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ABSTRACT 
 
Chapter I.  

A scalable and reproducible protocol has been developed for the preparation of (–)-
neomenthyldiphenylphosphine ((–)-1) from inexpensive starting materials.  

 

 
 
This ligand was then utilized in the nickel-catalyzed reductive coupling of alkyne 3 and 

aldehyde 4 to afford allylic alcohol 5 in high yield and enantiomeric excess. Several important 
modifications were made to the initially communicated procedure in order to effectively translate 
this methodology from the millimole to decimole scale. Allylic alcohol 5 was then ozonolyzed to 
afford β–hydroxy ketone 6 with complete preservation of enantiomeric purity.  

 

 
 

Chapter II. 

 The endo-selective cyclization of alcohols onto epoxides provides a direct route for 
constructing the oxygen heterocycles found in ladder polyether natural products. Additionally, 
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strategies to transform multiple epoxides into multiple new rings have appealing parallels to the 
proposed biogenesis of these compounds. A continuing challenge is to overcome the inherent 
preference for the undesired smaller ring product over the larger ring product, processes termed 
exo and endo cyclization, respectively. Additionally, any method to address this problem should 
yield products that are themselves synthetically relevant intermediates.  

We discovered that a benzylidene acetal templated the cyclization of electronically 
unbiased epoxy alcohols, such as 75, affording products with significant synthetic utility. Critical 
for high endo-selectivity was the use of silicon-dioxide based promoters. Highlighting the 
template’s utility, the newly formed product (76) was then transformed into a highly decorated 
THP template (84), corresponding to ring K of gymnocin A. In water, 84 underwent a water-
promoted cascade to construct three additional rings of gymnocin A.  
 

 
 

We have also achieved cascades of methylene acetal templates with electronically 
activated epoxides to construct the FG rings of gambierol.  

 

 
 

Use of these functionalized templates and the products derived from them sets the stage 
for the convergent total synthesis of ladder polyether natural products.  
 
 
Thesis Supervisor: Timothy F. Jamison 
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Preface 

 

Portions of this thesis have appeared in the following articles that were co-written by the author: 

 

(S)-(+)-Neomenthyldiphenylphosphine in Nickel-Catalyzed Asymmetric Reductive 
Coupling of Alkynes and Aldehydes: Enantioselective Synthesis of Allylic Alcohols and α-
Hydroxy Ketones. 
 Van Dyke, A. R.; Miller, K. M.; Jamison, T. F. Org. Synth. 2007, 84, 111–119. 

 

Functionalized Templates for the Convergent Assembly of Polyethers: Synthesis of HIJK 
Rings of Gymnocin A. 

Van Dyke, A. R.; Jamison, T. F. Angew. Chem. Int. Ed. 2009, Article Early View, DOI: 
10.1002/anie.200900924 
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Abbreviations  

 
Ac   acetyl 

Bn   benzyl 

Bu   butyl 

Bz   benzoyl 

cod   cyclooctadiene 

CAM  ceric ammonium molybdate 

COSY  correlation spectroscopy 
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mol  mole 
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MS   molecular sieves 

n-Bu   n-butyl 

n-Hex   n-hexyl 

nm   nanometer 

NMDPP neomenthyldiphenylphosphine 

NMR  nuclear magnetic resonance 

nOe   nuclear Overhauser effect 

NOESY nucler Overhauser effect spectroscopy 

Nu   nucleophile 

Ph   phenyl 

PMA  phosphomolybdic acid 

PMB  para-methoxybenzyl 

PMP  para-methoxyphenyl 

PPTS   pyridine para-toluenesulfonate 

Pr   propyl 

psi  pounds per square inch 

salen   N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediamino 

s-Bu   sec-butyl 
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TBAF   tetrabutylammonium fluoride 

TBAI   tetrabutylammonium iodide 

TBDPS  tert-butyldiphenylsilyl 

TBHP  tert-butylhydroperoxide 
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t-Bu   tert-butyl 
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Introduction 

Originally prepared by Morrison1 over 30 years ago, (+)-neomenthyldiphenylphosphine 

(NMDPP) ((+)-1)2 is a commercially available monodentate ligand utilized for asymmetric 

hydrogenation,3 carbomethoxylation,4 and the resolution of organometallic complexes.5 

Currently it is also the only phosphine ligand that, in nickel-catalyzed reductive coupling 

reactions of alkynes and aldehydes, affords the allylic alcohol products in high enantiomeric 

excess.6  We sought to demonstrate the utility of this transformation on large scale and thus 

required multigram quantities of 1. Unfortunately, only the dextrorotatory (+) antipode of 1 is 

commercially available. Moreover, commercial sources of (+)-1 can be prohibitively expensive, 

and some vendors did not disclose the purity of the phosphine ligand (Figure 1).7 Consequently, 

we sought an inexpensive and reproducible synthesis of 1 that would afford multigram quantities 

of either enantiomer. 

Figure 1 

 

 

 

                                                 
1 Morrison, J. D.; Masler, W. F. J. Org. Chem. 1974, 39, 270–272. 
2 (+)-NMDPP is often referred to as “(S)-NMDPP”. 
3 (a) Morrison, J.; Burnett, R.; Aguiar, A.; Morrow, C.; Phillips, C. J. Am. Chem. Soc. 1971, 93, 1301–1303. (b) 
Valentine, D. Jr.; Johnson, K. K.; Priester, W.; Sun, R. C.; Toth, K.; Saucy, G. J. Org. Chem. 1980, 45, 3698–3703. 
4 Cometti, G.; Chiusoli, G. P. J. Organomet. Chem. 1982, 236, C31–C32.  
5 (a) Salvadori, P.; Pertici, P.; Marchetti, F.; Lazzaroni, R.; Vitulli, G. J. Organomet. Chem. 1989, 370, 155–171. (b) 
Howell, J.; Squibb, A. Organometallics. 1990, 9, 80–91.  
6 (a) Miller, K. M.; Huang, W. S.; Jamison, T. F. J. Am. Chem. Soc. 2003, 125, 3442–3443.  (b) Colby, E. A.; 
Jamison, T. F. J. Org. Chem. 2003, 68, 156–166. 
7 As of May 2009, (+)-1 was available from Strem ($118/gram, undisclosed purity), 3B Scientific ($184/gram, 98% 
pure), and Acros ($407/gram, undisclosed purity). 
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Me
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Results and Discussion 

A survey of the literature at the beginning of this work revealed that NMDPP is 

frequently prepared by the nucleophilic displacement of a diphenylphosphide anion upon 

menthyl chloride or menthyl mesylate. The diphenylphosphide species is typically generated 

from either diphenylphosphine1,8 or diphenylphosphinous chloride,9 both of which are highly 

noxious and air-sensitive compounds. Alternatively, triphenylphosphine may be converted to 

diphenylphosphide, but the most efficient conditions in the literature employ undesirably forcing 

conditions: a sodium-potassium alloy under high hydrogen pressure (50 psi).10,11 Furthermore, 

regardless of how the nucleophile is generated, protocols for the displacement reaction vary 

greatly, with no explanation for the differences between these procedures.  

 

Scheme 1. Synthesis of (–)-1 employed in this work. 

 
                                                 
8 Honaker, M. T.; Sandefur, B. J.; Hargett, J. L.; McDaniel, A. L.; Salvatore, R. N. Tetrahedron Lett. 2003, 44, 
8373–8377. 
9 Aguiar, A. M.; Morrow, C. J.; Morrison, J. D.; Burnett, R. E.; Masler, W. F.; Bhacca, N. S. J. Org. Chem. 1976, 
41, 1545–1547. 
10 Beaumont, A. J.; Kiely, C.; Rooney, D. A. J. Fluorine Chem. 2001, 108, 47–50. 
11 (a) Layman, W. J.; Welsh, G. W. Production of high purity alkali metal diarylphosphide and  
cycloalkyldiarylphosphines. U.S. Patent 5,866,720. February 2, 1999. (b) Senaratne, K. Synthesis of 
cycloalkyldiarylphosophines. U.S. Patent 5,710,340. January 20, 1998. (c) Senaratne, K.: Malcolm, A.; Orihuela, F.; 
Elnagar, H. Synthesis of cycloalkyldiarylphosophines. U.S. Patent 5,654,486, August 5, 1997.  
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We decided to employ a two-step sequence for the production of (–)-1, the antipode that 

is not commercially available (Scheme 1). The first step, preparation of menthol 

methanesulfonate (2), proceeded quantitatively from (+)-menthol under routine conditions. The 

second step, formation of diphenylphosphide and its displacement reaction with 2, began with 

our study of the sodium metal reduction of triphenylphosphine. Triphenylphosphine was refluxed 

with elemental sodium (400 mol%) to afford sodium diphenylphosphide in 89% yield, on 

average, as determined by 31P NMR.12 Longer reaction times and/or increasing the amount of 

sodium did not substantially improve the yield of the phosphide. Menthyl mesylate 2 was then 

added to the sodium diphenylphosphide to afford the desired phosphine (–)-1. The yield for the 

displacement, when performed in refluxing THF, was variable and irreproducible ranging from 

18 to 35% after recrystallization from MeOH (Table 1, entry 1). We suspected that refluxing 

temperatures were not required for the displacement and repeated the reaction at ambient  

 

Table 1. Nucleophilic displacement of sodium diphenylphosphide on menthyl mesylate 2. 

entry mmol PPh3 yield NaPPh2
a mmol 2 T (°C) yield (–)-1b 

1 50 88% 50 66 18–35%c 

2 50 89% 50 23  36–40%d 

3 100 89% 100 23 36   

(a) Generated by addition of 400 mol% Na° to PPh3 in THF; yield determined by 31P NMR. (b) 
Yield based on 2. (c) Range observed over 4 trials. (d) Range observed over 3 trials. 
 

temperature, obtaining the title compound in 38% yield in a reproducible and scalable fashion 

(entries 2,3). The irreproducibility at higher temperatures may have been due to solvent 

                                                 
12 A 600 µL aliquot of the crude reaction mixture was placed in an argon filled NMR tube and sealed with a rubber 
septum: 31P NMR (300MHz, THF) δ: –22 (NaPPh2), –4.9 (PPh3). Batchelor, R.; Birchall, T. J. Am. Chem. Soc. 
1982, 104, 674. 
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decomposition.13 

The mediocre yield in the displacement reaction is due to both incomplete conversion and 

competing E2 elimination.  These phenomena can both be explained by the fact that efficient 

displacement would be expected to occur with the leaving group (mesylate (–OMs), in this case) 

in an axial or pseudo-axial orientation (Figure 2).  In order to achieve this, the cyclohexane 

 

Figure 2. Factors hindering the nucleophilic displacement of mesylate 2. 

  

 

would be required to change from its ground state (2a) into a higher energy conformation. One 

such conformer is a chair (2c) in which all three substituents would be axially disposed and in 

which a 1,3-diaxial interaction between the mesylate and the methyl group is present. In order 

for 2a to convert to 2c, the cyclohexane ring must pass through a twist-boat conformer (2b). 

While the twist boat avoids the 1,3-diaxial interactions found in 2c, a flagpole-type interaction is 

present between the isopropyl group and transannular hydrogen. In both of these possible 

reactive conformers, attack by the nucleophile is hindered by the isopropyl group. Nevertheless, 

despite its moderate yield, this preparation reproducibly yields multigram quantities of (–)-1, 

which is not commercially available, in >98% purity.  It can also be used to prepare the 

                                                 
13 Reduction of PPh3 generates NaPPh2 and NaPh either of which may be acting as a base, deprotonating THF and 
generating ethylene and acetaldehyde byproducts that can quench NaPPh2. 
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commercially available enantiomer ((+)-NMDPP) from (–)-menthol at a fraction of the market 

price. 

 With an efficient, scalable, and reproducible method for the preparation of (–)-1 and (+)-

1, we turned our attention to the use of this ligand in the nickel-catalyzed asymmetric reductive 

coupling of alkynes and aldehydes, a method for the preparation of enantiomerically enriched 

(E)-trisubstituted allylic alcohols. Specifically, we investigated a large scaling coupling of alkyne 

3 and aldehyde 4 to give allylic alcohol 5 (Scheme 2).14 The catalyst for this reaction is derived 

from Ni(cod)2 and (–)-1, in combination with Et3B (the stoichiometric reductant).6 In the initial 

report,6a reductive couplings were performed with 0.5 mmol alkyne and 1.0 mmol aldehyde. We 

 

Scheme 2. 

 

 

sought to scale up this reaction by two orders of magnitude. Consequently, we discovered several 

critical modifications to the original procedure when running this reaction on large scale. First, 

the physical state of the Ni(cod)2 should be a yellow crystalline solid.15 Second, the co-solvent 

dimethylimidizolidinone (DMI) is extremely hygroscopic and must be freshly distilled (from 

CaH2) prior to use. Use of DMI that had been distilled a week prior, presumably containing trace 

water, gave 10% of the alkylative coupling product (transfer of an ethyl group from Et3B) instead 

                                                 
14 Van Dyke, A. R.; Miller, K. M.; Jamison, T. F. Org. Synth. 2007, 84, 111–119.  
15 Only commercial material from Strem was consistently reliable during the course of these investigations. 
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of reductive coupling.16 Freshly distilled DMI consistently gave less than 2% of the alkylative 

coupling product. Finally, on smaller scale, after the reaction is quenched with acid the solution 

can be stirred open to the air to oxidize all nickel species to Ni(II) salts and to facilitate cleavage 

of the RO–BEt2 bond, liberating the product. However, on a 50 mmol scale complete oxidation 

was not achieved, even after stirring for several hours. Having significantly increased the 

reaction volume on this scale, we realized that aeration cannot be achieved on this scale with 

simple stirring. This problem was overcome by vigorously bubbling air through the reaction for 

30 min. Oxidation was accompanied by a characteristic orange to light yellow color change.17  

With these modifications, the desired allylic alcohol (5) can be reproducibly obtained in 89% 

yield and 87% ee, comparable to the values achieved when performed on smaller scale. While 

useful in their own right, these allylic alcohols can also be cleaved by ozonolysis to afford β–

hydroxy ketones, another class of synthetically important building blocks. Specifically, 

ozonolysis of 5 proceeded uneventfully in 70% yield to afford 6 with complete preservation of 

enantiomeric purity. As an example of the utility of the product of this sequence, the TBS ether 

of 6 was developed by Masamune for use in asymmetric aldol reactions.18 

 

Conclusion 

 In summary, a scalable and reproducible protocol has been developed for the preparation 

of (–)-neomenthyldiphenylphosphine ((–)-1) from inexpensive starting materials. This ligand 

was then utilized in the nickel-catalyzed reductive coupling of alkyne 3 and aldehyde 4 to afford 

                                                 
16 The alkylative coupling product was inseparable from the product by chromatography but identified by its 
carbinol proton: 1H-NMR (400 MHz, CDCl3) δ: 4.35 (d, J = 9 Hz, 1H). 
17 Alternatively, slow addition of a basic hydrogen peroxide solution via syringe (50 mL 30% H2O2 in 200 mL 
0.75M NaOH) also proved effective for oxidizing the nickel and alkoxyborane species. 
18 (a) Masamune, S.; Choy, W.; Kerdesky, F. A. J.; Imperiali, B. J. Am. Chem. Soc. 1981, 103, 1566–1568. (b) 
Masamune, S.; Hirama, M.; Mori, S.; Ali, S. A.; Garvey, D. S. J. Am. Chem. Soc. 1981, 103, 1568–1571. 
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allylic alcohol 5 in high yield and enantiomeric excess. Several important modifications were 

made to the initially communicated procedure in order to effectively translate this methodology 

from the millimole to decimole scale. Allylic alcohol 5 was then ozonolyzed to afford β–hydroxy 

ketone 6 with completely preservation of enantiomeric purity.  

 

 

Experimental Section 

 

General Information.  All reactions were performed under an oxygen-free atmosphere of argon 

with rigorous exclusion of moisture from reagents and glassware. Tetrahydrofuran was distilled 

from a blue solution of benzophenone ketyl. Ethyl acetate was distilled from MgSO4. DMI was 

distilled from CaH2 and used immediately. Degassed solutions were prepared by sparging with 

argon for 20 min prior to use. Triphenylphosphine (99%) was purchased from Alfa Aesar and 

recrystallized from anhydrous EtOH (2.4 mL EtOH/gram PPh3). Triethylamine, methanesulfonyl 

chloride, (1S,2R,5S)-(+)-Menthol, and lump sodium metal were purchased from Aldrich 

Chemical Co. and used as received. 

 Analytical thin layer chromatography (TLC) was performed using EM Science silica gel 60 

F254 plates.  The developed chromatogram was analyzed by UV lamp (254 nm) and ethanolic 

phosphomolybdic acid (PMA). Liquid chromatography was performed using a forced flow (flash 

chromatography) of the indicated solvent system on Silicycle Silica Gel (230-400 mesh). 1H, 13C, 

and 31P NMR spectra were recorded in CDCl3, unless otherwise noted, on a 300 MHz Varian 

Mercury spectrometer, Bruker Avance 400 MHz spectrometer, or a Bruker Avance 600 MHz 

spectrometer.  Chemical shifts in 1H NMR spectra are reported in parts per million (ppm) on the 
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δ scale from an internal standard of residual chloroform (7.27 ppm). Data are reported as 

follows:  chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = 

multiplet, app = apparent, and br = broad), coupling constant in hertz (Hz), and integration. 

Chemical shifts in 31P NMR spectra are reported on the δ scale from an internal standard of 

phosphoric acid (0.00 ppm). Chemical shifts of 13C NMR spectra are reported in ppm from the 

central peak of CDCl3 (77.23 ppm) on the δ scale. Elemental analysis was performed by 

Midwest Microlab Inc. 

 

 

 

Menthyl Mesylate (2).  A solution of (+)-menthol (15.59 g, 100 mmol), triethylamine (16.7 mL, 

120 mmol) and tetrahydrofuran (50 mL) was cooled to 0 ˚C.   Methanesulfonyl chloride (8.5 mL, 

110 mmol) was added over 15 min via syringe pump, affording a beige slurry that was stirred 30 

min at 0 ˚C and then quenched with ice water (50 mL).  The organic layer was washed twice 

with brine (25 mL), dried over MgSO4, and concentrated on a rotary evaporator affording 2 as a 

light yellow oil (23.05 g, 99%).  1H NMR (400 MHz, CDCl3) δ: 0.83–0.99 (m, 11H), 1.25–1.33 

(q, J = 11.2, 1H), 1.41–1.55 (m, 2H), 1.70–1.77 (m, 2H), 2.10–2.13 (m, 1H), 2.27–2.31 (m, 1H), 

3.03 (s, 3H), 4.54–4.60 (td, J = 10.8, 4.4 Hz, 1H); 13C NMR (400 MHz, CDCl3) δ: 16.0, 21.1, 

22.2, 23.4, 26.0, 31.9, 34.1, 39.3, 42.5, 47.7, 83.4. 

 

 

OMs

MeMe

Me
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(–)-Neomenthyldiphenylphosphine ((–)–1, (–)-NMDPP).  A thoroughly dry flask equipped 

with a magnetic stirbar, reflux condenser, and argon inlet was charged with triphenylphosphine 

(26.22 g, 100 mmol) and THF (200 mL).  Sodium metal (9.2 g, 400 mmol) was added quickly by 

temporary removal of the reflux condenser, and the vessel was heated to reflux for 20 hours.  

The reaction was cooled to ambient temperature, giving a deep red solution of sodium 

diphenylphosphide (87%).   This solution was transferred via cannula to a three-necked flask 

equipped with a mechanical stirrer and argon inlet.  The diphenylphosphide flask was washed 

with THF (60 mL) and the washings added via cannula to the three-neck flask.  A solution of 2 

in THF (20 mL) was added via syringe pump over 35 minutes and stirred at room temperature 

until the diphenylphosphide was consumed (approximately 4 hours by 31P NMR), giving an 

orange solution.  The reaction was quenched with degassed water (100 mL), extracted twice with 

degassed EtOAc (100 mL), and dried over Na2SO4. The dried solution was then transferred via 

cannula into a weighed, argon purged 1 L flask equipped with a magnetic stir bar (Figure 3).   

The solvent was removed via rotary evaporation (backfilling with argon) to give cream-colored 

crystals that were purified by quick attachment of a reflux condenser (following argon backfill) 

and recrystallizing from degassed refluxing methanol (50 mL), typically 3-4 times, until 

impurities observed by 31P are removed.19  In each recrystallization, the methanol solution was 

                                                 
19 NMDPP oxide is a tenacious impurity; air must be rigorously excluded during workup and recrystallization in 
order to avoid oxidation of NMDPP.   The methanol mother liquors contained small amounts of diphenylphosphine, 
which has a very strong stench. Major impurities observed: 31P NMR (300MHz, THF) δ: –41 (HPPh2), 23 

PPh2

MeMe

Me
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heated with stirring until the solid dissolved.  The magnetic stirrer was then shut off, and the 

flask was removed from the oil bath and allowed to cool on a cork ring. After each 

recrystallization, the mother liquor was removed via cannula and the crystals washed with 30 mL 

of cold methanol. Trace methanol was removed under vacuum to yield 9.98 g (36%) of (–)-1 as 

long white needles that were spectroscopically identical to literature reports.20 31P NMR (300 

MHz, CDCl3) δ: –14.9; 1H NMR (400 MHz, CDCl3) δ: 0.59 (d, J = 6.4, 3H), 0.72 (d, J = 6.4, 

3H), 0.84 (d, J = 6.4, 3H), 0.88–0.93 (m, 1H), 1.21–1.44 (m, 3H), 1.52–1.59 (m, 1H), 1.76–1.81 

(m, 4H), 3.12 (m, 1H), 7.29–7.37 (m, 6H), 7.61–7.66 (m, 2H), 7.74–7.78 (m, 2H); 13C NMR 

(100 MHz, CDCl3) δ: 21.4, 22.6, 22.9, 26.5–26.4 (d, J = 9.2, 1C), 27.8–27.9 (d, J = 5.8, 1C), 

30.2–30.3 (d, J = 9.3, 1C), 35.8–35.9 (d, J = 18.0, 1C), 36.3, 39.5, 50.1–50.2 (d, J = 15.4, 1C), 

128.5–128.6 (d, J = 7.3 Hz, 1C), 128.5–128.6 (d, J = 7.0 Hz, 1C), 128.9, 129.1, 134.2–134.4 (d, 

J = 20.8 Hz, 1C), 135.4–135.6 (d, J = 22.2 Hz, 1C), 138.2–138.4 (d, J = 15.1 Hz, 1C), 139.4–

139.5 (d, J = 13.1 Hz, 1C); Anal. Calcd for C22H29P: C, 81.44; H, 9.01; P, 9.55. Found: C, 81.36; 

H, 9.07; P, 9.65. 

 

 

 

 

 

 

 

 
                                                 
(OPHPh2), 33 (NMDPP oxide).   Phosphorus-31 NMR: Principles and Applications, Gorenstein, D., Ed.; Academic 
Press Inc: Orlando, 1984; p. 554. 
20 Aguair, A. M.; Morrow, C. J.; Morrison, J. D.; Burnett, R. E.; Masler, W. F. J. Org. Chem. 1976. 41, 1545. 
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Figure 3: Air-free workup of (–)-1. 

 

 

 

 

(S)-(E)-2-Benzylidiene-1-cyclohexyl-butan-1-ol (5).6 In a glovebox, a flame-dried 500-mL 

round-bottomed flask was charged with Ni(cod)2 (1.38 g, 5.00 mmol) and (–)-1 (3.24 g, 10.0 

mmol). The flask was sealed with a septum, removed from the glovebox, and transferred to a 

fume-hood. An argon inlet was then attached to the flask and degassed EtOAc (50 mL), freshly 

distilled, degassed DMI (50 mL), and triethylborane (14.5 mL, 100 mmol) were added 

sequentially via syringe. Caution! Triethylborane is extremely pyrophoric. The solution was 

allowed to stir 15 min at room temperature and then was placed in a –27 °C bath for 30 min. 3 

(7.1 mL, 50 mmol) was added in one portion via syringe, followed by addition of 4 (9.1 mL, 75 

mmol) via syringe pump over 9 h to the solution in a –27 °C bath. The reaction was stirred at –27 

4. Dry organic layer
5. Transfer via cannula

6. Concentrate in vacuo.
7. Backfill with N2.
8. Recrystallize (MeOH, see
Experimental Section).

Mechanical Stirrer

Ar Inlet

1. Quench displacement reaction.
2. Transfer organic layer via cannula.
3. Extract with EtOAc, Repeat 2.

Ar Outlet

drying agent
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rubber septum of known

total mass

Me
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°C for 36 h, then quenched with saturated NH4Cl (100 mL) and 1M HCl (40 mL) at –27 °C. The 

solution was allowed to warm to room temperature and then stirred 15 min at room temperature. 

Air was vigorously bubbled through the reaction using a Pasteur pipet for 30 min, which resulted 

in a light yellow emulsion. The aqueous layer was extracted with EtOAc (2 x 200 mL). The 

combined organic layers were washed twice with saturated NH4Cl (300 mL), once with brine 

(300 mL), dried over MgSO4 (10 g), filtered and concentrated on a rotary evaporator (20 °C, 11 

mmHg, then 3 mmHg) to remove trace EtOAc. The resulting yellow oil was purified by flash 

chromatography on silica gel with a hexanes to 9:1 hexanes:ethyl acetate gradient to yield 10.87 

g (89%) of 5 as a colorless oil. The product was visualized with UV followed by PMA stain, Rf = 

0.20 (5:1, hexanes : EtOAc); 1H NMR (400 MHz, CDCl3) δ: 0.99–1.30 (m, 8 H) 1.55–1.82 (m, 6 

H), 2.00 (d, J = 12.5 Hz, 1 H), 2.21 (dq, J = 19, 7.5 Hz, 1 H), 2.36 (dq, J = 19, 7.5 Hz, 1 H), 3.93 

(d, J =7 Hz, 1 H), 6.45 (s, 1 H), 7.22–7.36 (m, 5 H); 13C NMR (100 MHz, CDCl3) δ: 14.0, 21.4, 

26.1, 26.3, 26.5, 28.3, 30.1, 41.6, 81.4, 126.3, 126.4, 128.1, 128.6, 137.6, 145.5; IR (thin film 

NaCl): 3395, 3055, 3023, 2927, 2851, 1599, 1493, 1448, 1308, 1261, 1173. Anal. Calcd for 

C17H24O: C, 83.55; H, 9.90. Found: C, 83.30; H, 9.81. Enantiomeric excess (87%) was 

established by chiral HPLC (Chiralcel OD, hexanes:2-propanol, 98:2, 1 mL/min): tR[(R)-1] = 

14.5 min, tR[(S)-1] = 16.5 min.  

 

 

 

(S)-1-Cyclohexyl-1-hydroxy-butan-2-one (6).6 In a 1-L round-bottomed, one-necked flask with 

a magnetic stirbar, 1 (10.87 g, 44.5 mmol) was dissolved in methanol (60 mL) and 

O

Me

OH
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dichloromethane (240 mL). The vessel was cooled to -78 ° C and ozone was bubbled through the 

solution using a Pasteur pipet until a persistent blue color appeared (approximately two hours). 

Argon was then bubbled through the solution for 30 min, and dimethylsulfide (131 mL, 1780 

mmol) was added. The reaction was warmed slowly to ambient temperature and stirred for 13 h. 

The solvent and excess dimethylsulfide were removed by rotary evaporation (20 °C, 11 mmHg). 

The crude oil was purified by flash chromatography on silica gel, eluting with 50:1 hexanes: 

ethyl acetate to yield 5.30 g (70%) of 6 as a colorless oil. Product was visualized with PMA 

stain, Rf = 0.25 (8:2, hexanes:ethyl acetate); 1H NMR (400 MHz, CDCl3) δ: 1.13–1.35 (m, 8 H), 

1.48 (dq, J = 12.5, 4 Hz, 1 H), 1.64–1.83 (m, 5 H), 2.41–2.57 (overlapping dq, J = 19, 7.5 Hz, 2 

H), 3.41 (d, J = 10 Hz, 1 H), 4.06 (br s, 1H); 13 C NMR (100 MHz, CDCl3) δ: 7.6, 25.1, 25.8, 

26.0, 26.5, 30.1, 31.4, 41.4, 80.5, 213.0; IR (thin film NaCl): 3474, 2976, 2931, 2853, 1709, 

1450, 1406, 1349, 1260, 1105; Anal. Calcd for C10H18O2: C, 70.55; H, 10.66. Found: C, 70.35; 

H, 10.55. Enantiomeric excess 88%, established by chiral GC (Alltech B-PH, column = 95 °C, 

injector = 200 °C, flow (H2) = 2 mL/min): tR[(R)-2] = 30.7 min, tR[(S)-2] = 31.5 min.
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Chapter 1: Spectra 
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Chapter 2 
 
 

Synthetically Versatile Templates for  
Epoxide-Opening Cascades
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Introduction 

A. Ladder Polyether Natural Products 

 The ladder polyether family of marine natural products has captivated synthetic organic 

chemists since the isolation of its first members nearly 30 years ago.1 Produced by 

dinoflagellates during the course of harmful algal blooms, colloquially referred to as red tide 

events, ladder polyethers are potent biological agents with remarkable chemical architectures.2 

When ingested, many polyethers bind to and disrupt the normal function of voltage-gated ion 

channels in the body; brevetoxin B (1)3 shows selectivity for sodium channels4 while gambierol 

(2)5 targets potassium channels (Figure 1).6 Identification of the biological targets of yet other 

toxic polyethers, such as gymnocin A (3), remains an active area of research.  

At first glance, the members of this natural product family appear to be distant cousins, 

with brevenal (4),7 a potential candidate for the treatment of cystic fibrosis,8 at one end and 

maitotoxin (5),9 the largest and most toxic non-biopolymer natural product isolated to date, at the 

other (Figure 1). Largely responsible for their structural complexity is the array of oxygen 

                                                 
1 For reviews detailing synthetic approaches towards ladder-polyethers see: (a) Nicolaou, K. C.; Frederick, M. O.; 
Aversa, R. J. Angew. Chem. Int. Ed. 2008, 47, 7182–7225. (b) Inoue, M. Chem. Rev. 2005, 105, 4379–4405. (c) 
Alvarez, E.; Candenas, M. L.; Perez, R.; Ravelo, J. L.; Delgado Martin, J. Chem Rev. 1995, 95, 1953–1980. 
2 Kobayashi, J.; Ishibashi, M. Marine Natural Products and Marine Chemical Ecology. In Comprehensive Natural 
Product Chemistry; Baron, D., Nakanishi, K., Eds.; Elsevier: New York, 1999; 476–515. 
3 Isolation and structure determination for brevetoxin B see: Lin, Y.; Risk, M.; Ray, S.; Van Engen, D.; Clardy, J.; 
Golik, J.; James, J.; Nakanishi, K. J. Am. Chem. Soc. 1981, 103, 6773–6775. For early studies of the toxicity 
associated with these natural products see: Yasumoto, T.; Oshima, Y.; Yamaguchi, M. Bull. Jpn. Soc. Sci. Fish. 
1978, 44, 1249–1255. 
4 Catterall, W. A.; Risk, M. Mol. Pharmacol. 1981, 19, 345–348. 
5 For isolation see: Satake, M.; Murata, M.; Yasumoto, T. J. Am. Chem. Soc. 1993, 115, 361–362. 
6 Ghiaroni, V.; Sasaki, M.; Fuwa, H.; Rossini, G. P.; Scalera, G.; Yasumoto, T.; Pietra, P.; Bigiani, A. Toxicol. Sci. 
2005, 85, 657–665. 
7 For isolation and initial structural assignment see: Bourdelais, A. J.; Jacocks, H. M.; Wright, J. L. C.; Bigwarfe, P. 
M.; Gaden, D. G. J. Nat. Prod. 2005, 68, 2–6. Total synthesis and revised structure see: Fuwa, H.; Ebine, M.; 
Bourdelais, A. J.; Baden, D. G.; Sasaki, M. J. Am. Chem. Soc. 2006, 128, 16989–16999. 
8 Abraham, W. M.; Bourdelais, A. J.; Sabater, J. R.; Ahmed, A.; Lee, T. A.; Serebriakov, I.; Baden, D. G. Am. J. 
Respir. Crit. Care Med. 2005, 171, 26–34. 
9 For isolation from dinoflagallates see: Yokoyama, A.; Murata, M.; Oshima, Y.; Iwashita, T.; Yasumoto, T. J. 
Biochem. 1988, 104, 184–187. 
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Figure 1. Representative structures and unifying elements of the ladder polyether family (producing 
organism in italics). 
 

 

heterocycles found at their core; heterocycles that are not limited to a single ring size or 

frequency. Ring sizes range from five-membered tetrahydrofurans (THFs) to nine-membered 
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oxonanes, and one can see differences in the frequency at which various ring sizes appear by 

comparing hemibrevetoxin-B (6), and gymnocin A (3), with the first containing two 

tetrahydropyran (THP) rings and the latter nine THPs. Additionally, the medium to larger sized 

rings (i.e. oxepanes, oxocanes, and oxonanes) often possess a degree of unsaturation. The ladder 

array may also be relatively short in length, as in hemibrevetoxin-B (6), or truly colossal, as in 

maitotoxin (5). Despite these befuddling structural differences, closer inspection reveals several 

compelling similarities between the members of this family. First, in every polyether an 

uninterrupted -(O–C–C)-n backbone weaves its way from one end of the ladder to the other. This 

repeating subunit is independent of ring size, substitution, or ladder length (see 3 in Figure 1). 

Second, the ring fusions possess a trans-sin-trans stereochemistry that confers upon these 

molecules a ladder-type topography (see 2 in Figure 1). Consequently, this characteristic is also 

the inspiration for the family’s name. The only known exception to this observation is a single 

ring fusion in maitotoxin which bears a trans-anti-trans relationship between the J and K rings 

(see 5 in Figure 1). Finally, while the ring junction position is most commonly occupied by 

hydrogen, methyl substitution is also observed at nearly 25% of these positions (see 1 in Figure 

1). Interestingly, besides these two privileged substituents, hydrogen and methyl, no other group 

is ever found at a ring junction. 

In order to account for these unifying character traits, specifically the -(O–C–C)-n 

backbone and the stereochemistry about the ring junctions, Nakanishi proposed a biosynthesis in 

which each oxygen heterocycle is formed by ring expansion of an epoxide.10 In short, an 

appropriately decorated polyepoxide such as 7 could undergo a series of epoxide-opening events 

to afford a polyether such as gymnocin A (3) (Figure 2). One quickly recognizes that in such a 

reaction, the alcohol can cyclize to generate two regioisomeric products. 
                                                 
10 Nakanishi, K. Toxicon 1985, 23, 473–479. 
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Figure 2. A proposed biosynthesis of gymnocin A (3) from a polyepoxide precursor (7). 

 

Epoxy alcohol cyclizations that form a larger or a smaller ring are termed endo and exo 

cyclization respectively (Figure 3).11 This epoxide opening terminology, first applied by 

Baldwin, is ingrained in the literature. However, in both of these cases the epoxide’s C–O bond 

that is broken during the course of the reaction lies outside the newly formed ring. Therefore, by 

Baldwin’s nomenclature, both modes of epoxide opening could be considered exo processes. A 

helpful distinction may be to consider the relationship between the epoxide and the newly 

forming ring in the transition state. For cyclizations affording the endo product the rings have a 

fused relationship while for the exo product the rings have a spiro relationship (Figure 3). 

However, because of their familiarity, the terms endo and exo will be used in the present 

discussion. 

 

 

                                                 
11 See: Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 18, 734–736.  
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Figure 3. 

 

 

Interestingly, in Nakanishi’s proposed biosynthesis, all epoxides undergo the endo-mode 

of ring opening. To a first approximation, Coxon and coworkers have modeled this 

transformation with epoxy alcohol 8. However, upon treatment with a Lewis acid, 8 cyclized to 

give predominately the undesired exo product (9) and only minor quantities of the endo product 

(10) (Scheme 1).12 An outstanding challenge, then, in the chemical literature, is the development 

of methods that overcome this inherent selectivity and make possible the endo-selective 

cyclization of epoxy alcohols. 

