human computation has been demonstrated in numer-

ous applications (Barr and Cabrera, 2006; Westphal et al., 2005; Gentry et al., 2005). Some
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applications include games, like the ESP Game (Ahn and Dabbish, 2005), others are fo-

cused on scientific knowledge, like the Stardust@Home (Westphal et al., 2005) while others

are interested in making money, like Amazon’s Mechanical Turk.

There have been initial investigations into the statistical and game theoretic aspects of

these interactions (Gentry et al., 2005). This previous work focused on the comparison

to distributed computing and security/cryptology issues. There has been little progress in

exploring the statistical nature of these systems (other than cheater detection) and better

incorporation of human psychological and physiological aspects.

Group interactions have been modeled as cooperative or a Pareto optimum, non-cooperative

or Nash formulations, or supervisor/subordinate or Stackelberg formulations. In early de-

sign modeling influences can include educational background, corporate reporting depart-

ment, interest area, or other motivation such as recent conversations, fatigue, or even at-

titude. It is not feasible to understand all of the influencesof each individual but, ideally

the aggregation techniques filter these out and reach a coherent model that predicts the

human model performance. The results from these models may be compared to the per-

formance of quality teams. Teams debate the merits of different models and frame the

problem correctly and deliver quality predictions. The problem with this ideal behavior is

that it is difficult to see in much of the corporate bureaucracy (Schon, 1995). The more

anonymous method proposed here is more congruent with corporate performance metrics

but cannot be used on the breadth of problems that a diverse, well functioning team could.

The objective is targeted to frameworks where DOE’s would beapplicable. (Shih et al.,

2006) argues that decision making through confrontational, and not individual cognition,

yields high value through discussion and competition. But (Otto and Wood, 2001) argue

that the drawbacks to this confrontation not encountered individually (or in the low pres-

sure on-line environment) include the difficulties with team decisions including individual
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dominance, misdirected focus, or a rushed time-frame. The methods proposed here ideally

address these issues by offering an alternative modeling technique that is predicatedon the

idea that the general population is correct.

There has been research utilizing humans in a supervisory role in computer experiments

and less as the subject of the experimentation. These architectures utilize important super-

visor aspects of humans along with computer and analytical ‘agents’ the majority of this

literature is in the AI community (Khosla et al., 2004). Thisdiffers from the research here

as the role of the human is as a computational unit, not as a supervisor.

There is a large literature around emergent intelligence (Bonabeau et al., 1999), and

while it may be possible that the group solves problems impossible for each individual, thus

exhibiting collective intelligence, the group interactions in this case are not as important as

seen in swarm intelligence. This could be investigated by looking at the importance of the

aggregation process as well as when individuals are presented with alternative opinions. It

will be critical to determine the decision making structure, either by simple voting (as seen

in most collective intelligence systems) or through a more complex aggregation mechanism

(Torra and Narukawa, 2007).

A.3 Potential Research

The research could extend the modern computational and analysis design paradigm to in-

clude the human as an integrated part of the system. A model ofthis new system could be

created and validated through human experimentation. Somegood possible models include

agent based modeling and decision field theory (Busemeyer and Townsend, 1993).

The experiments are an integral part of this research. Investigations should focus on

the methodology to create valid distributed experiments that are able to utilize the best
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of human expertise, psychology, and designed experimentation. These experiments will

require the creation of a tool that can generate validation data as well as benefit the company

and user to entice participation. To ensure that this methodology is valid across potential

design information users both academic and industrial examples will be sought.

Building on the foundations of statistical experimental designs (Wu and Hamada, 2000)

and expertise tests (Klein, 1998) an experimental system can be created with checks for

consistency and accuracy. Insight from the experimentation itself may also be possible,

there may be additional biases explored and some unforseen pitfalls discovered.

The experiments focus on designer, or human, intuition. This direction faces a num-

ber of obstacles including understanding the problem, absolute or comparative analysis,

reaching conclusions for multi-attributes, and the effects of teamwork.

During these experiments attempts will be made to investigate designer biases, inconsis-

tency, and feedback delay. Some of these effects are well documented but others, especially

when dealing with distributed teams, have not been studied.

A.4 Work

The research could be initiated though a number of human experiments. The best options

are computer, or web, based studies to solicit the input fromdesigners in a number of

problems. Three proposed studies are presented here but, this is just a suggested layout and

there are many other options.

