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Abstract

In this paper, we present a generative model for co-clustering and develop al-
gorithms based on the mean field approximation for the corresponding model-
ing problem. These algorithms can be viewed as generalizations of the tradi-
tional model-based clustering; they extend hard co-clustering algorithms such as
Bregman co-clustering to include soft assignments. We showempirically that
these model-based algorithms offer better performance than their hard-assignment
counterparts, especially with increasing problem complexity.

1 Introduction

Co-clustering, or Bi-clustering, is the problem of simultaneously clustering rows and columns of a
matrix of data points. The first such algorithm was introduced more than thirty years ago [1] but
there has been a new interest in the problem due to recently emerging applications. Different variants
of co-clustering problems have been posed in fields such as biological data analysis [2, 3, 4], data
mining and information retrieval [5, 6, 7], studies of social networks, and computational cognitive
science [8, 9]. These algorithms aim to discover distincttypes of row and column indices based
on their interaction via the data points. It has also been suggested in the case of high-dimensional
data, if we apply co-clustering to simultaneously cluster both data points and features, we sometimes
improve the regular clustering results on the data points [10].

In traditional clustering, generative models provide algorithms that can be understood as statistical
generalizations of thek-means algorithm [11]. The basick-means algorithm has a fully combina-
torial structure which presents a challenge when searchingin the space of solutions. In contrast,
considering clustering as a probabilistic modeling problem, we can formulate it in a continuous
space, enabling easier search for the optimal solution. In addition to the advantages of model-based
clustering in searching the complex space of solutions, it also provides a way to express uncertainty
in the results of clustering with itssoft assignments. In this paper, we develop a general generative
model for co-clustering which is similarly related to basichard-assignment co-clustering algorithms
such as Bregman co-clustering [10]. The simplicity of our model makes it possible to use mean field
theory to derive co-clustering algorithms maintaining close connection to mixture-model clustering.
In contrast, prior model-based methods, in the context of the more general problem of relational data
clustering, take more complicated structures and rely on sampling algorithms [8, 9].

We consider a general framework where data points could be generated by any distribution. This
approach unifies the treatment of the real-valued data encountered in many biological applications
with that of positive-valued co-occurrence data. Co-occurrence data presents the frequency of a pair
of two different types of objects occurring simultaneously, for instance, the counts indicating the
number of times each user clicked on any item on a webpage. Several co-clustering algorithms have
been developed specifically for this kind of data due to its frequent applications in data-mining [5,
6, 7].

The paper is organized as follows: In Section 2, we introduceour generative model, the method
employed for solving the corresponding problem, and two algorithms developed with this model for
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Gaussian and co-occurrence data. Section 3 explains the relationship between this generative model
and the previous work on combinatorial (hard) co-clustering and mixture-model clustering. In Sec-
tion 4, we present experimental results demonstrating performance of our algorithm in comparison
with the existing hard co-clustering algorithms in the literature.

2 Generative Model for Co-Clustering
Let zzz = [zuv] be a given set ofn×m data points where all data pointszuv are elements of a setZ.
In general, our construction holds whenZ is a vectorial set of any dimensions but in the examples
discussed in the paper, it is a scalar set. Co-clustering explains the statistics of the data through a
pair of functions

c : {1, · · · , n} → {1, · · · , k}

g : {1, · · · , m} → {1, · · · , l}

when k row and l column clusters are assumed. In a modeling framework, thesefunctions are
thought of as variables that contribute to the distributionof data points without being directly ob-
served in the measurements. Therefore, we build a probabilistic model of the data on the product
space of observed (data points) and hidden (co-clustering functions) variables.

