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Abstract

In this paper, we present a generative model for co-clusjesind develop al-
gorithms based on the mean field approximation for the cpomding model-
ing problem. These algorithms can be viewed as generaimf the tradi-
tional model-based clustering; they extend hard co-dligjealgorithms such as
Bregman co-clustering to include soft assignments. We shimwirically that
these model-based algorithms offer better performancetttear hard-assignment
counterparts, especially with increasing problem complex

1 Introduction

Co-clustering, or Bi-clustering, is the problem of simakausly clustering rows and columns of a
matrix of data points. The first such algorithm was introduo®re than thirty years ago [1] but
there has been a new interest in the problem due to recendisgiémg applications. Different variants
of co-clustering problems have been posed in fields suchadsgical data analysis [2, 3, 4], data
mining and information retrieval [5, 6, 7], studies of sdciatworks, and computational cognitive
science [8, 9]. These algorithms aim to discover distigpés of row and column indices based
on their interaction via the data points. It has also beegastgd in the case of high-dimensional
data, if we apply co-clustering to simultaneously clustathldata points and features, we sometimes
improve the regular clustering results on the data poir@k [1

In traditional clustering, generative models provide aiyons that can be understood as statistical
generalizations of thé-means algorithm [11]. The basiemeans algorithm has a fully combina-
torial structure which presents a challenge when seardhitige space of solutions. In contrast,
considering clustering as a probabilistic modeling probleve can formulate it in a continuous
space, enabling easier search for the optimal solutionddiitian to the advantages of model-based
clustering in searching the complex space of solution$sdt provides a way to express uncertainty
in the results of clustering with itoft assignments. In this paper, we develop a general generative
model for co-clustering which is similarly related to balsard-assignment co-clustering algorithms
such as Bregman co-clustering [10]. The simplicity of oudelanakes it possible to use mean field
theory to derive co-clustering algorithms maintainingsel@onnection to mixture-model clustering.
In contrast, prior model-based methods, in the contextefbre general problem of relational data
clustering, take more complicated structures and rely orpsiag algorithms [8, 9].

We consider a general framework where data points could bergted by any distribution. This
approach unifies the treatment of the real-valued data enermad in many biological applications
with that of positive-valued co-occurrence data. Co-o@nge data presents the frequency of a pair
of two different types of objects occurring simultaneou$ty instance, the counts indicating the
number of times each user clicked on any item on a webpager&ewo-clustering algorithms have
been developed specifically for this kind of data due to igjfirent applications in data-mining [5,
6, 7].

The paper is organized as follows: In Section 2, we introdugaegenerative model, the method
employed for solving the corresponding problem, and twordtigms developed with this model for



Gaussian and co-occurrence data. Section 3 explains #t®rehip between this generative model
and the previous work on combinatorial (hard) co-clustgend mixture-model clustering. In Sec-
tion 4, we present experimental results demonstratingppmdnce of our algorithm in comparison
with the existing hard co-clustering algorithms in therkiteire.

2 Generative Model for Co-Clustering

Letz = [z,,] be a given set of x m data points where all data pointg, are elements of a s&t.

In general, our construction holds whenis a vectorial set of any dimensions but in the examples
discussed in the paper, it is a scalar set. Co-clusterintpiggthe statistics of the data through a
pair of functions

c:{1,---,n}—{1,--- Kk}

g:{1,---,m}—{1,--- .1}
when k row and! column clusters are assumed. In a modeling framework, thesgions are
thought of as variables that contribute to the distributdmlata points without being directly ob-

served in the measurements. Therefore, we build a probtibithodel of the data on the product
space of observed (data points) and hidden (co-clustewimgfibns) variables.

2.1 Generative Mode

We represent co-clustering functions in our model withk binary indicator variables = [c,;] and

m x [ indicator variableg = [g,3] where the indiceg andv denote row and column cluster labels,
respectively. We assume that exactly one variable in eastof@ andg could be 1 to guarantee
that each point is mapped only to one cluster. With this ganstt any pair(c, g) is equivalent to

a unique choice of co-clustering functions defined:by) = >, @c.q andg(v) = >, vg.s. Our
model describes the distribution of data points for a givenfiguration of hidden variables as

(e, 0:0) = TT /s trca) = 1 T (i) W

w,v - a,v

wheref(-; 0) is a parameterized distribution ghandf = [0;5] is the set of x [ parameter vectors.
Data points with the same row and column clugiery) are assumed to bid.d. samples from a
distribution f (-; f5).