The first study could investigate variable choices for experimental design, this area is

called intuition and variable decision. Choosing variables for a designed experiment is

difficult and the result could determine the effectiveness of the experimental run. Ideally

variables are important, independent and inexpensive. Poor choices lead to experiments
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that are challenging to run, excessively large, and nearly impossible to interpret. This study

will focus on understanding the variables of interest by asking a number of individuals.

The variables discovered could be classified into one of fourgroups: those that are every-

one agrees to being important, those that are agreed to beingunimportant, those that are

disputed but are unimportant, and finally those that are disputed and important. Creating

an experiment that is able benefit from this knowledge will reduce time and effort while

producing rich data and useful results. These data will be gathered through the web and

combined using some expert based hierarchy. The expertise for the users will be deter-

mined through a combination of known answers as well as some cluster analysis. The

individuals fall into specific groups and are classed together. This classification along with

some known questions will be used to grade the classes and weigh the individual inputs.

The second study could investigate differing expert rankings. This would be an attempt

to self-regulate and learn about the participant expertise. This study will maximize the

natural cognitive ability through pairwise comparisons and simple evaluation.

The third and final implementation of these experiments willbe extended to greater

design evaluation. These designs will not just be evaluatedbased on performance but also

in robustness and originality. Problems that can be presented in this manner are difficult to

test, complex, or from a variety of domains, as in mechatronic problems.

This system will use standard experimentation formulationfrom Montgomery (1996);

Wu and Hamada (2000) to pose the problem to the human computerand then return the

result. By using the humans the result should be creative, original, and intelligent and the

computer should help maintain that the response is unbiased, quick, and universal. The

result will directly benefit from the participant diversityand create a network of users eager

to experiment with their new designs and see the designs of others. To help include the

participants in the process there will be some visual cues tohelp them realize the status of



176 Chapter A. Adaptive Human Experimentation

each of the projects.

A.5 Previous Work

In addition to the articles and books mentioned above the researchers listed here are also

active in this area -

Gerd Gigerenzer - Adaptive Behavior and Cognition - Max Plank Institute - He ex-

plores the simple heuristics that are used every day to help us succeed. There are certain

inherent biases when dealing with human intuition that needto be understood and avoided

to achieve maximum results.

Norman Johnson - LANL - Symbiotic Intelligence Project. He created a system that

uses internet and human actors to solve complex problems by creating networks of these

simple actors. He uses the theory of evolutionary biology toadvance individual solutions

and kill off under performing solutions. They use the self-organizing nature of the agents

to create these networks and organize solutions.

Luis von Ahn - Human Computation - He created CAPTCHA’s and a number of games

that are based on the idea of an underlying computation behind a game environment (espgame

and peekaboom). The idea that computers can do certain calculations that cannot be com-

pleted easily (or ever) by a computer.
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A.6 Potential Contribution

Utilizing distributed human knowledge to tackle design problems will create early models

that are quick to create and give an accurate system performance estimate. This technology

will foster greater creativity, earlier design iteration,and a greater confidence in the result.

Feedback from a diversity of sources, all with different opinions provide powerful po-

tential to improve designs and validate opinions. This feedback, combined with an appro-

priate statistical methodology can improve the design process and increase the effectiveness

of the designer.

The algorithms presented in the previous chapters focused on utilizing an adaptive ex-

periment in addition to a traditional experiment. One potential adaptive experiment is to

use human knowledge to determine variable importance, create covariance matrices, or to

create composite models of a more expensive or complex experiment, all three of these

methods are presented in previous chapters of this thesis.
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Appendix B

Replacing Human Classifiers: A Bagged

Classification System

This application of human classifiers demonstrates an area of human computation and a

method for aggregation. This early research method could benefit from individual adap-

tive experiments and a broad overall aggregation technique. This initial study focuses on

automating a human classification process. The goals are to:improve classification con-

sistency, assign confidence level for each automated classification, and have no increase in

workload throughout the implementation. The proposed method uses multiple bagged clas-

sification trees, initially for the individual classifications and then applied to the combined

group.

Each human classifier trains a separate bagged classification tree. An estimate of the

classifier confidence is created and shown to be accurate. These individually trained classi-

fiers are combined through a group decision algorithm. The 76% reduction in work allows

the workers to train an additional classification tree on themost difficult cases. This addi-

tional tree is used in a weighted combination with the previous trees to improve the estimate
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and reduce the workload.

This procedure is straight-forward and the results, classification plus confidence, are

easily explainable to the human classifiers. This procedureis demonstrated on U.S. Post

Office zip-code data, showing the ease of implementation and improvement, but could be

used on a variety of classification problems.

