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Abstract

Five-dimensional Gauss-Bonnet gravity, with one warped extra-dimension, allows classes

of solutions where two scalar fields combine either in a kink-antikink system or in a trapping

bag configuration. While the kink-antikink system can be interpreted as a pair of gravitating

domain walls with opposite topological charges, the trapping bag solution consists of a

domain wall supplemented by a non-topological defect. In both classes of solutions, for large

absolute values of the bulk coordinate (i.e. far from the core of the defects), the geometry

is given by five-dimensional anti-de Sitter space.
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It is known since the pioneering works of Lanczos [1] (see also [2]) that, in more than

four space-time dimensions, the Einstein-Hilbert action can be supplemented by the so-called

Euler-Gauss-Bonnet combination (see also [3] for a recent review). Such an inclusion leads

to field equations that involve, at most, second derivatives of the metric. The Gauss-Bonnet

combination arises also naturally as first correction in the string tension expansion to the

low-energy string effective action [4, 5, 6, 7, 8, 9].

An apparently unrelated observation is that, in the presence of infinite extra-dimensions,

fields of various spin may be localized around higher dimensional defects (see, for instance,

[10]). Indeed, in the past few years, various analytical solutions containing gravitating defects

have been discussed either in the context of Einstein-Hilbert gravity or in the framework

of Brans-Dicke gravity [11, 12, 13, 14, 15, 16]. Some of these solutions are compatible with

five-dimensional anti-de Sitter space-time (in what follows AdS5) for large absolute value

of the bulk coordinate, providing, in this way a smooth realization of the Randall-Sundrum

set-up where the matter content is given by branes (i.e. gravitating kinks) of finite thickness.

The purpose of the present paper is to show that, in Gauss-Bonnet gravity, there exists

solutions compatible with AdS5 and containing pairs of gravitating defects rather than a

single defect. Solutions have been obtained in the presence of Gauss-Bonnet gravity but

only in the case of single defects [18, 19, 20, 21].

Pairs of defects are known to exist in (1 + 1) field theories in flat space-time and in the

presence of appropriately non-linear interaction potentials [22, 23, 24]. As a consequence of

the intrinsic non-linearity of the problem, exact solutions are rare even if specific methods

have been devised in order to deal with the integration of the systems in rather general

terms(see [23, 25] and references therein). In the presence of gravity it is more difficult to

reduce the problem to the quadrature and to find analytical solutions. This difficulty is even

more severe in Gauss-Bonnet gravity.

Consider then the case where the gravity part of the action takes the form2

Sg = −
∫

d5x
√

|G|
(

R

2κ
+ α′R2

EGB

)

, (1)

where GAB is the metric tensor, R is the Ricci scalar and

R2
EGB = R2 − 4RABRAB + RABCDRABCD, (2)

is the Euler-Gauss-Bonnet (EGB) combination. In Eq. (1), κ = 8πG5 = 8π/M3 and α′ has

dimensions of an energy scale, i.e., in natural units, an inverse length.

The matter part of the action includes two scalar degrees of freedom, denoted by φ and

χ, interacting via the potential W (φ, χ):

Sm =
∫

d5x
√

|G|
[

1

2
GAB∂Aφ∂Bφ +

1

2
GAB∂Aχ∂Bχ − W (φ, χ)

]

, (3)

2The signature of the metric is mostly minus, i.e. (+,−,−,−,−,−). Latin (capital) indices run over the

five-dimensional space-time; Greek indices run over the (3 + 1)-dimensional space-time with Minkowskian

signature.
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The total action will then be given by the sum of the gravity and matter action, i.e. St =

Sg +Sm. The equations of motion are obtained by taking the functional derivative of St with

respect to the metric tensor and with respect to the two scalar fields. Functional derivation

with respect to the metric tensor leads to the generalized Einstein-Lanczos equations

RB
A − 1

2
δB
A = κT B

A − 2α′κQB
A , (4)

where

T B
A = ∂Aφ∂Bφ + ∂Aχ∂Bχ − δB

A

[

1

2
GMN∂Mφ∂Nφ +

1

2
GMN∂Mχ∂Nχ − W (φ, χ)

]

, (5)

QB
A =

1

2
δB
A R2

EGB − 2 R RB
A + 4 RA C RC B + 4 RCD R C B D

A − 2 RA C D E RB C D E, (6)

are, respectively, the energy-momentum tensor and the Lanczos tensor. Functional derivation

with respect to φ and χ produces the following pair of Klein-Gordon equations:

GAB∇A∇Bφ +
∂W

∂φ
= 0, GAB∇A∇Bχ +

∂W

∂χ
= 0, (7)

where, we recall, ∇A∇B = ∂A∂B − ΓC
AB∂C when applied to a scalar degree of freedom.