We also assume a product prior f@ g) treatinge(u)’s as independent samples from an identical
multinomial distribution. Taking a similar assumption abtheg(v)'s, we write the full generative
model of the observed and hidden variables as

P(z,e,:0.m.p) = Plzle,g:0)P(e;m)Plg:p)
CuaGuvd
e e ] o

wheren andp correspond to the parameters of the multinomial priors ¢errow and column
cluster indices, respectively. With this model, we can folate co-clustering as learning (parameter
estimation) with the log-likelihood function

(0", 7", p") = max log P(z;m,p,0) 3)
6.7.p

and inference over all possible co-clustering configuregjahat is, the MAP problem with the
posterior distributionP (¢, g|z;0*,7*, p*). Using the EM algorithm for this problem, we alternate
between inference (E-step) and parameter estimation épl)-sTherefore, computing the posterior
is needed in every step of the algorithm.

The expression for the log-joint-probability of the fulltddz, ¢, g)
log P(2,¢,9;0,m,p) = Z Cuagvi 108 f (2uv; bas) + Z Cug log mg + ng"; log ps (4)

v, 0,0 u,u v,0

includes interaction between the binary varialjteg) in the first term. This means that the posterior
distribution over row and column assignment variables ifactorable and its computation is hard,
involving a summation over the number of configurations @egutial inn andm. Therefore, we
need an approximate inference method to efficiently comiimgt@osterior distribution.



2.2 Mean Field Approximation
Using the mean field method [11], we approximate the postét{e, g|z) with a distributionQ(c, g)

of the form
= (TTatate= ) = (TLrtator ). ®

which is the product of independent multinomial distribais onc(«) andg(v) with corresponding
parameterg(u|u) andr(v|v). Itis easy to see thdig [c.a] = ¢(u|u) andEg[g.s) = r(0]v) where
Eg|-] denotes expectation with respect to the distributigfe, g). We now aim to minimize the
mean field free energy

F(Q,P) = Eqlog Q(c,9)] — Eq[log P(z,¢,g)] (6)
= Z (t)u)log q(t|u) +Z 0|v) log r(v|v)
- Z u|u o|v) log f(zuv, Oas) — Z q(?ﬂu) log g — Z 7"(77|U) log p5 , (7)

where P and@ are functions of the variablgd, 7, p) and(q,r), respectively. We apply alternate
minimization with respect to the posterior parametgrs:) and the original paramete(8, x, p),
constructing a variational EM algorithm for solving protué3).

Since the terms involving, p, and@ appear separately in (7), updating the parameters in the M-
step is straightforward, especially if the modek cleverly chosen such that the objective function
F(Q, P) is a convex function of. In the E-step, for a given set of parametefsjs a convex
function of(g, r) on the simplices where they are defined. The minimizatioblera over variables

g orr, when considered separately, is convex; therefore, we @ep &ne set constant and minimize
F with respect to another. By repeating this process oncedi set, we find) which minimizes

the cost function. In practice, we chose to alternately teglandr in different E-steps as it gave
slightly better results. In both cases, it is clear that tige@thm converges to a local minimum of
the approximate cost function (7).