B.1 Introduction

In most classification schemes the training data is assumed to be correct, and the goal of the

classifier is to emulate that data, in many situations that correctness assumption is invalid.

A more realistic case is when humans are classifying images,in this case numerical zip

codes, and are only about 85% accurate. There are a number of humans performing this

task in parallel, with each zip code being read once and each human differing in their

accuracy.

With the same number of person-hours, the goal is to implement an automated system

that improves throughput while maintaining classificationaccuracy. The procedure starts

with training a bagged tree classifier for each individual. This individually trained tree will

then be used to reduce that individual’s work load. To maintain the current accuracy a

confidence estimate is created for the classifier and all low-confidence images are reviewed

by the individual. The confidence estimate is created uniquely for each classifier and is

based on that specific human trainer.

After separate individual classifier systems are created for each human classifier the

predictions are then compared and integrated in a decision algorithm. The low confidence

predictions are returned to the human classifiers for a better classification. These returned

and reclassified images are used to train an additional classifier, eventually to be added to
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the decision algorithm.

In this demonstration some of the typical classification problems are not present. All

of the training and validation cases come from a uniform distribution of zip code numbers.

The training is done in a short time period and the noise is mainly driven by a forced short,

and random, cycle time.

This final process is straight-forward, and easy to explain to the human classifiers, and

allows them to focus on devising better, and more consistentclassification rules or proce-

dures, for the difficult cases.

B.2 Classifier Approach

These handwritten images were from LeCun and Cortes (2008).The set used here consists

of 10,000 test images that are 24x24 pixels in size examples are shown in Figure B-1. All of

the test cases were randomized (in the set they are in order) and a small subset of 100 used

for each of the human classifiers. As with most real world human classification systems

each person has a different level of ability and a different training set.

The image inputs to this system were translated to input variables through a 2D discrete

wavelet transform. To avoid some of complexities with converting images to wavelets a

simple Haar wavelet was used (Hubbard (1998)). All of the 784resulting coefficients are

used as variables for the discrimination. There are many more complex transforms that

have been used on this data set with success as in LeCun et al. (1998). A more complex,

and accurate, transform is unnecessary because the biggesteffect on the accuracy is the

ability of the human classifiers. The benefits of using a wavelet transform include the

quick speed, tolerance for noise, and general applicability.

A classification tree is a method that consists of making harddivisions in a variable to
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Figure B-1: Four Example Zip Codes. Five number images from the 10,000 possible
images

maximize the purity of each final branch. For each variable a split will be made that creates

a division where each of the branches is more similar, in thiscase has more similar zip code

numbers are grouped together. This iterative process begins by trying every variable and

then selecting the variable that makes the biggest improvement. After a selection is made

then the process is repeated on each of the sub-trees. The process is stopped when each of

the final decision nodes is of the same class (purity) or has too few cases.

Because there are 784 variables it is inefficient and inaccurate to build one large tree, so

a large number of smaller trees were combined in a technique called bagging. Bagging has

been discussed in numerous different areas such as Breiman (1996a) and Breiman (1996b)

and Tibshirani (1996). The individual trees were pruned minimally to avoid singular nodes

but, as suggested in the literature, full optimal pruning was not used.

Individual trees were built with a small number of random input variables chosen from

the 784 available wavelet variables. Five Variables was selected as a good starting point and

used throughout the selection process. By choosing less than one percent of the input values

the cross-correlations would be minimized which is important considering the nature of the
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Figure B-2: Variables Per Tree. Given 5, 10, 15, and 20 variables for each tree the accuracy
in percent correct is compared with the logistic probability in the top panel. The bottom
panel shows the percent of data less than the logistic probability .

wavelet transform. For other situations this may have been too few. Figure B-2 shows the

changes in accuracy as the number of variables changes (for asingle human model) there is

an increase until 15 variables per tree. With the unknown difference in the different humans

and the fact that the number of trees will not be fixed, five was determined to be sufficient

here although future investigations could search for a moreoptimal number of variables.

Each individual tree is created from a bootstrap sample equal to the original data size,

100 in this case. The number of individual trees was not fixed but determined based on an

estimate of error. This estimate was a smoothed out-of-bag (OB) error as given by Breiman

(1996b). The remaining data points that we not used in the bootstrap (≈37%) are fit using

the classification tree, and added to a running tally for eachimage. The guess for any image

is the mode of all of the guesses, or if there is a tie it is the most recent guess. The error

for that run,rb, is given by the sum of the errors for all of the images. With only a small

number of training images this error may be quite erratic andso is smoothed. The function

used to smooth iseb = p ∗ eb−1 + (1 − p) ∗ rb where p is a variable, in this case 0.75.
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Additional trees were added or ‘bagged’ as long as this errordecreases.