In the case of a five-dimensional warped metric of the type characterized by a bulk

coordinate w, i.e.

ds2 = a2(w)[ηµνdxµdxν − dw2], (8)

Denoting with the prime a derivation with respect to w, the explicit form of Eq. (4) becomes:

H′

(

1 − 2ǫH2

a2

)

+ H2

(

1 − 2ǫH′

a2

)

= −κ

3

[

φ′2

2
+

χ′2

2
+ a2W (φ, χ)

]

, (9)

H2

(

1 − 2ǫH2

a2

)

=
κ

6

[

φ′2

2
+

χ′2

2
− a2W (φ, χ)

]

, (10)

where H = (ln a)′. In Eqs. (9)–(10) the quantity ǫ = 2κα′ has been also defined and it has

dimensions, in natural units, of a length squared. Using Eq. (8) into Eqs. (7) the following

explicit equations are obtained:

φ′′ + 3Hφ′ − a2 ∂W

∂φ
= 0, χ′′ + 3Hχ′ − a2 ∂W

∂χ
= 0. (11)

By combining Eqs. (9) and (10), the explicit from of the Einstein-Lanczos equations can be

also written as

(φ′2 + χ′2) =
3

κ
(H2 −H′)

[

1 − 4ǫ

a2
H2

]

, (12)

W = − 3

2a2 κ

{

(H2 + H′)
[

1 − 4ǫ

a2
H2

]

+ 2H2

}

. (13)
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Consider then the situation where the warp factor tends to AdS5 for large absolute value

of the bulk coordinate w. A possible choice of warp factor with the desired properties is

a(w) =
a0√

b2w2 + 1
, H = − b2w

b2w2 + 1
, H′ =

b2(b2w2 − 1)

(b2w2 + 1)2
, (14)

where a0 is a free parameter that will be determined from the compatibility with the whole

system of equations. In Eq. (14) the first relation is the ansatz for the warp factor while the

remaining relations follow from the definition of H in terms of a(w).

The method employed in order to find the solution is constructive in the sense that we

impose the geometry given in Eq. (14) and then get the solution by satisfying the Einstein-

Lanczos equations as well as the Klein-Gordon equations. In particular, using Eq. (14), it

is not difficult to show that Eqs. (12) and (13) imply, respectively,

φ′2 + χ′2 =
3b2

κ

1

(b2w2 + 1)3
, (15)

W (φ, χ) = − 3

8κǫ

2b4w4 + 4b2w2 − 1

(b2w2 + 1)2
. (16)

From Eq. (15) we deduce that φ and χ are given by

φ(w) =
v√
2

(

1 +
bw√

b2w2 + 1

)3/2

, (17)

χ(w) =
v√
2

(

1 − bw√
b2w2 + 1

)3/2

. (18)

provided the arbitrary constants a0 and v are such that

a0 = 2
√

ǫ b, v2 =
4

3κ
. (19)

The first of these two relations is necessary in order to write Eqs. (15) and (16) while the

second relation is essential to solve Eq. (15) in terms of Eqs. (17) and (18). Knowing the

form of the field profiles, the potential can be determined from Eq. (16) by adopting the

following ansatz:

W (φ, χ) = A(φ2 + χ2)2 + B(φ2 + χ2) + C + L(φ, χ). (20)

The functional L(φ, χ) vanishes exactly on the classical solution given by Eqs. (17) and (18)

but its derivatives do contribute to the Klein-Gordon equations. In fact Eq. (11) can then

be used to determine L(φ, χ). Using Eqs. (17) and (18) into Eq. (20) and recalling Eq.

(16), the coefficients appearing in Eq. (20) are determined to be

A =
1

8κǫv4
=

3

32v2
B = − 1

κǫv2
= − 3

4ǫ
, C =

5

4κǫ
=

15

16

(

v2

ǫ

)

, (21)
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Figure 1: The kink-antikink solution (left plot) and the trapping-bag solution (right plot)

are illustrated as a function of the bulk radius.

where the second equality in each of the three relations follows by eliminating κ according

to Eq. (19) (second equality). Inserting then Eqs. (14), (20) and (17)–(18) into Eq. (11),

the functional form of L(φ̃, χ̃) can be determined:

L(φ̃, χ̃) =
7

2

v2

ǫ
(|φ̃|2/3 + |χ̃|2/3 − 1)(1 − φ̃2 − χ̃2)2, (22)

where, for notational convenience, we defined the two rescaled fields φ̃ = φ/(2v) and χ̃ =

χ/(2v). Using the second relation in Eq. (19) into Eq. (21) to eliminate κ in favor of v2,

the complete form of the potential becomes, in terms of φ̃ and χ̃,

W (φ̃, χ̃) =
3v2

2ǫ
(φ̃2 + χ̃2)2− 3v2

ǫ
(φ̃2 + χ̃2)+

15

16

v2

ǫ
+

7

2

v2

ǫ
[|φ̃|2/3 + |χ̃|2/3−1][1− φ̃2− χ̃2]2. (23)

The solution given in Eqs. (17) and (18) implies, necessarily, that φ > 0 and χ > 0. However,

it appears from the analytical form of the potential that also φ → −φ or χ → −χ lead to

acceptable solutions and this is the rationale for the absolute values in Eqs. (22) and (23).