 

Scheme 1.  

 

 

B. Existing Strategies for Endo-Selective Epoxide Opening  

 As the tetrahydropyran (THP) occurs more frequently than any other sized ring in the 

ladder polyethers, it is not surprising that a variety of methods have been developed to favor its 

formation from epoxy alcohols over the kinetically preferred tetrahydrofuran (THF) product. At 

                                                 
12 Coxon, J. M.; Hartshorn, M. P.; Swallow, W. H. Aust. J. Chem. 1973, 26, 2521–2526. 
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this work’s inception, however, all of the reported methods to achieve endo-selectivity relied on 

either electronically modifying the epoxide or on reagent control.  

Under the category of electronically modified epoxides, Nicolaou has used vinyl 

substitution (11) to stabilize carbocation formation at the endo position. For example, under 

acidic conditions, epoxy alcohol 11 undergoes cyclization to afford the THP-containing product 

(12) in excellent yield and with clean inversion of stereochemistry (Scheme 2).13 In nine steps, 

12 could be elaborated into epoxy alcohol 13, allowing for iterative construction of additional 

THP rings. Jamison has shown that trimethylsilyl (TMS) is also an effective directing group, 

with Lewis acid promoters, enabling the transformation of epoxysilane 14 into THP 15 in good 

yield (Scheme 2).14 In four operations 14 could be homologated into epoxysilane 16, which is 

poised for formation of a second THP ring. In a slightly different vein, instead of attempting to 

 

Scheme 2. Endo-selective methods utilizing electronically modified epoxides (prior to 2007). 

 

                                                 
13 Nicolaou, K. C.; Prasad, C. V. C.; Somers, P. K.; Hwang, C. K. J. Am. Chem. Soc. 1989, 111, 5330–5334. 
14 (a) Heffron, T. P.; Jamison, T. F. Org. Lett. 2003, 5, 2339–2342. (b) Simpson, G. L.; Heffron, T. P.; Merino, E.; 
Jamison, T. F. J. Am. Chem. Soc. 2006, 128, 1056–1057. 
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activate the site of endo cyclization, Mori has placed an inductively deactivating sulfone at the 

exo position.15 Thus, upon treatment with acid, epoxysulfone 17 cyclizes and then subsequently 

rearranges to extrude phenylsulfinic acid, affording ketone 18 (Scheme 2). Also amenable to 

iterative construction, 18 can be elaborated to epoxysulfone 19 in four steps. All of these 

methods have been employed for the construction of THP arrays found in polyether natural 

products.  

 While substitution on an epoxide can bias the regioselectivity of ring opening, 

regiochemical control can also be achieved with reagent control in systems that are not 

electronically biased. For example, Jacobsen has reported that treatment of racemic epoxide 20 

with a CoIII(salen) catalyst leads to kinetic resolution and formation of THP 21 (Scheme 3).16 

Both the cyclized and uncyclized products are obtained in high enantiomeric excess. In a 

biologically inspired approach, Janda and Lerner identified antibody 26D9 as effective for the 

resolution and cyclization of epoxy alcohol 23.17 While promising, the potential of these reagent 

control strategies has yet to be realized in the synthesis of ladder polyethers. 

 

Scheme 3. Reagent control for the endo-selective cyclization and resolution of epoxy alcohols. 

 

  
                                                 
15 Furuta, H.; Takase, T.; Hayashi, H.; Noyori, R.; Mori, Y. Tetrahedron 2003, 59, 9767–9777. 
16 Wu, M. H.; Hansen, K. B.; Jacobsen, E. N. Angew. Chem. Int. Ed. 1999, 38, 2012–2014. 
17 Janda, K. D.; Shevlin, C. G.; Lerner, R. A. Science 1993, 259, 490–493. 
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All of the aforementioned strategies utilize one epoxide to generate one new ring; in 

short, the synthesis of polycyclic systems is iterative. Alternatively, one could employ a cascade 

approach that, in a single operation emulating Nakanishi’s hypothesis, transforms multiple 

epoxides into multiple new rings. Indeed, at the commencement of this work such cascades had 

been reported in the literature, all relying on electronically modified epoxides in order to achieve 

endo-selectivity. The first such example was reported by Murai and coworkers, who utilized a 

methoxymethyl substituted triepoxide (26) and lanthanum Lewis acids in order to construct three 

new THP rings in a single step to afford 27 (Scheme 4).18  While the transformation was low 

yielding, it was a landmark achievement in the nascent field of epoxide-opening cascades. 

 

Scheme 4. Cascade methodologies for the construction of THP subunits (prior to 2007). 

 

 

                                                 
18 Tokiwano, T.; Fujiwara, K.; Murai, A. Synlett 2000, 3, 335–338. 
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Alternatively, McDonald has demonstrated that methyl is also an effective directing group, 

guiding attack of the nucleophile under acidic conditions to the more electrophilic tertiary carbon 

of each epoxide in 29 (Scheme 4).19 The final epoxide is opened intramolecularly by the pendant 

carbamate which, after hydrolysis, affords cyclic carbonate 30.  

While the cascades developed by Murai and McDonald are successful in constructing the 

THP scaffold, the products are decorated in a manner that precludes or severely limits their 

application to the synthesis of ladder polyethers. No known ladder polyether contains 

methoxymethyl substitution at ring junctions, and while methyl is the only non-hydrogen 

substituent, it does not occur with the ubiquity necessary to retain endo-regioselectivity in Lewis 

acid-promoted cascades. As one solution to this problem, Jamison reported that cascades could 

be achieved utilizing “disappearing” trimethylsilyl directing groups (31) (Scheme 4).20 After 

performing its function as a directing group, the trimethylsilyl is protiodesylated under the 

reaction conditions affording the all hydrogen-substituted THP tetrad (32), a signature subunit of 

the ladder polyethers. Because of the protiodesylation step, at present only hydrogen can be 

installed at the ring junction position, and from the perspective of atom economy, a significant 

loss of mass occurs in this transformation. Furthermore, while 32 represents a characteristic 

subunit of the ladder polyethers, it is not poised for further elaboration, limiting its utility in total 

synthesis. It was clear, then, that a strategy for the rapid and efficient construction of THP 

scaffolds, directly amenable to the total synthesis of ladder polyethers, would be of considerable 

value.  

 

                                                 
19 Bravo, F.; McDonald, F. E.; Neiwert, W. A.; Do, B.; Hardcastle, K. I. Org Lett. 2003, 5, 2123–2126. This cascade 
strategy has also been successfully applied to the formation of polyoxepane systems. In such cases, a methyl 
directing group need only be present on the first and last epoxides of the polyepoxide precursor. For a review see: 
McDonald, F. E.; Tong, R.; Valentine, J. C.; Bravo, F. Pure Appl. Chem. 2007, 79, 281–291.  
20 Simpson, G. L.; Heffron, T. P.; Merino, E.; Jamison, T. F. J. Am. Chem. Soc. 2006, 128, 1056–1057. 
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Results and Discussion 

A. Effect of Relative Stereochemistry on Epoxy Alcohol Cyclizations  

In the course of studying epoxysilane directing groups, an interesting difference was 

noticed between epoxy alcohols 33 and 36, with the latter showing improved selectivity for 

formation of the THP product (Scheme 5).21 In the first case (33), the nucleophile is a primary 

alcohol, whereas in the other case (36) it is a secondary alcohol and attached to a stereogenic 

center on a ring. We were curious, then, to understand how the relative stereochemical 

relationship between the alcohol nucleophile and the epoxide electrophile would affect endo 

selectivity. In order to deconvolute this effect from that of silyl substitution on the epoxide  

 

Scheme 5.  

 

 

(which was previously explored in our laboratory),21 we targeted trans-disubstituted epoxy 

alcohols 39 and 41 (Scheme 6). These diastereomeric epoxy alcohols differ in their 

stereochemistry at C7, and we hypothesized that, if the cyclization occurred through a chair-like 

transition state, then one might observe a measurably different matched and mismatched 

                                                 
21 Heffron, T. P. Ph. D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 2005.  
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reactivity for the two substrates. For the matched case (39) all substituents would be expected to 

reside in pseudo-equatorial positions in the presumed chair-like transition state leading to endo 

cyclization (40) (Figure 4). Alternatively, the diastereomer (41) could represent a mismatched 

case where the ethyl substituent at C7 resides in the pseudo-axial position, disfavoring the chair-

like transition state. Therefore, it may prefer to cyclize by way of a different conformer, leading 

to exo cyclization (42).  

 

Figure 4. Possible reactive conformations of “matched” and “mismatched” substrates. 

 

 

We envisioned a divergent synthesis in which both 39 and 41 could be accessed from 

common intermediate 44 through a lipase resolution (Scheme 6). This alcohol (44) was prepared 

in four steps beginning with addition of vinyl Grignard to isobutyraldehyde, followed by 

conversion to morpholine amide 43 using a modification of the Eschenmoser-Claisen 

rearrangement reported by Trauner.22 Addition of ethyllithium afforded the ethyl ketone, which 

was then reduced to racemic alcohol 44. By carefully controlling the reaction time, a lipase 

resolution of alcohol 44 with Candida antarctica β provided acetate 45 and alcohol 47 in high 

enantiomeric excess. Alcohol 47 was then converted to the acetate to prevent premature  

                                                 
22 Gradl, S.; Kennedy-Smith, J. J.; Kim, J.; Trauner, D. Synlett 2002, 3, 411–414. 
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Scheme 6. 

 

 

cyclization during the subsequent epoxidation. Asymmetric epoxidation, under the conditions 

reported by Shi,23 proceeded in good yield and diastereomeric ratio and was followed by removal 

of the acetate. 

With both the expected matched (39) and expected mismatched (41) epoxy alcohol 

substrates in hand, we investigated their cyclization in a variety of solvents (polar protic, polar 

aprotic, and nonpolar) and with a variety of promoters (Brønsted bases, Lewis and protic acids) 

but in all cases we observed exclusive formation of the undesired THF ring with no evidence of 

endo cyclization to form the larger THP ring (Table 1). Consequently we cannot definitely say if 

a matched and mismatched relationship exists for the two substrates. The fact that we do not 

observe even trace formation of the THP ring, as was observed in Coxon’s system, may be a 

function of branching α to the epoxide. 

                                                 
23 (a) Tu, Y.; Wang, Z-X.; Shi, Y. J. Am. Chem. Soc. 1996, 118, 9806–9807. (b) Wang, Z-X.; Tu, Y., Frohn, M.; Shi, 
Y. J. Org. Chem. 1997, 62, 2328–2329. 
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Table 1. Cyclization of “matched” (39) and “mismatched” (41) epoxy alcohols.  

 

Entry Solvent Promoter (equiv) T (°C) Time 51 : 40 42 : 52 

1 MeOH 
Cs2CO3 (20) 

CsF (20) 60 12 h > 95:5 > 95:5 

2 MeOH NaOH (7) 60 12 h > 95:5 > 95:5 
3 MeOH K2CO3 (7) 60 12 h > 95:5 > 95:5 
4 THF NaOH (7) 23 3 d  > 95:5a  > 95:5a 
5 THF K2CO3 (7) 23 3 d  > 95:5a  > 95:5a 
6 H2O NaOH (7) 60 12 h > 95:5 > 95:5 
7 H2O K2CO3 (7) 60 12 h > 95:5 > 95:5 
8 DMSO KCH2SOCH3 (2.5) 23 2 min > 95:5 > 95:5 
9 CF3CH2OH NaOH (7) 60 12 h > 95:5 > 95:5 

10 CF3CH2OH K2CO3 (7) 60 12 h > 95:5 > 95:5 
11 CH2Cl2 BF3•OEt2 (1) 0 1 h > 95:5 > 95:5 
12 CH2Cl2 CSA (0.5) 23 1 h > 95:5 > 95:5 

(a) Less than 15% conversion 
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to measurably affect the regioselectivity of the epoxide opening. Returning then to our analysis 

of the enhanced endo regioselectivity of the epoxide opening in 36 over 33, we recognized that 

while the nucleophile is at a stereogenic center (as opposed to the acyclic case) in 36 it is also 

attached to an organized molecular scaffold, namely a THP ring. Consequently, we undertook an 

investigation to see if other 6-membered cyclic scaffolds could impart endo-selectivity with 

electronically unbiased epoxides.  
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B. Epoxy Alcohol Cyclizations Directed by 1,3-Dioxane Templates 

 The vast majority of acyclic epoxy alcohols in the form of 8 cyclize to give an undesired 

THF in a variety of promoter and solvent combinations.21 Having observed improved selectivity 

for epoxysilanes in which the cyclizing nucleophile was attached to a preexisting THP ring, 

herein termed a template, we desired to know if endo-selective cyclizations of electronically 

unbiased trans-disubstituted epoxides could be achieved using a 1,3-dioxane template (Figure 5). 

In contrast to THP templates, 1,3-dioxane templates can be cleaved after cyclization, unveiling 

two new sites for subsequent functionalization. The potential for such elaboration is an 

indispensible criterion for any method to be effectively employed in the service of total 

synthesis. 

 

Figure 5. 
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the stereocenter at the C5 and C6 positions of the template could be derived from inexpensive 

and commercially available 2-deoxyribose. This carbohydrate was subjected to a Wittig 

olefination followed by diastereoselective 1,3-protection of the resulting triol under 

thermodynamic conditions to set the final stereocenter on the template, giving 1,3-dioxane 56 in 

good yield and >15:1 dr.24 Next, the alcohol was protected as a silyl ether under standard 

conditions to give a more than a hectogram of 57, a synthetically versatile intermediate (vide 

infra). In order to arrive at the desired model system, we then needed to transform the ethyl ester 

moiety into a methyl group. This was accomplished by a three-step protocol beginning with 

reduction of the ester to the allylic alcohol, formation of the allylic mesylate and displacement 

with lithium triethylborohydride (SuperHydride®). No chromatography was required over these 

three steps, affording the desired olefin (58) in good yield. Shi epoxidation proceeded in 

excellent yield and diastereoselectivity, and finally, removal of the silyl group afforded epoxy 

alcohol 53 in eight steps and 38% overall yield from 2-deoxyribose. 

 

Scheme 7. 

 

 

                                                 
24 For examples of Wittig olefinations on 2-deoxyribose see: (a) Nicolaou, K. C.; Nugiel, D. A.; Couladouros, C.; 
Hwang, C. K. Tetrahedron 1990, 46, 4517–4552. (b) Fuwa, H.; Sasaki, M.; Tachibana, K. Tetrahedron 2001, 57, 
3019–3033. (c) Inoue, M.; Wang, J.; Wang, G-X.; Ogasawara, Y.; Hirama, M. Tetrahedron 2003, 59, 5645–5659.  
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With epoxy alcohol 53 in hand, we were eager to examine the regioselectivity of its 

cyclization relative to those of acyclic epoxy alcohol 8. Previous work demonstrated that 8 

produced a 17:83 mixture of endo:exo products in Cs2CO3 and MeOH. Gratifyingly, the 

benzylidene acetal template of 53 completely reversed this selectivity, affording an 84:16 

mixture of endo:exo products, with THP 54 isolated in 60% yield (Table 2, entry 1). This result 

was the first example, to our knowledge, of an endo-selective cyclization of a templated alcohol 

onto an electronically unbiased epoxide. X-ray crystallographic analysis confirmed that the 

cyclization to form 54 occurred at the desired site of the epoxide and proceeded with clean 

inversion of stereochemistry (Figure 6). Other basic promoters, such as sodium hydroxide at 

ambient temperature, gave comparable selectivity and even higher yields (Table 2, entry 2). The 

use of stronger base at lower temperature was found to be preferable to Cs2CO3 in MeOH at 50  

 

Table 2.  

 

entry solvent promoter (equiv) T (°C) t 54 : 55a yield 54 

1 MeOH Cs2CO3 (5) 50 12 h 84 : 16 60% 
2 MeOH Nach (5) 23 12 h 82 : 18 71% 
3 MeOH imidazole (5) 23 12 h --b -- 
4 MeOH none 23 9 d --b -- 
5 C6H6 CSA (0.5) 23 1 h 65 : 35c 51% 
6 CH2Cl2 none 40 2 d --b -- 
7 CH2Cl2 SiO2 (35)d 40 2 d > 90 : 10 72% 
8 H2O none 23 13 d --b -- 
9 H2O none 60 3 d --c -- 

(a) Determined by 1H NMR. (b) <5% cyclization of 53. (c) 1,3-dioxane cleaved. (d) mg silica 
promoter/mg 53.  
 

HO

Me
O

conditions
O

HO

Me

H

5453

O

O

Ph

H

H
O

O

H

H

H

Ph O

O

H

H
Ph

O

Me

OH

H

55



 50 

°C, as elevated temperatures appear to encourage opening of the epoxide by solvent. Organic 

amine bases gave no appreciable cyclization, and methanol alone behaved similarly (Table 2, 

entries 3-4). Low selectivity was observed with protic acids such as CSA (Table 2, entry 5). 

Reflecting the highly strained nature of the 6,5-fused ring system present in exo product 55, 

acetal cleavage also occurred under these acidic conditions, presumably due to trace water. 

Somewhat unexpectedly, the most selective of all the promoters examined was silica gel (Table 

2, entry 7). Although one previous report in the literature employed silica gel to promote the 

cyclization of epoxysilanes,25 to our knowledge it had never been used as a promoter for 

electronically unmodified epoxides. Consequently, we were interested in studying further the 

utility of silica-promoted epoxide-opening cyclizations (vide infra).  

 

Figure 6. X-Ray crystal structure for 54 (thermal ellipsoids displayed at 50% probability). 

 

 

Shortly after these studies, our lab discovered that a closely related epoxy alcohol (60a), 

containing a THP template instead of a benzylidene acetal, exhibited even higher endo-

selectivity (>10:1 endo:exo) when cyclized in water or aqueous buffers near neutral pH (Figure 

                                                 
25 Adiwidjaja, G.; Flörke, H.; Kirschning, A.; Schaumann, E. Tetrahedron Lett. 1995, 36, 8771–8774. 
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7).26 Additionally, this could be extended to polyepoxide substrates that undergo a cascade of 

ring openings in water as in the reaction of triepoxide 60d to afford THP tetrad 60e. 

 

Figure 7. Endo-selective cyclization and cascade of THP templates in water.  

 

 

Interestingly, very different results were obtained when applying these aqueous 

conditions to the 1,3-dioxane template. Epoxy alcohol 53 was unreactive in water at ambient 

temperature; even after 13 days negligible cyclization was observed and only starting material 

was recovered (Table 1, entry 8). Heating the reaction to 60 °C lead to cleavage of the 

benzylidene acetal, resulting in a triol and a complex mixture of cyclization products (Table 1, 

entry 9). These results clearly demonstrate that changing the template from a THP to a 

benzylidene acetal is a significant perturbation. Indeed, it appears that the optimal 

solvent/promoter combination is intimately connected to the identity of the template. There are 

important differences between the THP and 1,3-dioxane that may account for the latter’s 

tempered reactivity in aqueous media. A benzylidene acetal is conformationally more rigid than 

a THP template. It may be that the increased reactivity of THP templates in water is because the 

                                                 
26 Vilotijevic, I.; Jamison, T. F. Science 2007, 317, 1189–1192. 
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system can achieve a reactive conformer not accessible to the benzylidene acetal. Additionally, 

the 1,3-dioxane template contains an additional ring oxygen that may inductively lower the 

nucleophilicity of the alcohol resulting in a slower rate of cyclization.27 

While studies with 53 were illuminating, three new questions arose which could not be 

answered by this system (Figure 8). These questions were as follows: (1) Would a larger alkyl 

substituent on the epoxide affect selectivity? System 53 possessed a methyl substituent, but could 

equally high endo-selectivity be achieved with a larger alkyl chain? Maintaining good 

regioselectivity with larger substituents is critical for epoxide-opening cascades, as in 60d, where 

the first epoxide undergoing cyclization contains a long alkyl chain bearing one or more 

subsequent epoxides. (2) What would the selectivity be for a “hybrid” template containing a THP 

fused to a 1,3-dioxane? This question is again relevant for epoxide-opening cascades, in which 

an intermediate containing such a hybrid template should be formed after cyclization onto the 

first epoxide. (3) Can a 1,3-dioxane template an endo-selective cascade of two electronically 

unactivated trans-disubstituted epoxides to form two new THP rings?  

To address these questions, three new model systems were required (Figure 8). By 

comparison with 53, cyclization studies of 61 would address the effect of alkyl substitution on 

the first epoxide. The endo-cyclization product of this reaction (62) could be epoxidized to yield 

epoxy alcohol 64, which could then be used to study the behavior of hybrid (i.e., THP/1,3-

dioxane) templates. Finally, if olefin 61 were epoxidized prior to cyclization, diepoxide 67 could 

be generated, allowing one to investigate an epoxide opening cascade initiated by a 1,3-dioxane-

templated alcohol.  

 

                                                 
27 It has been observed that removing the oxygen in the THP template (i.e. using a cyclohexane-templated epoxy 
alcohol) results in a cyclization that is an order of magnitude faster than the THP template in pH = 7 buffer. Byers, J. 
A.; Jamison, T. F. J. Am. Chem. Soc. 2009, 131, Article ASAP, DOI: 10.1021/ja9004909. 
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Figure 8. 

 

 

 Conveniently, all of these model systems could be accessed from common intermediate 

61 which itself was prepared from allylic alcohol 68, an intermediate from the synthesis of the 

previous model system (Scheme 8). Sharpless asymmetric epoxidation of 68 and conversion of 

the alcohol to the iodide set the stage for a copper-mediated displacement with vinyl Grignard.28 

The resulting terminal olefin was then subjected to cross-metathesis with cis-2-butene and the 

Hoveyda-Grubbs catalyst (74). The low 3:1 E:Z selectivity was improved to 10:1 after column 

chromatography with AgNO3-impregnated silica. Removal of the silyl group proceeded 

uneventfully to afford epoxy alcohol 61.  

 

 

 
                                                 
28 Nicolaou, K. C.; Duggan, M. E.; Ladduwahetty, T. Tetrahedron Lett. 1984, 25, 2069–2072. 
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Scheme 8. 

 

 

 To address the question of epoxide substitution, we compared cyclizations of 61 to the 

original system bearing a methyl substituent (53) under representative acidic, basic, and aqueous 

conditions. With Cs2CO3 in MeOH, and when R = Me (53), good selectivity for the endo product 

was observed, but this eroded as the size of R increased to trans-crotyl (61) (Table 3, entry 1).29 

Conversely, under acidic conditions (CSA in CH2Cl2) selectivity was not significantly affected 

upon changing R from Me to trans-crotyl (Table 3, entry 2). It was clear from the low 

regioselectivity of epoxide opening that neither of these promoters would be effective for 

compounds like 61, with 1,3-dioxane templates bearing long alkyl chains. Gratifyingly, silica gel 

still gave high endo-selectivity with epoxy alcohol 61, albeit in low conversion (Table 3, entry 

3). Not surprisingly, epoxy alcohol 61 was equally unreactive as 53 in deionized water at 

ambient temperature (Table 3, entry 4).  

 
                                                 
29 Selectivity erodes further with additional methyl substitution at the endo position (i.e. distal-trisubstituted 
epoxide, see footnote 41.)  
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Table 3. 

 

entry solvent promoter (equiv) T (°C) t 54 : 55 62 : 63  
1 MeOH Cs2CO3 (5) 50 12 h   84 :16   64 : 36 
2 CH2Cl2 CSA (0.5) 23 12 h    65 : 35   62 : 38 
3 CH2Cl2 SiO2 (35)a 40 2 d > 90 : 10 > 90 : 10b 

4 H2O none 23 12 d --c --c 

(a) mg silica promoter/mg epoxy alcohol. (b) 55% conversion. (c) Less than 5% cyclization. 

 

 While silica gel gave the highest endo-selectivity, the conversion needed to be improved 

in order to render the cyclization synthetically useful. We began by optimizing the reaction 

parameters with epoxy alcohol 75. We found that increased promoter loadings led to increased 

conversion (Table 4, entries 1, 2, 5). After 2 days at 40 °C, only 16% conversion was observed 

with 5 mg SiO2/mg 75, while full conversion was observed with 90 mg SiO2/mg 75. 

Interestingly, maximum conversion was achieved after a reaction time of 2 days, shorter reaction 

times gave even lower conversion while longer reaction times gave negligible increases in 

conversion (Table 4, entries 2 and 3). Recalling that our studies of 1,3-dioxane templates in 

water showed these epoxy alcohols to be unreactive, we recognized that silica is hygroscopic and 

wondered if trace water was somehow impeding the conversion. However, this did not appear to 

be the case, as rigorous drying of the promoter did not affect selectivity or conversion (Table 4, 

entries 2 and 4). We also discovered that silicic acid, the monomeric building block of polymeric 

silica gel, promoted the reaction (Table 4, entry 6). Possibly due to the mildly acidic nature of 

silica gel as a promoter, only the major diastereomer of 75 cyclized at 40 °C, allowing for facile 
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removal of the unwanted stereoisomer which was previously inseparable by chromatography. 

Conveniently, microwave heating reduced the reaction time from days to minutes with no  

 

Table 4. 

 

entry solvent promoter 
(mg/mg 75) T (°C) t conversiona 76 : 77 mass 

recovery 
1 CH2Cl2 5 SiO2 40 2 d 16% > 90 : 10 96% 
2 CH2Cl2 35 SiO2 40 2 d 56% > 90 : 10 97% 
3 CH2Cl2 35 SiO2 40 4 d 58% > 90 : 10 96% 
4 CH2Cl2 35 SiO2

b 40 2 d 58% > 90 : 10 96% 
5 CH2Cl2 90 SiO2

b 40 2 d > 95% > 90 : 10 93% 
6 CH2Cl2 35 SiO3H2

b 40 2 d 89% > 90 : 10 99% 
7 CH2Cl2

c 35 SiO3H2
b 125 15 min 90% > 90 : 10 99% 

8 CH2Cl2 none 40 2 d < 5% -- 95% 
9 CH3CN 35 SiO3H2

b 125 15 min 49%    87 : 13 98% 
10 THF 35 SiO3H2

b 125 15 min 31%    88 : 12 98% 
11 EtOAc 35 SiO3H2

b 125 15 min < 5% -- 96% 
(a) Based on major diastereomer. (b) Promoter dried at 140 °C for 12 h prior to use. (c) Identical results 
were obtained using 1,2-dichloroethane in place of dichloromethane.  
 

appreciable drop in yield or selectivity (Table 4, entry 7). A control experiment, conducted in the 

absence of promoter, demonstrated that the cyclization does not proceed to an appreciable extent 

in dichloromethane (Table 4, entry 8). Therefore, we believe that, indeed, the silanol surface of 

the silicon dioxide is the promoting species. 

In order to explore silica promoters in greater detail, we examined the effect of solvent on 

the cyclization and found that nonpolar solvents such as dichloromethane and 1,2-dichloroethane 

gave higher conversion than polar solvents such as acetonitrile, tetrahydrofuran, or ethyl acetate 
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(Table 4, entries 9-11). In order for the cyclization to be promoted by silanol(s), it is plausible 

that the epoxy alcohol must adhere to the surface of the silica. Consequently, Lewis basic 

solvents such as THF and EtOAc may effectively outcompete the substrate for binding to the 

silanol, resulting in lower conversion. As EtOAc contains two Lewis basic sites, it is perhaps not 

surprising that it exhibits the lowest conversion. This hypothesis is supported by UV vis 

measurements of the concentration of 75 in solution both before and after the addition of 

promoter. In dichloromethane, the concentration of 75 in solution drops from 20 mM to 2 mM 

after the addition of SiO3H2, suggesting that the substrate has adsorbed onto the silica (Graph 1, 

a). High conversion is observed in this case. However, the solution concentration of 75 in 

solvents such as acetonitrile and tetrahydrofuran stays constant at 20 mM both before and after 

the addition of SiO3H2, suggesting that the substrate does not interact with the promoter as 

strongly, resulting in low conversion (Graph 1, b).  

The fact that higher promoter loadings are required for complete conversion may be a 

consequence of the number of silanols on the silica with the proper geometry to promote the 

cyclization, perhaps like an enzyme active site. The lower promoter loadings (by mass) of silicic 

acid needed to promote the reaction, relative to silica gel, may reflect a different number of 

promoting silanols that are available to bind the substrate. Additionally, the plateau in conversion 

may be due to product binding to silica, in analogy to product inhibition as seen with some 

enzymes. There is an interesting possibility that our observation of solvent effects could be 

exploited to address this issue of product inhibition. We have observed that Lewis basic solvents 

such as EtOAc and Et2O are effective at ejecting the product from the silica and into solution. 

Perhaps addition of a Lewis basic co-solvent or additive to reactions in dichloromethane could 

aid conversion by displacing the product and allowing another molecule of starting material to 



 58 

bind. One caveat, though, is that the epoxy alcohol must be bound to silica long enough to 

cyclize before being displaced by the Lewis-basic additive.  

 

Graph 1. UV vis absorbance of 75 in (a) dichloromethane and (b) CH3CN before and after addition of 
SiO3H2 promoter, λmax = 254nm. 
 
(a) 

 
 
(b) 
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Having identified optimal conditions for cyclization of the benzylidene acetal template 

onto a single epoxide, we then investigated a hybrid template in which a THP ring is fused to a 

benzylidene acetal. Such a substrate is easily accessed by first cyclizing epoxy alcohol 61 with 

silicic acid, which proceeded in good yield to afford the fused template 62 (Scheme 9). Olefin 62 

was then epoxidized according to the protocol of Shi to give epoxy alcohol 64. 

 

Scheme 9.  

 

 

We had previously observed that the benzylidene acetal template (61) in a mixture of Cs2CO3 

and MeOH exhibited low endo-selectivity (64:36). Interestingly, cyclization of the hybrid 

template (64) under identical conditions revealed a changeover in selectivity, with the exo 

product now predominating (Table 5, entry 1). This selectivity is of the same sense (i.e. exo 

predominates) as the cyclization of THP template 60a, which gave a 27:73 mixture of endo:exo 

products in Cs2CO3 and MeOH. This is not perhaps surprising, as the nucleophile is directly 

attached to the THP ring of the bicycle and may be expected to behave more like a THP 

templated alcohol. Lower selectivity was also observed with CSA in dichloromethane, which 

gave a nearly equal mixture of endo and exo products (Table 5, entry 2). Silica gel showed a 

slight erosion in selectivity but still provided a synthetically useful 82:18 ratio of 65:66 (Table 5, 

entry 3). Perhaps the most convincing evidence that 64 behaves more like a THP than a 1,3-

dioxane system is that 64 cyclizes in water at 60 °C with good endo-selectivity (Table 5, entry 

4). The fact that extensive hydrolysis of the acetal does not occur for 64 may be due to the  
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Table 5. 

 

entry solvent promoter T (°C) t 
conversion 
dioxane 61 

62 : 63 
conversion  
hybrid 64 

65 : 66 

1 MeOH Cs2CO3 50 12 h 100% 64 : 36 100% 37 : 63 
2 CH2Cl2 CSA 23 12 h 100% 62 : 38 100% 56 : 44 
3 CH2Cl2 SiO3H2 40 48 h 95% > 90 : 10 100% 82 : 18 
4 H2O none 60 72 h -- --a 100% 83 : 17 
5 H2O pH = 2.0b 23 72 h -- --a -- --a 
6 H2O pH = 4.0b 23 72 h < 5% -- 44% 78 : 22 
7 H2O pH = 6.0b 23 72 h < 5% -- 27% 79 : 21 
8 H2O pH = 7.0b 23 72 h < 5% -- 23% 83 : 17 
9 H2O pH = 8.0b 23 72 h < 5% -- 22% 84 : 16 

10 H2O pH = 10.0b 23 72 h < 5% -- 32% 64 : 36 
(a) Cleavage of benzylidene acetal resulted in a complex mixture. (b) 1.0 M potassium phosphate buffer. 

 

entropic bias provided by the THP ring of the hybrid, which could promote intramolecular 

trapping of any hemiacetal that is formed during the course of the reaction. Also interesting is 

that the hybrid cyclized in aqueous buffers at ambient temperature (Table 5, entries 5-10), with 

maximum endo selectivity observed near neutral pH, in analogy to studies of 60a. However, in 

contrast to the THP templated 60a, complete conversion was not achieved after three days. It is 

also interesting to note that while one observes the highest conversion in highly acidic and basic 

regimes, these regimes also induce the lowest selectivity. Conversely, near a neutral pH regime, 

conversion is low but selectivity is higher.30  

                                                 
30 Studies of THP 60a in buffer reveal that the pH affording maximum selectivity is the same pH affording the 
lowest conversion. Byers, J. A.; Jamison, T. F. J. Am. Chem. Soc. 2009, 131, Article ASAP, DOI: 
10.1021/ja9004909. 
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 In summary, from these studies we found that silicon dioxide-based promoters were 

uniquely effective for the endo-selective opening of trans-disubstituted epoxides attached to 1,3-

dioxane templates. This promoter works well for epoxides bearing both short and longer alkyl 

substituents. Additionally, synthetically useful selectivities were obtained with this promoter and 

hybrid template 64 in which a THP is fused to a benzylidene acetal. Interestingly, the behavior of 

64 appears to be dominated by the THP template bearing the alcohol nucleophile and not the 

more remote benzylidene acetal. With an eye towards application to total synthesis, 65, the 

product of the cyclization of 64 maps onto rings EF and MN of gymnocin A. Moreover, the 

benzylidene acetal is suitably disposed for installation of the axial methyl group on ring F via 

addition of an appropriate nucleophile (vide infra section D) or for reduction to afford the 

equatorial methyl group on ring N (Figure 9). With these encouraging results, we were eager to 

extend the 1,3-dioxane template to polyepoxide cascades. 

 

Figure 9. 
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C. 1,3-Dioxane Templates in Epoxide Opening Cascades 

The cyclization of epoxy alcohols 61 and 64 model, in an iterative fashion, the cascade of 

diepoxide 67 (Figure 8). We believed that if the cascade for 67 proceeded in the desired “right-

to-left” fashion as drawn (i.e. beginning with attack of the alcohol nucleophile onto the first 

epoxide) it would exhibit selectivity in each step that was analogous to each of the iterative 

cyclizations. In other words, using SiO3H2 as a promoter the first ring should form with >90:10 

endo:exo selectivity and the second with 82:18 endo:exo selectivity. Based on these selectivities, 

one might predict a theoretical yield of 73% for 65.  

Unfortunately, treatment of 67 with SiO3H2 in dichloromethane gave the desired triad 

(65) in only 34% yield, with an additional 17% of exo-product 66 isolated from the reaction. 

Because of this low yield, it is clear then that diepoxide 67 displays selectivity that is not a 

simple combination of the two iterative cyclizations. It was surprising that a significant amount 

of 66 was formed along with 65. One possible explanation for this is that the cascade is not 

occurring exclusively in a “right-to-left” fashion. This manifold may be in competition with a 

“left-to-right” mechanism, one that begins with activation of the epoxide furthest from the 

template by silicic acid, which induces nucleophilic attack by the adjacent epoxide (Scheme 10). 

Because this cyclization is not necessarily template-controlled, one would not expect it to be 

endo-selective. Intramolecular trapping of the resulting epoxonium and loss of a proton would 

lead to 66. Contributing to this competitive pathway may be the tempered nucleophilicy of the 

alcohol on the benzylidene template, which could slow down the desired “right-to-left” mode of 

cascade initiation. We also observed that while promoter loadings of 35mg SiO3H2/mg substrate 

gave complete conversion for systems containing one epoxide, only partial conversion was 

obtained for diepoxide 67. Complete conversion was finally obtained by increasing the promoter 
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loading to 70 mg SiO3H2/mg substrate, again indicating that silica was not a catalytic promoter.  

 

Scheme 10. 