In addition to providing a stopping condition the OB sampleswere also used to fit a

logistic regression model. This is a new technique to estimate the confidence of that partic-

ular classification tree. The choice of logistic regressionprovides a probability that can be

easily understood by the classifier in the final analysis. In many classification methods it

is not straightforward to make accurate confidence estimates, k-NN, Naive Bayes, Neural

Networks, and SVM all provide misleading numbers (Delany etal. (2005)). Because en-

semble techniques (with the right functions) are unbiased in their limit, they can accurately

estimate confidence to the prediction as shown by Breiman (1996b). In the tree methodol-

ogy the margin parameter has been found to be an accurate and quick confidence estimate.

The margin is the difference between the top vote receiving class and the next class. So

after all of the trees vote in a particular classifier, the normalized difference between the

top two is the margin. As compared with a range, standard deviation, median absolute

difference or squared error, it has been found to be extremely effective and very easy to

calculate.

Using this margin parameter from the OB samples a logistic regression model was

fit to the error. With the small training sets, a minimum of fiveincorrect images were

required to estimate the two logistic parameters,β0 andβ1. To reach a better estimate of

these parameters, they were based on 10-fold run over the number of trees. The logistic

model confidence estimate had low discrimination against the training data as can be seen

in Figure B-3 but, worked very well against the true values ascan be seen in Figure B-2

and Figure B-4. The margin is able to differentiate good variable choices from guesses, or

erroneous choices, accurately. There are two metrics to evaluate these confidence estimates.

First, if the confidence estimate is 80%, then it should reflect that it is correct on 80% of the

images. The second metric is the ability for the confidence estimate to accurately predict
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Figure B-3: Confidence Estimate on Training Data. The relationship between the error on
the training data and the logistic probability is given in the top panel. The percentage of
the data less than the logistic probability is given in the bottom panel.

the greatest percent of the population, the greater percentage of accurate values the better,

and the fewer images that needs to be re-evaluated.

To demonstrate this property more clearly the entire data set of 10,000 numbers was

passed through the trees for a particular classifier and the results are compared with the

logistic confidence estimate. The accuracy of the probability estimate is within 2% until

p=65%.

This procedure was run with three different individuals, and their results compared. In-

dividually, each human classifier performed evaluations ona separate subset of the data,

and, as indicated above, five random X’s were chosen for a variant number of trees. In-

dividually, the classifiers were all very similar performing at accuracies of 85.1%, 85.4%,

and 94.3%. All evaluators are using the same input system andhave similar distractions

and time pressures. If a subset of data from the three different human classifiers is ran-

domly combined and used to train a classifier, that classifierhad the expected combined

performance.
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B.3 Combining Classifiers

Using the individual logistic confidence estimates, each human evaluator would be able

reduce the number of evaluations necessary (at their same performance) bypr = 55.0%,

38.9%, and 36.2%. This can be seen in Figure B-4 at 85.1%, 85.4%, and 94.3% for Chad,

Helen, and Jon respectively. Without decreasing performance, the individual could reduce

their work load by this number of evaluations using their classifier but, because this is a

group process some additional reductions can be made through a decision algorithm. First

if all three automated classifiers are in agreement then those can be classified with very high

probability. In a sample case of 1000 never seen before test images, we had 26% of the

total in this category, at an accuracy of 96%. This high percentage of cases in agreement is

due to the marginal probabilities near 91%. Givenc classifiers the number falling into this

first class isp1 ∗ .91c. This is a higher percentage, and a higher marginal probability than

initially expected but, can be explained by the fact that some images are easily classified,

and agreed upon.

The second decision method to combine the classifications isthrough confidence based

voting. Due to the fact that the human classifiers do not have equal performance prob-

abilities, this voting is done sequentially and the best classifier gets the final vote. The

probability of each individual classifier contributing ispc = pr − pm ∗ pn−1
r , assuming iden-

tical reduction probabilities andn judges. If two other classifiers agree then the combined

probability is calculated and may outweigh the other classifier. As the individual reduction

probability,pr , increases it reduces the group load but, if the individual reduction increases

too much the group is not able to benefit from other members andthus the actually work-

load increases, as shown in Figure B-5. The range presented here is small because as the

ability of each classifier changes it is expected that the marginal probability also changes.
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Figure B-4: Different Human Classifiers. The relationship between the logistic probability
and the accuracy for all 10,000 images is given in the top panel for three different classifiers
and their combined estimate. The bottom panel shows the percentage of the population less
than the logistic probability

Figure B-5: Percentage Rework. This plot is based on a marginal probability for the lo-
gistic parameter of 0.85 and three judges. The individual percentage reductionpr is on the
horizontal axis and the percentage rework is on the verticalaxis.
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This combined classification system is explained as a weighted as a voting method.