In Fig. 1 (plot at the left hand side) the kink-antikink solution of Eqs. (17)–(18) is reported

as a function of the rescaled bulk radius bw. In the case of one spatial dimension, spatial

infinity consists of two points, i.e. ±∞; a topological charge is then customarily defined for

the characterization of (1 + 1)-dimensional defects such as the ones arising in the case of

sine-Gordon system [22]. In the case of the kink-antikink system the topological charges can

be defined as

Qφ =
1

2π

∫

∞

−∞

∂φ

∂w
dw, Qχ =

1

2π

∫

∞

−∞

∂χ

∂w
dw. (24)

Inserting the explicit solutions of Eqs. (17) and (18) into Eq. (24) it is easy to find that

Qφ = −Qχ = v/π.
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By slightly modifying the form of the potential obtained in the case of the kink-antikink

system one can obtain solutions of a different kind. In (1+1) dimensions these solutions are

known as trapping bag solutions. Exactly with the same procedure described above it can

be shown that the following field profiles

φ(w) =
v

2
√

2

[(

1 +
bw√

b2w2 + 1

)3/2

+
(

1 − bw√
b2w2 + 1

)3/2]

, (25)

χ(w) =
v

2
√

2

[(

1 +
bw√

b2w2 + 1

)3/2

−
(

1 − bw√
b2w2 + 1

)3/2]

, (26)

are solutions of the evolution equations previously deduced for the following choice of the

potential

W (φ, χ) =
3v2

ǫ
(φ̃2 + χ̃2)2 − 3v2

ǫ
(φ̃2 + χ̃2) +

15v2

32ǫ

+
7v2

ǫ
(|φ̃ + χ̃|2/3 + |φ̃ − χ̃|2/3 − 1)

[

1

2
− φ̃2 − χ̃2

]2

. (27)

In this case the Einstein-Lanczos equations, i.e. Eqs. (9)–(10), are satisfied only if

a0 = 2
√

ǫb, v2 =
8

3κ
, (28)

i.e. the a0 is the same as in Eq. (19) while the relation of v2 to κ is different. It is clear that

Eqs. (25)–(26) look like being the sum and the difference of the two profiles discussed above

in Eqs. (17)–(18). The system under consideration is, however, intrinsically nonlinear and,

therefore, the compatibility of the solutions (25)–(26) entails necessarily a different relation

between v2 and κ (compare Eqs. (19) and (28)) and also a slightly different form of the

potential.

In Fig. 1 (plot at the right) the analytical solution of Eqs. (25) and (26) is illustrated

for v = 1. From Fig. 1 it is also clear the rationale for the terminology employed in naming

these solutions. The φ field is the ”bag” that ”traps” the χ field. As already mentioned this

type of trapping-bag solutions can be found, in (1+ 1) dimensions, and with an appropriate

nonlinear potential possessing a global U(1) symmetry [23, 24, 25]. By inserting Eqs. (25)

and (26) into Eq. (24), it is easy to show that while Qφ = 0, Qχ = v/π. So, while the φ field

illustrates a non-topological profile, the χ field is still topological.

The constructive technique exploited in the present paper can be extended in other cases

when, for instance, the form of the underlying geometry is different from the one of Eq. (14).

In particular, it might be interesting to discuss the warp factor

a(w) = a1[(bw)2ν + 1]−
1

2ν , (29)

where ν ≥ 1 is an integer parameter. Notice that for ν = 1 Eq. (29) gives exactly Eq. (14).

For ν > 1 AdS5 is always recovered, asymptotically, for large absolute value of the bulk
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radius. Single field defects (both topological and non-topological) arising in the geometry

(29) have been analyzed in [26] in the case of Einstein-Hilbert gravity. It would be interesting

to generalize these solutions to the case of Einstein-Lanczos gravity and in the presence of

a pair of scalar degrees of freedom. Along similar lines it seems also reasonable to think

about the possibility of multi-defects, i.e. gravtating profiles of two (or more) scalar degrees

of freedom.

In the present investigation it has been argued that there may be a non-trivial interplay

between five-dimensional Gauss-Bonnet gravity and the presence of unusual defects that may

arise when two scalar degree of freedom are simultaneously present. Solutions describing

both kink-antikink profiles and trapping bags have been presented. While the possibility of

qalitatively similar profiles in nonlinear (1+1) dimensional field theories has been established

in a number of different ways, in the context of five-dimensional Gauss-Bonnet gravity no

attention has been payed to these configurations, to the best of our knowledge. One of

the interesting features of the obtained solutions is that the geometry which solves the

Einstein-Lanczos equations in the presence either of kink-antikink profiles or in the presence

of trapping bag profiles is always of AdS5. More specifically the warp factor tends to AdS5

for |w| → ∞. Close to the core of the defect, i.e. for |w| → 0 the geometry is always regular

(i.e. all curvature invariants are regular); both φ and χ (as well as φ′ and χ′) are finite and

regular.
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