 

 

We also attempted a cascade with a slightly modified substrate (81) in which a benzyl 

ether has been appended to the terminating methyl group of 67. This substrate was easily 

accessed from allylic epoxide 71 in five steps and 46% yield (Scheme 11). Treatment with silicic 

acid gave 82, in which the first epoxide has undergone exo cyclization to form a THF and is  

followed by a second exo cyclization to give an oxetane.31 While previous cascades have never 

afforded oxetanes, it is likely that the electronegative oxygen of the benzyl ether is inductively 

biasing exo opening of the epoxide under these mildly acidic conditions. We also tried a cascade 

of 81 in a pH neutral regime by heating to 50 °C in 1.0 M potassium phosphate buffer at pH = 7 

                                                 
31 Approximately 25% of the remaining mass balance was unreacted starting material and the rest appeared by 1H-
NMR to be a complex mixture of exo-cyclization and epoxide rearrangement products.  
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(Scheme 12).32 Although, consistent with our previous observations of 1,3-dioxane templates, 

even after 7 days, no cyclization was observed. Quantitative recovery of starting material 

reinforces how unreactive the 1,3-dioxane template is in water. 

 

Scheme 11. 

 

Scheme 12. 

 

 

We were not able to achieve endo-selective cascades with trans-disubstituted epoxides 

appended to a 1,3-dioxane template. These results highlight the complexity that arises when 

homologating a system with additional epoxides.33 These studies also bring into focus a key 

difference between 1,3-dioxane templates and their THP analogues, namely the lethargic 

reactivity of 1,3-dioxane templates in aqueous media and the need to develop new promoters to 

                                                 
32 The buffer pH was adjusted to 7.0 at 50 °C, using a pH meter calibrated at 50 °C.  
33 For additional studies of cascades involving trisubstituted epoxides see: Morten, C. J.; Jamison, T. F. J. Am. 
Chem. Soc. 2009, 131, Article ASAP, DOI: 10.1021/ja9025243. 
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affect this transformation. Our observations of silica promoted epoxy alcohol cyclizations 

represent an exciting new frontier for exploration. While a large swath of mechanistic territory 

remains to be charted for these promoters, one could envision silicon dioxide as a starting point 

for developing zeolite catalysts that promote endo-selective polyepoxide cascades. Because 

zeolites contains diverse and tunable functionalities including Lewis acidic metals and Lewis 

basic oxygens, they have the potential to be versatile reagents. Furthermore, because these 

catalysts are macromolecular one may, in principle, also tune the binding properties to 

preferentially activate a structural element such as a template but not an epoxide.  

While an interesting avenue for future investigation, given the current technology 

available to us we perceived the best application of these functionalize templates would be to use 

a benzylidene acetal template for a single cyclization involving a single epoxide. The product, a 

versatile synthetic platform, could then be elaborated into a THP-type template and used for a 

water-promoted polyepoxide cascade for the construction of additional rings.  

 

D. Application to Gymnocin A: Synthesis of HIJK Rings 

Because a serious limitation of the products obtained from epoxide opening cascades in 

the past was their inapplicability to synthesis (due to irremovable directing groups and/or the 

difficulty of subsequent functionalization), we sought to showcase the utility of 1,3-dioxane 

templates by preparing a synthetically versatile fragment of the ladder polyether gymnocin A 

(3).34 Specifically, we targeted THP tetrad 83 corresponding to the HIJK ring system of the 

natural product. This fragment bears two differentiated sites for fragment coupling at each 

terminus, allowing for bidirectional functionalization and extension of the ladder.  

                                                 
34 One total synthesis of 3 has been reported to date: Tsukano, C.; Sasaki, M. J. Am. Chem. Soc. 2003, 125, 14294–
14295.   
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Scheme 13. 

 

 

Retro synthetically, we envisioned the HIJ rings arising via a water promoted cascade of 

triepoxide 84, templated by ring K of the natural product (Scheme 13). The ring K template (85) 

could itself be accessed from diad 76, which had already been prepared via a silicon dioxide-

promoted cyclization of 1,3-dioxane templated epoxy alcohol 75. 

 In order to transform THP 76 into the ring K template, we needed to install an axial 

methyl group at the 3-position. This proved straightforward, given the synthetic flexibility of the 

benzylidene acetal. PMB protection of the secondary alcohol was followed by removal of the 

acetal under standard conditions, unveiling diol 86 (Scheme 14). Next, selective formation of the 

secondary silyl ether35 and alkylation of the primary alcohol afforded methyl ether 87. The 

methyl ether was chosen to serve as an orthogonal protected fragment coupling site following the  

                                                 
35 Koch, G.; Loiseleur, O.; Altmann, K. H. Synlett 2004, 4, 693–697. 
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Scheme 14. 

 

 

epoxide-opening cascade. Deprotection of the secondary alcohol and oxidation with Dess-Martin 

periodinane set the stage for a stereoselective addition of methyl Grignard36 affording 89, ring K 

of gymnocin A. This functionalized ring of the natural product and template for the subsequent 

cascade was accessed from 76 in seven steps and 38% overall yield.  

 With the template in hand, we then needed to append a triepoxide moiety that would be 

transformed into the HIJ rings of the natural product. We planned to use cross-metathesis to 

unite the template with epoxide-bearing olefin 93, itself accessible in six steps and 35% yield 

from known epoxy alcohol 90 (Scheme 15).37 Cognizant of the challenges inherent with 

 

Scheme 15. 

 
                                                 
36 Fuwa, H.; Sasaki, M.; Tachibana, K. Tetrahedron 2001, 57, 3019–3033. 
37 Sabitha, G.; Sudhakar, K.; Reddy, N. M.; Rajkumar, M.; Yadav, J. S. Tetrahedron Lett. 2005, 46, 6567–6570. 
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achieving the cross-metathesis product as opposed to the self-metathesis product of two similar 

olefins, we began with coupling olefins 89 and 93 in the presence of the 2nd generation Hoveyda-

Grubbs catalyst (74) (Scheme 16). As expected, we observed significant quantities of olefin 94, 

the self-metathesis product of olefin 93, being formed but saw no evidence of the desired cross-

metathesis product. Suspecting that the congested steric environment around the PMB ether of 

89 was interfering with the desired reaction,38 this group was removed. Under identical reaction 

conditions diol 85 underwent cross-metathesis with 93 to give 95 in moderate yield and E:Z 

selectivity (Scheme 16). The yield was improved significantly by replacing olefin 93 with an  

 

Scheme 16. 

 

 

                                                 
38 Connon, S. J.; Blechert, S. Angew. Chem. Int. Ed. 2003, 42, 1900–1923. 
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excess of its self-metathesis product 94 (Scheme 16).39 More than 90% of unreacted 94 could be 

recovered and reused. While the cross-metathesis proceeded with moderate E:Z selectivity, the 

olefin isomers were separable. Additionally, because cross-metathesis is under thermodynamic 

control, the undesired Z-olefin could be recycled by isomerization to an equilibrium mixture 

(2.6:1 E:Z) favoring the E-olefin. With this protocol, several hundred milligrams of 95 could be 

prepared, even without resorting to recycling. Finally, protection of alcohol 95 prevented 

premature cyclization during the subsequent Shi epoxidation with ketone 50. This epoxidation 

proceeded in good yield and dr and was followed by removal of the silyl group, affording epoxy 

alcohol 84 (Scheme 16). 

Having convergently assembled triepoxy alcohol 84, we were eager to explore its water-

promoted cascade. Having already seen that changes to the template composition can radically 

affect endo selectivity, it was challenging to predict a priori whether ring K, which bears a 

methoxymethyl substituent at the 2-position as well as a tertiary alcohol and axial methyl group 

at the 3-position, would template the reaction in the desired fashion. Incubation of 84 in H2O at 

60 °C for 5 days followed by acetylation afforded a mixture of the desired tetrad (83) and a 

compound in which rings IJ had formed, but the final epoxide remained intact (Scheme 17). This 

triad (98) intrigued us for two reasons. In previous cascades in water, complete conversion was 

typically observed after 3 days at 60 °C. Second, we had not previously isolated an epoxide-

containing intermediate en route to the final cascade product. The structure of triad (98) also 

suggests that the cascade is proceeding in the desired “right-to-left” direction. The attenuated 

reactivity of the remaining epoxide is likely due to the presence of the electron-withdrawing 

oxygen atom in the benzyl ether which could destabilize formation of positive charge at the site 

                                                 
39 (a) Blackwell, H. E.; O’Leary, D. J.; Chatterjee, A. K.; Washenfelder, R. A.; Bussmann, D. A.; Grubbs, R. H. J. 
Am. Chem. Soc. 2000, 122, 58–71. (b) O’Leary, D. J.; Blackwell, H. E.; Washenfelder, R. A.; Grubbs, R. H. 
Tetrahedron Lett. 1998, 39, 7427–7430. 
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of epoxide opening, a feature that may find use in future polyepoxide cascades. A higher 

temperature and longer reaction time (80 °C, 9 d) overcame this stalled cascade and, after 

acetylation, afforded 83, the desired HIJK fragment of gymnocin A in 35% yield, corresponding 

to approximately 70% yield per newly formed ring. 

 

Scheme 17. 

 

 

 In summary, we have employed two different functionalized templates for the synthesis 

of the HIJK rings of gymnocin A. The first template (the 1,3-dioxane of 75) provided high endo-

selectivity in the presence of silicon dioxide-based promoters. The product of this cyclization 

(76), a synthetically versatile intermediate, was facilely elaborated into a second template (ring K 

of gymnocin A), enabling a water-promoted cascade of triepoxide 84 into tetrad 83. Noteworthy 

is that polyether fragment 83 enjoys a total of 4 differentiated functional groups, 2 at each end, 

thus allowing for elaboration of both termini and significantly increasing the synthetic utility of 

products obtained from epoxide-opening cascades.  

 

E. Application to Gambierol: Synthesis of FG Rings 

 Having yet to identify an effective promoter for cascades of 1,3-dioxanes bearing two 

simple trans-disubstituted epoxides (vide supra, Section C), we thought that endo-selectivity 
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directing groups such as methyl (in the context of polyepoxide cascades)19 and vinyl (in the 

context of cyclizations onto a single epoxide)13 have been reported in the literature. With acidic 

promoters, these directing groups create a considerable electronic preference for opening of the 

epoxide at the carbon to which they are attached. While the relative paucity of methyl group 

substitution in the ladder polyether natural products precludes the use of such directing groups as 

a general solution for epoxide opening cascades, a judicious application can be advantageous. 

With this in mind, we sought to utilize a cascade of activated epoxides to assemble rapidly the 

FG ring system of gambierol (2).40  

 

Scheme 18.  

 

 

Retrosynthetically, we envisioned rings FG (99) arising from an acid-promoted cascade 

of diepoxide 100, which features a distally41 trisubstituted epoxide closest to the template 

                                                 
40 Three total syntheses of 2 have been reported to date: (a) Fuwa, H.; Kainuma, N.; Tachibana, K.; Sasaki, M. J. 
Am. Chem. Soc. 2002, 124, 14983–14992. (b) Kadota, I.; Takamura, H.; Sato, K.; Ohno, A.; Matsuda, K.; Satake, 
M.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 11893–11899. (c) Johnson, H. W. B.; Majumder, U.; Rainier, J. D. 
J. Am. Chem. Soc. 2005, 127, 848–849 and references therein.  
41 The terms “proximally” and “distally” trisubstituted epoxides refers to the position of a substituent with respect to 
the template. For example, trisubstituted epoxides bearing a methyl at the carbon closest to the template are 
proximally trisubstituted, while those bearing a methyl at the carbon further from the template are distally 
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followed by a trans-disubstituted epoxide bearing an allyl substituent (Scheme 18). It is worth 

noting that while previous cascades employed a benzylidene acetal template, this cascade 

employs a methylene acetal. Being unable to predict the optimal acidic promoter for this cascade, 

we chose this template because it would be robust under a variety of conditions. In turn, 

diepoxide 100 could be accessed from 101, which bears striking resemblance to a previously 

prepared intermediate (57) and could ultimately arise from 2-deoxyribose via an analogous 

sequence of transformations.  

Treatment of 2-deoxyribose with the appropriate stabilized phosphor and protection of 

the triol under conditions to favor formation of the thermodynamically more stable 1,3-para-

methoxybenzylidene acetal was followed by protection of the secondary alcohol as a silyl ether 

(Scheme 19). In a two-step protocol, the PMB acetal was converted to a methylene acetal.42 

Subsequent reduction of the ester and epoxidation of the resulting allylic alcohol proceeded in 

good yield and diastereoselectivity. Conversion of alcohol 103 to the iodide and displacement 

with an alkenyl cuprate reagent set the stage for homologation into the diepoxide. This was 

accomplished by a selective cross-metathesis of olefin 104 with acrolein, which proceeded in 

high yield and E:Z selectivity. In a straightforward fashion, this enal was elaborated into the 

desired vinyl epoxide followed by removal of the silyl group in good yield to afford 100. 

 

                                                 
trisubstituted. Those without an additional substituent are referred to as trans-disubstituted. Morten, C. J.; Jamison, 
T. F. J. Am. Chem. Soc. 2009, 131, Article ASAP, DOI: 10.1021/ja9025243. 
 

 
 

42 It is also reasonable to assume that conversion of PMB acetal 102 to methylene acetal 101 could be accomplished 
in a single step with an acid catalyst. We chose a two-step protocol to better explore different conditions for 
installation of the methylene acetal via the diol intermediate.  
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Scheme 19. 

 

 

 With the desired diepoxy alcohol 100 in hand, we began by promoting its cyclization 

with a Lewis acid (BF3•OEt2) at low temperature (Table 10, entry 1) which gave the desired 

product in 35% yield. Recognizing that because of the highly activated nature of these epoxides, 

Wagner-Meerwein rearrangement to the ketone could be a competing side reaction, we also 

investigated a milder Brønsted acid, CSA. Gratifyingly, the desired triad was obtained in 57% 

yield after 15 hours.43 Stopping the reaction before this time, for example at 9 hours, showed 

                                                 
43 Preliminary analysis indicates that the remaining mass balance is a mixture of products one of which appears to 
involve exo opening of the first epoxide followed by endo opening of the vinyl epoxide to afford two new THF 
rings. Additionally, there is 1H-NMR evidence of endo cyclization of the first epoxide followed by rearrangement of 
the vinyl epoxide to an allylic ketone.  
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Table 10. 

 

entry solvent promoter (equiv) T (°C) yield 99 
1 CH2Cl2 BF3•OEt2 (0.25) -78 35% (40%)a 

2 CH2Cl2 CSA (0.25) 23 57% (65%)a 

3 H2O none 60 22% (25%)a,b 

      (a) Yield adjusted for dr of epoxide. (b) Yield based on NMR.  

 

incomplete conversion. Deionized water was not an effective promoter for this cascade, 

affording the desired product in low yield. Notably, however, product formation is observed in 

water with this methylene acetal template, in contrast to studies with benzylidene acetal 

templates. We believe this is due to (1) the methylene acetal’s increased stability towards 

hydrolysis and (2) the increased electrophilicity of the epoxides (arising from electronic 

activating groups) rendering attack by the relatively poorly nucleophilic 1,3-dioxane-templated 

alcohol feasible. We cannot rule out, however, that in water at elevated temperature some 

product may be formed via an acid-promoted mechanism. If acid activation is occurring, the 
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overall yield could be low because the desired intramolecular reaction is outcompeted by 

intermolecular opening of the epoxide by solvent. 

 

Scheme 20. Proposed fragment coupling and methyl installation towards gambierol (2).  

 

 

Having assembled the FG THP rings of gambierol, remaining is installation of the final 

methyl group on ring F. Late stage installation of this methyl group could be envisioned by first 

coupling rings ABCD and FGH via a Wittig olefination. Next, formation of a mixed thioketal on 

ring F and treatment with m-CPBA followed by trimethylaluminum would facilitate ring closure 

and installation of the axial methyl substituent (Scheme 20). Work towards the construction of 
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ring H as well as the ABCD ring system is ongoing in our laboratory.44  

 

Conclusion 

 The endo-selective cyclization of alcohols onto electronically unbiased epoxides provides 

a direct route for constructing ladder polyether structures. Additionally, strategies to transform 

multiple epoxides into multiple new rings have appealing parallels to the proposed biogenesis of 

these natural products. Mindful that any method for constructing polyethers should yield 

products that are themselves synthetically relevant intermediates, we investigated 1,3-dioxanes 

and found that they templated the cyclization of an alcohol onto an unbiased epoxide. Critical for 

high endo-selectivity was the use of silicon-dioxide based promoters. Taking advantage of the 

synthetic handles offered by the benzylidene acetal template, the newly formed THP ring was 

then used to template a water promoted cascade, constructing the HIJK rings of gymnocin A. We 

have also achieved cascades of methylene acetal templates with electronically activated epoxides 

to construct the FG rings of gambierol. Use of these functionalized templates and the products 

derived from them sets the stage for the convergent total synthesis of ladder polyether natural 

products.  

 

                                                 
44 A synthesis of the ABCD ring system and fragment coupling was proposed by NIH postdoctoral fellow Dr. Denise 
Colby. 



 

 77 

Experimental Section 

 

General Information.  Unless otherwise noted all reactions were performed under an oxygen-

free atmosphere of argon with rigorous exclusion of moisture from reagents and glassware. 

Except where noted, dichloromethane was either distilled from calcium hydride or purified via 

an SG Water USA solvent column system. Tetrahydrofuran and Et2O were either distilled from a 

blue solution of benzophenone ketyl or purified via an SG Water USA solvent column system. 

Triethylamine was purified via an SG Water USA solvent column system. Deionized water was 

used without any additional purification. Chiral ketone 50, used in Shi asymmetric epoxidation 

was prepared by oxidation1 of the corresponding alcohol. The alcohol was obtained through 

contract synthesis. 

 Analytical thin layer chromatography (TLC) was performed using EM Science silica gel 

60 F254 plates.  The developed chromatogram was analyzed by UV lamp (254 nm) and ethanolic 

phosphomolybdic acid (PMA), basic potassium permanganate (KMnO4), or cerium ammonium 

molybdate (CAM). Liquid chromatography was performed using a forced flow (flash 

chromatography) of the indicated solvent system on Silicycle Silica Gel (230-400 mesh). 1H and 

13C spectra were recorded in CDCl3, unless otherwise noted, on a Bruker Avance 400 MHz 

spectrometer, or a Bruker Avance 600 MHz spectrometer.  Chemical shifts in 1H NMR spectra 

are reported in parts per million (ppm) on the δ scale from the center peak of an internal standard 

of either residual chloroform (7.27 ppm), dichloromethane (5.32 ppm), methanol (4.78 and 3.31 

ppm), or benzene (7.16 ppm). Data are reported as follows:  chemical shift, multiplicity (s = 

singlet, d = doublet, t = triplet, q = quartet, m = multiplet, app = apparent, and br = broad), 

                                                 
1 Mio, Shigeru, Kumagawa, Y., Sugai, S. Tetrahedron Lett. 1990, 47, 2133–2144. 
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coupling constant in hertz (Hz), and integration. Chemical shifts of 13C NMR spectra are 

reported in ppm from the central peak of CDCl3 (77.23 ppm), dichloromethane (54.00 ppm), 

methanol (49.15 ppm), or benzene (128.39 ppm). 

 

 

 

 

4-methylpent-1-en-3-ol (S1): To a solution of isobutryaldehyde (15.2 mL, 167 mmol) in THF 

(130 mL) at –78 °C was added vinyl magnesium bromide (1M in THF, 200 mL, 200 mmol) 

dropwise. The reaction was stirred at 0 °C for 1 h then slowly quenched with 1M HCl (150 mL). 

The mixture was extracted with Et2O (5 x 100 mL), the combined organic extracts were dried 

with MgSO4, and concentrated in vacuo. The oil was purified by column chromatography (10% 

EtOAc in hexane) to afford S1 as a colorless oil (14.1g, 84%) which was spectroscopically 

identical to the literature reported compound.2   

 

 

 

(E)-6-methyl-1-morpholinohept-4-en-1-one (43): Allylic alcohol S1 (3.9 g, 39 mmol), 1,1-

bismorpholinoethylene (8.4 g, 42 mmol), propanoic acid (100 µL, 1.3 mmol), and xylene (100 
                                                 
2 Makosza, Mieczyslaw; Urbanska, Natalia; Chesnokov, Alexey A. Tetrahedron Lett. 2003, 44; 1473–1476. 
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mL) were combined in a sealed vessel and heated to 150 °C for 12 h. The solvent was removed 

in vacuo and the crude material was purified by column chromatography (gradient: 20% to 40% 

EtOAc in hexanes) to afford 43 as a colorless oil (4.6 g, 56%). Product was visualized with 

KMnO4 stain, Rf = 0.53 (40% EtOAc in hexanes); 1H NMR (400 MHz, CDCl3) δ: 0.91–0.93 (d, 

J = 6.8 Hz, 6H), 2.15–2.24 (octet, J = 6.7 Hz, 1H), 2.25–2.36 (m, 4H), 3.42–3.45 (dd, J = 5.1, 4.6 

Hz, 2H), 3.56–3.64 (m, 6H), 5.31–5.43 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: 22.6, 28.3, 

31.0, 33.3, 41.9, 46.1, 66.7, 67.0, 125.5, 138.8, 171.4; IR (thin film NaCl): 2959, 2859, 1650, 

1432, 1382, 1361, 1329, 1299, 1272, 1234, 1196, 1116, 1069, 1026, 971, 849 cm-1; HR-MS 

(ESI) Calcd for C12H21NO2 (M+Na)+ 212.1645, found 212.1652. 

 

 
 

(E)-8-methylnon-6-en-3-ol (44): A solution of morpholine amide 43 (4g, 19 mmol) in THF (140 

mL) was cooled to –78 °C. To this solution was added ethyl lithium (0.5M solution 9:1 

benzene:cyclohexane, 57 mL, 29 mmol) slowly over 20 min. The reaction was warmed to 

ambient temperature and stirred for 1 h. The reaction was quenched at 0 °C with 100 mL 

aqueous sat. NH4Cl. The aqueous layer was extracted with Et2O (5 x 100 mL), the combined 

organic extracts were dried with MgSO4, concentrated in vacuo and the resulting ketone was 

used without further purification due to its volatility.  

 The crude ketone was dissolved in MeOH (150 mL) and cooled to 0 °C. To this solution 

was added NaBH4 (1.1g , 29 mmol) in portions and the reaction was stirred at ambient 

temperature for 30 min. The solvent was removed in vacuo, the crude material was redissolved 

in Et2O (100 mL) and the reaction was quenched with 1M HCl (50 mL). The aqueous layer was 

OH

44
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extracted with Et2O (5 x 75 mL), the combined organic extracts dried with MgSO4, and 

concentrated in vacuo. The crude material was purified by column chromatography (20% EtOAc 

in hexanes) to afford 44 as a colorless oil (2.47 g, 83% over 2 steps). Product was visualized with 

KMnO4 stain, Rf = 0.21 (20% EtOAc in hexanes); 1H NMR (400 MHz, CDCl3) δ: 0.90–0.91 (t, J 

= 7.5 Hz, 3H), 0.91–0.95 (d, J = 6.8 Hz, 6H), 1.36–1.56 (m, 4H), 1.82 (s, 1H), 1.99–2.16 (m, 

2H), 2.17–2.26 (octet, J = 6.7 Hz, 1H), 3.48–3.54 (dddd, J = 9.1, 7.5, 4.7, 4.4 Hz, 1H), 5.32–5.44 

(m, 2H); 13C NMR (100 MHz, CDCl3) δ: 10.0, 22.7, 22.8, 29.1, 30.3, 31.1, 36.8, 73.1, 126.9, 

138.3; IR (thin film NaCl): 3343, 2961, 2871, 1464, 1381, 1362, 1171, 1118, 1029, 968, 875 cm-

1; HR-MS (ESI) Calcd for C10H20O (M+Na)+ 179.1406, found 149.1051. 

 

 

 

(R,E)-8-methylnon-6-en-3-yl acetate (45): To a solution of 44 (1.9g, 12 mmol) in hexane (12 

mL) was added vinyl acetate (1.1 mL, 12 mmol), powdered 4Å molecular sieves (500 mg), and 

resin-immobilized Candida antarctica β lipase (1.2 g). The reaction was stirred at ambient 

temperature for 15 min and then filtered through Celite, which was subsequently washed with 

Et2O. The solvent was removed in vacuo and the crude material was purified by column 

chromatography (10% EtOAc in hexanes) to afford acetate 45 (600 mg, 25%) as a colorless oil. 

Product was visualized with CAM stain, Rf = 0.54 (20% EtOAc in hexane); 1H NMR (400 MHz, 

CDCl3) δ: 0.86–0.89 (t, J = 7.4 Hz, 3H), 0.94–0.96 (d, J = 6.8 Hz, 6H), 1.52–1.61 (m, 4H), 1.94–

2.01 (m, 2H), 2.04 (s, 3H), 2.17–2.26 (octet, J = 6.6 Hz, 1H), 4.78–4.84 (dddd, J = 7.0, 7.0, 5.4, 

5.4 Hz, 1H), 5.28–5.41 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: 9.7, 21.4, 22.8, 27.1, 28.6, 31.2, 

OAc

45
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33.7, 75.2, 126.2, 138.4, 171.1; IR (thin film NaCl): 2964, 2870, 1740, 1464, 1372, 1244, 1109, 

1084, 1019, 969 cm-1; [α]23
D   = 6.5 (c = 0.065, CHCl3); HR-MS (ESI) Calcd for C12H22O2 

(M+Na)+ 221.1512, found 221.1522. Enantiomeric excess (98%) was established by chiral GC 

(β-Ph column, H2 flow 1 mL/min, isothermal 95 °C) tR[(R)-45] = 47.1 min, tR[(S)-48] = 48.9 

min.  

 

 

 
(R)-1-((2R,3R)-3-isopropyloxiran-2-yl)pentan-3-yl acetate (46): To a solution of olefin 45 

(207 mg, 1.04 mmol) in 1:2 CH3CN:DMM (43 mL) was added a solution of 0.05M Na2B4O7•10 

H2O in 4.0 x 10-4 M Na2(EDTA) (28 mL), and nBuNHSO4 (452 mg, 1.04 mmol). The solution 

was cooled to 0 °C with rapid stirring.  Then chiral ketone 50 (343 mg, 1.04 mmol) was added 

and immediately, a 0.89 M solution of K2CO3 (11.9 mL) and a solution of Oxone® (1.64 g, 2.08 

mmol) in 4.0 x 10-4 M Na2(EDTA) (13.3 mL) were added simultaneously over 20 min via 

syringe pump. The reaction was stirred at 0 °C for an additional 30 min then diluted with H2O 

(50 mL). The aqueous layer was extracted with EtOAc (8 x 50 mL), the combined organic 

extracts were dried over MgSO4 and concentrated in vacuo. The crude material was purified by 

column chromatography (10% EtOAc in hexanes) to afford epoxide 46 (175 mg, 79%, 9:1 dr by 

1H-NMR) as a colorless oil. Product was visualized with CAM stain, Rf = 0.30 (20% EtOAc in 

hexanes; 1H NMR (400 MHz, CDCl3) δ: 0.84–0.88 (t, J = 7.4 Hz, 3H), 0.91–0.93 (d, J = 6.9 Hz, 

3H), 0.97–0.99 (d, J = 6.7 Hz, 3H), 1.42–1.71 (m, 7H), 2.02 (s, 3H), 2.41–2.44 (dd, J = 7.0, 2.3 

Hz, 1H), 2.67–2.70 (ddd, J = 6.2, 5.2, 2.3 Hz, 1H), 4.76–4.82 (m, 1H); 13C NMR (100 MHz, 

CDCl3) δ: 9.7, 18.5, 19.2, 21.3, 27.1, 28.4, 30.2, 30.6, 57.5, 64.4, 75.1, 171.0; IR (thin film 
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NaCl): 2965, 2875, 1737, 1463, 1373, 1244, 1117, 1023, 952, 893 cm-1; [α]23
D   = 22.6 (c = 0.018, 

CHCl3); HR-MS (ESI) Calcd for C12H22O3 (M+Na)+ 237.1461, found 237.1456. 

 

 

 
 

(R)-1-((2R,3R)-3-isopropyloxiran-2-yl)pentan-3-ol (39): To a solution of acetate 46 (100 mg, 

0.46 mmol) in THF (4.2 mL), MeOH (1.8 mL), and H2O (0.6 mL) at 0 °C was added lithium 

hydroxide (28 mg, 0.92 mmol). The reaction was stirred at 0 °C for 2 h and then the solvent was 

removed in vacuo. The crude material was purified by column chromatography (gradient: 10% to 

20% EtOAc in hexanes to afford 39 as a colorless oil (64 mg, 81%). Product was visualized with 

CAM stain, Rf = 0.25 (30% EtOAc in hexanes; 1H NMR (400 MHz, C6D6) δ: 0.78–0.79 (d, J = 

6.9 Hz, 3H), 0.90–0.94 (m, 6H), 1.31–1.55 (m, 6H), 1.60–1.66 (m, 1H), 2.28–2.30 (dd, J = 6.9, 

2.2 Hz, 1H), 2.52–2.55 (ddd, J = 6.4, 4.8, 2.3 Hz, 1H), 3.39–3.45 (m, 1H); 13C NMR (100 MHz, 

C6D6) δ: 10.7, 18.8, 19.5, 29.2, 31.0, 31.1, 34.3, 58.1, 64.3, 72.6; IR (thin film NaCl): 3427, 

2962, 2874, 1463, 1384, 1366, 1281, 1249, 1198, 1123, 1028, 940, 892, 782, 731 cm-1; [α]23
D   = 

8.6 (c = 0.024, CHCl3); HR-MS (ESI) Calcd for C10H20O2 (M+Na)+ 195.1356, found 195.1362. 

 

 

 
(S,E)-8-methylnon-6-en-3-ol (47): To a solution of 44 (1.9 g, 12 mmol) in hexane (12 mL) was 

added vinyl acetate (1.1 mL, 12 mmol), powdered 4Å molecular sieves (500 mg), and resin 
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immobilized Candida antarctica β lipase (1.2 g). The reaction was stirred at ambient 

temperature for 135 min and then filtered through Celite, which was subsequently washed with 

Et2O. The solvent was removed in vacuo and the crude material was purified by column 

chromatography (20% EtOAc in hexanes to afford alcohol 47 (631 mg, 33%) as a colorless oil. 

Product was visualized with KMnO4 stain, Rf = 0.21 (20% EtOAc in hexanes; 1H NMR (400 

MHz, CDCl3) δ: 0.90–0.91 (t, J = 7.5 Hz, 3H), 0.91–0.95 (d, J = 6.8 Hz, 6H), 1.36–1.56 (m, 4H), 

1.82 (s, 1H), 1.99–2.16 (m, 2H), 2.17–2.26 (octet, J = 6.7 Hz, 1H), 3.48–3.54 (dddd, J = 9.1, 7.5, 

4.7, 4.4 Hz, 1H), 5.32–5.44 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: 10.0, 22.7, 22.8, 29.1, 30.3, 

31.1, 36.8, 73.1, 126.9, 138.3; IR (thin film NaCl): 3343, 2961, 2871, 1464, 1381, 1362, 1171, 

1118, 1029, 968, 875 cm-1; [α]23
D   = 9.4 (c = 0.030, CHCl3); HR-MS (ESI) Calcd for C10H20O 

(M+Na)+ 179.1406, found 149.1045. Enantiomeric excess was measured of acetate derivative 48. 

 

 

 

(S,E)-8-methylnon-6-en-3-yl acetate (48): To a solution of alcohol 47 (416 mg, 2.66 mmol) in 

CH2Cl2 (3 mL) was added Et3N (1.48 mL, 10.6 mmol), acetic anhydride (0.50 mL, 5.32 mmol) 

and DMAP (33 mg, 0.26 mmol). The reaction was stirred at ambient temperature for 3 h, diluted 

with H2O (3 mL) and extracted with EtOAc (3 x 8 mL). The solvent was removed in vacuo and 

the crude material was purified by column chromatography (10% EtOAc in hexanes) to afford 48 

as a colorless oil (453 mg, 86%). Product was visualized with CAM stain, Rf = 0.54 (20% EtOAc 

in hexanes; 1H NMR (400 MHz, CDCl3) δ: 0.86–0.89 (t, J = 7.4 Hz, 3H), 0.94–0.96 (d, J = 6.8 

Hz, 6H), 1.52–1.61 (m, 4H), 1.94–2.01 (m, 2H), 2.04 (s, 3H), 2.17–2.26 (octet, J = 6.6 Hz, 1H), 
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4.78–4.84 (dddd, J = 7.0, 7.0, 5.4, 5.4 Hz, 1H), 5.28–5.41 (m, 2H); 13C NMR (100 MHz, CDCl3) 

δ: 9.7, 21.4, 22.8, 27.1, 28.6, 31.2, 33.7, 75.2, 126.2, 138.4, 171.1; IR (thin film NaCl): 2964, 

2870, 1740, 1464, 1372, 1244, 1109, 1084, 1019, 969 cm-1; [α]23
D   = –6.4 (c = 0.076, CHCl3); 

HR-MS (ESI) Calcd for C12H22O2 (M+Na)+ 221.1512, found 221.1529. Enantiomeric excess 

(99%) was established by chiral GC (β-Ph column, H2 flow 1 mL/min, isothermal 95 °C) tR[(R)-

45] = 47.1 min, tR[(S)-48] = 48.9 min. 

 

 

 

(S)-1-((2R,3R)-3-isopropyloxiran-2-yl)pentan-3-yl acetate (49): To a solution of olefin 45 

(437 mg, 2.2 mmol) in 1:2 CH3CN:DMM (71 mL) was added a solution of 0.05M Na2B4O7•10 

H2O in 4.0 x 10-4 M Na2(EDTA) (47 mL), and n-BuNHSO4 (747 mg, 2.2 mmol). The solution 

was cooled to 0 °C with rapid stirring.  Then chiral ketone 50 (568 mg, 2.2 mmol) was added and 

immediately, a 0.89 M solution of K2CO3 (20 mL) and a solution of Oxone® (2.70 g, 4.4 mmol) 

in 4.0 x 10-4 M Na2(EDTA) (22 mL) were added simultaneously over 20 min via syringe pump. 

The reaction was stirred at 0 °C for an additional 30 min then diluted with H2O (100 mL). The 

aqueous lyaer was extracted with EtOAc (8 x 75 mL), the combined organic extracts were dried 

over MgSO4, and concentrated in vacuo. The crude material was purified by column 

chromatography (10% EtOAc in hexanes to afford epoxide 49 (372 mg, 79%, 9:1 dr by 1H-

NMR) as a colorless oil. Product was visualized with CAM stain, Rf = 0.32 (20% EtOAc in 

hexanes; 1H NMR (400 MHz, CDCl3) δ: 0.84–0.88 (t, J = 7.5 Hz, 3H), 0.91–0.93 (d, J = 6.8 Hz, 

3H), 0.96–0.98 (d, J = 6.7 Hz, 3H), 1.43–1.66 (m, 7H), 2.01 (s, 3H), 2.41–2.44 (dd, J = 7.0, 2.0 
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Hz, 1H), 2.68–2.71 (td, J = 5.6, 2.0 Hz, 1H), 4.80–4.86 (pentet, J = 6.3 Hz, 1H); 13C NMR (100 

MHz, CDCl3) δ: 9.7, 18.5, 19.2, 21.3, 27.2, 28.1, 30.0, 30.6, 57.3, 64.4, 74.8, 171.0; IR (thin film 

NaCl): 2965, 2875, 1737, 1463, 1372, 1244, 1116, 1022, 952, 894, 779 cm-1; [α]23
D   = 3.2 (c = 

0.070, CHCl3); HR-MS (ESI) Calcd for C12H22O3 (M+Na)+ 237.1461, found 237.1464. 

