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Abstract— Segmentation of density maps obtained using
cryo-electron microscopy (cryo-EM) is a challenging task, and
is typically accomplished by time-intensive interactive methods.
The goal of segmentation is to identify the regions inside the
density map that correspond to individual components. We
present a multi-scale segmentation method for accomplishing
this task that requires very little user interaction. The method
uses the concept of scale space, which is created by convolution
of the input density map with a Gaussian filter. The latter
process smoothes the density map. The standard deviation of
the Gaussian filter is varied, with smaller values corresponding
to finer scales and larger values to coarser scales. Each of
the maps at different scales is segmented using the watershed
method, which is very efficient, completely automatic, and does
not require the specification of seed points. Some detail is lost
in the smoothing process. A sharpening process reintroduces
detail into the segmentation at the coarsest scale by using
the segmentations at the finer scales. We apply the method
to simulated density maps, where the exact segmentation (or
ground truth) is known, and rigorously evaluate the accuracy
of the resulting segmentations.

I. INTRODUCTION

Cryo-electron microscopy methods yield detailed three-
dimensional (3D) density maps of protein nanomachines [1].
The nanomachines consist of multiple components, which
are proteins that are in contact with one another. A main
task in the analysis of such density maps is to identify the
locations and shapes of these proteins, which have sizes
on the order of nanometers. This information can give
much insight into how nanomachines perform their diverse
functions as part of important life processes.

Two ways of identifying the components within a density
map is by alignment of known protein structures to the map,
for example by template matching, or by segmentation. In
this work we focus on segmentation, which assumes no prior
knowledge about the structure of the proteins to be detected.

Segmentation has been a widely-studied problem in the
field of computer vision, and is in general a hard problem.
To make it more amenable, many methods require the input
of seed points or contours for each object to be detected. The
final segmenting contours are then determined by imposing
certain conditions on the resulting shape (e.g. smoothness)
while using information in the image being segmented (e.g.
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pushing the contour towards high gradients). An example
of such a method applied to density maps is the level
set method [2]. While such methods can produce accurate
segmentations, they rely heavily on user input. As such the
methods tend to be time intensive, impractical for very large
data sets, and subjective. Hence in this work we focus on
segmentation methods that do not require the specification
of seed points.

The most basic segmentation method that does not re-
quire seed points is thresholding [3]. This method isolates
regions containing intensity values that are above a chosen
threshold. It works well when the objects to be detected
contain intensities that stand out against the background.
Also, different objects must be well-separated from one
another to be detected separately. For density maps of protein
nanomachines, this method normally segments the entire
nanomachine as a whole, without identifying the components
within it. Hence, more sophisticated methods are needed to
segment the protein components in such maps.

Another segmentation method that does not require seed
points is the watershed method [4]. The map or image to be
segmented is taken as a landscape, with the height propor-
tional to the density values throughout the map. Segmented
regions center around local maxima, and all points in a
region lead to the same local maximum when following
the gradient of the density function. In maps with a lot of
detail and/or noise, many local maxima are present, and thus
the segmentations include many regions. This effect is often
referred to as oversegmentation. To address this issue, several
approaches have been proposed, for example hierarchical
merging of regions [5,6]. These methods introduce extra
parameters, which are hard to tune, and their influence on
the segmentation accuracy is hard to evaluate in general. The
watershed method has already been applied to density maps
to segment out protein components with good results [7]. In
the latter work, the issue of oversegmentation was addressed
by using a variable step size in the segmentation process.
However the effect of this parameter on the segmentation
accuracy in relation to its effectiveness at reducing overseg-
mentation was not analyzed.

To address the issue of oversegmentation, we use smooth-
ing of the density maps by convolution with a Gaussian filter.
This process can greatly reduce the number of local maxima
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in the density map. This observation has also been made
before in the multi-scale approach for the detection of edges
in images [8,9], as well as in the application of the mean-
shift method; the latter also typically uses a Gaussian kernel
for segmentation of an image [10-12]. In the multi-scale
approach, a scale space is obtained by applying a Gaussian
filter of increasing widths. The scales range from fine, where
the standard deviation of the Gaussian filter is small, to
coarse, where the standard deviation of the Gaussian filter
is large. The edges that persist throughout the scale space
were shown to identify salient edges in the images [9].