2.1 Generative Model

We represent co-clustering functions in our model withn×k binary indicator variablesccc = [cuũ] and
m× l indicator variablesggg = [gvṽ] where the indices̃u andṽ denote row and column cluster labels,
respectively. We assume that exactly one variable in each row of ccc andggg could be 1 to guarantee
that each point is mapped only to one cluster. With this constraint, any pair(ccc,ggg) is equivalent to
a unique choice of co-clustering functions defined byc(u) =

∑

ũ ũcuũ andg(v) =
∑

ṽ ṽgvṽ. Our
model describes the distribution of data points for a given configuration of hidden variables as

P (zzz|ccc,ggg;θθθ) =
∏

u,v

f(zuv; θc(u)g(v)) =
∏

u,v

[

∏

ũ,ṽ

(

f(zuv; θũṽ)

)cuũgvṽ
]

, (1)

wheref(·; θ) is a parameterized distribution onZ andθθθ = [θũṽ] is the set ofk× l parameter vectors.
Data points with the same row and column cluster(ũ, ṽ) are assumed to bei.i.d. samples from a
distributionf(·; θũṽ).

We also assume a product prior for(ccc,ggg) treatingc(u)’s as independent samples from an identical
multinomial distribution. Taking a similar assumption about theg(v)’s, we write the full generative
model of the observed and hidden variables as

P (zzz,ccc,ggg;θθθ,πππ,ρρρ) = P (zzz|ccc,ggg;θθθ)P (ccc;πππ)P (ggg;ρρρ)

=

[

∏

ũ,ṽ

∏

u,v

(

f(zuv; θũṽ)

)cuũgvṽ
][

∏

u′,ũ′

π
cu′ũ′

ũ′

][

∏

v′,ṽ′

ρ
gv′ ṽ′

ṽ′

]

(2)

whereπππ andρρρ correspond to the parameters of the multinomial priors overthe row and column
cluster indices, respectively. With this model, we can formulate co-clustering as learning (parameter
estimation) with the log-likelihood function

(θθθ∗,πππ∗, ρρρ∗) = max
θθθ,πππ,ρρρ

log P (zzz;πππ,ρρρ,θθθ) (3)

and inference over all possible co-clustering configurations, that is, the MAP problem with the
posterior distributionP (ccc,ggg|zzz;θθθ∗,πππ∗, ρρρ∗). Using the EM algorithm for this problem, we alternate
between inference (E-step) and parameter estimation (M-step). Therefore, computing the posterior
is needed in every step of the algorithm.

The expression for the log-joint-probability of the full data (zzz,ccc,ggg)

log P (zzz,ccc,ggg;θθθ,πππ,ρρρ) =
∑

u,v,ũ,ṽ

cuũgvṽ log f(zuv; θũṽ) +
∑

u,ũ

cuũ log πũ +
∑

v,ṽ

gvṽ log ρṽ (4)

includes interaction between the binary variables(ccc,ggg) in the first term. This means that the posterior
distribution over row and column assignment variables is not factorable and its computation is hard,
involving a summation over the number of configurations exponential inn andm. Therefore, we
need an approximate inference method to efficiently computethe posterior distribution.
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2.2 Mean Field Approximation

Using the mean field method [11], we approximate the posterior P (ccc,ggg|zzz) with a distributionQ(ccc,ggg)
of the form

Q(ccc,ggg) =

(

∏

u,ũ

q(ũ|u)cuũ

)

×

(

∏

v,ṽ

r(ṽ|v)gvṽ

)

, (5)

which is the product of independent multinomial distributions onc(u) andg(v) with corresponding
parametersq(ũ|u) andr(ṽ|v). It is easy to see thatEQ[cuũ] = q(ũ|u) andEQ[gvṽ] = r(ṽ|v) where
EQ[·] denotes expectation with respect to the distributionQ(ccc,ggg). We now aim to minimize the
mean field free energy

F (Q, P ) = EQ[log Q(ccc,ggg)]− EQ[log P (zzz,ccc,ggg)] (6)

=
∑

u,ũ

q(ũ|u) log q(ũ|u) +
∑

v,ṽ

r(ṽ|v) log r(ṽ|v)

−
∑

u,v,ũ,ṽ

q(ũ|u)r(ṽ|v) log f(zuv; θũṽ)−
∑

u,ũ

q(ũ|u) log πũ −
∑

v,ṽ

r(ṽ|v) log ρṽ , (7)

whereP andQ are functions of the variables(θθθ,πππ,ρρρ) and(qqq,rrr), respectively. We apply alternate
minimization with respect to the posterior parameters(qqq,rrr) and the original parameters(θθθ,πππ,ρρρ),
constructing a variational EM algorithm for solving problem (3).