 

 

 

(S)-1-((2R,3R)-3-isopropyloxiran-2-yl)pentan-3-ol (41): To a solution of acetate 49 (311 mg, 

1.45 mmol) in THF (30 mL), MeOH (13 mL), and H2O (8.7 mL) at 0 °C was added lithium 

hydroxide (104 mg, 4.35 mmol). The reaction was stirred at 0 °C for 2 h and then the solvent 

was removed in vacuo. The crude material was purified by column chromatography (gradient: 

10% to 20% EtOAc in hexanes to afford 41 as a colorless oil (204 mg, 82%). Product was 

visualized with CAM stain, Rf = 0.23 (30% EtOAc in hexanes; 1H NMR (400 MHz, C6D6) δ: 

0.79–0.81 (d, J = 6.9 Hz, 3H), 0.90–0.92 (t, J = 7.5 Hz, 3H), 0.93–0.95 (d, J = 6.7 Hz, 3H), 1.32–

1.40 (m, 3H), 1.41–1.47 (m, 2H), 1.53–1.58 (m, 2H), 2.29 (br s, 1H), 2.33–2.35 (dd, J = 6.9, 2.2 

Hz, 1H), 2.57–2.60 (td, J = 5.6, 2.2 Hz, 1H), 3.37–3.40 (pentet, J = 6.0 Hz, 1H); 13C NMR (100 

MHz, C6D6) δ: 10.6, 18.8, 19.5, 29.4, 31.1, 31.2, 34.0, 57.9, 64.7, 72.9; IR (thin film NaCl): 

3422, 2962, 1463, 1384, 1366, 1282, 1253, 1199, 1122, 1025, 935, 892 cm-1; [α]23
D   = 37.8 (c = 

0.043, CHCl3); HR-MS (ESI) Calcd for C10H20O2 (M+Na)+ 195.1356, found 195.1364. 
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(R)-1-((2S,5R)-5-ethyltetrahydrofuran-2-yl)-2-methylpropan-1-ol (51):  
 
Representative Procedure: To a mixture of epoxy alcohol 39 (10 mg, 0.058 mmol) in MeOH 

(0.50 mL) was added NaOH (16 mg, 0.41 mmol). The reaction was heated to 60 °C for 12 h, 

then cooled to ambient temperature. The reaction was diluted with Et2O (5 mL) and washed with 

sat. NH4Cl (3 mL). The organic layer was dried over MgSO4 and the solvent was removed in 

vacuo. The crude material was purified by column chromatography (20% EtOAc in hexanes to 

afford 51 (8.5 mg, 85%) as a colorless oil. Product was visualized with CAM stain, Rf = 0.31 

(20% EtOAc in hexanes; 1H NMR (400 MHz, CDCl3) δ: 0.88–0.89 (d, J = 6.8 Hz, 3H), 0.90–

0.94 (t, J = 7.4 Hz, 3H), 1.02–1.03 (d, J = 6.6 Hz, 3H), 1.41–1.55 (m, 2H), 1.57–1.69 (m, 2H), 

1.82–1.94 (m, 2H), 2.00–2.09 (m, 2H), 3.44–3.47 (dd, J = 8.2, 3.6 Hz, 1H), 3.87–3.94 (dddd, J = 

12.4, 8.5, 6.3, 6.3 Hz, 1H), 4.02–4.07 (ddd, J = 9.8, 6.3, 3.7 Hz, 1H); 13C NMR (100 MHz, 

CDCl3) δ: 10.5, 19.0, 19.5, 25.1, 29.1, 30.7, 32.1, 77.2, 80.0, 81.5; IR (thin film NaCl): 3450, 

2962, 2876, 1465, 1383, 1365, 1300, 1247, 1180, 1082, 1035, 981, 939, 880 cm-1; [α]23
D   = –20.0 

(c = 0.006, CHCl3); HR-MS (ESI) Calcd for C10H20O2 (M+Na)+ 195.1356, found 195.1362. 
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(R)-1-((2S,5S)-5-ethyltetrahydrofuran-2-yl)-2-methylpropan-1-ol (42): Product was 

visualized with CAM stain, Rf = 0.32 (20% EtOAc in hexanes; 1H NMR (400 MHz, CDCl3) δ: 

0.82–0.84 (d, J = 6.8 Hz, 3H), 0.86–0.90 (t, J = 7.5 Hz, 3H), 0.96–0.98 (d, J = 6.6 Hz, 3H), 1.38–

1.49 (m, 2H), 1.51–1.64 (m, 2H), 1.66–1.96 (m, 3H), 2.34 (br s, 1H), 3.37–3.40 (dd, J = 8.1, 3.6 

Hz, 1H), 3.70–3.77 (dddd, J = 7.1, 6.5, 6.6, 6.5 Hz, 1H), 3.88–3.93 (td, J = 7.5, 3.6 Hz, 1H); 13C 

NMR (100 MHz, CDCl3) δ: 10.5, 18.8, 19.3, 23.9, 28.7, 30.7, 31.0, 76.7, 80.4, 80.8; IR (thin 

film NaCl): 3459, 2962, 2877, 1465, 1383, 1366, 1299, 1247, 1178, 1080, 1035, 948, 877 cm-1; 

[α]23
D   = –10.4 (c = 0.018, CHCl3); HR-MS (ESI) Calcd for C10H20O2 (M+Na)+ 195.1356, found 

195.1353. 

 

 

(E)-ethyl 4-((2R,4S,5R)-5-hydroxy-2-phenyl-1,3-dioxan-4-yl)but-2-enoate (56): To a slurry of 

2-deoxyribose (92 g, 684 mmol) in THF (1.3 L) was added (carbethoxymethylene) 

triphenyphosphorane (262 g, 752 mmol). The mixture was refluxed for 3 h, cooled to room 

temperature, and concentrated in vacuo. The crude oil was used without purification.[3]  

                                                 
[3]   If desired, the product can be purified by column chromatography (gradient: 3% to 10% MeOH in CH2Cl2) to 
afford the corresponding triol (27.3 g, 98%, 83:17 E:Z) as a colorless oil. 
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The oil was dissolved in CH2Cl2 (700 mL) followed by addition of  camphorsulfonic acid 

(CSA) (48 g, 205 mmol), and benzaldehyde dimethyl acetal (185 mL, 1230 mmol). The reaction 

was stirred at ambient temperature for 12 h, then quenched by addition of Et3N (29 mL). The 

reaction was concentrated in vacuo and the crude material was purified by column 

chromatography (gradient: 20 to 30% EtOAc in hexanes to afford alcohol 56 as a colorless oil 

(152 g, 76%); Product was visualized with CAM stain, Rf = 0.29 (50% EtOAc in hexanes; 1H 

NMR (600 MHz, CDCl3) δ: 1.29–1.32 (t, J = 7.1 Hz, 3H), 2.53–2.58 (ddd, J = 15.2, 7.6, 7.6 1.3 

Hz, 1H), 2.76–2.77 (d, J = 5.4 Hz, 1H), 2.78–2.83 (dddd, J = 15.2, 6.9, 3.3, 1.5 Hz, 1H), 3.55–

3.63 (m, 2H), 3.67–3.70 (td, J = 8.6, 3.3 Hz, 1H), 4.18–4.24 (m, 3H), 5.48 (s, 1H), 5.95–5.98 (d, 

J = 15.7 Hz, 1H), 7.07–7.12 (dt, J = 15.7, 7.2 Hz, 1H), 7.35–7.40 (m, 3H), 7.48–7.49 (m, 2H); 

13C NMR (100 MHz, CDCl3) δ: 14.4, 34.7, 60.7, 65.3, 71.4, 80.6, 101.1, 123.9, 126.3, 128.4, 

129.2, 137.6, 144.9, 166.9; IR (thin film NaCl): 3473, 3067, 3036, 2981, 2932, 2906, 2864, 

1710, 1655, 1453, 1370, 1316, 1215, 1078, 979, 750, 698 cm-1; [α]23
D   = –47.5 (c = 0.024, 

CHCl3); HR-MS (ESI) Calcd for C16H20O5 (M+Na)+ 315.1203, found 315.1203.  

 

 

 

(E)-ethyl-4-((2R,4S,5R)-5-(tert-butyldimethylsilyloxy)-2-phenyl-1,3-dioxan-4-yl)but-2-

enoate (7): To a solution of alcohol 56 (152 g, 520 mmol) in DMF (520 mL) at 0 °C was added 

imidazole (62 g, 1040 mmol), and TBSCl (118 g, 780 mmol). The reaction was warmed to 

ambient temperature, stirred for 5 h and was then quenched by addition of sat. NH4Cl (500 mL). 
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The aqueous layer was extracted with EtOAc (4 x 500 mL), the combined organic extracts were 

dried with MgSO4 and concentrated in vacuo. The oil was purified by column chromatography 

(gradient: 5% to 20% EtOAc in hexanes to afford silyl ether 57 as a colorless oil (151 g, 71%); 

Product was visualized with CAM stain, Rf = 0.15 (5% EtOAc in hexanes; 1H NMR (400 MHz, 

CDCl3) δ: 0.10 (s, 3H), 0.12 (s, 3H), 0.91 (s, 9H), 1.27–1.31 (t, J = 7.1 Hz, 3H), 2.43–2.51, (app 

dtd, J = 15.4, 8.5, 1.4 Hz, 1H), 2.73–2.80 (dddd, J = 15.2, 6.8, 2.8, 1.7 Hz, 1H), 3.56–3.64 (m, 

2H), 3.67–3.72 (td, J = 8.3, 3.0 Hz, 1H), 4.17–4.22 (m, 3H), 5.49 (s, 1H), 5.93–5.98 (d, J = 15.7 

Hz, 1H), 7.05–7.13 (dt, J = 15.7, 7.1 Hz, 1H), 7.33–7.39 (m, 3H), 7.47–7.49 (m, 2H); 13C NMR 

(100 MHz, CDCl3) δ: –4.6, –4.0, 14.4, 18.0, 25.8, 34.6, 60.3, 66.4, 71.8, 81.1, 101.0, 123.8, 

126.2, 128.3, 129.0, 137.8, 144.8, 166.5; IR (thin film NaCl): 3037, 2956, 2930, 2887, 2858, 

1721, 1657, 1463, 1389, 1312, 1261, 1177, 1108, 1029, 838, 778, 698 cm-1; [α]23
D   = –50.3 (c = 

0.058, CHCl3); HR-MS (ESI) Calcd for C22H34O5Si (M+Na)+ 429.2068, found 429.2067. 

 

 

 

((2R,3R)-3-(((2R,4S,5R)-5-(tert-butyldimethylsilyloxy)-2-phenyl-1,3-dioxan-4-yl)methyl) 

oxiran-2-yl)methanol (58): Ester 57 (50 g, 123 mmol) was dissolved in CH2Cl2 (410 mL) and 

cooled to –78 °C. A solution of DIBALH (310 mL of 1M in CH2Cl2, 307 mmol) was added via 

addition funnel over 20 min and stirred at –78 °C an additional 30 min. The reaction was 

quenched at –78 °C by dropwise addition of MeOH (50 mL) and then poured into sat. Rochelle’s 

salt (600 mL) at ambient temperature followed by vigorous stirring for 12 h. The aqueous layer 
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was extracted with CH2Cl2 (3 x 1L), the combined organic extracts were dried over MgSO4 and 

concentrated in vacuo to afford allylic alcohol 68 which was used without further purification. 

 Allylic alcohol 68 (4.7 g, 13.0 mmol) was dissolved in CH2Cl2 (65 mL) and Et3N (2.2 

mL, 15.7 mmol) and cooled to 0 °C. To this solution was added methanesulfonyl chloride 

dropwise (1.1 mL, 14.4 mmol) and the reaction was stirred at 0 °C for 1h. The reaction was 

quenched by addition of H2O (100 mL) and extracted with CH2Cl2 (3 x 75 mL). The combined 

organic extracts were dried with MgSO4 and concentrated in vacuo. The crude material was used 

without further purification. 

 To a solution of the crude allylic mesylate (5.78 g, 13.0 mmol) in THF (130 mL) at 0 °C 

was added SuperHydride® (1M in THF, 26.1 mL, 26.1 mmol) dropwise. The reaction was 

stirred at 0 °C for 30 min then quenched slowly with H2O (50 mL). The aqueous layer was 

extracted with EtOAc (5 x 75 mL), the combined organic extracts dried with MgSO4, and 

concentrated in vacuo. The crude material was purified by column chromatography (10% EtOAc 

in hexanes to afford 58 as a colorless oil (3.61 g, 79%). Product was visualized with CAM stain, 

Rf = 0.65 (20% EtOAc in hexanes; 1H NMR (400 MHz, CDCl3) δ: 0.11 (s, 3H), 0.13 (s, 3H), 

0.93 (s, 9H), 1.71–1.72 (d, J = 5.4 Hz, 3H), 2.22–2.32 (ddd, J = 13.5, 7.2, 5.9 Hz, 1H), 2.55–2.61 

(ddd, J = 15.5, 6.0, 2.5 Hz, 1H), 3.56–3.66 (m, 3H), 4.18–4.21 (m, 1H), 5.50 (s, 1H), 5.55–5.65 

(m, 2H), 7.33–7.41 (m, 3H), 7.50–7.53 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: –4.6, –3.9, 

18.1, 18.2, 25.9, 34.9, 66.3, 71.9, 82.5, 100.9, 126.3, 126.9, 127.7, 128.4, 128.9, 138.3; IR (thin 

film NaCl): 3034, 2956, 2930, 2857, 2887, 1472, 1462, 1389, 1361, 1291, 1253, 1215, 1107, 

1030, 972, 878, 858, 837, 777, 747 cm-1; [α]23
D   = –38.0 (c = 0.076, CHCl3); HR-MS (ESI) Calcd 

for C20H32O3Si (M+Na)+ 371.2013, found 371.2025. 
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tert-butyldimethyl((2R,4S,5R)-4-(((2R,3R)-3-methyloxiran-2-yl)methyl)-2-phenyl-1,3-

dioxan-5-yloxy)silane (59): To a solution of olefin 58 (500 mg, 1.43 mmol) in 1:2 

CH3CN:DMM (46 mL) was added a solution of 0.05M Na2B4O7•10 H2O in 4.0 x 10-4 M 

Na2(EDTA) (30 mL), and n-BuNHSO4 (485 mg, 1.43 mmol). The solution was cooled to 0 °C 

with rapid stirring. Then chiral ketone 50 (369 mg, 1.43 mmol) was added and immediately, a 

0.89 M solution of K2CO3 (12.9 mL) and a solution of Oxone® (1.76 g, 4.4 mmol) in 4.0 x 10-4 

M Na2(EDTA) (14 mL) were added simultaneously over 20 min via syringe pump. The reaction 

was stirred at 0 °C an additional 30 min then diluted with H2O (75 mL). The aqueous layer was 

extracted with EtOAc (8 x 75 mL), the combined organic extracts were dried over MgSO4, and 

concentrated in vacuo. The crude material was purified by column chromatography (10% EtOAc 

in hexanes to afford epoxide 59 (484 mg, 93%, 9:1 dr by 1H-NMR) as a colorless oil. Product 

was visualized with CAM stain, Rf = 0.31 (10% EtOAc in hexanes; 1H NMR (400 MHz, CDCl3) 

δ: 0.10 (s, 3H), 0.11 (s, 3H), 0.89 (s, 9H), 1.32–1.33 (d, J = 5.2 Hz, 3H), 1.95–1.98 (t, J = 5.2 Hz, 

2H), 2.80–2.84 (qd, J = 5.2, 2.3 Hz, 1H), 2.93–2.96 (td, J = 5.6, 2.3 Hz, 1H), 3.55–3.60 (m, 1H), 

3.66–3.71 (m, 2H), 4.18–4.22 (dd, J = 10.7, 4.4 Hz, 1H), 5.22 (s, 1H), 7.35–7.41 (m, 3H), 7.48–

7.51 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: –4.6, –4.0, 17.9, 18.1, 25.9, 34.1, 54.3, 56.7, 66.2, 

72.1, 80.4, 101.0, 126.2, 128.5, 129.1, 138.0; IR (thin film NaCl): 3067, 2956, 2929, 2886, 2857, 

1472, 1462, 1383, 1361, 1295, 1253, 1216, 1105, 1029, 1006, 978, 939, 914, 880, 857, 838, 778, 
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751, 698 cm-1; [α]23
D   = –45.3 (c = 0.013, CHCl3). HR-MS (ESI) Calcd for C20H32O4Si (M+Na)+ 

387.1962, found 387.1967.  

 

 

 
 

(2R,4S,5R)-4-(((2R,3R)-3-methyloxiran-2-yl)methyl)-2-phenyl-1,3-dioxan-5-ol(53): Silyl 

ether 53 (438 mg, 1.20 mmol) was dissolved in THF (6 mL) and cooled to 0 °C. A solution of 

TBAF (1.4 mL of 1M in THF, 1.40 mmol) was added dropwise and the reaction was stirred at 0 

°C for 30 min. The reaction was quenched by addition of brine (10 mL). The aqueous layer was 

extracted with EtOAc (3 x 10 mL). The combined organic extracts were dried over MgSO4 and 

concentrated in vacuo. The product was purified by column chromatography (gradient: 20% to 

50% EtOAc in hexanes to afford epoxy alcohol 53 (285 mg, 95%) as a white solid; Product was 

visualized with CAM stain, Rf = 0.25 (50% EtOAc in hexanes; 1H NMR (400 MHz, CDCl3) δ: 

1.33–1.34 (d, J = 5.2 Hz, 3H), 1.85–1.92 (ddd, J = 15.2, 7.4, 5.1 Hz, 1H), 2.20–2.26 (dt, J = 15.2, 

3.5 Hz, 1H), 2.87–2.93 (qd, J = 5.2, 2.5 Hz, 1H), 3.01–3.04 (dt, J = 7.5, 2.7 Hz, 1H), 3.12–3.13 

(d, J = 5.0 Hz, 1H), 3.56–3.62 (dd, J = 10.4, 10.4 Hz, 1H), 3.69–3.74 (ddd, J = 9.0, 5.0, 4.0 Hz, 

1H), 3.80–3.86 (ddd, J = 10.0, 5.0, 4.6 Hz, 1H), 4.27–4.31 (dd, J = 10.7, 5.1 Hz, 1H), 5.50 (s, 

1H), 7.35–7.41 (m, 3H), 7.49–7.51 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: 17.7, 34.2, 54.6, 

56.6, 65.0, 71.3, 79.8, 101.3, 126.3, 128.5, 129.2, 137.8; IR (KBr pellet): 2428, 2968, 2925, 

2857, 1454, 1383, 1294, 1216, 1075, 1027, 916, 856, 800, 754, 699 cm-1; [α]23
D   = 4.1 (c = 0.036, 

CHCl3); HR-MS (ESI) Calcd for C14H18O4 (M+Na)+ 273.1097, found 273.1101. 
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(2R,4aR,6S,7R,8aS)-6-methyl-2-phenylhexahydropyrano[3,2-d][1,3]dioxin-7-ol (54):  
 
Representative Procedure: To a mixture of epoxy alcohol 54 (50 mg, 0.20 mmol) in MeOH (5 

mL) was added Cs2CO3 (1.3 g, 4 mmol). The reaction was heated to 50 °C for 12 h, then cooled 

to ambient temperature. The reaction was diluted with Et2O (50 mL) and washed with sat. NH4Cl 

(20 mL). The organic layer was dried over MgSO4 and the solvent was removed in vacuo. The 

crude material was purified by column chromatography (30% EtOAc in hexanes to afford 54 (30 

mg, 60%) as a white solid. Product was visualized with CAM stain, Rf = 0.34 (50% EtOAc in 

hexanes); 1H NMR (400 MHz, CD2Cl2) δ: 1.25–1.27 (d, J = 5.9 Hz, 3H), 1.55–1.64 (ddd, J = 

11.4, 11.4, 11.4 Hz, 1H), 1.99–2.00 (d, J = 5.5 Hz, 1H), 2.36–2.41 (dt, J = 11.3, 4.4 Hz, 1H), 

3.25–3.36 (m, 3H), 3.49–3.56 (ddd, J = 11.6, 9.0, 4.2 Hz, 1H), 3.62–3.67 (dd, J = 10.3, 10.3 Hz, 

1H), 4.24–4.27 (dd, J = 10.4, 4.9 Hz, 1H), 5.51 (s, 1H), 7.35–7.40 (m, 3H), 7.45–7.48 (m, 2H); 

13C NMR (100 MHz, CD2Cl2) δ: 18.2, 38.7, 69.9, 71.8, 73.6, 77.3, 79.2, 102.0, 126.7, 128.7, 

129.5, 138.4; IR (KBr pellet): 3403, 2909, 2876, 1457, 1382, 1331, 1294, 1235, 1168, 1099, 

1065, 1029, 1016, 946, 959, 903, 753 cm-1; [α]23
D   = –13.2 (c = 0.015, CHCl3); HR-MS (ESI) 

Calcd for C14H18O4 (M+Na)+ 273.1097, found 273.1103. 
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Product was visualized with CAM stain, Rf = 0.24 (50% EtOAc in hexanes; 1H NMR (400 MHz, 

CD3OD) δ: 1.03–1.04 (d, J = 6.4 Hz, 3H), 1.90–1.98 (td, J = 11.2, 9.1 Hz, 1H), 2.14–2.20 (dt, J 

= 12.8, 6.4 Hz, 1H), 3.37–3.43 (ddd, J = 10.2, 9.0, 4.4 Hz, 1H), 3.62–3.69 (ddd, J = 11.3, 9.0, 6.5 

Hz, 1H), 3.69–3.73 (dd, J = 10.0, 10.0 Hz, 1H), 3.76–3.79 (m, 1H), 3.87–3.92 (ddd, J = 9.1, 6.4, 

4.8 Hz, 1H), 4.28–4.31 (dd, J = 9.6, 4.4 Hz, 1H), 5.47 (s, 1H), 7.22–7.24 (m, 3H), 7.34–7.37 (m, 

2H); 13C NMR (100 MHz, CD3OD) δ: 19.3, 31.1, 70.5, 72.7, 74.6, 82.4, 83.0, 103.5, 127.7, 

129.3, 130.1, 139.2; IR (KBr pellet): 3405, 2914, 2880, 1726, 1465, 1459, 1395, 1355, 1235, 

1169, 1123, 1066, 1029, 1020, 1184, 1070, 1045, 918, 660, 430 cm-1; HR-MS (ESI) Calcd for 

C14H18O4 (M+Na)+ 273.1097, found 273.1108. 

 

 

 

((2R,3R)-3-(((2R,4S,5R)-5-(tert-butyldimethylsilyloxy)-2-phenyl-1,3-dioxan-4-yl)methyl) 

oxiran-2-yl)methanol (69): Ester 7 (50 g, 123 mmol) was dissolved in CH2Cl2 (410 mL) and 

cooled to –78 °C. A solution of DIBALH (310 mL of 1M in CH2Cl2, 307 mmol) was added via 

addition funnel over 20 min and stirred at –78 °C an additional 30 min. The reaction was 

quenched at –78 °C by dropwise addition of MeOH (50 mL) and then poured into sat. Rochelle’s 
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salt (600 mL) at ambient temperature followed by vigorous stirring for 12 h. The mixture was 

extracted with CH2Cl2 (3 x 1L), the combined organic extracts were dried over MgSO4 and 

concentrated in vacuo to afford allylic alcohol 68 which was used in the subsequent epoxidation 

without purification.  

 In a 1L round bottom flask, 4Å molecular sieves (25 g) were flame dried in vacuo for 8 

min then cooled to ambient temperature. A magnetic stir bar, CH2Cl2 (300 mL), and (–)-diethyl 

(D)-tartrate (3 g, 15 mmol) were then added and the slurry was cooled to –25 °C. Next, Ti(OiPr)4 

(3.7 mL, 12.3 mmol) was added followed by slow addition of a t-BuOOH solution (45 mL of 

5.5M in decane, 246 mmol). The mixture was allowed to stir at –25 °C for 30 minutes followed 

by addition of a solution of the allylic alcohol (above) in CH2Cl2 (50 mL). The reaction was 

stirred at –25 °C for an additional 15 h and warmed to 0 °C. In a separate flask, iron(II) sulfate 

heptahydrate (41g), tartaric acid (12.3 g), and H2O (430 mL) were cooled to 0 °C. The crude 

epoxidation reaction was slowly poured into the aqueous solution, stirred at ambient temperature 

for 15 min. The aqueous layer was extracted with Et2O (4 x 600 mL). To the combined organic 

extracts was added 300 mL 30% NaOH in brine[4] and the mixture was stirred at ambient 

temperature for 1 h. The organic layer was separated, dried over MgSO4, and purified by column 

chromatography (30% EtOAc in hexanes) affording epoxy alcohol 69 as a colorless oil (44 g, 

95%); Product was visualized with CAM stain, Rf = 0.42 (30% EtOAc in hexane; 1H NMR (400 

MHz, CDCl3) δ: 0.11 (s, 3H), 0.12 (s, 3H), 0.90 (s, 9H), 1.84–1.88 (dd, J = 7.2, 5.7 Hz, 1H), 

1.97–2.08 (m, 2H), 2.97–3.00 (dt, J = 4.4, 2.3, 1H), 3.22–3.26 (td, J = 5.5, 2.3, 1H), 3.56–3.73 

(m, 4H), 3.90–3.94 (ddd, J = 12.6, 5.7, 2.6 Hz, 1H), 4.20–4.23 (m, 1H), 5.52 (s, 1H), 7.34–7.40 

(m, 3H), 7.48–7.50 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: –4.6, –4.0, 18.0, 25.9, 33.5, 53.1, 

                                                 
3   300 mL of 30% NaOH in brine was prepared by combining 15 g NaCl, 90 g NaOH, and 270 mL H2O. 
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58.0, 61.9, 66.0, 72.0, 80.2, 101.0, 126.2, 128.5, 129.1, 137.9; IR (thin film NaCl): 3443, 2955, 

2929, 2885, 2857, 1462, 1388, 1253, 1107, 1029, 857, 838, 778, 698 cm-1; [α]23
D   = –38.6 (c = 

0.03, CHCl3); HR-MS (ESI) Calcd for C20H32O5Si (M+Na)+ 403.1911, found 403.1908.  

 

 

 

tert-butyl((2R,4S,5R)-4-(((2R,3S)-3-(iodomethyl)oxiran-2-yl)methyl)-2-phenyl-1,3-dioxan-5-

yloxy)dimethylsilane (70): Triphenylphosphine (PPh3) (18.2 g, 70 mmol) and imidazole (4.7 g, 

70 mmol) were dissolved in Et2O (180 mL) and CH3CN (120 mL) and cooled to 0 °C. With 

vigorous stirring, iodine (17.6 g, 70 mmol) was added in portions over 10 min then the reaction 

was warmed to ambient temperature and stirred for 15 min. The slurry was then cooled to 0 °C 

and a solution of epoxy alcohol 69 (23 g, 60 mmol) in Et2O (36 mL) was added dropwise over 10 

min. The reaction was warmed to ambient temperature and stirred for 15 min. The reaction was 

quenched by addition of sat. Na2S2O3 (400 mL) and extracted with Et2O (3 x 400 mL). The 

combined organic extracts were dried over MgSO4 and the solvent was removed in vacuo. The 

crude material was dissolved in a minimal amount of CH2Cl2 and loaded onto silica gel for 

purification by column chromatography (5% EtOAc in hexanes) to afford iodide 70 as a yellow 

oil (24.6 g, 83%); Product was visualized with CAM stain, Rf = 0.61 (20% EtOAc in hexanes; 1H 

NMR (600 MHz, CDCl3) δ: 0.11 (s, 6H), 0.90 (s, 9H), 1.93–1.96 (ddd, J = 14.3, 6.1, 3.0 Hz, 

1H), 2.01–2.06 (ddd, J = 14.3, 8.2, 5.1 Hz, 1H), 3.01–3.04 (dd, J = 9.8, 7.3 Hz, 1H), 3.08–3.13 

(m, 2H), 3.29–3.32 (dd, J = 9.9, 5.5 Hz, 1H), 3.58–3.62 (app t, J = 10.6 Hz, 1H), 3.66–3.70 (td, J 

= 9.8, 4.9 Hz, 1H), 3.74–3.77 (td, J = 8.7, 3.1 Hz, 1H), 4.20–4.23 (dd, J = 10.6, 4.9 Hz, 1H), 5.54 
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(s, 1H), 7.35–7.41 (m, 3H), 7.52–7.53 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: –4.6, –4.1, 5.1, 

18.0, 25.9, 33.8, 57.9, 59.6, 66.2, 71.9, 80.3, 101.0, 126.2, 128.4, 129.1, 137.8; IR (thin film 

NaCl): 2955, 2928, 2885, 2856, 1462, 1387, 1253, 1111, 1029, 838, 778, 698 cm-1; [α]23
D   =  

–36.8 (c = 0.25, CHCl3); HR-MS (ESI) Calcd for C20H31O4ISi (M+Na)+ 513.0929, found 

513.0916.  

 

 

 

((2R,4S,5R)-4-(((2R,3R)-3-allyloxiran-2-yl)methyl)-2-phenyl-1,3-dioxan-5-yloxy)(tert-butyl) 

dimethylsilane (71): To a solution of iodide 70 (3.0 g, 6.1 mmol) in THF (30 mL) was added 

copper(I) bromide-dimethyl sulfide (430 mg, 2.1 mmol), and HMPA (4 mL, 25 mmol). The 

solution was immediately cooled to –25 °C and stirred for 5 min. Then a solution of vinyl 

magnesium bromide (15.3 mL of 1M in THF, 15.3 mmol) was added dropwise over 5 min with 

vigorous stirring. The reaction was stirred at –25 °C for 15 min, then quenched at –25 °C by 

addition of sat. NH4Cl. The aqueous layer was extracted with EtOAc (3 x 100 mL). The 

combined organic extracts were dried over MgSO4 and concentrated in vacuo. The crude 

material was purified by column chromatography (5% EtOAc in hexanes to afford olefin 71 

(1.79 g, 75%) as a colorless oil;5 Product was visualized with CAM stain, Rf = 0.20 (5% EtOAc 

in hexanes; 1H NMR (600 MHz, CDCl3) δ: 0.10 (s, 3H), 0.11 (s, 3H), 0.89 (s, 9H), 1.94–2.03 (m, 

2H), 2.26–2.31 (m, 1H), 2.36–2.41 (m, 1H), 2.82–2.84 (td, J = 5.6, 2.2 Hz, 1H), 3.02–3.04 (td, J 

                                                 
4   Attempts to scale this reaction beyond 6.1 mmol of iodide 70 led to a precipitous drop in yield. 
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= 5.6, 2.2 Hz, 1H), 3.57–3.61 (m, 1H), 3.67–3.73 (m, 2H), 4.19–4.22 (dd, J = 10.7, 4.5 Hz, 1H), 

5.09–5.11 (dd, J = 10.3, 1.4 Hz, 1H), 5.15–5.18 (dd, J = 17.2, 1.6 Hz, 1H), 5.51 (s, 1H), 5.81–

5.88 (ddt, J = 17.2, 10.3, 7.0 Hz, 1H), 7.35–7.40 (m, 3H), 7.49–7.50 (m, 2H); 13C NMR (100 

MHz, CDCl3) δ: –4.6, –4.1, 18.0, 25.9, 34.0, 36.4, 55.4, 57.2, 66.2, 72.0, 80.4, 101.0, 117.6, 

126.2, 128.4, 129.1, 133.5, 138.0; IR (thin film NaCl): 3070, 2956, 2929, 2886, 2857, 1462, 

1387, 1253, 1110, 1029, 857, 838, 778, 698 cm-1; [α]23
D   = –43.0 (c = 0.1, CHCl3); HR-MS (ESI) 

Calcd for C22H34O4Si (M+Na)+ 413.2119, found 413.2116.  

 

 

 

((2R,4S,5R)-4-(((2R,3R)-3-((E)-but-2-enyl)oxiran-2-yl)methyl)-2-phenyl-1,3-dioxan-5-yloxy) 

(tert-butyl)dimethylsilane (72): Approximately 4 mL of cis-2-butene (approx 1 mol) was 

condensed into a round bottom flask at –78 °C. In a separate flask olefin 71 (2.0 g, 5.12 mmol) 

was dissolved in CH2Cl2 (40 mL) and the solution was cooled to –78 °C. Cis-2-butene was added 

to the olefin solution via cannula transfer followed by addition of the 2nd generation Hoveyda-

Grubbs catalyst 74 (160 mg, 0.25 mmol). The reaction was warmed to –20 °C and stirred at this 

temperature for 2 h. The reaction was quenched by stirring with ethyl vinyl ether (10 mL) at –20 

°C for 10 min. The solvent was removed in vacuo and the crude material was purified by column 

chromatography (5% EtOAc in hexanes) to afford 72 (1.81 g, 88%, E:Z 3:1 by 1H-NMR). Up to 

10:1 E:Z enrichment can be obtained by a second column with AgNO3 impregnated silica.6 

                                                 
6 Standard Procedure for AgNO3 column: AgNO3 (0.05g/g SiO2) was dissolved in a minimal amount of H2O. This 
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Product was visualized with CAM stain, Rf = 0.19 (5% EtOAc in hexanes; 1H NMR (600 MHz, 

CDCl3) δ: 0.10 (s, 3H), 0.11 (s, 3H), 0.89 (s, 9H), 1.66–1.67 (d, J = 6.4 Hz, 3H), 1.94–2.02 (m, 

2H), 2.18–2.22 (dt, J = 14.8, 8.1 Hz, 1H), 2.29–2.33 (dt, J = 14.8, 5.7 Hz, 1H), 2.78–2.80 (td, J = 

5.6, 2.1 Hz, 1H), 2.99–3.01 (td, J = 5.6, 1.4 Hz, 1H), 3.56–3.60 (m, 1H), 3.68–3.70 (m, 2H), 

4.19–4.22 (dd, J = 10.8, 3.7 Hz, 1H), 5.44–5.47 (dt, J = 13.6, 6.6 Hz, 1H), 5.51 (s, 1H), 5.54–

5.59 (dq, J = 13.9, 6.4 Hz, 1H), 7.34–7.39 (m, 3H), 7.48–7.50 (m, 2H); 13C NMR (100 MHz, 

CDCl3) δ: –4.6, –4.0, 18.1, 18.3, 25.9, 34.1, 35.4, 55.5, 57.8, 66.2, 72.1, 80.4, 101.0, 125.8, 

126.2, 128.3, 128.5, 129.1, 138.0; IR (thin film NaCl): 3067, 2929, 2709, 1462, 1387, 1296, 

1253, 1216, 1108, 1029, 969, 940, 838, 778, 697, 677 cm-1; [α]23
D   = –49.4 (c = 0.063, CHCl3); 

HR-MS (ESI) Calcd for C23H36O4Si (M+H)+ 427.2275, found 427.2283. 