In the same spirit, we use the multi-scale approach for the
segmentation of density maps. At coarser scales, watershed
segmentation yields fewer regions, which in some cases
can correspond to individual protein components. However,
as a result of the greater degree of smoothing at these
coarser scales, the boundaries between regions are distorted
and hence less accurate. We use a sharpening operation to
increase detail of the segmentation at these coarse scales.

II. METHOD

A. Simulation of density maps

We demonstrate our segmentation method on simulated
density maps. A map is simulated using a high-resolution
structure obtained from the Protein Data Bank (PDB). The
atomic coordinates are first embedded onto a 3D grid,
and then the density values on the grid are smoothed by
convolution with a Gaussian filter [13]. The standard de-
viation of the Gaussian filter is specified so as to achieve
a desired resolution, which describes how much detail the
map contains. We report the resolutions of our simulated
maps using the formula s = 0.187r, where r is the desired
resolution and s is the standard deviation. The latter equation
is such that the Fourier transform of the Gaussian filter falls
to half its maximum value at the wavenumber 1/r. This is
related to the FSC0.5 criterion, which is normally used to
determine the resolution of an experimental density map [14].

B. Creating the scale space

A scale space is created for each input density map by
further convolution of the map with a Gaussian filter. The
scale space parameter, σ, refers to the standard deviation of
the Gaussian filter. The resulting maps will represent fine
through coarse scales for low to high σ respectively.

C. Segmentation

We use the watershed method described in [15] to segment
a density map. This method is very efficient because it only
considers each voxel a constant number of times. It involves
a sorting stage, where the voxels are sorted by density value,
and hence the computational complexity is O(nlogn) where
n is the number of voxels in the map. This topological
approach was also used for the efficient implementation of
the mean-shift segmentation method [16].

For the segmentation of natural images, the height of the
landscape is usually taken to be proportional to gradient

magnitudes, so as to yield boundaries that fall on high gradi-
ent magnitudes. For density maps of protein nanomachines,
we take the height to be proportional to the density values,
as proposed previously in [7], which yields better results.
The density values are considered in decreasing order, since
higher densities correspond to the objects to be detected.
Thus the centers of each region will fall on high-density
values, and the boundaries between the regions will fall on
lower density values.

The density maps to be segmented, either simulated or ex-
perimental, typically contain non-zero density values outside
of the imaged nanomachines. To avoid creating segmentation
regions outside the nanomachines, we only consider the
density values above a certain threshold. This threshold can
be determined by visual inspection, using a visualization pro-
gram that displays iso-surfaces of a density map interactively,
e.g. [17]. The density value used to build the iso-surface
can be adjusted until the entire nanomachine appears to be
included within the iso-surface, and this density value can
be used as the threshold. Alternatively, the threshold can be
adaptively chosen if the approximate volume of the entire
nanomachine is known, by stopping the segmentation once
the combined volume of all the segmentation regions reaches
this known volume.

D. Evaluation of segmentation accuracy

In recent work [18], a rigorous measure of segmentation
accuracy was used, which we adopt here. The segmentation
accuracy is computed using the following formula:

|SegmentationAccuracy| = volume(S ∩ P )
volume(S ∪ P )

(1)

In the above equation, volume(S ∩ P ) is the volume of
the intersection of a segmentation region, S, and the actual
region occupied by a single protein, P; volume(S∪P ) is the
volume of the union of S and P. The segmentation accuracy
will be 0 if the segmentation and protein do not overlap at
all (the intersection will have 0 volume), and it will be 1 if
the segmentation region and the protein overlap exactly (the
volumes of the intersection and the union will be the same).

E. The ground truth in simulated maps

In (1), P refers to the region in a density maps occupied
by a single protein, this being the ground truth. To obtain
this, a density map is simulated for each individual protein
from the same structure that was used to generate the density
map of the entire nanomachine. Each map is simulated at
the same resolution as the map of the entire nanomachine
and on an identical grid. However, the region occupied by
each protein is not well defined in these maps, because
the convolution with a Gaussian filter produces non-zero
density values everywhere in the map. On the other hand, the
segmentation of the density map of the entire nanomachine
includes points with densities only up to a certain threshold,
as described previously. The same threshold is thus first
applied to each of the protein maps to obtain the volumes of
each individual protein.
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Fig. 1. Illustration of the S3 method, including smoothing, segmentation,
and sharpening operations. The input density map and the smoothed density
maps are shown on the left by iso-surfaces. The segmentations are illustrated
by smoothed surfaces that enclose each region.