Since the terms involvingπππ, ρρρ, andθθθ appear separately in (7), updating the parameters in the M-
step is straightforward, especially if the modelf is cleverly chosen such that the objective function
F (Q, P ) is a convex function ofθθθ. In the E-step, for a given set of parameters,F is a convex
function of(qqq,rrr) on the simplices where they are defined. The minimization problem over variables
qqq orrrr, when considered separately, is convex; therefore, we can keep one set constant and minimize
F with respect to another. By repeating this process once for each set, we findQ which minimizes
the cost function. In practice, we chose to alternately updateqqq andrrr in different E-steps as it gave
slightly better results. In both cases, it is clear that the algorithm converges to a local minimum of
the approximate cost function (7).

2.3 Example: Gaussian Model

Let us consider the case where data points are real-valued and assumef(z; µ, σ) in (1) to be a

Gaussian distribution(2πσ2)−
1
2 e−(z−µ)2/2σ2

. Substituting this expression into (7), taking into ac-
count the normalization constraints over the variables, and minimizing the resulting expression with
respect to the parameters(qqq,rrr), we find the update rules in the E-step as

q(t+1)(ũ|u) ∝ π
(t)
ũ exp

[

−
1

2

∑

v,ṽ

r(t)(ṽ|v)

(

zuv − µ
(t)
ũṽ

σ
(t)
ũṽ

)2]

(8)

r(t+1)(ṽ|v) ∝ ρ
(t)
ṽ exp

[

−
1

2

∑

u,ũ

q(t)(ũ|u)

(

zuv − µ
(t)
ũṽ

σ
(t)
ũṽ

)2]

, (9)

where the superscript(t) indicates the values correspond to thet-th step of the iterations and all
variables are further normalized to give valid multinomialparameters. For the M-step, using a
similar treatment for the model parameters yields

π
(t)
ũ =

1

n

∑

u

q(t)(ũ|u) ρ
(t)
ṽ =

1

m

∑

v

r(t)(ṽ|v) (10)

µ
(t)
ũṽ =

∑

u,v q(t)(ũ|u)r(t)(ṽ|v)zuv

nmπ
(t)
ũ ρ

(t)
ṽ

σ
(t)
ũṽ =

[

∑

u,v q(t)(ũ|u)r(t)(ṽ|v)(zuv − µ
(t)
ũṽ)

2

nmπ
(t)
ũ ρ

(t)
ṽ

]
1

2

. (11)

Since parameter estimation for the Gaussian model is exact,this algorithm has guaranteed conver-
gence as explained in Section 2.2.

3



2.4 Marginal-preserving Likelihood for Co-occurrence Data

We can use a Poisson distribution instead of Gaussian to model co-occurrence data matrices. In
general, likelihood models of the form (1) assume the same distribution for the block of all data
points assigned the same row and column cluster indices, i.e., the set of{zuv, c(u) = ũ, g(v) = ṽ}
for some pair(ũ, ṽ). Accordingly, they assume the same frequency of occurrencefor all row or
column indices within a cluster. If we want the model to allowdistinct frequencies of occurrence for
different indices, we have to suitably modify the form ofP (zzz|ccc,ggg). Here, we present such a model
as an example of possible extensions to our basic framework.

We assume that the data is represented byS co-occurrence indicator matrices, i.e.,i.i.d. binary
sample matriceszzzs = [zsuv], 1 ≤ s ≤ S, such that in each sample exactly one element is equal to 1
indicating co-ocurrence between the corresponding row andcolumn. The frequency representation
of the data can be written in terms of these co-occurrence observations as the averagez̄̄z̄z = 1

S

∑

s zzzs.
Here, we write the model for one co-occurrence sample[zsuv] and omit sample superscripts to make
the expressions easier to follow.