 

 

 

(2R,4S,5R)-4-(((2R,3R)-3-((E)-but-2-enyl)oxiran-2-yl)methyl)-2-phenyl-1,3-dioxan-5-ol (61): 

Silyl ether 61 (787 mg, 1.94 mmol) was dissolved in THF (10 mL) and cooled to 0 °C. A 

solution of TBAF (2.9 mL of 1M in THF, 2.9 mmol) was added dropwise and the reaction was 

stirred at ambient temperature for 30 min. The reaction was quenched by addition of brine (10 

mL) then the aqueous layer extracted with EtOAc (3 x 10 mL). The combined organic extracts 

were dried over MgSO4 and concentrated in vacuo. The product was purified by column 

chromatography (gradient: 30% to 40% EtOAc in hexanes) to afford epoxy alcohol 61 (483 mg, 

                                                 
aqueous solution was added to a slurry of the SiO2 in acetonitrile. The column was wet-loaded with the slurry and 
flushed with Et2O, then hexanes, and finally the desired solvent system.  
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86%) as a colorless oil; Product was visualized with CAM stain, Rf = 0.05 (20% EtOAc in 

hexanes; 1H NMR (400 MHz, CDCl3) δ: 1.67–1.69 (dd, J = 6.3, 1.3 Hz, 3H), 1.86–1.94 (ddd, J = 

15.2, 7.5, 5.2 Hz, 1H), 2.24–2.29 (m, 3H), 2.73–2.74 (d, J = 5.0 Hz, 1H), 2.84–2.88 (td, J = 5.5, 

2.4 Hz, 1H), 3.08–3.11 (dt, J = 7.5, 2.8 Hz, 1H), 3.59–3.64 (dd, J = 10.5, 10.5 Hz, 1H), 3.71–

3.76 (ddd, J = 9.1, 5.0, 3.9 Hz, 1H), 3.87–3.94 (app septet, J = 4.9 Hz, 1H), 4.30–4.33 (dd, J = 

10.7, 5.1 Hz, 1H), 5.40–5.47 (dt, J = 15.0, 6.6 Hz, 1H), 5.51 (s, 1H), 5.54–5.62 (dq, J = 15.3, 6.3 

Hz, 1H), 7.36–7.41 (m, 3H), 7.49–7.52 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: 18.3, 34.4, 

35.2, 55.3, 57.9, 65.2, 71.3, 80.0, 101.4, 125.4, 126.3, 128.5, 128.6, 129.2, 137.9; IR (thin film 

NaCl): 3436, 2970, 2918, 2855, 1454, 1377, 1309, 1216, 1075, 1028, 970, 915, 753, 699 cm-1; 

[α]23
D   = –17.5 (c = 0.021, CHCl3); HR-MS (ESI) Calcd for C17H22O4 (M+Na)+ 313.1410, found 

313.1416. 

 

 

 

(2R,4aR,6S,7R,8aS)-6-((E)-but-2-enyl)-2-phenylhexahydropyrano[3,2-d][1,3]dioxin-7-ol 

(62):  

 
Representative Procedure: To a mixture of epoxy alcohol 61 (50 mg, 0.20 mmol) in MeOH (5 

mL) was added Cs2CO3 (1.3 g, 4 mmol). The reaction was heated to 50 °C for 12 h, then cooled 

to ambient temperature. The reaction was diluted with Et2O (50 mL) and washed with sat. NH4Cl 

(20 mL). The organic layer was dried over MgSO4 and the solvent was removed in vacuo. The 

crude material was purified by column chromatography (30% EtOAc in hexanes) to afford 62 
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(28 mg, 56%) as a white solid. Product was visualized with CAM stain, Rf = 0.60 (50% EtOAc 

in hexanes; 1H NMR (400 MHz, CDCl3) δ: 1.63–1.70 (ddd, J = 11.4, 11.4, 11.4 Hz, 1H), 1.70–

1.72 (d, J = 5.0 Hz, 3H), 1.89–1.90 (d, J = 5.2 Hz, 1H), 2.24–2.31 (dt, J = 12.3, 5.5 Hz, 1H), 

2.43–2.53 (m, 2H), 3.21–3.26 (ddd, J = 9.2, 6.8, 4.3 Hz, 1H), 3.32–3.38 (ddd, J = 10.1, 9.2, 4.9 

Hz, 1H), 3.51–3.57 (m, 2H), 3.58–3.72 (dd, J = 10.3, 10.3 Hz, 1H), 4.31–4.35 (dd, J = 10.5, 4.9 

Hz, 1H), 5.51–5.64 (m, 3H), 7.34–7.41 (m, 3H), 7.50–7.52 (m, 2H); 13C NMR (100 MHz, 

CDCl3) δ: 18.2, 35.5, 38.1, 69.5, 69.6, 73.2, 76.8, 82.0, 101.8, 126.3, 126.9, 128.1, 128.5, 129.3, 

137.5; IR (KBr pellet): 3503, 2069, 3044, 3025, 2982, 2943, 2876, 1455, 1408, 1391, 1339, 

1317, 1281, 1216, 1186, 1140, 1091, 1025, 1000, 964, 919, 887, 857, 765 cm-1; [α]23
D   = –17.1 (c 

= 0.021, CHCl3); HR-MS (ESI) Calcd for C17H22O4 (M+Na)+ 313.1410, found 313.1410. 

 

 
 

(R,E)-1-((2R,4aR,6S,7aS)-2-phenyltetrahydro-4H-furo[3,2-d][1,3]dioxin-6-yl)pent-3-en-1-ol 

(63): Cyclization in Cs2CO3 and MeOH (vide supra) afforded 63 (11 mg, 22%). Product was 

visualized with CAM stain, Rf = 0.50 (50% EtOAc in hexanes; 1H NMR (400 MHz, CDCl3) δ: 

1.70–1.72 (dd, J = 6.3, 1.1 Hz, 3H), 1.96 (br s, 1H), 2.11–2.31 (m, 4H), 3.58–3.64 (ddd, J = 10.0, 

9.0, 4.3 Hz, 1H), 3.72–3.76 (ddd, J = 11.3, 9.0, 6.5 Hz, 1H), 3.82–3.87 (m, 2H), 4.10–4.15 (ddd, 

J = 9.2, 6.3, 4.6 Hz, 1H), 4.51–4.55 (dd, J = 9.6, 4.3 Hz, 1H), 5.41–5.49 (dt, J = 15.6, 7.5 Hz, 

1H), 5.53 (s, 1H), 5.56–5.65 (dq, J = 15.4, 6.3 Hz, 1H), 7.36–7.41 (m, 3H), 7.49–7.53 (m, 2H); 

13C NMR (100 MHz, CD2Cl2) δ: 18.3, 30.1, 36.8, 72.2, 73.2, 73.8, 80.6, 81.5, 102.6, 126.8, 

127.1, 128.7, 129.4, 129.5, 138.2; IR (KBr pellet): 3422, 2984, 2894, 1371, 1342, 1292, 1247, 
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1222, 1182, 1131, 1084, 1046, 1029, 1007, 987, 969, 956, 921, 744 cm-1; [α]23
D   = –11.3 (c = 

0.006, CHCl3). HR-MS (ESI) Calcd for C17H22O4 (M+Na)+ 313.1410, found 313.1396.  

 

 

 

(2R,4S,5R)-4-(((2R,3R)-3-allyloxiran-2-yl)methyl)-2-phenyl-1,3-dioxan-5-ol (75): Silyl ether 

71 (14 g, 36 mmol) was dissolved in THF (180 mL) and cooled to 0 °C. A solution of TBAF (54 

mL of 1M in THF, 54 mmol) was added dropwise and the reaction stirred at 0 °C for 30 min. 

The reaction was quenched by addition of brine (300 mL) and the aqueous layer was extracted 

with EtOAc (3 x 300 mL). The combined organic extracts were dried over MgSO4 and 

concentrated in vacuo. The product was purified by column chromatography (40% EtOAc in 

hexanes) to afford epoxy alcohol 75 (9.2 g, 93%) as a white solid; Product was visualized with 

CAM stain, Rf = 0.43 (50% EtOAc in hexanes; 1H NMR (600 MHz, CDCl3) δ: 1.88–1.93 (ddd, J 

= 15.2, 7.6, 5.2 Hz, 1H), 2.26–2.29 (dt, J = 15.2, 3.5 Hz, 1H), 2.34–2.36 (app dd, J = 6.5, 5.7 Hz, 

2H), 2.56–2.57 (d, J = 5.0 Hz, 1H), 2.89–2.91 (td, J = 5.5, 2.3 Hz, 1H), 3.10–3.12 (m, 1H), 3.61–

3.64 (t, J = 10.7, 1H), 3.73–3.76 (m, J = 1H), 3.89–3.94 (app sp, J = 4.8 Hz, 1H), 4.31–4.34 (dd, 

J = 10.7, 4.8 Hz, 1H), 5.11–5.13 (dd, J = 10.3, 1.3 Hz, 1H), 5.15–5.18 (dd, J = 17.2, 1.4 Hz, 1H), 

5.51 (s, 1H), 5.80–5.87 (ddt, J = 17.2, 10.3, 6.8 Hz, 1H), 7.36–7.40 (m, 3H), 7.50–7.51 (m, 2H); 

13C NMR (100 MHz, CDCl3) δ: 34.3, 36.2, 55.2, 57.4, 65.1, 71.2, 78.0, 101.4, 117.9, 126.3, 

128.5, 129.2, 133.1, 137.8; IR (KBr pellet): 3309, 2983, 2917, 1460, 1409, 1385, 1220, 1126, 
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1067, 1013, 975, 917, 766 cm-1; [α]23
D   = –0.5 (c = 0.02, CHCl3); HR-MS (ESI) Calcd for 

C16H20O4 (M+Na)+ 299.1254, found 299.1253.  

 

 

(2R,4aR,6S,7R,8aS)-6-allyl-2-phenylhexahydropyrano[3,2-d][1,3]dioxin-7-ol (76):  
 
Representative microwave procedure:7,8 Silicic acid (5.25 g, 35 mg/mg 75) was loaded into a 20 

mL microwave vial with magnetic stir bar. The vial was heated in an oven to 140 °C for 12 h 

then cooled to ambient temperature in vacuo (5 torr). Epoxy alcohol 75 (150 mg, 0.54 mmol) 

was added and the vial was capped quickly with a septum. With the vial attached to an argon 

inlet, solvent was added (18 mL), the argon inlet was removed, and vial was shaken manually to 

achieve mixing. The vial was heated in a microwave reactor to 135 °C for 10 min. Once the vial 

had cooled to ambient temperature the septum was pierced with a needle to release any pressure. 

The silica promoter was removed by filtration through a glass frit. The silica promoter was then 

washed with 95:5 Et2O:MeOH (100 mL). The combined organic solvent was concentrated in 

vacuo and purified by column chromatography (30% EtOAc in hexanes) to afford alcohol 76 

(108 mg, 72%) as a white solid. Product was visualized with CAM stain, Rf = 0.53 (50% EtOAc 

in hexanes; 1H NMR (600 MHz, CDCl3) δ: 1.66–1.72 (ddd, J = 11.4, 11.4, 11.4 Hz, 1H), 1.76 (s, 

                                                 
7 For cyclizations conducted in a microwave reactor, adventitious moisture resulted in hydrolysis of the benzylidene 
acetal. Therefore, the silica promoter was dried prior to use. Due to the size of vials accommodated by the 
microwave, the maximum scale per cyclization was 150 mg (0.54 mmol) of epoxy alcohol 75. Furthermore, 1,2-
dichloroethane (DCE) was used in place of CH2Cl2 since high reaction pressures triggered an automatic shutdown of 
the microwave. Changing solvent to 1,2-DCE had no significant effect on selectivity or yield.  
 
8 For cyclizations not conducted in a microwave, the promoter was dried and cooled in an analogous fashion in a 
round bottom flask. The epoxy alcohol was added and a reflux condenser was attached. The reaction was heated to 
reflux for the desired time. After cooling, the silica was washed in analogy to the microwave conditions.  
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1H), 2.31–2.36 (dt, J = 14.4, 7.2 Hz, 1H), 2.46–2.49 (dt, J = 11.4, 4.5 Hz, 1H), 2.57–2.61 (m, 

1H), 3.28–3.32 (ddd, J = 9.2, 7.1, 4.0, 1H), 3.34–3.38 (td, J = 9.9, 4.9, 1H), 3.53–3.59 (m, 2H), 

3.68–3.71 (dd, J = 10.2, 10.2, 1H), 4.31–4.34 (dd, J = 10.5, 4.9 Hz, 1H), 5.11–5.13 (d, J = 10.2 

Hz, 1H), 5.16–5.19 (dd, J = 17.2, 1.5 Hz, 1H), 5.53 (s, 1H), 5.90–5.97 (ddt, J = 17.2, 10.2, 7.0 

Hz, 1H), 7.37–7.39 (m, 3H), 7.50–7.51 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: 36.4, 38.2, 

69.3, 69.4, 73.1, 76.7, 81.6, 101.7, 117.4, 126.3, 128.5, 129.3, 134.6, 137.4; IR (thin film NaCl): 

3419, 2983, 2952, 2872, 1644, 1452, 1366, 1120, 1097, 1008, 924 cm-1; [α]23
D   = –19.5 (c = 0.02, 

CHCl3); HR-MS (ESI) Calcd for C16H20O4 (M+Na)+ 299.1254, found 299.1261.  

 

 

 

(R)-1-((2R,4aR,6S,7aS)-2-phenyltetrahydro-4H-furo[3,2-d][1,3]dioxin-6-yl)but-3-en-1-ol 

(77): Product was visualized with CAM stain, Rf = 0.51 (50% EtOAc in hexanes); 1H NMR (600 

MHz, CDCl3) δ: 1.99–2.00 (d, J = 3.6 Hz, 1H), 2.18–2.24 (m, 2H), 2.28–2.32 (dt, J = 12.6, 6.3 

Hz, 1H), 2.33–2.38 (m, 1H), 3.73–3.78 (ddd, J = 11.3, 9.0, 6.4 Hz, 1H), 3.83–3.86 (dd, J = 9.9, 

9.9 Hz, 1H), 3.88–3.91 (m, 1H), 4.12–4.15 (ddd, J = 9.3, 4.6, 6.2 Hz, 1H), 4.52–4.54 (dd, J = 

9.7, 4.4 Hz, 1H), 5.17–5.21 (m, 2H), 5.56 (s, 1H), 5.82–5.89 (ddt, J = 17.2, 10.2, 7.2 Hz, 1H), 

7.35–7.41 (m, 3H), 7.51–7.53 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: 29.9, 37.6, 71.9, 72.4, 

73.5, 80.2, 81.2, 102.5, 118.6, 126.5, 128.6, 129.4, 134.2, 137.3; IR (KBr pellet): 3423, 2979, 

2930, 2891, 1451, 1411, 1369, 1340, 1220, 1137, 1105, 1095, 1045, 983, 751 cm-1; [α]23
D   =  

–11.7 (c = 0.02, CHCl3); HR-MS (ESI) Calcd for C16H20O4 (M+Na)+ 299.1254, found 299.1255. 
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(2R,4aR,6S,7R,8aS)-6-(((2R,3R)-3-methyloxiran-2-yl)methyl)-2-phenylhexahydropyrano 

[3,2-d][1,3]dioxin-7-ol (64): To a solution of olefin 62 (179 mg, 0.62 mmol) in 1:2 

CH3CN:DMM (19 mL) was added a solution of 0.05M Na2B4O7•10 H2O in 4.0 x 10-4 M 

Na2(EDTA) (13 mL), and nBuNHSO4 (105 mg, 0.31 mmol). The solution was cooled to 0 °C 

with rapid stirring.  Then chiral ketone 50 (159 mg, 0.62 mmol) was added and immediately, a 

0.89 M solution of K2CO3 (8.3 mL) and a solution of Oxone® (1.14 g, 1.85 mmol) in 4.0 x 10-4 

M Na2(EDTA) (8.3 mL) were added simultaneously over 20 min via syringe pump. The reaction 

was stirred at 0 °C an additional 30 min then diluted with H2O (30 mL). The aqueous layer was 

extracted with EtOAc (8 x 30 mL), the combined organic extracts were dried over MgSO4, and 

concentrated in vacuo. The crude material was purified by column chromatography (50% EtOAc 

in hexanes) to afford epoxide 64 (151 mg, 80%, 9:1 dr by 1H-NMR) as an amorphous solid. 

Product was visualized with CAM stain, Rf = 0.26 (50% EtOAc in hexanes); 1H NMR (400 

MHz, CDCl3) δ: 1.33–1.34 (d, J = 5.1 Hz, 3H), 1.68–1.75 (m, 2H), 2.22–2.24 (d, J = 15.2 Hz, 

1H), 2.47–2.51 (m, 2H), 2.84–2.85 (m, 1H), 2.92–2.93 (m, 1H), 3.37–3.42 (m, 2H), 3.57–3.61 

(dt, J = 9.4, 4.1 Hz, 1H), 3.69–3.72 (dd, J = 10.3, 10.3 Hz, 1H), 3.77–3.81 (ddd, J = 5.3, 4.3, 4.3 

Hz, 1H), 4.31–4.34 (dd, J = 10.3, 4,7 Hz, 1H), 5.54 (s, 1H), 7.36–7.40 (m, 3H), 7.50–7.51 (m, 

2H); 13C NMR (100 MHz, CDCl3) δ: 17.7, 34.4, 37.7, 54.6, 56.5, 68.9, 69.5, 73.7, 77.4, 80.7, 

101.9, 126.4, 128.6, 129.3, 137.6; IR (KBr pellet): 3438, 2927, 2871, 1453, 1382, 1334, 1314, 

O

O
O

Ph

H

H

64

HO

H

H

Me
O



 

 106 

1284, 1101, 1009, 916, 857, 801 cm-1; [α]23
D   = –5.8 (c = 0.002, CHCl3); HR-MS (ESI) Calcd for 

C17H22O5 (M+Na)+ 329.1359, found 329.1360. 

 

 

 

Tetrahydropyran (65):  

Representative Procedure: To a mixture of epoxy alcohol 64 (50 mg, 0.20 mmol) in MeOH (5 

mL) was added Cs2CO3 (1.3 g, 4 mmol). The reaction was heated to 50 °C for 12 h, then cooled 

to ambient temperature. The reaction was diluted with Et2O (50 mL) and washed with sat. NH4Cl 

(20 mL). The organic layer was dried over MgSO4 and the solvent was removed in vacuo. The 

crude material was purified by column chromatography (30% EtOAc in hexanes) to afford 65 

(15 mg, 30%) as a white solid. Product was visualized with CAM stain, Rf = 0.27 (50% EtOAc 

in hexanes); 1H NMR (600 MHz, CDCl3) δ: 1.31–1.33 (d, J = 6.1 Hz, 3H), 1.47–1.52 (ddd, J = 

11.2, 11.2, 11.2 Hz, 1H), 1.63–1.64 (d, J = 5.4 Hz, 1H), 1.58–1.74 (ddd, J = 11.2, 11.2, 11.2 Hz, 

1H), 2.39–2.42 (dt, J = 11.4, 4.0 Hz, 1H), 2.43–2.46 (dt, J = 11.5, 4.1 Hz, 1H), 3.15–3.27 (m, 

3H), 3.38–3.45 (m, 2H), 3.59–3.64 (ddd, J = 11.9, 9.1, 4.2 Hz, 1H), 3.70–3.73 (dd, J = 10.3, 10.3 

Hz, 1H), 4.32–4.34 (dd, J = 10.5, 4.8 Hz, 1H), 5.55 (s, 1H), 7.36–7.40 (m, 3H), 7.50–7.51 (m, 

2H); 13C NMR (100 MHz, CD2Cl2) δ:  18.1, 35.4, 38.9, 69.7, 71.9, 94.1, 76.9, 77.5, 77.6, 79.0, 

102.2, 126.7, 128.7, 129.5, 138.3; IR (KBr pellet): 3582, 2929, 2872, 1452, 1375, 1332, 1290, 

1234, 1177, 1110, 1073, 1038, 1007, 991, 976, 947, 926, 760, 702 cm-1; [α]23
D   = –9.1 (c = 0.015, 

CHCl3). HR-MS (ESI) Calcd for C17H22O5 (M+Na)+ 329.1359, found 329.1368.  
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Tetrahydrofuran (66): Cyclization in Cs2CO3 and MeOH (vide supra) afforded 66 (27 mg, 

54%). Product was visualized with CAM stain, Rf = 0.17 (50% EtOAc in hexanes); 1H NMR 

(400 MHz, CD2Cl2) δ: 1.10–1.12 (d, J = 6.5 Hz, 3H), 1.25–1.28 (m, 1H), 1.66–1.74 (ddd, J = 

10.8, 10.8, 10.8 Hz, 1H), 1.92–1.99 (td, J = 11.0, 9.5 Hz, 1H), 2.08–2.14 (dt, J = 11.0, 6.2 Hz, 

1H), 2.51–2.56 (dt, J = 10.5, 3.8 Hz, 1H), 3.43–3.62 (m, 3H), 3.67–3.76 (dd, J = 10.2, 10.2 Hz, 

1H), 3.94–4.00 (td, J = 6.5, 4.0 Hz, 1H), 4.05–4.12 (ddd, J = 9.5, 6.4, 3.9 Hz, 1H), 4.29–4.33 

(dd, J = 10.5, 4.7 Hz, 1H), 5.49 (s, 1H), 7.35–7.38 (m, 3H), 7.45–7.47 (m, 2H); 13C NMR (100 

MHz, CD2Cl2) δ: 18.4, 29.2, 35.7, 69.6, 69.8, 75.2, 77.8, 78.1, 82.0, 82.5, 102.5, 126.7, 128.7, 

129.5, 138.2; IR (KBr pellet): 3433, 2974, 2873, 1455, 1389, 1372, 1332, 1313, 1293, 1240, 

1211, 1178, 1109, 1073, 1030, 1004, 944, 920, 891, 858, 795, 751 cm-1; [α]23
D = –32.0 (c = 

0.007, CHCl3). HR-MS (ESI) Calcd for C17H22O5 (M+Na)+ 329.1359, found 329.1352.  
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tert-butyldimethyl((2R,4S,5R)-4-(((2R,3R)-3-(((2R,3R)-3-methyloxiran-2-yl)methyl)oxiran-

2-yl)methyl)-2-phenyl-1,3-dioxan-5-yloxy)silane (73): To a solution of olefin 72 (268 mg, 0.66 

mmol) in 1:2 CH3CN:DMM (21 mL) was added a solution of 0.05M Na2B4O7•10 H2O in 4.0 x 

10-4 M Na2(EDTA) (14 mL), and n-BuNHSO4 (224 mg, 0.66 mmol). The solution was cooled to 

0 °C with rapid stirring.  Then chiral ketone 50 (170 mg, 0.66 mmol) was added and 

immediately, a 0.89 M solution of K2CO3 (6 mL) and a solution of Oxone® (811 mg, 1.32 mmol) 

in 4.0 x 10-4 M Na2(EDTA) (6 mL) were added simultaneously over 20 min via syringe pump. 

The reaction was stirred at 0 °C an additional 30 min then diluted with H2O (40 mL). The 

aqueous layer was extracted with EtOAc (8 x 25 mL), the combined organic extracts were dried 

over MgSO4, and concentrated in vacuo. The crude material was purified by column 

chromatography (20% EtOAc in hexanes) to afford diepoxide 73 (207 mg, 75%, 9:1 dr by 1H-

NMR) as a amorphous solid. Product was visualized with CAM stain, Rf = 0.30 (20% EtOAc in 

hexanes); 1H NMR (400 MHz, CDCl3) δ: 0.10 (s, 3H), 0.11 (s, 3H), 0.89 (s, 9H), 1.28–1.30 (d, J 

= 4.9 Hz, 3H), 1.76–1.78 (dd, J = 7.1, 5.6 Hz, 2H), 1.97–2.00 (dd, J = 5.5, 5.0 Hz, 2H), 2.78–

2.83 (m, 2H), 2.89–2.92 (ddd, J = 6.1, 6.0, 2.2 Hz, 1H), 3.00–3.04 (td, J = 6.0, 2.2 Hz, 1H), 

3.55–3.61 (m, 1H), 3.66–3.74 (m, 2H), 4.18–4.22 (dd, J = 10.7, 4.5 Hz, 1H), 5.51 (s, 1H), 7.34–

7.40 (m, 3H), 7.47–7.50 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: –4.6, –4.1, 17.7, 18.1, 25.9, 

33.9, 35.2, 25.6, 55.2, 55.6, 56.7, 66.1, 72.0, 80.3, 101.0, 126.2, 128.5, 129.1, 137.9 ; IR (thin 

film NaCl): 3067, 3036, 2956, 2929, 2857, 1472, 1463, 1386, 1361, 1297, 1253, 1216, 1106, 

1028, 979, 939, 879, 838, 778, 752, 723, 698 cm-1; [α]23
D   = –25.1 (c = 0.036, CHCl3); HR-MS 

(ESI) Calcd for C23H36O5Si (M+Na)+ 443.2224, found 443.2234. 
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(2R,4S,5R)-4-(((2R,3R)-3-(((2R,3R)-3-methyloxiran-2-yl)methyl)oxiran-2-yl)methyl)-2-

phenyl-1,3-dioxan-5-ol (67): Silyl ether 73 (103 mg, 0.245 mmol) was dissolved in THF (1.2 

mL) and cooled to 0 °C. A solution of TBAF (0.49 mL of 1M in THF, 0.49 mmol) was added 

and the reaction was stirred at ambient temperature for 30 min. The reaction was quenched by 

addition of brine (1 mL) and the aqueous layer was extracted with EtOAc (3 x 1 mL). The 

combined organic extracts were dried over MgSO4 and concentrated in vacuo. The product was 

purified by column chromatography (60% EtOAc in hexanes) to afford epoxy alcohol 67 (59 mg, 

78%) as a colorless oil; Product was visualized with CAM stain, Rf = 0.35 (85% EtOAc in 

hexanes); 1H NMR (400 MHz, CDCl3) δ: 1.29–1.32 (d, J = 5.0 Hz, 3H), 1.73–1.76 (ddd, J = 

14.5, 6.7, 4.9 Hz, 1H), 1.81–1.83 (ddd, J = 14.5, 6.6, 4.2 Hz, 1H), 1.93–2.00 (ddd, J = 15.0, 7.0, 

5.3 Hz, 1H), 2.18–2.24 (dt, J = 15.1, 4.0 Hz, 1H), 2.66–2.67 (d, J = 5.1 Hz, 1H), 2.81–2.85 (m, 

2H), 2.96–2.99 (ddd, J = 6.8, 4.8, 2.3 Hz, 1H), 3.07–3.11 (ddd, J = 6.6, 3.8, 2.3 Hz, 1H), 3.59–

3.64 (dd, J = 10.5, 1H), 3.73–3.75 (dt, J = 9.4, 5.0 Hz, 1H), 3.85–3.89 (ddd, J = 9.7, 5.1, 4.8 Hz, 

1H), 4.29–4.34 (dd, J = 10.8, 5.1 Hz, 1H), 5.51 (s, 1H), 7.35–7.41 (m, 3H), 7.49–7.51 (s, 2H); 

13C NMR (100 MHz, CDCl3) δ: 17.7, 34.6, 35.0, 54.8, 55.5, 55.6, 56.7, 65.3, 71.3, 79.8, 101.3, 

126.3, 128.5, 129.2, 137.8; IR (thin film NaCl): 2438, 2983, 2924, 2857, 1454, 1382, 1307, 

1216, 1076, 1027, 978, 855, 754, 700, 679 cm-1; [α]23
D   = 32.5 (c = 0.019, CHCl3); HR-MS (ESI) 

Calcd for C17H22O5 (M+Na)+ 329.1359, found 329.1363. 
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(E)-4-((2R,3R)-3-(((2R,4S,5R)-5-(tert-butyldimethylsilyloxy)-2-phenyl-1,3-dioxan-4-yl) 

methyl)oxiran-2-yl)but-2-enal(78): To a solution of olefin 71 (5.2 g, 13.3 mmol) in CH2Cl2 (25 

mL) was added acrolein (2.7 mL, 39.9 mmol) and the Hoveyda-Grubbs 2nd generation catalyst 

(333 mg, 0.5 mmol). A reflux condenser was attached and the reaction was heated to reflux for 

16 h. The reaction was cooled to ambient temperature, ethyl vinyl ether was added (10 mL), the 

reaction was stirred at room temperature for 10 min and then concentrated in vacuo. The crude 

reaction mixture was purified by column chromatography (gradient: 10% to 20% EtOAc in 

hexanes) to afford aldehyde 78 (4.2 g, 77%). Product was visualized with CAM stain, Rf = 0.27 

(20% EtOAc in hexanes); 1H NMR (400 MHz, CDCl3) δ: 0.11 (s, 6H), 0.90 (s, 9H), 2.00–2.03 (t, 

J = 5.1 Hz, 2H), 2.52–2.66 (m, 2H), 2.90–2.93 (ddd, J = 5.9, 5.8, 2.2 Hz, 1H), 3.03–3.06 (ddd, J 

= 5.5, 5.5, 2.1 Hz, 1H), 3.55–3.60 (m, 1H), 3.69–3.71 (m, 2H), 4.18–4.22 (dd, J = 10.7, 4.4 Hz, 

1H), 5.51 (s, 1H), 6.18–6.25 (ddt, J = 15.8, 7.8, 1.5 Hz, 1H), 6.77–6.85 (dt, J = 15.8, 6.7 Hz, 

1H), 7.34–7.40 (m, 3H), 7.46–7.49 (m, 2H), 9.46–9.48 (d, J = 7.8 Hz, 1H); 13C NMR (100 MHz, 

CDCl3) δ: –4.7, –4.1, 18.0, 25.8, 33.6, 35.1, 55.3, 55.2, 66.0, 71.9, 80.0, 101.0, 126.1, 128.4, 

129.1, 134.8, 137.8, 152.4, 193.6; IR (thin film NaCl): 3036, 2929, 2857, 2738, 1695 ,1638, 

1472, 1463, 1387, 1361 ,1297, 1253, 1216, 1112, 1029, 976, 938, 838, 778, 699, 678 cm-1; [α]23
D   

= –38.3 (c = 0.047, CHCl3); HR-MS (ESI) Calcd for C23H34O5Si (M+Na)+ 441.2068, found 

441.2086. 
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((2R,3R)-3-(((2R,3R)-3-(((2R,4S,5R)-5-(tert-butyldimethylsilyloxy)-2-phenyl-1,3-dioxan-4-

yl)methyl)oxiran-2-yl)methyl)oxiran-2-yl)methanol (79): A solution of aldehyde 78 (4.1 g, 9.8 

mmol) in MeOH (20 mL) was cooled to 0 °C and NaBH4 (277 mg, 7.34 mmol) was added in 

portions, after which the reaction was stirred at 0 °C for 20 min, quenched with sat. NH4Cl (30 

mL) and extracted with EtOAc (5 x 30 mL). The combined organic extracts were washed with 

brine (50 mL), dried over MgSO4 and concentrated in vacuo. The crude allylic alcohol was used 

without further purification.  

Powdered 4Å molecular sieves (2 g) were flame dried under vacuum for 8 minutes and 

then cooled to ambient temperature. To the sieves was added CH2Cl2 (25 mL), D–(-)-diethyl 

tartrate (241 mg, 1.17 mmol) and the mixture was cooled to –25 °C. Next, Ti(OiPr)4 (290 µL, 

0.98 mmol) was added in one portion followed by the dropwise addition of t-BuOOH (3.5 mL of 

5.5M in decane, 19.6 mmol) and the reaction was stirred at –25 °C for 30 min. The allylic 

alcohol was added as a solution in CH2Cl2 (10 mL) and the reaction was stirred at –25 °C for 15 

h. The reaction was quenched by slow addition to a solution of Fe(II)SO4•7H2O (3.2 g), tartaric 

acid (1 g), and H2O (34 mL) at 0 °C. The mixture was stirred at room temperature for 15 min and 

extracted with Et2O. The organic extracts were combined and to them was added 30mL 30% 

NaOH in brine. The mixture was stirred at room temperature for 1h. The organic layer was 

separated, dried over MgSO4 and the solvent was removed in vacuo. The crude material was 

purified by column chromatography (40% EtOAc in hexanes) to afford epoxide 79 (3.1 g, 73%). 

Product was visualized with CAM stain, Rf = 0.19 (40% EtOAc in hexanes); 1H NMR (400 
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MHz, CDCl3) δ: 0.10 (s, 3H), 0.11 (s, 3H), 0.89 (s, 9H), 1.79–1.83 (m, 2H), 1.98–2.03 (m, 3H), 

2.89–2.93 (m, 1H), 2.95–2.97 (ddd, J = 4.5, 2.4, 2.4 Hz, 1H), 3.01–3.04 (td, J = 5.6, 2.1 Hz, 1H), 

3.10–3.14 (m, 1H), 3.54–3.60 (m, 2H), 3.66–3.72 (m, 2H), 3.81–3.86 (m, 1H), 4.18–4.22 (dd, J 

= 10.8, 4.5 Hz, 1H), 5.52 (s, 1H), 7.33–7.40 (m, 3H), 7.48–7.50 (m, 2H); 13C NMR (100 MHz, 

CDCl3) δ: –4.6, –4.1, 18.0, 25.8, 33.8, 34.7, 53.0, 54.9, 55.6, 58.3, 61.5, 66.1, 72.0, 80.2, 101.0, 

126.2, 128.4, 129.1, 137.9; IR (thin film NaCl): 3460, 2955, 2929, 2857, 1472, 1463, 1388, 

1361, 1297, 1253, 1216, 1109, 1029, 980, 856, 838, 778, 698 cm-1; [α]23
D   = –20.4 (c = 0.037, 

CHCl3); HR-MS (ESI) Calcd for C23H36O6Si (M+Na)+ 459.2173, found 459.2179. 

 

 

 

(2R,4S,5R)-4-(((2R,3R)-3-(((2R,3R)-3-(benzyloxymethyl)oxiran-2-yl)methyl)oxiran-2-yl) 

methyl)-2-phenyl-1,3-dioxan-5-ol (80): Sodium hydride (418 mg of 60% NaH in oil, 10.4 

mmol) was added to THF (15 mL) at 0 °C followed by a solution of alcohol 79 (3.04 g, 7.0 

mmol) in THF (10 mL). The reaction was warmed to ambient temperature and stirred for 30 min. 

Benzyl bromide (1.24 mL, 10.4 mmol) was then added and the reaction was stirred an additional 

2 h. The mixture was then cooled to 0 °C, quenched with sat. NH4Cl and the aqueous lyaer was 

extracted with EtOAc (3 x 50mL). The combined organic extracts were dried over MgSO4 and 

concentrated in vacuo. The crude product was purified by column chromatography (10% to 20% 

EtOAc in hexanes) to afford benzyl ether 80 (3.04 g, 83%). Product was visualized with CAM 

stain, Rf = 0.46 (30% EtOAc in hexanes); 1H NMR (400 MHz, CDCl3) δ: 0.12 (s, 3H), 0.13 (s, 
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3H), 0.91 (s, 9H), 1.76–1.88 (m, 2H), 1.99–2.02 (m, 2H), 2.91–2.95 (m, 1H), 3.01–3.07 (m, 3H), 

3.45–3.49 (dd, J = 11.5, 5.4 Hz, 1H), 3.56–3.61 (m, 1H), 3.68–3.76 (m, 3H), 4.20–4.23 (dd, J = 

10.8, 4.5 Hz, 1H), 4.53–4.56 (d, J = 12.0 Hz, 1H), 4.58–4.61 (d, J = 12.0 Hz, 1H), 5.53 (s, 1H), 

7.31–7.40 (m, 8H), 7.50–7.52 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: –4.6, –4.1, 18.0, 25.8, 

33.9, 34.9, 53.1, 54.9, 55.6, 56.8, 66.1, 70.1, 71.9, 73.4, 80.2, 100.9, 126.2, 127.8, 127.9, 128.4, 

128.5, 129.0, 137.9, 138.0; IR (thin film NaCl): 3065, 3033, 2955, 2928, 2856, 1472, 1454, 

1387, 1361, 1297, 1525, 1215, 1108, 1028, 978, 939, 881, 856, 838, 778, 749, 698 cm-1; [α]23
D   = 

–20.8 (c = 0.045, CHCl3); HR-MS (ESI) Calcd for C30H42O6Si (M+Na)+ 549.2643, found 

549.2643. 