2.3 Example: Gaussian Model
Let us consider the case where data points are real-valukéssumef(z; u, o) in (1) to be a

1
Gaussian distributiof2ro?)~2e~(>=#)°/20° _ Supstituting this expression into (7), taking into ac-
count the normalization constraints over the variableg,ramimizing the resulting expression with
respect to the parameteig ), we find the update rules in the E-step as

(t)
- 1 -
D i) o 7 x| - 2§:MWMW(__F#ﬂ)} ©
v,0 O
t+1 (t) 1 t) (7 M(f)
D 5f0) o wp[5§j¢Nmm(——@fﬂ)}, ©

where the superscrigt) indicates the values correspond to thién step of the iterations and all
variables are further normalized to give valid multinomparameters. For the M-step, using a
similar treatment for the model parameters yields

W _ 15 0 - LN 00 10

w = ) = Gl (10

,U("t) — Zu,v q(t) (&\u)r(t) (1~)|1))Zuv O'(~t~) — Zu,v q(t) (ﬂ|u)7‘(t) (~|U)(Zuv - Mt(lt'g)Q 2 (11)
v ’I’)mﬂ'(t) (t) uv () (t)
mTy " Py Ty Py

Since parameter estimation for the Gaussian model is etkégtalgorithm has guaranteed conver-
gence as explained in Section 2.2.



2.4 Marginal-preserving Likelihood for Co-occurrence Data

We can use a Poisson distribution instead of Gaussian to Insodeccurrence data matrices. In
general, likelihood models of the form (1) assume the sarseildition for the block of all data
points assigned the same row and column cluster indicesthieeset of z,,,,, c(u) = @, g(v) = v}
for some pair(a, v). Accordingly, they assume the same frequency of occurrércall row or
column indices within a cluster. If we want the model to alldistinct frequencies of occurrence for
different indices, we have to suitably modify the form®fz|c, g). Here, we present such a model
as an example of possible extensions to our basic framework.

We assume that the data is representedslgo-occurrence indicator matrices, i.ei,d. binary
sample matrices® = [z7,], 1 < s < 5, such that in each sample exactly one element is equal to 1
indicating co-ocurrence between the corresponding rowcahdnn. The frequency representation
of the data can be written in terms of these co-occurrencervétions as the average= + >°, z°.
Here, we write the model for one co-occurrence samyjlgl and omit sample superscripts to make
the expressions easier to follow.

With co-clustering functionée, g), we introduce a set of auxiliary variables
Ty = Z Zuvy Yv = Zzuva 2111") = Zcuﬂgvﬁzuvv i"& = Zgﬁia gﬁ = Z gﬂfw (12)
v u u,v bl u

Here,z is an indicator vector for the row-index occurrence, thatjs= 1 implies that one of the
elements in the:-th row of z is equal to 1, and is an indicator matrix representing which block
contains the observed 1. Similarly, z, andy are indicator variables for occurrences of column,
row-cluster, and column-cluster indices. Note that allsthgariables are deterministic functions
of z given (¢,g). Furthermorez andz could be equivalently represented by, y) and (z,9),
respectively, and andy are deterministic functions af andy. Using these relationships, we can
show that

P(zlc,9) = P(z,%,y,2,2,9lc,g) = P(z|Z,c,9)P(yly,c,g)P(zlc, g) (13)
_ P(le,g)  Plyle,g)
P(z|c,g)  P(ylc,9)

x P(zle,9)., (14)

To define the model, we assume multinomial distributionseaterized by),, and~,,, for instance,
P(z, = lle,g;m) = n,. If we further model the block variables with multinomiakttibutions
parameterized withz5, <z, andvg, for instance taking®(Zzs = 1lle, g; ) = pas, then the model
can be completely parameterized as

o -IN[(2) ()

U,V U,V

CuaGvd Zuv
} , (15)

where we have expressed all the variables again in termg,oT his form guarantees that the model
preserves the marginal row and column distributions ana¢helustering structure determines the
correlation between row and column indices instead of their joint disttion. In order to have this
model normalized, we need to ensure that the parametes$ystie constraints; = Y, cuallu
andv; = ), guse. These constraints interact with the hidden variables aakienthe parameter
estimation hard.

Let us for the moment ignore the constraints on parametetsantinue with solving the corre-
sponding approximate problem. Substituting this model6; &nd recalling that the actual fre-
quency date& is the average of independent sampiéswe find that the optimal values for the
parameterg and+y are simplyn, = z, and~, = ¥,, the data row and column marginals. The M-
step update rules for the prior parametemndp are the same as (10), while the model parameters
are updated aga; = )., , ¢(@|u)r(0]v)Zuy, ka = >, q(@lu)n, andvy = - r(3|v)y,. Note
that the last two equations imply that, although we haverigddhe orginial parameter constraints,
the solutions satisfy them in the expectation sense.