With co-clustering functions(ccc,ggg), we introduce a set of auxiliary variables

xu =
∑

v

zuv, yv =
∑

u

zuv, z̃ũṽ =
∑

u,v

cuũgvṽzuv, x̃ũ =
∑

ṽ

z̃ũṽ, ỹṽ =
∑

ũ

z̃ũṽ. (12)

Here,xxx is an indicator vector for the row-index occurrence, that is, xu = 1 implies that one of the
elements in theu-th row of zzz is equal to 1, and̃zzz is an indicator matrix representing which block
contains the observed 1. Similarly,yyy, x̃xx, andỹyy are indicator variables for occurrences of column,
row-cluster, and column-cluster indices. Note that all these variables are deterministic functions
of zzz given (ccc,ggg). Furthermore,zzz and z̃zz could be equivalently represented by(xxx,yyy) and (x̃xx, ỹyy),
respectively, and̃xxx andỹyy are deterministic functions ofxxx andyyy. Using these relationships, we can
show that

P (zzz|ccc,ggg) = P (zzz,xxx,yyy, z̃zz, x̃xx, ỹyy|ccc,ggg) = P (xxx|x̃xx,ccc,ggg)P (yyy|ỹyy, ccc,ggg)P (z̃zz|ccc,ggg) (13)

=
P (xxx|ccc,ggg)

P (x̃xx|ccc,ggg)
×

P (yyy|ccc,ggg)

P (ỹyy|ccc,ggg)
× P (z̃zz|ccc,ggg)., (14)

To define the model, we assume multinomial distributions parameterized byηu andγv, for instance,
P (xu = 1|ccc,ggg;ηηη) = ηu. If we further model the block variables with multinomial distributions
parameterized withµũṽ, κũ, andνṽ, for instance takingP (z̃ũṽ = 1|ccc,ggg;µµµ) = µũṽ, then the model
can be completely parameterized as

P (zzz|ccc,ggg) =
∏

u,v

∏

ũ,ṽ

[(

ηu
κũ

)(

γv
νṽ

)

µũṽ

]cuũgvṽzuv

, (15)

where we have expressed all the variables again in terms ofzuv. This form guarantees that the model
preserves the marginal row and column distributions and theco-clustering structure determines the
correlation between row and column indices instead of their joint distribution. In order to have this
model normalized, we need to ensure that the parameters satisfy the constraintsκũ =

∑

u cuũηu
andνṽ =

∑

v gvṽγv. These constraints interact with the hidden variables and make the parameter
estimation hard.

Let us for the moment ignore the constraints on parameters and continue with solving the corre-
sponding approximate problem. Substituting this model in (6), and recalling that the actual fre-
quency datāz̄z̄z is the average of independent sampleszzzs, we find that the optimal values for the
parametersηηη andγγγ are simplyηu = x̄u andγv = ȳv, the data row and column marginals. The M-
step update rules for the prior parametersπππ andρρρ are the same as (10), while the model parameters
are updated asµũṽ =

∑

u,v q(ũ|u)r(ṽ|v)z̄uv, κũ =
∑

u q(ũ|u)ηu andνṽ =
∑

v r(ṽ|v)γv. Note
that the last two equations imply that, although we have ignored the orginial parameter constraints,
the solutions satisfy them in the expectation sense.
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Using these equalities, we arrive at the E-step updates

q(t+1)(ũ|u) ∝ π
(t)
ũ exp

[

S
∑

v,ṽ

z̄uvr
(t)(ṽ|v) log

(

µ
(t)
ũṽ

κ
(t)
ũ ν

(t)
ṽ

)]

(16)

r(t+1)(ṽ|v) ∝ ρ
(t)
ṽ exp

[

S
∑

u,ũ

z̄uvq
(t)(ũ|u) log

(

µ
(t)
ũṽ

κ
(t)
ũ ν

(t)
ṽ

)]

. (17)

These equations could be further simplified but we leave themin this form which is easier to imple-
ment numerically.

3 Relationship to Bregman Co-clustering and Mixture-Model Clustering
In this section, we show that our work and a class of hard co-clustering algorithms called Bregman
Co-clustering have common modeling assumptions [10]. In particular, the two algorithms derived
in Sections 2.3 and 2.4 find MAP solutions while Block AverageCo-clustering (BAC) [10] and the
Information Theoretic Co-clustering algorithm (ITC) solve the ML problems for the same models
[7]. Making the connection to the mixture-modeling, we further show how this corresponds to soft
vs. hard clustering assignments.