 

 

 

(2R,4S,5R)-4-(((2R,3R)-3-(((2R,3R)-3-(benzyloxymethyl)oxiran-2-yl)methyl)oxiran-2-yl) 

methyl)-2-phenyl-1,3-dioxan-5-ol (81): To a solution of silyl ether 80 (1.6 g, 3.0 mmol) in THF 

(15 mL) at 0 °C was added TBAF (4.5 mL of 1M solution in THF, 4.5 mmol) and the reaction 

was stirred at 0 °C for 30 min. The reaction was quenched with brine (20 mL). The aqueous lyaer 

was extracted with EtOAc (3 x 20 mL), dried over MgSO4 and concentrated in vacuo. The 

material was purified by column chromatography (50% to 80% EtOAc in hexanes) to afford 

alcohol 81 (1.2 g, 98%). Product was visualized with CAM stain, Rf = 0.1 (50% EtOAc in 

hexanes); 1H NMR (400 MHz, CDCl3) δ: 1.74–1.81 (ddd, J = 14.5, 6.6, 4.9 Hz, 1H), 1.83–1.89 

(ddd, J = 14.5, 6.6, 4.0 Hz, 1H), 1.94–2.00 (ddd, J = 15.0, 6.0, 6.0 Hz, 1H), 2.15–2.21 (ddd, J = 

15.0, 4.1, 4.1 Hz, 1H), 2.96–2.99 (m, 2H), 3.02 (m, 2H), 3.09–3.12 (m, 1H), 3.48–3.52 (dd, J = 
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11.5, 5.4 Hz, 1H), 3.55–3.60 (dd, J = 10.5, 10.5 Hz, 1H), 3.69–3.83 (m, 3H), 4.24–4.28 (dd, J = 

10.8, 5.1 Hz, 1H), 4.53–4.56 (d, J = 11.9 Hz, 1H), 4.58–4.61 (d, J = 11.9 Hz, 1H), 5.50 (s, 1H), 

7.30–7.41 (m, 8H), 7.50–7.52 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: 34.3, 34.6, 53.1, 55.3, 

55.5, 56.9, 65.0, 70.0, 71.3, 73.5, 79.6, 101.1, 126.2, 127.9, 128.0, 128.4, 128.6, 129.1, 137.7, 

137.8; IR (thin film NaCl): 3443, 3064, 3032, 2985, 2919, 2857, 1454, 1397, 1368, 1215, 1075, 

1028, 978, 915, 883, 751, 699 cm-1; [α]23
D   = 19.0 (c = 0.042, CHCl3); HR-MS (ESI) Calcd for 

C24H28O6 (M+Na)+ 435.1778, found 435.1795. 

 

 

 

2-(benzyloxy)-1-(4-((2R,4aR,7aS)-2-phenyltetrahydro-4H-furo[3,2-d][1,3]dioxin-6-yl) 

oxetan-2-yl)ethanol (82): Product was visualized with CAM stain, Rf = 0.24 (50% EtOAc in 

hexanes); 1H NMR (400 MHz, CDCl3) δ: 1.74–1.80 (ddd, J = 11.1, 11.0, 11.0 Hz, 1H), 2.00–

2.05 (td, J= 11.3, 9.1 Hz, 1H), 2.22–2.27 (dt, J= 11.6, 6.4 Hz, 1H), 2.45–2.46 (d, J = 4.5 Hz, 1H), 

2.58–2.61 (dt, J = 10.6, 3.9 Hz, 1H), 3.4–3.57 (m, 4H), 3.59–3.66 (m, 2H), 3.74–3.78 (dd, J= 

10.4, 10.0 Hz, 1H), 3.93–3.97 (m, 1H), 4.18–4.22 (dt, J = 8.9, 6.5 Hz, 1H), 4.35–4.38 (dd, J = 

10.5, 4.6 Hz, 1H), 4.54–4.56 (d, J = 11.8 Hz, 1H), 4.59–4.61 (d, J= 11.8 Hz, 1H), 5.52 (s, 1H), 

7.32–7.40 (m, 8H), 7.50–7.51 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: 30.7, 35.2, 69.5, 71.3, 

72.8, 73.8, 74.8, 77.1, 77.8, 78.4, 81.6, 102.3, 126.4, 128.0, 128.1, 128.6, 128.7, 129.4, 137.4, 

137.9; IR (thin film NaCl): 3459, 3033, 2872, 1496, 1454, 1371, 1334, 1313, 1292, 1234, 1176, 
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1113, 1028, 969, 848, 751, 699 cm-1; [α]23
D   = –28.0 (c = 0.003, CHCl3); HR-MS (ESI) Calcd for 

C24H28O6 (M+Na)+ 435.1778, found 435.1793. 

 

 

 

(2R,4aR,6S,7R,8aS)-6-allyl-7-(4-methoxybenzyloxy)-2-phenylhexahydropyrano[3,2-d][1,3] 

dioxine (S2): Potassium hydride (3 g of 30% in oil by weight, 22.5 mmol) was loaded into a 

round bottom flask. A solution of alcohol 76 (4.1 g, 15.0 mmol) in THF (150 mL) was added and 

the reaction was heated to 50 °C for 40 min affording an orange/red solution. para-

Methoxybenzyl chloride (2.6 mL, 19.4 mmol) was added dropwise and the reaction was stirred 

at 50 °C for an additional 40 min. The reaction was cooled to 0 °C, quenched by dropwise 

addition of MeOH (6 mL) followed by addition of brine (80 mL). The aqueous layer was 

extracted with EtOAc (3 x 130 mL). The combined organic extracts were dried over MgSO4 and 

the solvent was removed in vacuo. The crude material was purified by column chromatography 

(gradient: 5% to 10% to 30% EtOAc in hexanes) to afford PMB ether S2 (5.2 g, 94%) as a 

colorless oil; Product was visualized with CAM stain, Rf = 0.34 (in 30% EtOAc in hexanes); 1H 

NMR (400 MHz, CDCl3) δ: 1.63–1.72 (ddd, J = 11.6, 11.6, 11.6 Hz, 1H), 2.23–2.31 (dt, J = 

14.9, 7.4 Hz, 1H), 2.61–2.69 (m, 2H), 3.31–3.53 (m, 4H), 3.66–3.71 (dd, J = 10.4, 10.4 Hz, 1H), 

3.83 (s, 3H), 4.31–4.34 (dd, J = 10.4, 4.9 Hz, 1H), 4.42–4.45 (d, J = 11.1 Hz, 1H), 4.58–4.61 (d, 

J = 11.1 Hz, 1H), 5.08–5.15 (m, 2H), 5.53 (s, 1H), 5.84–5.95 (dddd, J = 17.4, 10.2, 7.5, 6.4 Hz, 

1H), 6.89–6.93 (d, J = 8.7 Hz, 2H), 7.26–7.29 (d, J = 8.7 Hz, 2H), 7.36–7.42 (m, 3H), 7.50–7.52 
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(m, 2H); 13C NMR (100 MHz, CDCl3) δ: 34.9, 36.2, 55.5, 69.6, 70.8, 73.2, 75.3, 76.9, 80.5, 

101.8, 114.1, 117.2, 126.4, 128.5, 129.3, 129.7, 130.1, 134.9, 137.6, 159.5; IR (thin film NaCl): 

3071, 3035, 2999, 2935, 2871, 1641, 1612, 1586, 1513, 1455, 1386, 1365, 1302, 1249, 1173, 

1090, 1031, 1013, 966, 916, 820, 751, 698 cm-1; [α]23
D   = –53.3 (c = 0.046, CHCl3); HR-MS (ESI) 

Calcd for C24H28O5 (M+Na)+ 419.1829, found 419.1835. 

 

 
 

(2R,3S,5R,6S)-6-allyl-2-(hydroxymethyl)-5-(4-methoxybenzyloxy)tetrahydro-2H-pyran-3-ol 

(86): Ether S2 (4.5 g, 12.2 mmol) was dissolved in MeOH (225 mL) and THF (75 mL) followed 

by addition of CSA (860 mg, 3.7 mmol). The reaction as stirred at ambient temperature for 90 

min, quenched by addition of Et3N (0.5 mL) and the solvent was removed in vacuo. The crude 

material was purified by column chromatography (gradient: 40% EtOAc in hexanes to 100% 

EtOAc) to afford diol 86 (3.3 g, 90%) as a colorless oil; Product was visualized with CAM stain, 

Rf = 0.30 (in 80% EtOAc in hexanes); 1H NMR (400 MHz, CDCl3) δ: 1.42–1.50 (ddd, J = 11.2, 

11.2, 11.2 Hz, 1H), 2.17–2.24 (m, 2H), 2.30–2.31 (d, J = 5.3 Hz, 1H), 2.54–2.65 (m, 2H), 3.17–

3.23 (m, 2H), 3.28–3.33 (ddd, J = 9.1, 7.8, 3.1 Hz, 1H), 3.55–3.64 (m, 1H), 3.72–3.78 (ddd, J = 

11.5, 5.4, 5.3, 1H), 3.82–3.87 (m, 4H), 4.39–4.42 (d, J = 11.1 Hz, 1H), 4.55–4.58 (d, J = 11.1 

Hz, 1H), 5.05–5.11 (m, 2H), 5.81–5.88 (dddd, J = 17.3, 10.2, 7.4, 6.5 Hz, 1H), 6.88–6.90 (d, J = 

8.7 Hz, 2H), 7.25–7.27 (d, J = 8.7 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ: 36.2, 38.4, 55.5, 

63.4, 66.9, 70.9, 75.2, 79.8, 81.0, 114.1, 117.1, 129.7, 130.2, 135.0, 159.5; IR (thin film NaCl): 

3430, 3037, 3005, 2936, 2880, 2855, 1646, 1614, 1515, 1465, 1401, 1339, 1305, 1253, 1183, 
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1127, 1101, 1043, 999, 918, 824, 771, 669 cm-1; [α]23
D   = –31.3 (c = 0.006, CHCl3); HR-MS (ESI) 

Calcd for C17H24O5 (M+Na)+ 331.1516, found 331.1528. 

 
 

 
 

((2R,3S,5R,6S)-6-allyl-3-(tert-butyldimethylsilyloxy)-5-(4-methoxybenzyloxy)tetrahydro-2H 

-pyran-2-yl)methanol (S3): Diol 86 (3.3 g, 10.8 mmol) was dissolved in CH2Cl2 (108 mL), 2,6-

lutidine (5 mL, 43.2 mmol) was added and the flask was cooled to 0 °C. Tert-butyldimethylsilyl 

trifluoromethanesulfonate (6.2 mL, 27 mmol) was added dropwise and the reaction was stirred at 

0 °C for 30 min, then quenched by addition of MeOH (3 mL) and diluted with EtOAc (200 mL). 

The organic layer was washed with 1M HCl (100 mL), then sat. NaHCO3 (100 mL) and finally 

brine (100 mL). The organic layer was dried over MgSO4 and the solvent was removed in vacuo. 

The crude residue was dissolved in MeOH (100 mL) and cooled to 0 °C followed by addition of 

CSA (1.5 g, 6.5 mmol). The reaction was stirred at 0 °C for 20 min. The reaction was quenched 

with Et3N (0.9 mL), the solvent was removed in vacuo. The crude material was purified by 

column chromatography (gradient: 10% to 20% EtOAc in hexanes) to afford silyl ether S3 (4.1 

g, 91% over 2 steps) as a colorless oil; Product was visualized with CAM stain, Rf = 0.66 (in 

50% EtOAc in hexanes); 1H NMR (400 MHz, CDCl3) δ: 0.06 (s, 6H), 0.88 (s, 9H), 1.40–1.49 

(ddd, J = 11.2, 11.2, 11.2 Hz, 1H), 2.00–2.03 (dd, J = 7.2, 5.7 Hz, 1H), 2.17–2.24 (dt, J = 15.2, 

7.6 Hz, 1H), 2.34–2.39 (dt, J = 11.8, 4.5 Hz, 1H), 2.59–2.65 (dddd, J = 14.7, 4.6, 3.1, 1.5 Hz, 

1H), 3.13–3.21 (m, 2H), 3.28–3.33 (ddd, J = 9.2, 7.7, 3.0 Hz, 1H), 3.45–3.51 (ddd, J = 11.0, 9.1, 

4.6 Hz, 1H), 3.54–3.59 (dt, J = 11.6, 5.6 Hz, 1H), 3.79–3.84 (m, 4H), 4.41–4.43 (d, J = 11.1 Hz, 
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1H), 4.53–4.56 (d, J = 11.1 Hz, 1H), 5.04–5.12 (m, 2H), 5.81–5.92 (dddd, J = 17.6, 10.2, 7.5, 6.2 

Hz, 1H), 6.88–6.91 (d, J = 8.7 Hz, 2H), 7.26–7.28 (d, J = 8.7 Hz, 2H); 13C NMR (100 MHz, 

CDCl3) δ: –4.7, –4.0, 18.1, 25.9, 36.3, 39.2, 55.5, 63.0, 67.0, 71.0, 75.3, 79.7, 81.8, 114.1, 117.1, 

129.7, 130.4, 135.0, 159.5; IR (thin film NaCl): 3480, 3075, 2953, 2929, 2857, 1641, 1612, 

1514, 1463, 1360, 1302, 1250, 1173, 1095, 1004, 913, 861, 837, 777, 670 cm-1; [α]23
D   = –0.30 (c 

= 0.011, CHCl3); HR-MS (ESI) Calcd for C23H38O5Si (M+Na)+ 445.2381, found 445.2384.  

 

 
 

((2R,3S,5R,6S)-6-allyl-5-(4-methoxybenzyloxy)-2-(methoxymethyl)tetrahydro-2H-pyran-3-

yloxy)(tert-butyl)dimethylsilane (87): Alcohol S3 (3.2 g, 7.6 mmol) was dissolved in CH3CN 

(75 mL) followed by addition of MeI (9.4 mL, 152 mmol) and silver(I) oxide (1.9 g, 8.4 mmol). 

The reaction was heated to 60 °C in the dark for 18 h then cooled to ambient temperature 

affording a white cloudy solution. The solution was filtered through Celite, the Celite was 

washed with Et2O and the organic solvent was removed in vacuo. The crude material was 

purified by column chromatography (10% EtOAc in hexanes) to afford methyl ether 87 (2.5 g, 

76%) as a colorless oil; Product was visualized with CAM stain, Rf = 0.52 (in 20% EtOAc in 

hexanes); 1H NMR (600 MHz, CDCl3) δ: 0.05 (s, 3H), 0.06 (s, 3H), 0.88 (s, 9H), 1.38–1.44 (ddd, 

J = 11.3, 11.3, 11.3 Hz, 1H), 2.24–2.29 (dt, J = 14.7, 7.3 Hz, 1H), 2.34–2.38 (dt, J = 11.8, 4.5 

Hz, 1H), 2.58–2.62 (m, 1H), 3.16–3.21 (m, 2H), 3.24–3.27 (td, J = 9.2, 3.2 Hz, 1H), 2.26 (s, 3H), 

3.49–3.51 (dd, J = 10.4, 4.6 Hz, 1H), 3.56–3.61 (m, 2H), 3.81 (s, 3H), 4.41–4.42 (d, J = 11.1 Hz, 

1H), 4.52–4.54 (d, J = 11.1 Hz, 1H), 5.04–5.05 (d, J = 10.2 Hz, 1H), 5.08–5.11 (d, J = 17.2 Hz, 
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1H), 5.90–5.97 (dddd, J = 17.2, 10.2, 6.9, 6.9 Hz, 1H), 6.88–6.89 (d, J = 8.5 Hz, 2H), 7.26–7.27 

(d, J = 8.5 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ: –4.9, –4.2, 17.9, 25.8, 36.1, 39.4, 55.3, 59.4, 

66.0, 70.8, 71.7, 75.2, 80.4, 81.7, 113.9, 116.5, 129.6, 130.4, 135.3, 159.4; IR (thin film NaCl): 

3074, 2953, 2929, 2885, 2857, 1641, 1612, 1586, 1514, 1471, 1463, 1302, 1250, 1203, 1173, 

1102, 1037, 1004, 912, 862, 837, 776, 669 cm-1; [α]23
D   = 0.4 (c = 0.0026, CHCl3); HR-MS (ESI) 

Calcd for C24H40O5Si (M+Na)+ 459.2537, found 459.2543. 

 

 
 

(2R,3S,5R,6S)-6-allyl-5-(4-methoxybenzyloxy)-2-(methoxymethyl)tetrahydro-2H-pyran-3-ol 

(S4): Silyl ether 87 (3.0 g, 6.9 mmol) was dissolved in THF (70 mL) and cooled to 0 °C. A 

solution of TBAF (10.3 mL of 1M in THF, 10.3 mmol) was added, the reaction was allowed to 

warm to ambient temperature and stirred for 1.75 h before being dilluted with brine (100 mL). 

The aqueous layer was extracted with EtOAc (3 x 100 mL), the combined organic extracts were 

dried over MgSO4, and the solvent was removed in vacuo. The crude material was purified by 

column chromatography (gradient: 40% to 60% EtOAc in hexanes then 100% EtOAc) to afford 

alcohol S4 (2.1 g, 98%) as a colorless oil; Product was visualized with CAM stain, Rf = 0.2 (in 

60% EtOAc in hexanes); 1H NMR (400 MHz, CDCl3) δ: 1.39–1.47 (ddd, J = 11.3, 11.3, 11.3 Hz, 

1H), 2.18–2.25 (dt, J = 14.7, 7.4 Hz, 1H), 2.52–2.62 (m, 2H), 3.19–3.29 (m, 4H), 3.39 (s, 3H), 

3.53–3.57 (m, 2H), 3.64–3.67 (dd, J = 9.9, 4.7 Hz, 1H), 3.79 (s, 3H), 4.37–4.40 (d, J = 11.1 Hz, 

1H), 4.54–4.57 (d, J = 11.1 Hz, 1H), 5.03–5.10 (m, 2H), 5.85–5.93 (dddd, J = 17.1, 10.2, 6.9, 6.9 

Hz, 1H), 6.87–6.89 (d, J = 8.7 Hz, 2H), 7.24–7.26 (d, J = 8.7 Hz, 2H); 13C NMR (100 MHz, 
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CDCl3) δ: 36.0, 37.8, 55.3, 59.7, 68.3, 70.6, 74.1, 75.0, 79.1, 80.0, 113.9, 116.7, 129.6, 130.2, 

135.1, 159.3; IR (thin film NaCl): 3431, 3074, 2869, 1641, 1612, 1586, 1514, 1456, 1347, 1302, 

1249, 1201, 1173, 1100, 916, 820 cm-1; [α]23
D   = –56.2 (c = 0.042, CHCl3); HR-MS (ESI) Calcd 

for C18H26O5 (M+Na)+ 345.1672, found 345.1673. 

 

 
 

(2R,5R,6S)-6-allyl-5-(4-methoxybenzyloxy)-2-(methoxymethyl)dihydro-2H-pyran-3(4H)-

one (88): Alcohol S4 (2.1 g, 6.7 mmol) was dissolved in CH2Cl2 (70 mL) to which was added 

Dess-Martin periodinane (6.0 g, 14.1 mmol). The reaction was stirred at ambient temperature for 

90 min. The reaction was quenched by addition of sat. NaHCO3 (100 mL) and then sat. Na2S2O3 

(100 mL). The aqueous layer was extracted with EtOAc (3 x 200 mL). The combined organic 

extracts were dried over MgSO4 and the solvent was removed in vacuo. The crude material was 

purified by column chromatography (30% EtOAc in hexanes) to afford ketone 88 (2.0 g, 96%) as 

a colorless oil; Product was visualized with CAM stain, Rf = 0.38 (in 40% EtOAc in hexanes); 

1H NMR (400 MHz, CDCl3) δ: 2.43–2.47 (t, J = 6.4 Hz, 2H), 2.58–2.63 (dd, J = 15.3, 4.5 Hz, 

1H), 2.80–2.85 (dd, J = 15.3, 4.5 Hz, 1H), 3.36 (s, 3H), 3.63–3.67 (dd, J = 10.7, 5.4 Hz, 1H), 

3.71–3.76 (m, 2H), 3.79 (s, 3H), 3.83–3.86 (dd, J = 4.5, 4.5 Hz, 1H), 4.00–4.02 (dd, J = 5.3, 2.5 

Hz, 1H), 4.31–4.34 (d, J = 11.3 Hz, 1H), 4.46–4.49 (d, J = 11.3 Hz, 1H), 5.09–5.13 (m, 2H), 

5.81–5.92 (dddd, J = 17.2, 10.2, 7.0, 7.0 Hz, 1H), 6.85–6.88 (d, J = 8.6 Hz, 2H), 7.19–7.21 (d, J 

= 8.6 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ: 37.9, 41.5, 55.4, 59.7, 70.4, 71.5, 76.0, 79.7, 

82.0, 114.0, 118.0, 129.5, 129.6, 133.8, 159.5, 208.5; IR (thin film NaCl): 2908, 1737, 1612, 
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1586, 1513, 1467, 1303, 1249, 1174, 1099, 920, 821 cm-1; [α]23
D   = 52.7 (c = 0.045, CHCl3); HR-

MS (ESI) Calcd for C18H24O5 (M+Na)+ 343.1516, found 343.1518. 

 

 

 

(2R,3S,5R,6S)-6-allyl-5-(4-methoxybenzyloxy)-2-(methoxymethyl)-3-methyltetrahydro-2H-

pyran-3-ol (89): Ketone 88 (1.8 g, 5.7 mmol) was dissolved in toluene (60 mL) and cooled to  

–78 °C followed by addition of a solution of methyl magnesium bromide (4.7 mL of 3M in THF, 

14.2 mmol). The reaction was stirred at –78 °C for 1 h then quenched at –78 °C by addition of 

sat. NH4Cl (60 mL). The aqueous layer was extracted with EtOAc (3 x 80 mL). The combined 

organic extracts were dried over MgSO4 and the solvent was removed in vacuo. The crude 

material was purified by column chromatography (40% EtOAc in hexanes) to afford alcohol 89 

(1.4 g, 75%) as a colorless oil; Product was visualized with CAM stain, Rf = 0.18 (in 40% 

EtOAc in hexanes); 1H NMR (400 MHz, CDCl3) δ: 1.19 (s, 3H), 1.53–1.59 (m, 1H), 2.19–2.30 

(m, 2H), 2.56–2.62 (dddd, J = 14.7, 4.8, 3.3, 1.6 Hz, 1H), 3.15–3.21 (ddd, J = 11.2, 9.2, 4.5 Hz, 

1H), 3.28–3.32 (ddd, J = 9.2, 7.2, 3.3 Hz, 1H), 3.39 (s, 3H), 3.43–3.47 (dd, J = 7.6, 6.2 Hz, 1H), 

3.50–3.58 (m, 2H), 3.81 (s, 3H), 4.36–4.38 (d, J = 11.0 Hz, 1H), 4.52–4.55 (d, J = 11.0 Hz, 1H), 

5.03–5.10 (m, 2H), 5.81–5.92 (dddd, J = 17.5, 10.2, 7.5, 6.3 Hz, 1H), 6.87–6.90 (d, J = 8.7 Hz, 

2H), 7.24–7.27 (d, J = 8.7 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ: 21.9, 36.1, 44.2, 55.5, 59.7, 

70.7, 71.0, 72.6, 74.6, 79.4, 80.4, 114.0, 117.0, 129.7, 130.3, 135.0, 159.4; IR (thin film NaCl): 

3460, 3074, 2934, 1641, 1612, 1586, 1514, 1464, 1376, 1301, 1249, 1202, 1173, 1095, 1035, 
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915, 821, 759 cm-1; [α]23
D   = –19.8 (c = 0.016, CHCl3); HR-MS (ESI) Calcd for C19H28O5 

(M+Na)+ 359.1829, found 359.1813. 

 

 
 

(2R,3S,5R,6S)-6-allyl-2-(methoxymethyl)-3-methyltetrahydro-2H-pyran-3,5-diol (85): Ether 

89 (1.3 g, 3.7 mmol) was dissolved in CH2Cl2 (36 mL), H2O (1.8 mL) and cooled to 0 °C. 2,3-

Dichloro-5,6-dicyano-1,4-benzo-quinone (DDQ) (1.7 g, 7.4 mmol) was added and the reaction 

was stirred at 0 °C for 1.5 h. The reaction was quenched with NaHCO3 (80 mL) and then the 

aqueous lyaer was extracted with EtOAc (5 x 100 mL). The combined organic extracts were 

dried over MgSO4 and the solvent was removed in vacuo. The crude residue was purified by 

column chromatography to afford diol 85 (750 mg, 93%) as a colorless oil; Product was 

visualized with CAM stain, Rf = 0.05 (in 40% EtOAc in hexanes); 1H NMR (600 MHz, CDCl3) 

δ: 1.23 (s, 3H), 1.57–1.61 (t, J = 11.7 Hz, 1H), 1.63–1.64 (d, J = 5.4 Hz, 1H), 2.13–2.16 (dd, J = 

11.7, 4.7 Hz, 1H), 2.28–2.33 (dt, J = 14.2, 7.2 Hz, 1H), 2.53–2.57 (m, 1H), 3.13 (s, 1H), 3.16–

3.19 (ddd, J = 9.3, 6.9, 4.2 Hz, 1H), 3.40 (s, 3H), 3.41–3.47 (m, 2H), 3.51–3.58 (m, 2H), 5.07–

5.09 (d, J = 10.2 Hz, 1H), 5.13–5.16 (d, J = 17.2 Hz, 1H), 5.88–5.95 (dddd, J = 17.2, 10.2, 7.0, 

7.0 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ: 21.6, 36.3, 47.9, 59.6, 68.3, 70.9, 72.3, 80.1, 81.8, 

117.1, 134.9; IR (thin film NaCl): 3383, 3076, 2978, 2933, 1642, 1463, 1377, 1285, 1202, 1099, 

952, 916 cm-1; [α]23
D   = –17.9 (c = 0.06, CHCl3); HR-MS (ESI) Calcd for C11H20O4 (M+Na)+ 

239.1254, found 239.1257. 
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(2R,3R)-2-allyl-3-(benzyloxymethyl)oxirane(S5): Sodium hydride (1.14 g, 47.6 mmol) was 

added to THF (55 mL) at 0 °C followed by a solution of alcohol 909 (3.62 g, 31.7 mmol) in THF 

(10 mL). The reaction was warmed to ambient temperature and stirred for 30 min. Benzyl 

bromide (5.66 mL, 47.6 mmol) was then added and the reaction was stirred an additional 3 h. 

The mixture was then cooled to 0 °C and quenched with sat. NH4Cl. The aqueous layer was 

extracted with EtOAc (3 x 50mL). The combined organic extracts were dried over MgSO4 and 

concentrated in vacuo. The crude product was purified by column chromatography (10% EtOAc 

in hexanes) to afford benzyl ether S5 (5.64 g, 87%). Product was visualized with CAM stain, Rf 

= 0.47 (30% EtOAc in hexanes); 1H NMR (400 MHz, CDCl3) δ: 2.34–2.38 (2 dt, J = 5.4, 1.4 Hz, 

2H), 2.93–2.96 (td, J = 5.4, 2.2 Hz, 1H), 2.99–3.02 (ddd, J = 5.6, 3.3, 2.2 Hz, 1H), 3.48–3.52 

(dd, J = 11.5, 6.0 Hz, 1H), 3.72–3.76 (dd, J = 11.5, 3.3 Hz, 1H), 4.54–5.63 (2 d, J = 11.9 Hz, 

2H), 5.10–5.14 (ddd, J = 10.3, 3.0, 1.2 Hz, 1H), 5.14–5.20 (ddd, J = 17.2, 3.0, 1.2 Hz, 1H), 5.78–

5.88 (ddt, J = 17.2, 10.3, 6.7 Hz, 1H), 7.27–7.32 (m, 1H), 7.34–7.37 (m, 4H); 13C NMR (100 

MHz, CDCl3) δ: 35.9, 55.1, 56.6, 70.4, 73.4, 117.9, 127.9, 128.0, 128.6, 133.0, 138.1; IR (thin 

film NaCl): 3066, 3031, 2982, 2859, 1642, 1454, 1365, 1207, 1103, 1028, 997, 917, 738, 699 

cm-1; [α]23
D   = 9.0 (c = 0.13, CHCl3); HR-MS (ESI) Calcd for C13H16O2 (M+Na)+ 227.1043, found 

227.1044.  

 

 

                                                 
9   Sabitha, G.; Sudhakar, K.; Reddy, N. M.; Rajkumar, M.; Yadav, J. S.  Tetrahedron Lett. 2005, 46, 6567–6570. 
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(E)-4-((2R,3R)-3-(benzyloxymethyl)oxiran-2-yl)but-2-enal (91): To a solution of olefin S5 

(4.33 g, 21.2 mmol) in CH2Cl2 (35 mL) was added acrolein (4.3 mL, 63.3 mmol) and the 

Hoveyda-Grubbs 2nd generation catalyst (331 mg, 0.5 mmol). A reflux condenser was attached 

and the reaction was heated to reflux for 15 h. The reaction was cooled to ambient temperature 

and concentrated in vacuo. The crude reaction mixture was purified by column chromatography 

(gradient: 10% to 30% EtOAc in hexanes) to afford aldehyde 91 (4.08g, 83%). Product was 

visualized with CAM stain, Rf = 0.47 (30% EtOAc in hexanes); 1H NMR (400 MHz, CDCl3) δ: 

2.52–2.60 (dddd, J = 16.0, 7.4, 6.2, 1.5 Hz, 1H), 2.67–2.74 (dddd, J = 16.0, 6.2, 4.4, 1.5 Hz, 1H), 

3.01–3.07 (m, 2H), 3.53–3.57 (dd, J = 11.5, 5.2 Hz, 1H), 3.71–3.75 (dd, J = 11.5, 3.3 Hz, 1H), 

4.54–4.62 (2d, J = 12 Hz, 2H), 6.20–6.27 (ddt, J = 15.8, 7.8, 1.5 Hz, 1H), 6.79–6.87 (dt, J = 

15.8, 6.7 Hz, 1H), 7.27–7.39 (m, 5H), 9.54 (d, J = 7.8 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ: 

34.6, 53.6, 56.7, 69.7, 73.6, 127.9, 128.0, 128.7, 135.0, 137.9, 152.0, 193.7; IR (thin film NaCl): 

3063, 3031, 2993, 2859, 2744, 1689, 1454, 1366, 1102, 979, 911, 872, 740, 699 cm-1; [α]23
D   = 9.2 

(c = 0.31, CHCl3); HR-MS (ESI) Calcd for C14H16O3 (M + Na)+ 255.0992, found, 255.0998. 

 

 

 

((2R,3R)-3-(((2R,3R)-3-(benzyloxymethyl)oxiran-2-yl)methyl)oxiran-2-yl)methanol (92): A 

solution of aldehyde 91 (5.1 g, 22.0 mmol) in MeOH (45 mL) was cooled to 0 °C and NaBH4 
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(625 mg, 16.5 mmol) was added in portions, after which the reaction was stirred at 0 °C for 20 

min. The reaction was quenched with sat. NH4Cl (80 mL) and the aqueous layer was extracted 

with EtOAc (5 x 80 mL). The combined organic extracts were washed with brine (200 mL), 

dried over MgSO4 and concentrated in vacuo. The allylic alcohol was used without further 

purification.  

Powdered 4Å molecular sieves (2.5 g) were flame dried under vacuum for 8 minutes and 

then cooled to ambient temperature. To the sieves was added CH2Cl2 (44 mL), D–(-)-diethyl 

tartrate (542 mg, 2.63 mmol) and the mixture was cooled to –25 °C. Then Ti(OiPr)4 (650 µL, 

2.19 mmol) was added in one portion followed by the dropwise addition of t-BuOOH (8 mL of 

5.5M in decane, 43.8 mmol) and the reaction was stirred at –25 °C for 30 min. The allylic 

alcohol was added as a solution in CH2Cl2 (10 mL) and the reaction was stirred at –25 °C for 15 

h. The reaction was quenched at –25 °C by addition of a solution of anhydrous citric acid (410 

mg) in Et2O (77 mL).[10] The reaction was stirred for 30 min at ambient temperature, filtered 

through Celite and the solvent was removed in vacuo. The crude material was purified by 

column chromatography (60% EtOAc in hexanes) to afford epoxide 92 (3.5 g, 64%). Product 

was visualized with CAM stain, Rf = 0.05 (60% EtOAc in hexanes); 1H NMR (600 MHz, 

CDCl3) δ: 1.76–1.81 (ddd, J = 14.5, 6.8, 4.7 Hz, 1H), 1.84–1.88 (ddd, J = 14.5, 6.8, 4.2 Hz, 1H), 

2.06 (bs, 1H), 2.98–3.00 (dt, J = 4.4, 2.4 Hz, 1H), 3.01–3.05 (m, 2H), 3.13–3.16 (ddd, 6.8, 4.7, 

2.2 Hz, 1H), 3.50–3.52 (dd, J = 11.4, 5.4 Hz, 1H), 3.65 (d, J = 9.9 Hz, 1H), 3.72–3.75 (dd, J = 

11.4, 3.2 Hz, 1H), 3.92 (d, J = 12.6 Hz, 1H), 4.54–4.61 (2 d, J = 11.9 Hz, 2H), 7.29–7.31 (m, 

1H), 7.34–7.37 (m, 4H); 13C NMR (100 MHz, CDCl3) δ: 34.5, 52.9, 53.0, 57.0, 58.4, 61.5, 70.0, 

73.5, 127.9, 128.0, 128.6, 137.9; IR (thin film NaCl): 3438, 3030, 2923, 2854, 1496, 1454, 1366, 

                                                 
10   Because anhydrous citric acid was slow to dissolve in Et2O, the solution was prepared by stirring overnight. 
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1273, 1091, 844, 738, 699 cm-1; [α]23
D   = 45.1 (c = 0.055 , CHCl3); HR-MS (ESI) Calcd for 

C14H18O4 (M + Na)+ 273.1097, found 273.1086. 

 

 

 

(2R,3R)-2-(benzyloxymethyl)-3-(((2R,3S)-3-(iodomethyl)oxiran-2-yl)methyl)oxirane (S6): 

To a mixture of PPh3 (3.70 g, 14 mmol) and imidazole (0.95 g, 14 mmol) was added Et2O (30 

mL) and CH3CN (10 mL). The solution was cooled to 0 °C and I2 (3.55g, 14 mmol) was added 

in portions over 15 min with vigorous stirring followed by stirring at ambient temperature for 15 

min. The solution was then cooled to 0 °C and a solution of alcohol 92 (3.05 g, 12.2 mmol) in 

Et2O (6 mL) and CH3CN (2 mL) was added. The reaction was stirred at ambient temperature for 

30 min, quenched with sat. Na2S2O3, then extracted with EtOAc (3 x 30 mL). The combined 

organic extracts were dried over MgSO4 and concentrated in vacuo. The crude product was 

purified by column chromatography (30% EtOAc in hexanes) to afford iodide S6 (3.80 g, 87%): 

Product was visualized with CAM stain, Rf = 0.27 (30% EtOAc in hexanes); 1H NMR (600 

MHz, CDCl3) δ: 1.78–1.87 (m, 2 H), 2.99–3.10 (m, 5H), 3.23–3.27 (dd, J = 13.1, 8.8 Hz, 1H), 

3.51–3.54 (dd, J = 11.4, 5.2 Hz, 1H), 3.72–3.75 (dd, J = 11.4, 3.1 Hz, 1H), 4.55–4.62 (2 d, J = 12 

Hz, 2H), 7.30–7.32 (m, 1H), 7.34–7.38 (m, 4H); 13C NMR (100 MHz, CDCl3) δ: 4.5, 34.6, 52.7, 

56.9, 58.2, 59.4, 70.0, 73.5, 127.9, 128.0, 128.6, 137.9; IR (thin film NaCl): 3495, 3062, 3029, 

2989, 2858, 1454, 1366, 1246, 1207, 1175, 1096, 890, 739, 699, 608, 379 cm-1; [α]23
D   = 14.8 (c = 

0.025, CHCl3); HR-MS (ESI) Calcd for C14H17IO3 (M+Na)+ 383.0115, found 383.0111. 
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(2R,3R)-2-allyl-3-(((2R,3R)-3-(benzyloxymethyl)oxiran-2-yl)methyl)oxirane (93): Iodide S6 

(250 mg, 0.69 mmol) was dissolved in THF (3.5 mL) followed by addition of CuBr•DMS (57 

mg, 0.28) and HMPA (0.29 mL, 2.8 mmol). The solution was immediately cooled to –25 °C and 

stirred for 5 min followed by dropwise addition of a solution of vinyl magnesium bromide (1 mL 

of 1M in THF, 1.0 mmol). The reaction was stirred at –25 °C for 20 min then quenched with sat 

NH4Cl (5 mL). The aqueous layer was extracted with EtOAc (3 x 5 mL). The combined organic 

extracts were dried over MgSO4, the solvent was removed in vacuo. The crude material was 

purified by column chromatography (20% EtOAc in hexanes) to afford olefin 93 (150 mg, 84%) 

as a colorless oil.11 Product was visualized with CAM stain, Rf = 0.31 (30% EtOAc in hexanes); 

1H NMR (400 MHz, CDCl3) δ: 1.78–1.81 (m, 2H), 2.33–2.35 (m, 2H), 2.82–2.85 (td, J = 5.4, 2.1 

Hz, 1H), 2.88–2.92 (m, 1H), 3.00–3.04 (m, 2H), 3.49–3.53 (dd, J = 11.5, 3.4 Hz, 1H), 3.72–3.75 

(dd, J = 11.5, 3.0 Hz, 1H), 4.54–4.57 (d, J = 11.9 Hz, 1H), 4.59–4.62 (d, J = 11.0 Hz, 1H), 5.10–

5.19 (m, 2H), 5.77–5.87 (dddd, J = 17.0, 10.2, 6.6, 6.6 Hz, 1H), 7.28–7.36 (m, 5H); 13C NMR 

(100 MHz, CDCl3) δ: 34.9, 36.1, 53.1, 55.1, 57.0, 57.5, 70.1, 73.5, 117.8, 127.9, 128.0, 128.6, 

133.0, 138.0; IR (thin film NaCl): 3065, 3030, 2982, 2912, 2859, 1641, 1496, 1454, 1363, 1328, 

1246, 1208, 1098, 1028, 996, 918, 738, 699 cm-1; [α]23
D   = 42.4 (c = 0.029, CHCl3); HR-MS (ESI) 

Calcd for C16H20O3 (M+Na)+ 283.1305, found 283.1305.  