Each automated classifier has a class vote and a confidence. The decision is to go with the

highest confidence, either in a single classifier, or if more than one agree, it could be the

combination. ForB classifiers, this combination can be expressed as:

class= arg max
i∈class

(
∑

Pi
B

)

Using this equation, it is possible to scale up the classifiers very easily. Each individual

classifier is developed to the nuances of their human trainerand only combined in a final

group decision algorithm or ‘meeting’. This parallels an effective human process, with

more objective confidence measures.

After the group decision meeting, the 24% of the original images remain. The human

classifiers have their workload reduced by 76%. The total workload for the three here,

requires less than one of the original workers. These additional human resources could be

used to re-evaluate some of the images and to improve the process.

To improve the overall process with these extra resources a statistical technique called

boosting introduced by Shapire (1990) is used here. Generally, the concept is to run the

points through an initial classifier, and then those points that are incorrectly identified are

used to train an additional classifier with increased weight. This weighted training can

extend many levels. There are a number of algorithms that have shown this can be more

effective than general bagging approaches that are employed initially. The drawback of

boosting is in this re-weighted training, it may suffer from over-fitting, or extreme weight-

ing. This image recognition problem had high, and inconsistent, human image recognition

error and over-fitting was deemed problematic. Each human based classifier was built us-

ing the more robust bagged classification technique, while combining these classification
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trees was found to benefit from a boosting approach.

After all of the automated classifiers were complete and the decisions made, the humans

completed the final classifications on the remaining 24% of the images. With three human

classifiers it was possible to have each human read each imageand create a classification.

This additional data was then combined into another automated classifier. Thus this final

classifier was trained with cases that had low-confidence in the other classifiers. It was also

the first to use redundancy in the trainers to improve the quality of the training set.

This final classifier is considered as a boosted classifier that offers an exponential weight

that is combined with the other base classifiers. This classifier is combined in a slightly

different manner than the previous ones. Because it is exclusively trained on the errors

of the other classifiers it has a greater weight to settle disputes. The added weight was

α = (1 − err)/err, this is the same weighting technique as the popular AdaBoost routine

(Hastie et al. (2001)). In this caseα ≈ 1.2, and is low mostly due to the few training runs

after only one round image analysis. Future runs would be used to continue to advance the

training of this classifier, and increase its weight.

Even in this early stage of improvement this classifier can becombined with the other

three. This classifier is added first in the sequence, and becauseα is near one it has almost

the same weight as the other classifiers. The classification accuracy remained near 81%

although the percentage rework dropped from 24% to 20%. Future runs would continue to

refine this classifier until the number of runs equaled the other classifiers. After this point

the additional runs would be targeted at creating another classifier for improvement. This

is aligned with the literature on the boosting methodology.
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B.4 Conclusion

This work focused on automating a human classification process as demonstrated through

U.S. Post Office zip-code data. The goals were to: improve classification consistency, as-

sign confidence level for each automated classification, andhave no increase in workload

throughout the implementation. The method used multiple bagged classification trees, ini-

tially for the individual classifications and then applied to the combined group. The scope

of the classifier is increased by the use of a margin based logistic regression confidence

parameter. Individual tree confidence parameters accurately predicted the performance

against the population and could be combined accurately.

The individual classifiers use bagged classification trees based on five random variables

in a standard Haar wavelet transform of the images. Each of these human based classifiers

is aggregated through a voting with confidence procedure to decide the classification. The

accuracy was selected to be at 80% and the automated classifiers reduced the workload by

76%.

After the individual classifiers were complete, additionalclassifications were made on

the remaining 24% of the images. These most difficult images had new classifications

performed by all of the human classifiers. The results are used to build another bagged

classification tree, this classification tree was combined in a weighted manner similar to a

statistical boosting method. The results with this new method maintained the accuracy at

80% and reduced the workload by 78%

This procedure was clear and straight-forward to implementand the results reduced

the workload greater than expected, the classification plusconfidence concept was easy to

explain to the human classifiers, as well as solidly founded in current statistical procedures.

The use of a voting decision system mimicked the current human system and was found to
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enhance the total understandability and effectiveness of the system.
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