3.1 Bregman Co-clustering and ML Problem

We first briefly review the basic ideas of Bregman co-clustering [10]. Bregman co-clustering as-
sumes random variablesU ∈ {1, · · · , n} and V ∈ {1, · · · , m} represent the row and column
indices, respectively. The distributionν of the product random variableU × V associates a set of
weights to different data points. In most common cases, since there is no preference for any ele-
ments of the data matrix,ν(u, v) = 1

nm for all u andv. We can also think of the datazzz as a function
z : U × V → Z and define a random variableZ over its range, with a corresponding distribution
induced byν, namely,P (Z = zuv) = ν(u, v).

Given a pair of co-clustering functionsc andg, we define random variables̃U ∈ {1, · · · , k} and
Ṽ ∈ {1, · · · , l} such thatŨ = c(U) and Ṽ = g(V ). Then the algorithm constructs a matrix
approximation functioñz : U × V → Z and a corresponding random variableZ̃ with the constraint
that certain summary statistics of the co-clustering are shared betweenZ andZ̃. For instance, BAC
imposesE[Z|ũ, ṽ] = E[Z̃|ũ, ṽ] for all ũ and ṽ. With any such assumption about the form ofz̃,
the goal of co-clustering is to find the pair of co-clusteringfunctions(c, g) and the approximation
functionz̃ such that the average distortionEνdφ(Z, Z̃) is minimized, where the distortiondφ(·, ·) is
a Bregman divergence [12].

Bregman divergences are used in many machine learning applications, including clustering. Com-
mon examples include Euclidean distance for real-valued vectors, and KL-divergence for proba-
bility vectors. There is an equivalence relation between regular exponential families and Breg-
man divergences, namely, any regular exponential familyf(z; θ) = ezθ−ψ(θ) can be represented as
f(z; µ) = C(z)e−dφ(z,µ) where the new parameterµ is the expected value ofZ underf(z; θ) [12].
We establish the connection between our modeling approach and the Bregman matrix approximation
using this equivalence. Assuming the above form for our model in (1), we compute the maximum
likelihood configuration of the hidden variables.

(ccc∗, ggg∗) = argmax
ccc,ggg

max
µµµ

log P (zzz|ccc,ggg;µµµ) = argmax
ccc,ggg

max
µµµ

∑

u,v,ũ,ṽ

−cuũgvṽdφ(zuv, µũṽ) + const.

= argmin
ccc,ggg

min
Z̃BAC

Eνdφ(Z, Z̃), (18)

where ν is uniform and the last equality follows because it can be shown that E[Z] =

argminµEdφ(Z, µ) and that, in the case of BAC,E[Z|Ũ , Ṽ ] = argminZ̃ Eνdφ(Z, Z̃) [10]. Since
expression (18) is the BAC cost function, we conclude that the ML solution in our generative model
is equivalent to the BAC solution. Minimizing this cost function is a hard combinatorial problem.
The algorithm proposed in [10] for finding its solution can beviewed as a generalization of the
k-means algorithm to co-clustering.
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Figure 1:Comparison between the results of our Gaussian model-basedco-clustering and BAC on 25,000 ran-
domly generated data sets. Left: difference in precision values found by the two algorithms. Right: distortion
reduction index. See text for details.

Information Theoretic Co-clustering (ITC), another example of Bregman co-clustering, is an al-
gorithm for data sets representing the co-occurence of the row and column indices [7]. ITC re-
quires the approximation variablẽZ to match block, row and column statistics of the data set, i.e.,
E[Z|u] = E[Z̃|u] andE[Z|v] = E[Z̃|v] for all u andv. It also assumes normalized co-occurence
dataz̄zz, where all the data points sum to 1. Using the I-divergencedφ(z, µ) = z log(z/µ)− (z − µ)

as the distortion function, it can be shown that the optimal approximationZ̃ satisfies [10]