 

                                                 
11   Yields varied between 55-84% depending on reaction scale.   
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1,4-bis((2R,3R)-3-(((2R,3R)-3-(benzyloxymethyl)oxiran-2-yl)methyl)oxiran-2-yl)but-2-ene 

(94): To a solution of olefin 93 (56 mg, 0.215 mmol) in CH2Cl2 (3 mL) was added 2nd generation 

Hoveyda-Grubbs catalyst (13 mg, 0.0215 mmol). A condenser was attached and the reaction was 

heated to 40 °C for 12 h, followed by removal of the solvent in vacuo. The residue was purified 

by column chromatography (gradient: 20% to 50% EtOAc in hexanes) to afford olefin 94 as a 

tan oil (45 mg, 85%). Product was visualized with CAM stain, Rf = 0.30 (50% EtOAc in 

hexanes); 1H NMR (400 MHz, CDCl3) δ: 1.77–1.79 (t, J = 5.6 Hz, 4H), 2.26–2.36 (m, 4H), 

2.79–2.82 (td, J = 5.6, 2.1 Hz, 2H), 2.87–2.90 (td, J = 5.6, 2.1 Hz, 2H), 2.99–3.04 (m, 4H), 3.48–

3.52 (dd, J = 11.4, 5.4 Hz, 2H), 3.72–3.75 (dd, J = 11.4, 3.1 Hz, 2H), 4.53–4.56 (d, J = 11.9 Hz, 

2H), 4.59–4.62 (d, J = 11.9 Hz, 2H), 5.56–5.57 (m, 2H), 7.28–7.38 (m, 10H); 13C NMR (100 

MHz, CDCl3) δ: 34.9, 35.0, 53.1, 55.1, 57.0, 57.7, 70.2, 73.5, 127.7, 127.9, 128.0, 128.6, 138.0; 

IR (thin film NaCl): 3089, 3062, 3030, 2992, 2895, 1721, 1689, 1497, 1471, 1453, 1422, 1367, 

1329, 1272, 1244, 1210, 1112, 1028, 981, 939, 914, 892, 880, 858, 824, 734, 697, 620 cm-1; 

[α]23
D   = 41.4 (c = 0.015, CHCl3); HR-MS (ESI) Calcd for C30H36O6 (M+Na)+ 515.2404, found 

515.2396. 
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(2R,3S,5R,6S)-6-(4-((2R,3R)-3-(((2R,3R)-3-(benzyloxymethyl)oxiran-2-yl)methyl)oxiran-2-

yl)but-2-enyl)-2-(methoxymethyl)-3-methyltetrahydro-2H-pyran-3,5-diol (95): To a solution 

of olefin 85 (156 mg, 0.72 mmol) and olefin 94 (1.7 g, 3.60 mmol) in CH2Cl2 (4 mL) was added 

2nd generation Hoveyda-Grubbs catalyst (68 mg, 0.11 mmol). A condenser was attached and the 

reaction was heated to 40 °C for 12 h, followed by removal of the solvent in vacuo. The residue 

was purified by column chromatography (gradient: 20% EtOAc to 50% EtOAc to 100% EtOAc 

to 5% MeOH in EtOAc to 10% MeOH in EtOAc) to afford olefin 95 as a tan oil (244 mg, 

74%).12 Product was visualized with CAM stain, Rf = 0.07 (70% EtOAc in hexanes); 1H NMR 

(400 MHz, CDCl3) δ: 1.12 (s, 3H), 1.46–1.52 (m, 1H), 1.59–1.66 (m, 1H), 1.75–1.81 (m, 1H), 

2.02–2.05 (m, 2H), 2.17–2.24 (m, 3H), 2.35–2.47 (m, 1H), 2.71–2.74 (ddd, J = 5.4, 5.4, 2.2 Hz, 

1H), 2.79–2.82 (m, 1H), 2.93–2.94 (m, 2H), 3.02–3.13 (m, 2H), 3.30–3.36 (m, 5H), 3.40–3.47 

(m, 3H), 3.62–3.68 (dd, J = 11.4, 3.0 Hz, 1H), 4.46–4.49 (d, J = 11.9 Hz, 1H), 4.51–4.54 (d, J = 

11.9 Hz, 1H), 5.42–5.49 (m, 1H), 5.54–5.63 (m, 1H), 7.22–7.30 (m, 5H); 13C NMR (100 MHz, 

CDCl3) δ: 21.8, 34.8, 35.1, 35.5, 47.9, 53.2, 55.2, 57.0, 58.0, 59.6, 68.4, 70.1, 70.9, 72.5, 73.5, 

79.7, 81.8, 126.8, 127.9, 128.0, 128.6, 129.6, 137.9; IR (thin film NaCl): 3431, 2978, 2928, 

1455, 1364, 1272, 1202, 1098, 978 cm-1; [α]23
D   = –80.0 (c = 0.01, CHCl3); HR-MS (ESI) Calcd 

for C25H36O7 (M+Na)+ 471.2353, found 471.2369.  

 

                                                 
12   Alternatively, the cross metathesis of olefin 85 with 300 mol% 93 afforded 95 in 44% yield as a 2.6:1 mixture of 
E:Z isomers. 
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(2R,3S,5R,6S)-6-((E)-4-((2R,3R)-3-(((2R,3R)-3-(benzyloxymethyl)oxiran-2-yl)methyl)oxiran 

-2-yl)but-2-enyl)-2-(methoxymethyl)-3-methyl-5-(triethylsilyloxy)tetrahydro-2H-pyran-3-ol 

(17): To a solution of alcohol 95 (576 mg, 1.28 mmol) in DMF (6.5 mL) was added imidazole 

(192 mg, 3.2 mmol) and TESCl (0.32 mL, 1.86 mmol). The reaction was stirred at ambient 

temperature for 1.5 h then quenched by addition of brine (5 mL). The aqueous layer was 

extracted with EtOAc (5 x 5 mL), dried over MgSO4 and concentrated in vacuo. The crude oil 

was purified by column chromatography (gradient: 40% to 60% EtOAc in hexanes) to afford 

silyl ether 96 as a colorless oil (591 mg, 82%). At this stage, the E:Z olefin isomers were 

separated by preparative HPLC (5µm silica column, hexanes:2-propanol, 97:3, 15 mL/min):  

tR[(96)-Z] = 21.8 min, tR[(96)-E] = 26.5 min. Product was visualized with CAM stain, Rf = 0.55 

(80% EtOAc in hexanes); 1H NMR (400 MHz, CDCl3) δ: 0.56–0.62 (q, J = 7.9 Hz, 6H), 0.93–

0.97 (t, J = 7.9 Hz, 9H), 1.21 (s, 3H), 1.59–1.65 (dd, J = 11.7, 11.7 Hz, 1H), 1.71–1.84 (m, 2H), 

2.02–2.11 (m, 2H), 2.27–2.30 (t, J = 5.8 Hz, 2H), 2.49–2.55 (dd, J = 14.6, 6.0 Hz, 1H), 2.76–

2.79 (ddd, J = 5.3, 5.3, 2.1 Hz, 1H), 2.87–2.89 (m, 1H), 2.99–3.03 (m, 2H), 3.08–3.13 (ddd, J = 

8.7, 8.7, 2.8 Hz, 1H), 3.15 (s, 1H), 3.31–3.38 (m, 4H), 3.40–3.44 (dd, J = 7.6, 6.3 Hz, 1H), 3.47–

3.56 (m, 3H), 3.72–3.75 (dd, J = 11.4, 3.1 Hz, 1H), 4.53–4.56 (d, J = 11.9 Hz, 1H), 4.59–4.61 (d, 

J = 11.9 Hz, 1H), 5.43–5.51 (ddd, J = 14.1, 6.6, 6.6 Hz, 1H), 5.58–5.65 (ddd, J = 14.1, 6.9, 6.9 

Hz, 1H), 7.29–7.35 (m, 5H); 13C NMR (100 MHz, CDCl3) δ: 5.2, 7.0, 21.9, 34.9, 35.0, 35.2, 

48.4, 53.2, 55.1, 57.0, 58.0, 59.6, 69.3, 70.2, 70.9, 72.7, 73.5, 79.4, 82.5, 126.4, 127.9, 128.0, 
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128.6, 123.0, 138.0; IR (thin film NaCl): 3462, 2876, 1496, 1456, 1414, 1378, 1274, 1240, 1202, 

1097, 1006, 964, 844, 788, 743, 698 cm-1; [α]23
D   = –11.8 (c = 0.04, CHCl3); HR-MS (ESI) Calcd 

for C31H50O7Si (M+Na)+ 585.3218, found 585.3239. 

 

 

 

(2R,3S,5R,6S)-6-(((2R,3R)-3-(((2R,3R)-3-(((2R,3R)-3-(benzyloxymethyl)oxiran-2-yl)methyl) 

oxiran-2-yl)methyl)oxiran-2-yl)methyl)-2-(methoxymethyl)-3-methyl-5-(triethylsilyloxy) 

tetrahydro-2H-pyran-3-ol (97): To a solution of olefin 96 (87 mg, 0.154 mmol) in 1:2 

CH3CN:DMM (5.0 mL) was added a solution of 0.05M Na2B4O7•10 H2O in 4.0 x 10-4 M 

Na2(EDTA) (3.2 mL), and n-BuNHSO4 (26 mg, 0.077 mmol). The solution was cooled to 0 °C 

with rapid stirring.  Then chiral ketone 50 (80 mg, 0.308 mmol) was added and immediately, a 

0.89 M solution of K2CO3 (2.6 mL) and a solution of Oxone® (756 mg, 1.23 mmol) in 4.0 x 10-4 

M Na2(EDTA) (2.7 mL) were added simultaneously over 15 min via syringe pump. The reaction 

was stirred at 0 °C an additional 30 min then 1 g of NaCl was added. The solution was extracted 

with EtOAc (8 x 25 mL), the combined organic extracts were dried over MgSO4, and 

concentrated in vacuo. The crude material was purified by column chromatography (gradient: 

50% to 60% EtOAc in hexanes) to afford triepoxide 97 (73 mg, 82%) as a colorless oil. 

Diastereomeric ratio (93:7) was established by chiral HPLC (Chiralcel OD-H, hexanes:2-

propanol, 96:4, 2 mL/min): tR [(minor)-97] = 27.7 min, tR [(major)-97] = 38.0 min. Product was 

visualized with CAM stain, Rf = 0.22 (60% EtOAc in hexanes); 1H NMR (600 MHz, CDCl3) δ: 
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0.57–0.61 (q, J = 8.1 Hz, 6H), 0.93–0.95 (t, J = 8.1 Hz, 9H), 1.23 (s, 3H), 1.60–1.64 (dd, J = 

11.7, 11.7 Hz, 1H), 1.69–1.81 (m, 5H), 1.95–1.97 (m, 1H), 2.05–2.08 (dd, J = 12.2, 4.5 Hz, 1H), 

2.85–2.86 (m, 1H), 2.90–2.92 (m, 3H), 3.01–3.04 (m, 2H), 3.12 (s, 1H), 3.22–3.24 (m, 1H), 

3.38–3.43 (m, 4H), 3.45–3.53 (m, 3H), 3.56–3.58 (dd, J = 9.1, 6.0 Hz, 1H), 3.73–3.75 (dd, J = 

11.5, 3.0 Hz, 1H), 4.54–4.56 (d, J = 11.9 Hz, 1H), 4.59–4.61 (d, J = 11.9 Hz, 1H), 7.30–7.37 (m, 

5H); 13C NMR (100 MHz, CDCl3) δ: 5.2, 7.0, 21.9, 34.1, 34.9, 35.3, 48.5, 53.1, 54.9, 55.4, 55.7, 

56.2, 57.0, 59.7, 69.4, 70.2, 70.8, 72.6, 73.5, 79.5, 80.8, 128.0, 128.1, 128.6, 138.0; IR (thin film 

NaCl): 3465, 2954, 2876, 1456, 1414, 1376, 1275, 1240, 1202, 1097, 1006, 961, 844, 788, 743, 

699 cm-1; [α]23
D   = 3.0 (c = 0.01, CHCl3); HR-MS (ESI) Calcd for C31H50O8Si (M+Na)+ 601.3167, 

found 601.3181. 

 

 

 

(2R,3S,5R,6S)-6-(((2R,3R)-3-(((2R,3R)-3-(((2R,3R)-3-(benzyloxymethyl)oxiran-2-yl)methyl) 

oxiran-2-yl)methyl)oxiran-2-yl)methyl)-2-(methoxymethyl)-3-methyltetrahydro-2H-pyran-

3,5-diol (84): To a solution of silyl ether 97 (116 mg, 0.20 mmol) in THF (0.5 mL) at 0 °C was 

added a solution of TBAF (0.3 mL, 1M in THF). The reaction was stirred at 0 °C for 20 min and 

then loaded directly onto a silica column for purification. The solution was purified by column 

chromatography (gradient: 50% EtOAc in hexanes to 100% EtOAc) to afford triepoxide 84 (71 

mg, 77%) as a colorless oil. Product was visualized with CAM stain, Rf = 0.08 (EtOAc); 1H 

NMR (400 MHz, CDCl3) δ: 1.21 (s, 3H), 1.54–1.60 (dd, J = 11.8, 11.8 Hz, 1H), 1.68–1.78 (m, 
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4H), 1.80–1.88 (ddd, J = 14.2, 6.1, 3.8 Hz, 1H), 2.10–2.14 (dd, J = 11.6, 4.2 Hz, 2H), 2.63–2.64 

(d, J = 5.1 Hz, 1H), 2.87–2.92 (m, 3H), 2.96–3.04 (m, 3H), 3.09 (s, 1H), 3.22–3.26 (ddd, J = 9.3, 

5.6, 3.6 Hz, 1H), 3.37 (s, 3H), 3.42–3.57 (m, 5H), 3.70–3.74 (dd, J = 11.5, 3.0 Hz, 1H), 4.52–

4.55 (d, J = 11.9 Hz, 1H), 4.57–4.60 (d, J = 11.9 Hz, 1H), 7.28–7.34 (m, 5H); 13C NMR (100 

MHz, CDCl3) δ: 21.8, 34.2, 34.8, 34.9, 47.8, 53.1, 55.2, 55.4, 55.5, 55.7, 57.0, 59.6, 68.0, 70.0, 

70.8, 72.3, 73.5, 80.3, 80.5, 127.9, 128.0, 128.6, 137.9; IR (thin film NaCl): 3437, 2982, 2925, 

2862, 1721, 1496, 1454, 1366, 1275, 1202, 1098, 981, 958, 933, 740, 700 cm-1; [α]23
D   = 38.5 (c = 

0.015, CHCl3); HR-MS (ESI) Calcd for C25H36O8 (M+Na)+ 487.2302, found 487.2316. 

 

Products of Water-Promoted Cascade (98 and 83):  

Representative Procedure: Triepoxide 84 (28mg, 0.06 mmol) was incubated in deionized H2O 

(10 mL) at 60 °C for 5 days.13 The water was removed in vacuo and the residue was dissolved in 

CH2Cl2 (6 mL) to which was added DMAP (3.5 mg, 0.03 mmol), Et3N (0.17 mL, 1.21 mmol) 

and Ac2O (0.11 mL, 1.21 mmol). The reaction was stirred at ambient temperature for 30 min. At 

which time SiO2 was added and the solvent was removed in vacuo. The SiO2 was then loaded 

onto a column and the product was purified by column chromatography (70% EtOAc in hexanes) 

to give a mixture of 98 and 83 which was purified further by preparative HPLC (5 µm SiO2, 

hexanes:2-propanol, 92:8, 25 mL/min): tR [83] = 13.7 min, tR [98] = 15.2 min, to afford 98 (6.8 

mg, 23%) and 83 (4.3 mg, 14%) as white solids. 

 

                                                 
13 Treatment of 84 in H2O at 80 °C for 9 days followed by analogous acetylation and purification afforded tetrad 83 
(10.2 mg, 35%). 
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Triad 98: Product was visualized with CAM stain, Rf = 0.18 (70% EtOAc in hexanes)); 1H 

NMR (600 MHz, CDCl3) δ: 1.26 (s, 3H), 1.43–1.50 (dddd, J = 11.0, 11.0, 11.0, 11.0 Hz, 2H), 

1.59–1.63 (dd, J = 11.8, 11.8 Hz, 1H), 1.74–1.79 (ddd, J = 13.4, 7.3, 6.0 Hz, 1H), 1.84–1.88 

(ddd, J = 14.8, 4.6, 3.3 Hz, 1H), 2.05 (s, 3H), 2.10–2.13 (dd, J = 11.8, 4.1 Hz, 1H), 2.33–2.35 

(ddd, J = 11.4, 3.6, 3.6 Hz, 1H), 2.47–2.50 (ddd, J = 11.8, 4.2, 4.2 Hz, 1H), 2.94 (s, 1H), 2.97–

2.99 (m, 1H), 3.00–3.03 (m, 1H), 3.04–3.12 (m, 4H), 3.41 (s, 3H), 3.44–3.50 (m, 3H), 3.53–3.59 

(m, 2H), 3.70–3.72 (dd, J = 11.4, 3.4 Hz, 1H), 4.54–4.56 (d, J = 11.9 Hz, 1H), 4.59–4.61 (d, J = 

11.9 Hz, 1H), 4.65–4.69 (ddd, J = 10.7, 10.7, 4.7 Hz, 1H), 7.29–7.38 (m, 5H); 13C NMR (100 

MHz, acetone-d6) δ: 21.6, 22.9, 35.2, 36.7, 36.8, 46.9, 53.8, 57.7, 59.7, 71.0, 71.7, 72.1, 73.1, 

74.1, 77.4, 77.8, 78.3, 78.4, 78.9, 85.4, 128.9, 129.1, 129.8, 140.3, 170.7; IR (thin film NaCl): 

3462, 3062, 2922, 2853, 1739, 1456, 1374, 1236, 1099, 1030, 974, 957, 801, 738, 700 cm-1; 

[α]23
D   = –10.2 (c = 0.0026, CHCl3); HR-MS (ESI) Calcd for C27H38O9 (M+Na)+ 529.2408, found 

529.2405. 
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Tetrad 83: Product was visualized with CAM stain, Rf = 0.18 (70% EtOAc in hexanes)); 1H 

NMR (600 MHz, CDCl3) δ: 1.27 (s, 3H), 1.44–1.50 (ddd, J = 11.0, 11.0, 11.0 Hz, 2H), 1.54–

1.58 (ddd, J = 11.0, 11.0, 11.0 Hz, 1H), 1.61–1.65 (dd, J = 11.8, 11.8 Hz, 1H), 1.91 (s, 3H), 

2.12–2.15 (dd, J = 11.9, 4.1 Hz, 1H), 2.35–2.38 (ddd, J = 11.4, 3.9, 3.9 Hz, 1H), 2.39–2.42 (ddd, 

J = 11.6, 3.8, 3.8 Hz, 1H), 2.49–2.53 (ddd, J = 11.1, 4.4, 4.4 Hz, 1H), 2.91 (s, 1H), 3.04–3.18 (m, 

6H), 3.40 (s, 3H), 3.48–3.59 (m, 6H), 4.48–4.50 (d, J = 12.3 Hz, 1H), 4.61–4.63 (d, J = 12.3 Hz, 

1H), 4.82–4.86 (ddd, J = 11.2, 9.8, 4.9 Hz, 1H), 7.29–7.34 (m, 5H); 13C NMR (125 MHz, 

CD3CN) δ: 21.6, 22.4, 36.0, 36.2, 36.3, 46.2, 59.5, 68.1, 70.4, 71.0, 72.7, 74.2, 77.0, 77.4, 77.8, 

77.9, 78.2, 78.4, 80.0, 84.5, 129.0, 129.3, 129.7, 139.8, 170.9; IR (thin film NaCl): 3495, 3030, 

2935, 2875, 1740, 1496, 1455, 1370, 1338, 1237, 1205, 1153, 1100, 1067, 1042, 975, 954, 901, 

735, 699 cm-1; [α]23
D   =  –16.5 (c = 0.0015, CHCl3); HR-MS (ESI) Calcd for C27H38O9 (M+Na)+ 

529.2408, found 529.2416. 

 
 

(E)-ethyl 4-((2R,4S,5R)-5-(tert-butyldiphenylsilyloxy)-2-(4-methoxyphenyl)-1,3-dioxan-4-

yl)-2-methylbut-2-enoate (S7): To a slurry of 2-deoxyribose (13.5 g, 101 mmol) in THF (200 

mL) was added (carbethoxyethylidene)triphenylphosphorane (38.5 g, 106 mmol). The solution 
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was heated to reflux for 3h, then the reaction was cooled to room temperature and the solvent 

was removed in vacuo. To this crude solid was added PMB dimethylacetal (32 mL, 181 mmol), 

CSA (4.6 g, 20 mmol) and CH2Cl2 (200 mL). The reaction was stirred at ambient temperature for 

12 h. The reaction was quenched with Et3N (2.8 mL, 20 mmol) and the solvent was removed in 

vacuo. The material was purified by column chromatography (20% to 50% EtOAc in hexanes) to 

afford alcohol S7 (33 g, 99%). Product was visualized with CAM stain, Rf = 0.26 (50% EtOAc 

in hexanes); 1H NMR (400 MHz, CDCl3) δ: 1.28–1.32 (t, J = 7.1 Hz, 3H), 1.88 (s, 3H), 2.50–

2.57 (dt, J = 15.0, 7.4 Hz, 1H), 2.67 (s, 1H), 2.73–2.79 (ddd, J = 15.6, 7.0, 2.0 Hz, 1H), 3.52–

3.68 (m, 3H), 3.79 (s, 3H), 4.17–4.23 (m, 3H), 5.43 (s, 1H), 6.88–6.90 (d, J = 8.8 Hz, 2H), 6.91–

6.96 (td, J = 7.3, 1.4 Hz, 1H), 7.39–7.42 (d, J = 8.8 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ: 

12.8, 14.4, 31.4, 55.4, 60.8, 65.6, 71.4, 81.0, 101.0, 113.7, 127.5, 130.0, 130.1, 137.8, 160.1, 

168.4; IR (thin film NaCl): 3469, 2933, 2855, 1699, 1651, 1615, 1589, 1519, 1464, 1394, 1368, 

1251, 1172, 1082, 997, 932, 871, 829, 785, 635 cm-1; [α]23
D   = –36.1 (c = 0.095, CHCl3); HR-MS 

(ESI) Calcd for C18H24O6(M+Na)+ 337.1646, found 337.1649. 

 

 
 

(E)-ethyl 4-((2R,4S,5R)-5-(tert-butyldiphenylsilyloxy)-2-(4-methoxyphenyl)-1,3-dioxan-4-

yl)-2-methylbut-2-enoate (102): To a solution of alcohol S7 (33 g, 101 mmol) and imidazole 

(16.5 g, 242 mmol), in DMF (67 mL) were added TBDPSCl (26 mL, 101 mmol) and the reaction 

was allowed to stir at ambient temperature overnight. The reaction was quenched by addition of 

sat. NH4Cl (100 mL) and the aqueous layer was extracted with EtOAc (5 x 50 mL). The 
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combined organic extracts were dried over MgSO4 and the solvent was removed in vacuo. The 

crude material was purified by column chromatography (5% to 20% EtOAc in hexanes) 

affording silyl ether 102 (47 g, 83%). Product was visualized with CAM stain, Rf = 0.38 (20% 

EtOAc in hexanes); 1H NMR (400 MHz, CDCl3) δ: 1.14 (s, 9H), 1.31–1.35 (t, J = 7.1 Hz, 3H), 

1.82 (s, 3H), 2.25–2.33 (dt, J = 15.9, 7.8 Hz, 1H), 2.78–2.84 (dd, J = 15.6, 6.7 Hz, 1H), 3.64–

3.69 (dd, J = 10.0, 10.0 Hz, 1H), 3.72–3.77 (td, J = 8.8, 4.6 Hz, 1H), 3.79–3.86 (m, 4H), 4.04–

4.07 (dd, J = 10.2, 4.5 Hz, 1H), 4.21–4.26 (q, J = 7.1 Hz, 2H), 5.48 (s, 1H), 6.87–6.95 (m, 3H), 

7.37–7.51 (m, 8H), 7.70–7.75 (m, 4H); 13C NMR (100 MHz, CDCl3) δ: 12.8, 14.4, 19.4, 27.1, 

31.2, 55.3, 60.5, 67.3, 71.5, 81.3, 100.7, 113.5, 127.3, 127.8, 127.9, 129.6, 130.1, 130.2, 132.9, 

133.5, 134.9, 135.8, 135.9, 137.8, 159.9, 168.0; IR (thin film NaCl): 3049, 3071, 2932, 2858, 

1708, 1652, 1616 1589, 1518, 1463, 1428, 1391, 1366, 1251, 1172, 1104, 1035, 979, 936, 823, 

781, 741, 703, 652, 614 cm-1; [α]23
D   = –17.3 (c = 0.038, CHCl3); HR-MS (ESI) Calcd for 

(M+Na)+ C34H42O6Si 575.2823, found 575.2811. 

 

 
 

(5S,6R,E)-ethyl 6-(tert-butyldiphenylsilyloxy)-5,7-dihydroxy-2-methylhept-2-enoate (S8): To 

a solution of PMP acetal 102 (23 g, 41 mmol) in MeOH (255 mL), THF (60 mL) and H2O (20 

mL) was added TsOH monohydrate (1.5 g, 8 mmol). The reaction was heated to 60 °C for 2 h, 

cooled to ambient temperature and quenched with Et3N (1.1 mL). The solvent was removed in 

vacuo and the crude material was purified by column chromatography (gradient: 20% to 40% 

EtOAc in hexanes) to afford diol S8 as a colorless oil (11 g, 58%). Product was visualized with 
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CAM stain, Rf = 0.32 (40% EtOAc in hexanes); 1H NMR (400 MHz, CDCl3) δ: 1.10 (s, 9H), 

1.27–1.31 (t, J = 7.1 Hz, 3H), 1.76–1.77 (d, J = 1.4 Hz, 3H), 2.23–2.30 (m, 2H), 2.38–2.44 (ddd, 

J = 15.4, 6.4, 4.2 Hz, 1H), 2.74–2.75 (d, J = 4.5 Hz, 1H), 3.61–3.70 (m, 2H), 3.72–3.78 (m, 1H), 

3.82–3.88 (sextet, J = 4.5 Hz, 1H), 4.15–4.20 (q, J = 7.1 Hz, 2H), 6.71–6.75 (td, J = 7.3, 1.4 Hz, 

1H), 7.38–7.48 (m, 6H), 7.68–7.72 (m, 4H); 13C NMR (100 MHz, CDCl3) δ: 12.8, 14.5, 19.6, 

27.2, 32.7, 60.7, 64.0, 73.5, 75.7, 128.0, 128.1, 130.1, 130.2, 130.3, 133.1, 133.7, 135.9, 136.0, 

138.0, 168.1; IR (thin film NaCl): 3451, 3071, 3049, 2932, 2893, 2858, 1707, 1649, 1472, 1428, 

1391, 1367, 1278, 1191, 1111, 916, 822, 741, 704 cm-1; [α]23
D   = 15.4 (c = 0.075, CHCl3); HR-MS 

(ESI) Calcd for C26H36O5Si (M+Na)+ 479.2224, found 479.2212. 

 

 

 

(E)-ethyl 4-((4S,5R)-5-(tert-butyldiphenylsilyloxy)-1,3-dioxan-4-yl)-2-methylbut-2-enoate 

(101): To a solution of diol S8 (8.6 g, 18.8 mmol) in CH2Cl2 (80 mL) was added 

dimethoxymethane (DMM) (2.5 mL, 30 mmol) and BF3•OEt2 (3.7 mL, 30 mmol). The reaction 

was stirred at ambient temperature for 1h and then quenched with aqueous sat. NaHCO3 (30 mL). 

The aqueous layer was extracted with EtOAc (3 x 40 mL), the combined organic extracts were 

dried over MgSO4, and the solvent was removed in vacuo. The crude material was purified by 

column chromatography (20% EtOAc in hexanes) to afford methylene acetal 101 (7.5 g, 85%) as 

a colorless oil. Product was visualized with CAM stain, Rf = 0.45 (30% EtOAc in hexanes); 1H 

NMR (400 MHz, CDCl3) δ: 1.09 (s, 9H), 1.29–1.32 (t, J = 7.5 Hz, 3H), 1.76–1.77 (d, J = 1.0 Hz, 
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3H), 2.10–2.18 (ddd, J = 16.0, 7.8, 7.8 Hz, 1H), 2.68–2.74 (dd, J = 16.3, 6.7 Hz, 1H), 3.35–3.40 

(dd, J = 10.4, 9.7 Hz, 1H), 3.52–3.63 (m, 2H), 3.90–3.94 (dd, J = 10.5, 4.6 Hz, 1H), 4.18–4.23 

(q, J = 7.1 Hz, 2H), 4.54–4.56 (d, J = 6.1 Hz, 1H), 4.90–4.92 (d, J = 6.1 Hz, 1H), 6.79–6.83 (td, J 

= 6.9, 1.4 Hz, 1H), 7.39–7.49 (m, 6H), 7.64–7.74 (m, 4H); 13C NMR (100 MHz, CDCl3) δ: 12.8, 

14.5, 19.4, 27.1, 31.3, 60.6, 67.6, 71.5, 81.4, 93.4, 127.9, 128.0, 129.9, 130.3, 130.4, 132.9, 

133.5, 135.9, 136.0, 137.6, 168.0; IR (thin film NaCl): 3072, 3050, 2932, 2896, 2857, 2772, 

1709, 1652, 1472, 1428, 1391, 1365, 1280, 1257, 1219, 1173, 1106, 1034, 947, 837, 820, 741, 

703 cm-1; [α]23
D   = 15.1 (c = 0.075, CHCl3); HR-MS (ESI) Calcd for C27H36O5Si (M+Na)+ 

491.2224, found 491.2232. 

 

 
((2R,3R)-3-(((4S,5R)-5-(tert-butyldiphenylsilyloxy)-1,3-dioxan-4-yl)methyl)-2-methyloxiran-

2-yl)methanol (103): Ester 101 (9 g, 19.2 mmol) was dissolved in CH2Cl2 (80mL) and cooled to 

–78 °C. A solution of DIBALH (48 mL of 1M in CH2Cl2, 48 mmol) was added dropwise over 20 

min and the reaction was stirred at –78 °C an additional 30 min. The reaction was quenched at  

–78 °C by dropwise addition of MeOH (20 mL) and then poured into sat. Rochelle’s salt (200 

mL) at ambient temperature followed by vigorous stirring for 3 h. The mixture was extracted 

with CH2Cl2 (3 x 150 mL), the combined organic extracts were dried over MgSO4 and 

concentrated in vacuo to afford allylic the alcohol which was used in the subsequent epoxidation 

without purification.  
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 In a round bottom flask, 4Å molecular sieves (5 g) were flame dried in vacuo for 8 min 

then cooled to ambient temperature. A magnetic stir bar, CH2Cl2 (65 mL), and (–)-diethyl (D)-

tartrate (474 mg, 2.3 mmol) were then added and the slurry was cooled to –25 °C. Next, 

Ti(OiPr)4 (0.57 mL, 1.9 mmol) was added followed by slow addition of a t-BuOOH solution (7 

mL of 5.5M in decane, 38 mmol). The mixture was allowed to stir at –25 °C for 30 minutes 

followed by addition of a solution of the allylic alcohol (above) in CH2Cl2 (10 mL). The reaction 

was stirred at –25 °C for an additional 15 h and warmed to 0 °C. In a separate flask, Fe(II) 

sulfate heptahydrate (6.3 g), tartaric acid (1.9 g), and H2O (67 mL) were cooled to 0 °C. The 

crude epoxidation reaction was slowly poured into the aqueous solution and stirred at ambient 

temperature for 15 min. The aqueous layer was extracted with Et2O (4 x 100 mL). To the 

combined organic extracts was added 50 mL 30% NaOH in brine and the mixture was stirred at 

ambient temperature for 1 h. The organic layer was separated, dried over MgSO4, and the solvent 

was removed in vacuo. The crude material was purified by column chromatography (gradient: 

40% to 50% EtOAc in hexanes) affording epoxy alcohol 103 as a colorless oil (7.4 g, 88% over 2 

steps, 85:15 dr by 1H-NMR); Product was visualized with CAM stain, Rf = 0.22 (40% EtOAc in 

hexanes); 1H NMR (400 MHz, CDCl3) δ: 1.06 (s, 9H), 1.24 (s, 3H), 1.59–1.66 (ddd, J = 14.8, 

8.7, 6.2 Hz, 1H), 1.85–1.88 (dd, J = 8.2, 4.5 Hz, 1H), 2.04–2.10 (ddd, J = 14.7, 5.8, 2.6 Hz, 1H), 

3.12–3.15 (dd, J = 6.0, 6.0 Hz, 1H), 3.32–3.37 (dd, J = 10.6, 9.5 Hz, 1H), 3.53–3.69 (m, 4H), 

3.86–3.89 (dd, J = 10.6, 3.9 Hz, 1H), 4.55–4.56 (d, J = 6.1 Hz, 1H), 4.92–4.93 (d, J = 6.1 Hz, 

1H), 7.38–7.48 (m, 6H), 7.62–7.69 (m, 4H); 13C NMR (100 MHz, CDCl3) δ: 14.4, 19.4, 27.1, 

30.8, 57.3, 60.1, 65.4, 67.5, 71.5, 80.9, 93.3, 127.9, 128.1, 130.2, 130.3 132.8, 133.6, 135.9, 

136.0; IR (thin film NaCl): 3451, 3071, 3050, 2931, 2858, 2765, 1473, 1427, 1391, 1362, 1293, 
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1265, 1173, 1112, 1035, 946, 888, 820, 740, 702 cm-1; [α]23
D   = –1.7 (c = 0.022, CHCl3); HR-MS 

(ESI) Calcd for C25H34O5Si (M+Na)+ 465.2068, found 465.2074. 