Using these equalities, we arrive at the E-step updates

(?)
- Hag
¢ (@fu) o 7T(f) exp [SZzw,r( ?|v) log <W>} (16)
1) () :“(”t*)
D (3|v) o Py’ €xp [Sz,zuvq (t|u)log ( (t)“”(t))] . a7
U, Kg Vg

These equations could be further simplified but we leave tinethiis form which is easier to imple-
ment numerically.

3 Reélationship to Bregman Co-clustering and Mixture-Model Clustering

In this section, we show that our work and a class of hard usteting algorithms called Bregman
Co-clustering have common modeling assumptions [10]. hiqdar, the two algorithms derived
in Sections 2.3 and 2.4 find MAP solutions while Block Aver&yeclustering (BAC) [10] and the
Information Theoretic Co-clustering algorithm (ITC) selthe ML problems for the same models
[7]. Making the connection to the mixture-modeling, we hat show how this corresponds to soft
vs. hard clustering assignments.

3.1 Bregman Co-clusteringand ML Problem

We first briefly review the basic ideas of Bregman co-clustgfil0]. Bregman co-clustering as-
sumes random variabld$ € {1,--- ,n} andV € {1,---,m} represent the row and column
indices, respectively. The distributionof the product random variablé x V associates a set of
weights to different data points. In most common casesgesihere is no preference for any ele-
ments of the data matrix,(u, v) = -1 for all u andv. We can also think of the dataas a function

z : U x V — Z and define a random variable over its range, with a corresponding distribution
induced by, namely,P(Z = z,,) = v(u,v).

Given a pair of co-clustering functionsandg, we define random variabld$ € {1,---,k} and

V e {1,---,1} such that = ¢(U) andV = g(V). Then the algorithm constructs a matrix
approximation functiort : i/ x V — Z and a corresponding random variatlavith the constraint
that certain summary statistics of the co-clustering aseeshbetwee? andZ. For instance, BAC
imposesE|[Z|u, 7] = E[Z|u,?] for all 4 andd. With any such assumption about the formzof
the goal of co-clustering is to find the pair of co-clusteringctions(c, g) and the approximation

function z such that the average distortifind(Z, Z) is minimized, where the distortiafy (-, -) is
a Bregman divergence [12].

Bregman divergences are used in many machine learningcagiphs, including clustering. Com-
mon examples include Euclidean distance for real-valuedove, and KL-divergence for proba-
bility vectors. There is an equivalence relation betweeayula exponential families and Breg-
man divergences, namely, any regular exponential faififity §) = e*?~¥(®) can be represented as
f(z;p) = C(2)e~% (=) where the new parametgiis the expected value ¢f underf(z; 6) [12].
We establish the connection between our modeling approattha Bregman matrix approximation
using this equivalence. Assuming the above form for our rhivdél), we compute the maximum
likelihood configuration of the hidden variables.

(c*,g*) = argmax ml?x log P(z|e,g; p) = argmax m;mx Z —CuaGvide(Zuv, pas) + const.
c,g c¢.g9

UV, U,V

= argmin min F,dg(Z, Z), (18)

¢c.9 Zsac

where v is uniform and the last equality follows because it can bewshdhat F[Z] =
argmin, Edy(Z, 1) and that, in the case of BAQ[Z|U, V| = argminy E,ds(Z, Z) [10]. Since
expressmn (18) is the BAC cost function, we conclude thati solution in our generative model
is equivalent to the BAC solution. Minimizing this cost fuimn is a hard combinatorial problem.
The algorithm proposed in [10] for finding its solution can\iewed as a generalization of the
k-means algorithm to co-clustering.
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Figure 1:Comparison between the results of our Gaussian model-lsaseldistering and BAC on 25,000 ran-
domly generated data sets. Left: difference in precisidnegafound by the two algorithms. Right: distortion
reduction index. See text for details.