Z̃(U, V ) =
E[Z|Ũ , Ṽ ]× E[Z|U ]× E[Z|V ]

E[Z|Ũ ]× E[Z|Ṽ ]
. (19)

With these assumptions, the ITC cost function can be writtenas the co-clusteringInformation Loss
∆I = I(U ; V ) − I(Ũ ; Ṽ ) [7]. If we evaluate our likelihood function (15) for the co-occurrence
model in Section 2.4, we find that the ML solution of our model also minimizes the information
loss:

(ccc∗, ggg∗) = argmax
ccc,ggg

max
µµµ

∑

u,v,ũ,ṽ

z̄uvcuũgvṽ log
µũṽx̄uȳv

κũνṽ
= argmin

ccc,ggg
I(U ; V )− I(Ũ ; Ṽ ) + const.

3.2 Mixture-modeling and Soft Clustering Assignments

If we replace all double indices(u, v) with a single indexu in (18) and only consider the clustering
functionc(·), in the case of Euclidean distance, BAC turns into thek-means algorithm, while our
generative model leads to the EM-based mixture modeling. The prior on the hidden variables, which
we introduced in Section 2.1, corresponds to the mixture weights of the generative model clustering.
Similar to the way soft cluster assignments are described asthe posterior distribution over the hidden
clustering variables in one dimensional model-based clustering, our final posterior variablesq∗(ũ|u)
andr∗(ṽ|v) represent co-clustering soft-assignments. In the case of clustering, given the parameters,
for instance cluster-means, cluster assignments of different data points are independent and easy to
compute. In contrast, as we saw in Section 2.1, row and columncluster assignments become inter-
dependent in co-clustering. Row assignmentsc become independent only given column assignments
g and vice versa. This also means that the initialization of these co-clustering algorithms must be
done in the space of assignments and not model parameters. The mean field approximation leads to a
that solution has an immediate interpretation as soft-assignments: settingc∗(u) = argmaxũ q∗(ũ|u)
andg∗(v) = argmaxṽ r∗(ṽ|v) gives an approximate MAP estimate for the hidden variables.

If we assume a distributionν′(u, v, ũ, ṽ) = 1
nmq(ũ|u)r(ṽ|v) on the indices, and substitute the

optimal values ofπ andρ from (10), the free energy cost function (7) could be writtenas

1
nmF (Q, P ) = 1

mI(U ; Ũ) + 1
nI(V ; Ṽ ) + Edφ(z(U, V ), z̃(Ũ , Ṽ )) (20)

The standard model-based clustering can be thought of as a probabilistic compression problem in
terms ofq(ũ|u) with the cost functionI(U ; Ũ) + Edφ(z(U), z̃(Ũ)) [12]. Note that a cost function
I(U, V ; Ũ , Ṽ ) means we treat then×m matrix as a pool ofnm data points and perform clustering
of the all indices ignoring the row-column distinction. Thecompression cost of our co-clustering is
1
mI(U ; Ũ) + 1

nI(V ; Ṽ ).
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Dataset Newgroups included
# documents

per group
Total

# documents
Binary talk.politics.mideast, talk.politics.misc 250 500
Multi5 comp.graphics, rec.motorcycles, rec.sports.baseball, sci.space, talk.politics.mideast 100 500

Multi10
alt.atheism, comp.sys.mac.hardware, misc.forsale, rec.autos, rec.sport.hockey,
sci.crypt, sci.electronics, sci.med, sci.space, talk.politics.gun 50 500

Table 1: Datasets used in our experiments. We selected a random subset of different newsgroups.

4 Experimental Results

In this section, we demonstrate the performance of the proposed algorithms by applying them to
synthetic and real-world data. The initialization of co-clustering algorithms must be done in the
space of co-clustering assignments which, in contrast withthe parameter space, grows exponentially
in the size of the data matrix. Since the algorithms only find locally optimal solutions, this can
severely restrict the algorithm’s ability to find a good solution for large problems. We show that
the results found with our algorithms yield better results than the previous hard-assignment variants.
In all comparisons made in this section, we construct the hard version of our final results using the
MAP estimates described in Section 3.2.