 

 
 

tert-butyl((4S,5R)-4-(((2R,3S)-3-(iodomethyl)-3-methyloxiran-2-yl)methyl)-1,3-dioxan-5-

yloxy)diphenylsilane (S9): Triphenylphosphine (PPh3) (5.1 g, 19 mmol) and imidazole (1.3 g, 

19 mmol) were dissolved in Et2O (60 mL) and CH3CN (20 mL) and cooled to 0 °C. With 

vigorous stirring, iodine (4.92 g, 19 mmol) was added in portions over 10 min then warmed to 

ambient temperature and stirred for 15 min. The slurry was then cooled to 0 °C and a solution of 

epoxy alcohol 103 (7.5 g, 16.9 mmol) in Et2O (10 mL) was added dropwise over 10 min. The 

reaction was warmed to ambient temperature and stirred for 15 min. The reaction was then 

quenched by addition of sat. Na2S2O3 (100 mL). The aqueous layer was extracted with Et2O (3 x 

75 mL), and the combined organic extracts were dried over MgSO4. The solvent was removed in 

vacuo and the crude material was loaded onto silica gel using a minimal amount of CH2Cl2 for 

purification by column chromatography (5% EtOAc in hexanes) to afford iodide S9 as a yellow 

oil (6.1 g, 66%); Product was visualized with CAM stain, Rf = 0.70 (40% EtOAc in hexanes); 1H 

NMR (400 MHz, CDCl3) δ: 1.05 (s, 9H), 1.43 (s, 3H), 1.62–1.69 (ddd, J = 14.4, 8.7, 5.7 Hz, 

1H), 1.94–2.00 (ddd, J = 14.7, 6.7, 2.4 Hz, 1H), 2.97–3.00 (dd, J = 6.5, 6.5 Hz, 1H), 3.03–3.06 

(d, J = 9.8 Hz, 1H), 3.20–3.22 (d, J = 9.8 Hz, 1H), 3.33–3.38 (dd, J = 10.6, 10.6 Hz, 1H), 3.55–

3.58 (m, 2H), 3.85–3.89 (dd, J = 10.5, 3.6 Hz, 1H), 4.55–4.57 (d, J = 6.1 Hz, 1H), 4.92–4.93 (d, 

J = 6.1 Hz, 1H), 7.38–7.48 (m, 6H), 7.60–7.68 (m, 4H); 13C NMR (100 MHz, CDCl3) δ: 14.0, 
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16.2, 19.4, 27.1, 31.5, 59.6, 63.6, 67.5, 71.6, 80.7, 93.4, 128.0, 128.1, 130.3, 130.4, 132.8, 133.6, 

135.9, 136.0; IR (thin film NaCl): 3071, 2857, 2763, 1471, 1426, 1386, 1362, 1292, 1256, 1217, 

1105, 998, 947, 895, 819, 740, 701 cm-1; [α]23
D   = –8.5 (c = 0.048, CHCl3); HR-MS (ESI) Calcd 

for C25H33IO4Si (M+Na)+ 575.1085, found 575.1076. 

 
 

((4S,5R)-4-(((2R,3R)-3-allyl-3-methyloxiran-2-yl)methyl)-1,3-dioxan-5-yloxy)(tert-butyl) 

diphenylsilane (104): To a solution of iodide S9 (1.8 g, 3.26 mmol) in THF (16 mL) was added 

copper(I) bromide-dimethyl sulfide (234 mg, 1.1 mmol), and HMPA (1.4 mL, 13.0 mmol). The 

solution was immediately cooled to –25 °C and stirred for 5 min. Then a solution of vinyl 

magnesium bromide (8.2 mL of 1M in THF, 8.2 mmol) was added dropwise over 5 min with 

vigorous stirring. The reaction was stirred at –25 °C for 15 min, then quenched at –25 °C by 

addition of sat. NH4Cl. The aqueous layer was extracted with EtOAc (3 x 20 mL). The combined 

organic extracts were dried over MgSO4 and concentrated in vacuo. The crude material was 

purified by column chromatography (10% EtOAc in hexanes) to afford olefin 104 (531 mg, 

36%) as a colorless oil; Product was visualized with CAM stain, Rf = 0.22 (10% EtOAc in 

hexanes); 1H NMR (400 MHz, CDCl3) δ: 1.01 (s, 9H), 1.19 (s, 3H), 1.55–1.63 (ddd, J = 14.6, 

8.7, 6.0 Hz, 1H), 1.95–2.00 (ddd, J = 14.6, 6.3, 2.7 Hz, 1H), 2.12–2.17 (dd, J = 14.3, 6.8 Hz, 

1H), 2.27–2.32 (dd, J = 14.2, 7.3 Hz, 1H), 2.83–2.86 (dd, J = 6.1, 6.1 Hz, 1H), 3.27–3.32 (dd, J 

= 10.5, 9.6 Hz, 1H), 3.70–3.57 (m, 2H), 3.79–3.83 (dd, J = 10.5, 4.1 Hz, 1H), 4.50–4.52 (d, J = 

6.1 Hz, 1H), 4.88–4.89 (d, J = 6.2 Hz, 1H), 5.05–5.09 (m, 2H), 5.69–5.79 (m, 1H), 7.34–7.44 (m, 
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6H), 7.58–7.64 (m, 4H); 13C NMR (100 MHz, CDCl3) δ: 16.9, 19.5, 27.2, 31.4, 43.2, 59.6, 60.0, 

67.6, 71.6, 81.1, 93.4, 118.0, 127.9, 128.1, 130.2, 130.4, 132.9, 133.7, 133.8, 135.9, 136.0; IR 

(thin film NaCl): 3072, 2931, 2857, 1472, 1427, 1390, 1361, 1292, 1172, 1112, 1036, 998, 947, 

820, 741, 702, 672, 622 cm-1; [α]23
D   = –7.1 (c = 0.012, CHCl3); HR-MS (ESI) Calcd for 

C27H36O4Si(M+Na)+ 475.2275, found 475.2265. 

 
 

(E)-4-((2R,3R)-3-(((4S,5R)-5-(tert-butyldiphenylsilyloxy)-1,3-dioxan-4-yl)methyl)-2-

methyloxiran-2-yl)but-2-enal (105): To a solution of olefin 104 (1.77 g, 3.91 mmol) in CH2Cl2 

(10 mL) was added acrolein (0.780 mL, 11.7 mmol) and the Hoveyda-Grubbs 2nd generation 

catalyst (134 mg, 0.21 mmol). A reflux condenser was attached and the reaction heated to reflux 

for 12 h. The reaction was cooled to ambient temperature and ethyl vinyl ether was added (5 

mL). The reaction is stirred at room temperature for 10 min and then was concentrated in vacuo. 

The crude reaction mixture was purified by column chromatography (gradient: 10% to 20% 

EtOAc in hexanes) to afford aldehyde 105 (1.7 g, 92%, 9:1 E:Z by 1H-NMR); Product was 

visualized with CAM stain, Rf = 0.12 (20% EtOAc in hexanes); 1H NMR (400 MHz, CDCl3) δ: 

1.05 (s, 9H), 1.25 (s, 3H), 1.64–1.71 (ddd, J = 14.3, 8.0, 6.0 Hz, 1H), 1.97–2.03 (ddd, J = 14.8, 

6.2, 2.8 Hz, 1H), 2.48–2.59 (m, 2H), 2.84–2.87 (dd, J = 6.0, 6.0 Hz, 1H), 3.32–3.37 (dd, J = 

10.5, 9.5 Hz, 1H), 3.53–3.62 (m, 2H), 3.86–3.90 (dd, J = 10.4, 4.1 Hz, 1H), 4.55–4.56 (d, J = 6.1 

Hz, 1H), 4.92–4.93 (d, J = 6.0 Hz, 1H), 6.15–6.21 (dd, J = 15.7, 7.9 Hz, 1H), 6.74–6.82 (ddd, J = 

15.7, 7.0, 7.0 Hz, 1H), 7.38–7.48 (m, 6H), 7.62–7.68 (m, 4H), 9.52–9.54 (d, J = 7.9 Hz, 1H); 13C 
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NMR (100 MHz, CDCl3) δ: 17.3, 19.4, 27.1, 31.1, 41.5, 58.7, 59.9, 67.4, 71.6, 80.8, 93.4, 127.9, 

128.1, 130.3, 130.4, 132.8, 133.5, 135.5, 135.9, 136.0, 152.7, 193.8; IR (thin film NaCl): 3071, 

2961, 2931, 2857, 2763, 1693, 1638, 1472, 1428, 1389, 1361, 1293, 1234, 1173, 1112, 1035, 

978, 947, 890, 820, 742, 703 cm-1; [α]23
D   = 6.0 (c = 0.016, CHCl3); HR-MS (ESI) Calcd for 

C28H36O5Si (M+Na)+ 503.2224, found 503.2235. 

 
 

((2R,3R)-3-(((2R,3R)-3-(((4S,5R)-5-(tert-butyldiphenylsilyloxy)-1,3-dioxan-4-yl)methyl)-2-

methyloxiran-2-yl)methyl)oxiran-2-yl)methanol (106): A solution of aldehyde 105 (1.73 g, 3.6 

mmol) in MeOH (7 mL) was cooled to 0 °C and NaBH4 (102 mg, 2.7 mmol) was added, after 

which the reaction was stirred at 0 °C for 20 min. The reaction was quenched with sat. NH4Cl 

(10 mL) and the aqueous layer was extracted with EtOAc (3 x 10 mL). The combined organic 

extracts were washed with brine (50 mL), dried over MgSO4 and concentrated in vacuo. The 

crude allylic alcohol was used without further purification.  

Powdered 4Å molecular sieves (1 g) were flame dried under vacuum for 8 minutes and 

then cooled to ambient temperature. To the sieves was added CH2Cl2 (15 mL), D–(-)-diethyl 

tartrate (89 mg, 0.432 mmol) and the mixture was cooled to –25 °C. Next, Ti(OiPr)4 (107 µL, 

0.36 mmol) was added in one portion followed by the dropwise addition of t-BuOOH (1.3 mL of 

5.5M in decane, 7.2 mmol) and the reaction was stirred at –25 °C for 30 min. The allylic alcohol 

was added as a solution in CH2Cl2 (3 mL) and the reaction was stirred at –25 °C for 15 h. The 

reaction was quenched by slow addition to a solution of Fe(II)SO4•7H2O (1.2 g), tartaric acid 
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(360 mg), and H2O (13 mL) at 0 °C. The reaction was stirred at room temperature for 15 min and 

the aqueous layer extracted with Et2O. The organic extracts were combined and to them was 

added 30% NaOH in brine (10 mL) and the reaction was stirred at room temperature for 1h. The 

organic layer was separated, dried over MgSO4 and the solvent was removed in vacuo. The crude 

material was purified by column chromatography (gradient: 30% to 40% EtOAc in hexanes) to 

afford epoxide 106 (983 mg, 57% over 2 steps); Product was visualized with CAM stain, Rf = 

0.14 (40% EtOAc in hexanes); 1H NMR (400 MHz, CDCl3) δ: 1.05 (s, 9H), 1.32 (s, 3H), 1.66–

1.71 (dd, J = 14.6, 6.7 Hz, 1H), 1.75–1.80 (dd, J = 14.3, 4.8 Hz, 1H), 1.91 (s, 1H), 1.98–2.04 

(ddd, J = 14.9, 6.4, 2.5 Hz, 1H), 2.84–2.87 (dd, J = 6.1, 6.1 Hz, 1H), 2.93–2.95 (ddd, J = 4.6, 2.5, 

2.5 Hz, 1H), 3.07–3.10 (ddd, J = 6.9, 4.6, 2.3 Hz, 1H), 3.32–3.37 (dd, J = 10.5, 9.4 Hz, 1H), 

3.54–3.67 (m, 3H), 3.85–3.92 (m, 2H), 4.55–4.56 (d, J = 6.1 Hz, 1H), 4.91–4.93 (d, J = 6.1 Hz, 

1H), 7.38–7.48 (m, 6H), 7.62–7.68 (m, 4H); 13C NMR (100 MHz, CDCl3) δ: 17.3, 19.4, 27.1, 

31.0, 41.0, 52.8, 58.0, 58.4, 60.5, 61.6, 67.4, 71.6, 80.8, 93.3, 127.9, 128.1, 130.2, 130.3, 132.8, 

133.6, 135.9, 136.0; IR (thin film NaCl): 3453, 3071, 2931, 2858, 1472, 1428, 1389, 1361, 1293, 

1232, 1172, 1111, 1034, 946, 820, 742, 703, 671 cm-1; [α]23
D   = 11.7 (c = 0.019, CHCl3); HR-MS 

(ESI) Calcd for C28H38O6Si (M+Na)+ 521.2330, found 521.2323. 

 

 

 

(2S,3R)-3-(((2R,3R)-3-(((4S,5R)-5-(tert-butyldiphenylsilyloxy)-1,3-dioxan-4-yl)methyl)-2-

methyloxiran-2-yl)methyl)oxirane-2-carbaldehyde (S10): Alcohol 106 (698 g, 1.4 mmol) was 
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dissolved in CH2Cl2 (14 mL) to which was added solid NaHCO3 (1.2 g, 14 mmol) and Dess-

Martin periodinane (890 mg, 2.1 mmol). The reaction was stirred at ambient temperature for 1h. 

The reaction was quenched by addition of water (10 mL) followed by addition of sat. Na2S2O3 

(19 mL). The aqueous layer was then extracted with EtOAc (3 x 20 mL). The combined organic 

extracts were dried over MgSO4 and the solvent was removed in vacuo. The crude material was 

purified by column chromatography (30% EtOAc in hexanes) to afford aldehyde S10 (529g, 

78%) as a colorless oil; Product was visualized with CAM stain, Rf = 0.62 (50% EtOAc in 

hexanes); 1H NMR (400 MHz, CDCl3) δ: 1.05 (s, 9H), 1.33 (s, 3H), 1.64–1.74 (m, 2H), 1.85–

1.90 (dd, J = 14.5, 4.1 Hz, 1H), 1.97–2.03 (ddd, J = 14.7, 6.4, 2.7 Hz, 1H), 2.83–2.86 (dd, J = 

6.1, 6.1 Hz, 1H), 3.15–3.17 (dd, J = 6.2, 2.0 Hz, 1H), 3.33–3.38 (m, 2H), 3.53–3.63 (m, 2H), 

3.86–3.89 (dd, J = 10.0, 3.8 Hz, 1H), 4.54–4.56 (d, J = 6.1 Hz, 1H), 4.91–4.93 (d, J = 6.1 Hz, 

1H), 7.38–7.48 (m, 6H), 7.62–7.69 (m, 4H), 9.03–9.04 (d, J = 6.2 Hz, 1H); 13C NMR (100 MHz, 

CDCl3) δ: 17.2, 19.4, 27.1, 30.9, 40.7, 53.9, 58.1, 58.5, 60.6, 67.4, 71.6, 80.7, 93.4, 128.0, 128.1, 

130.3, 130.4, 132.8, 133.6, 135.9, 136.0, 198.1; IR (thin film NaCl): 3071, 2931, 2857, 1729, 

1472, 1428, 1389, 1362, 1292, 1232, 1172, 1112, 1034, 946, 890, 821, 741, 704, 671 cm-1; [α]23
D   

= –8.9 (c = 0.012, CHCl3); HR-MS (ESI) Calcd for C28H36O6Si (M+Na)+ 519.2173, found 

519.2155. 

 

 
 

tert-butyl((4S,5R)-4-(((2R,3R)-3-methyl-3-(((2R,3R)-3-vinyloxiran-2-yl)methyl)oxiran-2-yl) 

methyl)-1,3-dioxan-5-yloxy)diphenylsilane (107): Methyltriphenylphosphonium bromide (446 

O

O
TBDPSO

Me

H

H

O

O

107



 

 147 

mg, 1.25 mmol) and tBuOK (140 mg, 1.25 mmol) were loaded into a round bottom flask in a 

glovebox. The flask was removed from the box and a reflux condenser was attached. To the flask 

was added THF (10 mL) and the reaction was heated to 55 °C for 30 min, accompanied by 

formation of a yellow slurry. The reaction was cooled to ambient temperature and aldehyde S10 

was added as a solution in THF (3 mL). The reaction was stirred at ambient temperature for 15 

min and was quenched with aqueous sat. NH4Cl (15 mL). The aqueous layer was extracted with 

EtOAc (3 x 10 mL). The combined organic extracts were dried with MgSO4 and the solvent was 

removed in vacuo. The crude material was purified by column chromatography (gradient 10% to 

30% EtOAc in hexanes) to afford vinyl epoxide 107 (454 mg, 92%); Product was visualized with 

CAM stain, Rf = 0.48 (30% EtOAc in hexanes); 1H NMR (400 MHz, CDCl3) δ: 1.05 (s, 9H), 

1.32 (s, 3H), 1.60–1.71 (m, 2H), 1.78–1.82 (dd, J = 14.2, 5.0 Hz, 1H), 1.99–2.05 (ddd, J = 14.7, 

6.4, 2.6 Hz, 1H), 2.86–2.89 (dd, J = 6.1, 6.1 Hz, 1H), 2.94–2.98 (ddd, J = 6.8, 4.8, 2.1 Hz, 1H), 

3.10–3.13 (dd, J = 7.1, 2.1 Hz, 1H), 3.32–3.37 (dd, J = 10.7, 9.6 Hz, 1H), 3.53–3.62 (m, 2H), 

3.84–3.88 (dd, J = 10.5, 3.7 Hz, 1H), 4.55–4.56 (d, J = 6.1 Hz, 1H), 4.91–4.93 (d, J = 6.3 Hz, 

1H), 5.28–5.31 (dd, J = 9.7, 2.0 Hz, 1H), 5.46–5.62 (m, 2H), 7.37–7.48 (m, 6H), 7.62–7.68 (m, 

4H); 13C NMR (100 MHz, CDCl3) δ: 17.3, 19.4, 27.2, 31.1, 41.5, 57.3, 58.4, 58.4, 60.5, 67.5, 

71.6, 80.7, 93.4, 119.8, 127.9, 128.1, 130.2, 130.3, 132.8, 133.6, 135.5, 135.9, 136.0; IR (thin 

film NaCl): 3072, 3050, 2931, 2857, 2764, 1472, 1428, 1403, 1389, 1361, 1292, 1255, 1232, 

1172, 1111, 1035, 998, 946, 878, 820, 742, 703, 671 cm-1; [α]23
D   = 7.1 (c = 0.011, CHCl3); HR-

MS (ESI) Calcd for C29H38O5Si (M+Na)+ 517.2381, found 517.2369. 
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(4S,5R)-4-(((2R,3R)-3-methyl-3-(((2R,3R)-3-vinyloxiran-2-yl)methyl)oxiran-2-yl)methyl)-

1,3-dioxan-5-ol (100): To a solution of silyl ether 107 (227 g, 0.46 mmol) in THF (0.50 mL) at 0 

°C was added TBAF (0.690 mL of 1M solution in THF, 0.69 mmol) and the reaction was stirred 

at 0 °C for 30 min. The material was loaded directly onto a silica gel column and purified 

(gradient 10% to 50% EtOAc in hexanes) to afford 100 (116 mg, 98%); Product was visualized 

with CAM stain, Rf = 0.18 (50% EtOAc in hexanes); 1H NMR (600 MHz, CDCl3) δ: 1.41 (s, 

3H), 1.65–1.69 (dd, J = 14.3, 7.3 Hz, 1H), 1.89–1.94 (m, 2H), 2.09–2.13 (ddd, J = 15.0, 4.1, 4.1 

Hz, 1H), 2.33–2.34 (d, J = 5.4 Hz, 1H), 2.98–3.00 (ddd, J = 6.9, 4.4, 2.1 Hz, 1H), 3.08–3.10 (dd, 

J = 7.7, 4.2 Hz, 1H), 3.12–3.14 (dd, J = 7.4, 2.0 Hz, 1H), 3.34–3.37 (dd, J = 10.4, 10.4 Hz, 1H), 

3.52–3.55 (ddd, J = 9.5, 5.9, 3.9 Hz, 1H), 3.72–3.77 (m, 1H), 4.16–4.19 (dd, J = 10.8, 5.0 Hz, 

1H), 4.60–4.61 (d, J = 6.1 Hz, 1H), 5.02–5.03 (d, J = 6.1 Hz, 1H), 5.30–5.31 (d, J = 10.1 Hz, 

1H), 5.48–5.51 (d, J = 17.2 Hz, 1H), 5.55–5.61 (ddd, J = 17.4, 10.2, 7.5 Hz, 1H); 13C NMR (100 

MHz, CDCl3) δ: 17.3, 31.1, 41.5, 57.3, 58.6, 59.1, 60.2, 65.5, 71.1, 80.3, 93.5, 120.0, 135.3; IR 

(thin film NaCl): 3443, 3088, 2992, 2923, 2855, 2772, 1457, 1407, 1387, 1285, 1226, 1171, 

1129, 1073, 1027, 940, 878, 843, 677 cm-1; [α]23
D   = 13.0 (c = 0.005, CHCl3); HR-MS (ESI) Calcd 

for C13H20O5 (M+Na)+ 279.1203, found 279.1208. 

O

O
HO

Me

H

H

O

O

100



 

 149 

 
 

Triad (99): To a solution of diepoxide 100 (67 mg, 0.26 mmol) in CH2Cl2 (9 mL) was added 

CSA (15 mg, 0.065 mmol). The reaction was stirred at ambient temperature for 15 h and the 

solvent was removed in vacuo. The crude material was purified by column chromatography 

(50% EtOAc in hexanes) to afford 99 (39 mg, 57%) as a white solid. Product was visualized with 

CAM stain, Rf = 0.20 (50% EtOAc in hexanes); 1H NMR (600 MHz, CDCl3) δ: 1.32 (s, 3H), 

1.51–1.55 (dd, J = 10.9, 10.9 Hz, 1H), 1.72 (br s, 1H), 1.74–1.80 (ddd, J = 11.8, 11.8, 11.8 Hz, 

1H), 2.19–2.25 (m, 2H), 3.24–3.27 (dd, J = 12.2, 3.8 Hz, 1H), 3.28–3.33 (ddd, J = 11.5, 9.5, 4.4 

Hz, 1H), 3.41–3.44 (dd, J = 10.1, 10.1 Hz, 1H), 3.57–3.63 (m, 3H), 4.10–4.12 (dd, J = 10.3, 4.6 

Hz, 1H), 4.62–4.63 (d, J = 6.2 Hz, 1H), 5.01–5.02 (d, J = 6.2 Hz, 1H), 5.35–5.37 (d, J = 10.6 Hz, 

1H), 5.43–5.46 (d, J = 17.3 Hz, 1H), 5.85–5.90 (ddd, J = 17.2, 10.5, 6.6 Hz, 1H); 13C NMR (100 

MHz, CDCl3) δ: 16.1, 30.5, 45.4, 66.5, 68.8, 69.9, 74.1, 78.6, 78.9, 85.5, 94.1, 119.8, 135.5; IR 

(KBr pellet): 3452, 2988, 2941, 2860, 2777, 1460, 1381, 1289, 1267, 1229, 1201, 1169, 1099, 

1065, 1029, 946, 926, 858, 735 cm-1; [α]23
D   = 21.4 (c = 0.007, CHCl3); HR-MS (ESI) Calcd for 

C13H20O5 (M+Na)+ 279.1203, found 279.1214. 
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Acetylated triad (S11): To a solution of triad 99 (7 mg, 0.03 mmol) in CH2Cl2 (0.5 mL) was 

added Ac2O (0.025 mL, 0.27 mmol) and Et3N (0.063 mL, 0.45 mmol). The reaction was stirred 

at ambient temperature for 30 min. A small amount of SiO2 was then added and the solvent was 

removed in vacuo. The material was then dry loaded onto a silica gel column and purified (20% 

EtOAc in hexanes) to afford S11 (6 mg, 67%) as a white solid. Product was visualized with 

CAM stain, Rf = 0.45 (50% EtOAc in hexane); 1H NMR (600 MHz, CDCl3) δ: 1.36 (s, 3H), 

1.53–1.57 (dd, J = 11.4, 11.4 Hz, 1H), 1.76–1.82 (ddd, J = 11.8, 11.8, 11.7 Hz, 1H), 2.02 (s, 3H), 

2.19–2.23 (dt, J = 11.6, 4.2 Hz, 1H), 2.23–2.26 (dd, J = 11.6, 5.3 Hz, 1H), 3.27–3.32 (m, 2H), 

3.39–3.42 (dd, J = 10.1, 10.1 Hz, 1H), 3.58–3.62 (td, J = 9.7, 4.6 Hz, 1H), 3.77–3.80 (dd, J = 9.8, 

6.9 Hz, 1H), 4.10–4.12 (dd, J = 10.3, 4.6 Hz, 1H), 4.62–4.63 (d, J = 6.2 Hz, 1H), 4.84–4.88 (ddd, 

J = 11.3, 9.8, 5.3 Hz, 1H), 5.02–5.03 (d, J = 6.2 Hz, 1H), 5.24–5.27 (ddd, J = 10.5, 1.5, 1.0 Hz, 

1H), 5.34–5.37 (ddd, J = 17.2, 1.4, 1.0 Hz, 1H), 5.76–5.81 (ddd, J = 17.3, 10.5, 6.9 Hz, 1H); 13C 

NMR (100 MHz, CDCl3) δ: 15.9, 21.3, 30.5, 42.9, 66.6, 69.9, 70.0, 73.9, 78.6, 79.2, 82.4, 94.2, 

119.3, 134.8, 170.0; IR (thin film NaCl): 2955, 2858, 2777, 1743, 1461, 1432, 1376, 1280, 1236, 

1202, 1170, 1098, 1067, 1029, 971, 978, 927, 911, 889, 863, 801, 736, 675; [α]23
D   = 1.4 (c = 

0.003, CHCl3). HR-MS (ESI) Calcd for C15H22O6 (M+Na)+ 321.1309, found 321.1309.  
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Chapter 2: Spectra 
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Assignment of S11 by 1H-1H gCOSY 

 

 

 

chemical shift (δ)      1H-1H gCOSY assignment 

1.36 (s, 3H)       Meq 

1.53–1.57 (dd, J = 11.4, 11.4 Hz, 1H)   Hg 

1.76–1.82 (ddd, J = 11.8, 11.8, 11.7 Hz, 1H)   Hm 

2.02 (s, 3H)       Mer 

2.19–2.23 (dt, J = 11.6, 4.2 Hz, 1H)    Hl 

2.23–2.26 (dd, J = 11.6, 5.3 Hz, 1H)    Hf 

3.27–3.32 (m, 2H)      Hk and Hn 

3.39–3.42 (dd, J = 10.1, 10.1 Hz, 1H)   Hi 

3.58–3.62 (td, J = 9.7, 4.6 Hz, 1H)    Hj 

3.77–3.80 (dd, J = 9.8, 6.9 Hz, 1H)    Hb 

4.10–4.12 (dd, J = 10.3, 4.6 Hz, 1H)    Hh 

4.62–4.63 (d, J = 6.2 Hz, 1H)     Hp 

4.84–4.88 (ddd, J = 11.3, 9.8, 5.3 Hz, 1H)   Ha 

5.02–5.03 (d, J = 6.2 Hz, 1H)     Ho 

5.24–5.27 (ddd, J = 10.5, 1.5, 1.0 Hz, 1H)   He 

5.34–5.37 (ddd, J = 17.2, 1.4, 1.0 Hz, 1H)   Hd 

5.76–5.81 (ddd, J = 17.3, 10.5, 6.9 Hz, 1H)   Hc 
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gCOSY for compound S11
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NOESY for compound S11 
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X-Ray Crystallographic Data for Compound 54 
 
Top View 54 (Structure displayed as enantiomer of 54) 

 
Table 1.  Crystal data and structure refinement for 06149. 

Identification code  06149 

Empirical formula  C14 H18 O4 

Formula weight  250.28 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Orthorhombic 

Space group  P2(1)2(1)2(1) 

Unit cell dimensions a = 4.8624(3) Å a= 90°. 

 b = 11.8321(8) Å b= 90°. 

 c = 21.8581(14) Å g = 90°. 

Volume 1257.55(14) Å3 

Z 4 

Density (calculated) 1.322 Mg/m3 

Absorption coefficient 0.096 mm-1 

F(000) 536 

Crystal size 0.25 x 0.10 x 0.10 mm3 

Theta range for data collection 1.96 to 29.13°. 

Index ranges -6<=h<=6, -16<=k<=16, -29<=l<=29 

Reflections collected 24532 

Independent reflections 1994 [R(int) = 0.0456] 
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Completeness to theta = 29.13° 99.9 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9905 and 0.8840 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 1994 / 1 / 167 

Goodness-of-fit on F2 1.043 

Final R indices [I>2sigma(I)] R1 = 0.0383, wR2 = 0.0864 

R indices (all data) R1 = 0.0472, wR2 = 0.0908 

Absolute structure parameter ? 

Largest diff. peak and hole 0.250 and -0.209 e.Å-3 
 
 

Table 2.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) 

for 06149.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________ 

 x y z U(eq) 

________________________________________________________________________________ 

C(1) 787(4) 8105(2) 1834(1) 18(1) 

C(11) -1264(4) 7759(2) 2316(1) 20(1) 

C(12) -2592(5) 6715(2) 2307(1) 23(1) 

C(13) -4567(5) 6468(2) 2752(1) 29(1) 

C(14) -5194(5) 7247(2) 3202(1) 30(1) 

C(15) -3848(5) 8281(2) 3217(1) 28(1) 

C(16) -1885(4) 8533(2) 2776(1) 23(1) 

O(1) 1055(3) 7244(1) 1390(1) 21(1) 

C(2) 2961(5) 7550(2) 912(1) 22(1) 

C(3) 1917(4) 8633(2) 620(1) 16(1) 

O(2) 3805(3) 9010(1) 160(1) 19(1) 

C(4) 2747(4) 9998(2) -148(1) 17(1) 

C(8) 4694(5) 10290(2) -664(1) 21(1) 

C(5) 2409(4) 10961(2) 315(1) 16(1) 

O(4) 1296(3) 11942(1) 19(1) 20(1) 

C(6) 554(4) 10621(2) 844(1) 18(1) 

C(7) 1640(4) 9529(2) 1114(1) 16(1) 

O(3) -224(3) 9127(1) 1573(1) 18(1) 

________________________________________________________________________________ 
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Table 3.   Bond lengths [Å] and angles [°] for 06149. 

_____________________________________________________ 

C(1)-O(1)  1.414(2) 

C(1)-O(3)  1.425(2) 

C(1)-C(11)  1.506(3) 

C(11)-C(16)  1.393(3) 

C(11)-C(12)  1.395(3) 

C(12)-C(13)  1.398(3) 

C(13)-C(14)  1.381(3) 

C(14)-C(15)  1.388(3) 

C(15)-C(16)  1.389(3) 

O(1)-C(2)  1.442(2) 

C(2)-C(3)  1.519(3) 

C(3)-O(2)  1.432(2) 

C(3)-C(7)  1.519(3) 

O(2)-C(4)  1.444(2) 

C(4)-C(8)  1.512(3) 

C(4)-C(5)  1.532(3) 

C(5)-O(4)  1.435(2) 

C(5)-C(6)  1.522(3) 

C(6)-C(7)  1.516(3) 

C(7)-O(3)  1.433(2) 

 

O(1)-C(1)-O(3) 111.55(14) 

O(1)-C(1)-C(11) 110.18(16) 

O(3)-C(1)-C(11) 106.43(16) 

C(16)-C(11)-C(12) 119.42(19) 

C(16)-C(11)-C(1) 117.99(18) 

C(12)-C(11)-C(1) 122.57(18) 

C(11)-C(12)-C(13) 119.6(2) 

C(14)-C(13)-C(12) 120.5(2) 

C(13)-C(14)-C(15) 120.1(2) 

C(14)-C(15)-C(16) 119.8(2) 

C(15)-C(16)-C(11) 120.6(2) 
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C(1)-O(1)-C(2) 112.03(14) 

O(1)-C(2)-C(3) 107.58(16) 

O(2)-C(3)-C(7) 109.81(14) 

O(2)-C(3)-C(2) 110.09(16) 

C(7)-C(3)-C(2) 108.62(15) 

C(3)-O(2)-C(4) 110.56(15) 

O(2)-C(4)-C(8) 108.06(16) 

O(2)-C(4)-C(5) 109.37(15) 

C(8)-C(4)-C(5) 112.92(16) 

O(4)-C(5)-C(6) 109.41(15) 

O(4)-C(5)-C(4) 110.17(15) 

C(6)-C(5)-C(4) 111.70(15) 

C(7)-C(6)-C(5) 108.33(16) 

O(3)-C(7)-C(6) 109.56(15) 

O(3)-C(7)-C(3) 108.81(14) 

C(6)-C(7)-C(3) 110.46(15) 

C(1)-O(3)-C(7) 110.14(14) 

_____________________________________________________________ 

Symmetry transformations used to generate equivalent atoms:  
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Table 4.   Anisotropic displacement parameters (Å2x 103)for 06149.  The anisotropic 

displacement factor exponent takes the form: -2p2[ h2a*2U11 + ... + 2 h k a* b* U12 ] 

______________________________________________________________________________ 

 U11 U22 U33 U23 U13 U12 

______________________________________________________________________________ 

C(1) 19(1)  18(1) 17(1)  2(1) -2(1)  0(1) 

C(11) 16(1)  24(1) 19(1)  5(1) -4(1)  0(1) 

C(12) 22(1)  23(1) 25(1)  7(1) -5(1)  -2(1) 

C(13) 22(1)  32(1) 33(1)  15(1) -6(1)  -8(1) 

C(14) 18(1)  48(1) 24(1)  13(1) -1(1)  -4(1) 

C(15) 21(1)  45(1) 18(1)  1(1) 0(1)  -2(1) 

C(16) 18(1)  31(1) 21(1)  1(1) -1(1)  -5(1) 

O(1) 29(1)  16(1) 19(1)  1(1) 4(1)  -1(1) 

C(2) 28(1)  17(1) 20(1)  1(1) 5(1)  4(1) 

C(3) 16(1)  16(1) 17(1)  1(1) 0(1)  -1(1) 

O(2) 21(1)  17(1) 19(1)  3(1) 3(1)  3(1) 

C(4) 15(1)  16(1) 19(1)  3(1) -2(1)  0(1) 

C(8) 21(1)  22(1) 20(1)  2(1) 0(1)  3(1) 

C(5) 12(1)  16(1) 22(1)  4(1) -1(1)  0(1) 

O(4) 14(1)  16(1) 32(1)  7(1) 0(1)  1(1) 

C(6) 13(1)  16(1) 24(1)  1(1) 1(1)  2(1) 

C(7) 12(1)  17(1) 18(1)  1(1) 0(1)  0(1) 

O(3) 16(1)  17(1) 20(1)  3(1) 2(1)  1(1) 

______________________________________________________________________________
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Table 5.   Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 103) 

for 06149. 

________________________________________________________________________________ 

 x  y  z  U(eq) 

________________________________________________________________________________ 

 

H(1) 2612 8248 2030 22 

H(12) -2157 6174 2001 28 

H(13) -5484 5759 2745 35 

H(14) -6549 7075 3500 36 

H(15) -4267 8814 3528 33 

H(16) -958 9239 2788 28 

H(2A) 3069 6941 603 26 

H(2B) 4819 7670 1085 26 

H(3) 79 8492 429 20 

H(4) 905 9813 -325 20 

H(8A) 6511 10468 -495 32 

H(8B) 3987 10947 -887 32 

H(8C) 4845 9645 -943 32 

H(5) 4263 11157 482 20 

H(4O) 2680(40) 12340(20) -50(12) 24 

H(6A) 547 11222 1160 21 

H(6B) -1354 10513 697 21 

H(7) 3480 9669 1303 19 

________________________________________________________________________________ 

 

 

Table 6.  Hydrogen bonds for 06149 [Å and °]. 

____________________________________________________________________________ 

D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 

____________________________________________________________________________ 

 O(4)-H(4O)...O(4)#1 0.835(16) 1.953(17) 2.7678(12) 165(3) 

____________________________________________________________________________ 

Symmetry transformations used to generate equivalent atoms:  

#1 x+1/2,-y+5/2,-z      
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