Information Theoretic Co-clustering (ITC), another exdenpf Bregman co-clustering, is an al-
gorithm for data sets representing the co-occurence ofdweand column indices [7]. ITC re-
quires the approximation variablé to match block, row and column statistics of the data set, i.e
E[Z|u] = E[Z|u] andE[Z|v] = E[Z|v] for all v andv. It also assumes normalized co-occurence
dataz, where all the data points sum to 1. Using the I-divergehge, 1) = zlog(z/n) — (z — )

as the distortion function, it can be shown that the optirparaximationZ satisfies [10]

E[Z|U,V] x E[Z|U] x E[Z|V]
E[Z|U] x E[Z|V]

With these assumptions, the ITC cost function can be wratethe co-clusteringiformation Loss

Al = I(U;V) — I(U; V) [7]. If we evaluate our likelihood function (15) for the c@eurrence

model in Section 2.4, we find that the ML solution of our modsbaminimizes the information
loss:

Z(U,V) = . (19)

(€*,g") = argmax max Z ZuvCuaJui 108 Haoluly argmin I(U; V) — I(U; V) + const.
c.g w KaVy c.g

UV, U,V

3.2 Mixture-modeling and Soft Clustering Assignments

If we replace all double indice:, v) with a single index: in (18) and only consider the clustering
functionc(-), in the case of Euclidean distance, BAC turns into thmeans algorithm, while our
generative model leads to the EM-based mixture modeling.pFior on the hidden variables, which
we introduced in Section 2.1, corresponds to the mixturgktsiof the generative model clustering.
Similar to the way soft cluster assignments are describ#uegsosterior distribution over the hidden
clustering variables in one dimensional model-basedeifingt, our final posterior variables (i|u)
andr*(o|v) represent co-clustering soft-assignments. In the cadesteeing, given the parameters,
for instance cluster-means, cluster assignments of diftedata points are independent and easy to
compute. In contrast, as we saw in Section 2.1, row and colluster assignments become inter-
dependentin co-clustering. Row assignmeritecome independent only given column assignments
g and vice versa. This also means that the initialization eséhco-clustering algorithms must be
done in the space of assignments and not model parametersddn field approximation leads to a
that solution has an immediate interpretation as sofggassents: setting*(u) = argmax; ¢* (@|u)
andg*(v) = argmax; r*(0|v) gives an approximate MAP estimate for the hidden variables.

If we assume a distribution’ (u, v, @,7) = —L-q(a|u)r(d|v) on the indices, and substitute the
optimal values ofr andp from (10), the free energy cost function (7) could be writssn

anF(Q.P) = L I(U;U) + 3 1(V3 V) + Edy(2(U, V), (U, V) (20)
The standard model-based clustering can be thought of asbalpitistic compression problem in

terms ofq(i|u) with the cost function (U; U') + Edy (2(U), 2(U)) [12]. Note that a cost function

I(U,V;U,V) means we treat the x m matrix as a pool ofum data points and perform clustering
of the all indices ignoring the row-column distinction. Té@mpression cost of our co-clustering is
LI(U;0)+ L1(v; V).



. # documents Total
Dataset Newgroupsincluded per group #documents
Binary talk.politics.mideast, talk.politics.misc 250 500
Multi5 comp.graphics, rec.motorcycles, rec.sports.basebalipsice, talk.politics.mideast 100 500
Multi1o alt_.atheism,_comp.sys_:.mac.hardware_, misc.forsa_leamms, rec.sport.hockey, 50 500
sci.crypt, sci.electronics, sci.med, sci.space, talkips.gun

Table 1: Datasets used in our experiments. We selected amasubset of different newsgroups.

4 Experimental Results

In this section, we demonstrate the performance of the meghalgorithms by applying them to
synthetic and real-world data. The initialization of castering algorithms must be done in the
space of co-clustering assignments which, in contrasttivélparameter space, grows exponentially
in the size of the data matrix. Since the algorithms only fiochlly optimal solutions, this can
severely restrict the algorithm'’s ability to find a good s for large problems. We show that
the results found with our algorithms yield better resuitatthe previous hard-assignment variants.
In all comparisons made in this section, we construct thd taarsion of our final results using the
MAP estimates described in Section 3.2.