4.1 Gaussian Data

We first compare our Gaussian model co-clustering algorithmintroduced in Section 2.3 and the BAC
algorithm [10]. Since we showed in Section 3.1 that both methods have identical modeling assump-
tions for an appropriate choice of divergence, we use data generated from a Gaussian distribution
and use Euclidean norm for the BAC algorithm. We generate thedata by randomly sampling a ma-
trix of k × l values from a zero-mean Gaussian distribution with varianceσ2

o . Using this matrix as
the set of mean parametersµµµ = [µũṽ], we generate blocks ofn′ ×m′ samples from a unit-variance
Gaussian distribution centered around any of its elements.The resultingkn′ × lm′ matrix is the
synthetic data matrixzzz with known cluster assignments(c, g). In order to avoid a bias for matrix
size, we generate 25,000 data sets withk andl randomly selected between5 to 10, n′ andm′ ran-
domly selected multiples of10 between50 and200, andσ2

o sampled from a uniform distribution in
the interval[2, 5].

The comparison between the two algorithms is straightforward since both only require initialization
for the co-clustering functions(c(0), g(0)). We use the same sets of randomly generated assignments
for both algorithms. We repeat the algorithms 5 times for each data set. As a measure of co-
clustering performance, we employmicro-averaged precision [7] which is the proportion of the
entire data indices correctly assigned to a category. Fig. 3.1 (left) shows that for a large number
of data sets, we obtain higher precision than that of BAC. We further compare the results in terms
of the cost function of BAC, namely, the average distance of any data point from its corresponding
block mean. For any data set, We letD be the average distortion of the best result out of the 5 runs,
andD′ be that of our algorithm. We define the distortion reduction index as(D −D′)/(D + D′).
Fig. 3.1 (right) shows that for most data sets our co-clustering is better even in terms of BAC’s own
cost function. This suggests that our algorithm can better search the space of solutions around the
initialization.

4.2 Co-occurence Data

We compare the performance of our model-based algorithm forco-occurrence data (Section 2.4)
with the original hard-assignment algorithm [7] on the realworld co-occurrence data. We use the
same 20-Newsgroup data (NG20) employed in the empirical analysis of [7]. We perform preprocess-
ing described in [13] and randomly select three different subsets of the documents defined as datasets
Binary, Multi5, and Multi10 summarized in Table 1. We employthe feature selection procedure of
[13] to choose 2,000 words for each dataset.

We run each algorithm 1,000 times. In each run we initialize both algorithms with the same random
initialization. For our algorithm, the number of observationsS acts as an extra parameter which we
choose to be the constant value106 in all our experiments. Moreover, we turn the initial configu-
rations into soft-assignments by adding0.1 to all (qqq(0), rrr(0)) and renormalizing them. We use the
information loss, cost function of ITC, as the performance measure. This measure is not exactly the
cost function our algorithm is minimizing. If∆I and∆′I denote the information loss for ITC and
our algorithm, we define the information gain of our algorithm for each initialization as∆I −∆′I.
Fig. 2 presents the results which show that our soft assignment version of the ITC achieves better
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Figure 2:Results of the experiments on theNG20 data (a)-(c). Mutual information loss in binary, Multi5, and
Multi10 data sets, respectively, for different number of column (word) clusters. (d) The average gain of our
algorithm over the ITC across all runs for different data sets.

measures of performance for most random initializations. As it is discussed in [7], the ITC is very
sensitive to initialization. We aim to alleviate this problem by using our alternative soft-assignment
maximum-likelihood problem. We see in Fig. 2d that with increasing complexity of the problem
(from Binary to Multi5 and Mulit10), the relative performance of our algorithm improves.

In conclusion, we introduced a general generative model forco-clustering problems for different
types of data and used the mean field approximation to derive asimple model-based algorithm.
Our model reformulates the previous hard-assignment co-clusteirng algorithms as generative model
problems, in the same way that EM-based mixture-model clustering extendsk-means. We further
demonstrated that with increasing complexity of the problem, our model-based algorithms achieve
better results than their combinatorial counterparts wheninitialized with the same cluster configura-
tions.
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