F. Smoothing, segmentation, and sharpening (S3)

The method presented here involves smoothing, segmenta-
tion, and sharpening, and hence we call it S3. It is illustrated
in Fig. 1.

1) Smoothing: The input density map is smoothed by
convolution with Gaussian functions of several standard
deviations. The coarsest scale, where the largest standard
deviation is used, is determined by visual inspection of the
segmentation results. At this scale, the segmentation should
produce a small number of regions, but not smaller than the
number of component proteins that are expected to be in the
density map. Also, each region should ideally correspond to a
single protein. When the results are such that the combination
of two or more regions correspond to a single protein, these
regions are merged by user interaction (UI). This step is the
only non-automatic part of the process, and involves a small
amount of knowledge about the proteins in the density map.

2) Segmentation: The maps at every scale are segmented
using the watershed method. This process is completely
automatic and only requires the specification of a density
threshold, determined as specified above. It is also extremely
fast, taking less than a second for density maps with 100×
100× 100 voxels.

3) Sharpening: The segmentation at the coarsest scale is
sharpened using the segmentation at the next finer scale using
a simple overlap rule, as proposed in [19]. The regions at
the finer scale are partitioned based on which region at the
coarser scale they overlap the most. The regions in each
partition are then joined, and the resulting regions replace
the regions at the coarser scale.

G. The highest attainable accuracy for a given segmentation

Since in the simulated density maps we analyze here we
know the ground truth, we can determine how much the

sharpening process could actually improve the segmentation
accuracy. Given the segmentation of a density map at any
scale, we partition the regions again based on which protein
volume they overlap the most. The regions in each partition
are merged into a single region, which will correspond as
closely to the corresponding protein as the given segmenta-
tion will allow. The segmentation accuracy between each of
these regions and the corresponding protein is then computed
using (1).

III. RESULTS

The S3 segmentation method was applied to 4 simulated
density maps. All of the maps were simulated to a resolution
of 4Å. The simplest structure (shown in in Fig. 1) contains
only two small components closely interacting with each
other. Because this structure is very small, a very fine
grid spacing of 0.2Å was possible, yielding a map of ∼
100 × 100 × 100 voxels. The other three density maps are
of full-fledged nanomachines (Fig. 2). The Thermsome and
GroEL+GroES are chaperones that help misfolded proteins
attain their functional forms. They have barrel-like shapes in
which the misfolded proteins bind, and they consist of 16 and
21 proteins respectively. The ribosome is also an extremely
important nanomachine: it transcribes RNA into proteins. For
these larger structures, the grid spacing was 2Å, also yielding
maps of ∼ 100× 100× 100 voxels.

For the density map shown in Fig. 1 and for the density
map of the Thermosome, the segmentation at the coarsest
scale produces a single region for each protein, and hence
the segmentation was achieved with very little effort. For the
GroEL+GroES and Ribosome nanomachines, the segmenta-
tion at the coarsest scale produced on average two regions
per protein, and joining these two regions by UI to form
a single region corresponding to each protein also did not
require a great deal of effort.

The segmentation accuracies for all four density maps at
each scale are plotted in Fig. 3. For the small structure, the
accuracy of the segmentation is quite low at the coarsest
scale, but rises to ∼ 97% when sharpened to the finest scale.
The highest attainable accuracy given the segmentation at
each scale is the same as the accuracy obtained after sharp-
ening, showing that in such a simple case the S3 method
can produce an almost perfect segmentation. For the larger
nanomachines however, the segmentation accuracies were
somewhat lower, especially when many protein components
are present. The lower accuracies could be attributed in part
to the larger grid spacing used for the density maps of these
larger structures, which introduces some discretization error.
Despite this limitation, the S3 method is able to segment
out each protein component successfully, with accuracies of
∼ 73% and higher.

IV. CONCLUSIONS

We have presented a multi-scale segmentation method for
the segmentation of protein components in density maps. The
method requires very little effort on the part of the user. This
is an improvement over previous methods that relied on seed
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Fig. 2. Three simulated density maps of nanomachines that the S3 method
was applied to. The resulting segmentations visually match the ground truth
very well.

points being specified, a much harder process that involves
more knowledge about the components to be segmented.
Some of the segmentations achieved with the presented
method were very accurate, however lower accuracies were
obtained for density maps with more protein components.
We plan to research ways to further improve the method
so as to achieve higher accuracies. Moreover we plan to
apply the method to a wider range of nanomachines and
especially to experimental density maps, where its use will
aid in further understanding how these entities perform their
complex functions.
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