4.1 Gaussian Data

We first compare our Gaussian model co-clustering algorititraduced in Section 2.3 and the BAC
algorithm [10]. Since we showed in Section 3.1 that both mésthave identical modeling assump-
tions for an appropriate choice of divergence, we use datargéed from a Gaussian distribution
and use Euclidean norm for the BAC algorithm. We generateldite by randomly sampling a ma-
trix of k& x [ values from a zero-mean Gaussian distribution with vagaric Using this matrix as
the set of mean parameters= [u45], we generate blocks of x m’ samples from a unit-variance
Gaussian distribution centered around any of its elemeFtg resultingkn’ x Im’ matrix is the
synthetic data matrix with known cluster assignmen(s, g). In order to avoid a bias for matrix
size, we generate 25,000 data sets wi#nd/ randomly selected betweérto 10, »’ andm’ ran-
domly selected multiples dfo betweerb0 and200, ando? sampled from a uniform distribution in
the intervall2, 5].

The comparison between the two algorithms is straightfadwance both only require initialization
for the co-clustering functiong©), ¢(*)). We use the same sets of randomly generated assignments
for both algorithms. We repeat the algorithms 5 times forhedata set. As a measure of co-
clustering performance, we emplogicro-averaged precision [7] which is the proportion of the
entire data indices correctly assigned to a category. Fify.(I8ft) shows that for a large number
of data sets, we obtain higher precision than that of BAC. Wher compare the results in terms
of the cost function of BAC, namely, the average distancengfdata point from its corresponding
block mean. For any data set, We Iethe the average distortion of the best result out of the 5 runs,
and D’ be that of our algorithm. We define the distortion reductimateix ag D — D’)/(D + D").

Fig. 3.1 (right) shows that for most data sets our co-clirsds better even in terms of BAC's own
cost function. This suggests that our algorithm can be#arch the space of solutions around the
initialization.

4.2 Co-occurence Data

We compare the performance of our model-based algorithnedarccurrence data (Section 2.4)
with the original hard-assignment algorithm [7] on the neakld co-occurrence data. We use the
same 20-Newsgroup datd@20) employed in the empirical analysis of [7]. We perform pieg@ss-

ing described in [13] and randomly select three differebssts of the documents defined as datasets
Binary, Multi5, and Multil0 summarized in Table 1. We emptby feature selection procedure of
[13] to choose 2,000 words for each dataset.

We run each algorithm 1,000 times. In each run we initialiathalgorithms with the same random
initialization. For our algorithm, the number of obsereatS acts as an extra parameter which we
choose to be the constant valu@ in all our experiments. Moreover, we turn the initial configu
rations into soft-assignments by adding to all (¢(®, () and renormalizing them. We use the
information loss, cost function of ITC, as the performan@asure. This measure is not exactly the
cost function our algorithm is minimizing. A7 andA’I denote the information loss for ITC and
our algorithm, we define the information gain of our algaritfor each initialization ad\7 — A’I.
Fig. 2 presents the results which show that our soft assighregsion of the ITC achieves better
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Figure 2:Results of the experiments on th&20 data (a)-(c). Mutual information loss in binary, Multi5,dn
Multil0 data sets, respectively, for different number ofucon (word) clusters. (d) The average gain of our
algorithm over the ITC across all runs for different dat@set

measures of performance for most random initializations.itAs discussed in [7], the ITC is very
sensitive to initialization. We aim to alleviate this prebi by using our alternative soft-assignment
maximume-likelihood problem. We see in Fig. 2d that with e&sing complexity of the problem
(from Binary to Multi5 and Mulit10), the relative performemof our algorithm improves.

In conclusion, we introduced a general generative modetdeclustering problems for different
types of data and used the mean field approximation to dersienple model-based algorithm.
Our model reformulates the previous hard-assignmentustailng algorithms as generative model
problems, in the same way that EM-based mixture-modelefing extendg-means. We further
demonstrated that with increasing complexity of the prohleur model-based algorithms achieve
better results than their combinatorial counterparts whigialized with the same cluster configura-
tions.
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