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Introduction

Glossy surfaces are everywhere.  If you stand in a typical bathroom and look

around, you’ll see that most of the surfaces surrounding you are lustrous or glossy.

Glazed tiles, gleaming faucets, polished basins and plastic shampoo bottles are all

peppered with specular highlights.

Given that highlights are so common it seems plausible that the visual system

might somehow be able to make use of them in the estimation of three-dimensional

shape.  Indeed, it is now well established that specular reflections aid shape perception in

the presence of other cues (Blake and Bülthoff, 1990, 1991; Mingolla and Todd, 1986;

Norman, Todd and Orban, 2004; Todd and Mingolla, 1983; Todd, Norman, Koenderink

and Kappers, 1997), and in fact are sufficient on their own to confer a vivid sense of

shape (Fleming, Torralba, Dror and Adelson, 2003; Fleming, Torralba and Adelson,

2004).  This is demonstrated in Figure 1, which shows a computer-generated image of a

perfectly specular (i.e. mirrored) surface.  Despite the fact that the image contains no

shading, texture or other cues to 3D shape, we nevertheless have a vivid impression of its

3D shape.
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Figure 1.  A computer-generated image of a perfectly specular surface reflecting a natural
environment.  Even though the image contains no stereo, motion, shading or texture cues, we
still have a vivid sense of the object’s 3D shape.  This chapter is about the image information
that can be used to recover 3D shape from specular reflections.

This chapter is about how the visual system could recover 3D shape from

specularities, from a theoretical point of view.  We start by discussing some of the

problems that specular reflections seem to pose to the visual system.  We then argue that

the visual system can use the way that reflections are distorted across the surface to

recover some important constraints on 3D shape.  We show that the pattern of distorted

reflections remains surprisingly even when different scenes are reflected in the surface of

the object.  The key idea presented in this chapter is that relatively simple image

measurements can sometimes carry unexpectedly powerful information about the 3D

world.
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The optical misbehaviour of mirrors

Glossy surfaces exhibit a number of behaviours that make them potentially highly

problematic for human vision.  Specular reflections are quite paradoxical.  On the one

hand they are one of the simplest interactions that light can have with matter.  On the

other hand they create distorted, impenetrable images of the world on the surface of an

object, which writhe and flow over the surface as the object is moved.  We will now

discuss some of the qualities and quirks that make mirror reflections unique.

According to the optical equations of Fresnel (1821/1866), whenever a light-ray

encounters an interface between two media of different optical density, some of the light

will be reflected in a specular way.  For specular reflection, the angle of the reflected ray

is equal to the angle of the incident ray relative to the surface normal, as shown in Figure

2.  This is the paradigmatic concept of reflection that we encounter as schoolchildren.

Figure 2.  The geometry of specular reflection.  A light ray arriving from point A strikes the
surface at angle -θ relative to the surface normal (dashed line).  The reflected ray exits the
surface at angle θ on the other side of the surface normal, projecting in the direction of A'.
Note that neighbouring points in the world, B and C, are reflected to neighbouring points, B'
and C' in the virtual image.
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Although the geometry of specular reflection is extremely simple, it has a number

of consequences that are important for the following discussion.  The first is simply that a

specular surface tends to generate a virtual image of the world that is facing the surface.

To anyone who is familiar with mirrors this, of course, comes as little surprise.  But it is

worth contrasting this with matte surfaces, which also reflect light but do not form

images of the world on their surfaces, because the reflected light is diffusely sprayed out

of the surface in random directions, as shown in Figure 3.  By contrast, as can be seen in

Figure 2, for smooth specular surfaces, neighbouring points in the world project to

neighbouring points in the reflected image.  This becomes rather important in our later

analysis.

Figure 3.  Ideal diffuse (Lambertian) reflection.  A light ray arriving from point A strikes the
surface and is sprayed out in random directions.  Consequently, the material appears matte
and does not form an image of the world on its surface.

Second, mirror reflection is angle doubling.  The reflected ray does not exit along

the surface normal.  If this were the case then the angle of the reflected ray would depend

only on the orientation of the surface, and not on the position of the source.  Instead, the
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ray reflects at twice the angle between the source and the surface normal (i.e. at the same

angle on the other side of the surface normal).  This means that if you rotate a mirror

through a given angle, for example, 45deg, the direction of the reflected ray changes by

twice this angle, i.e. 90deg (hence ‘angle doubling’).  One counter-intuitive consequence

of this is that a hemispherical mirror contains reflections of the entire sphere of incoming

directions.  This is depicted in Figure 4.  The fringes of the surface contain reflections of

points in the world that are located behind the hemisphere.

Figure 4.  Because specular reflection is angle-doubling, a mirrored hemisphere projects
points from the entire sphere of incident directions into the image.  Incident rays that arrive
from behind the hemisphere are nevertheless visible in the surface.

The angle-doubling behaviour of mirrors leads to another key difference between

specular and diffuse reflections.  Imagine a sphere that is illuminated by a single point

light source.  If the sphere has diffuse surface reflectance, then the brightest point on the

surface is the one that points directly at the light source.  This is the brightest point as it

receives the greatest incident energy per unit surface area.  By contrast, if the sphere is

specular, the brightest point on the surface is the location whose surface normal points

exactly half way between light source and the viewer’s line of sight.  Except for the
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special case where the light source arrives from the same position as the viewer, this will

not be the same place on the surface as for the diffuse sphere.  This is demonstrated in

Figure 5.  Here we use a single glossy sphere (i.e. with both diffuse and specular

components).  Note that the isophotes reveal that the image intensities have two distinct

peaks, one for the diffuse component and one for the specular component.

(a)  raw image (b)  isophotes

Figure 5.  Image (a) shows a glossy surface illuminated by a single point light source.  The isophotes in
(b) reveal two distinct peaks in the image intensities, one resulting from the diffuse reflectance
component, and one from the specular reflection.

A third way in which specular reflection is unusual is the fact that the position of

specular highlights is extremely unstable.  Unlike texture markings, specular reflections

twist and slide across the surface whenever the viewer, object or light source moves.  The

movement of specular reflections over the surface gives mirrors their distinctive visual

fluidity.  In a series of extremely compelling demonstrations, Hartung and Kersten (2002,

2003) have shown that the characteristic motion of specular reflections is crucial for their

lustrous, chrome-like appearance.  Hartung and Kersten ‘attached’ specular reflections to

the underlying surface, so that they moved with the surface instead of sliding across it.
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When the patterns are fixed to the surface, they tend to look like matte surface markings,

even though in any static frame from the motion sequence they appear like lustrous

mirror reflections.

Konderink and van Doorn (1980) demonstrated that the rate at which the highlight

moves across the surface depends on its curvature.  When an object is rotated, highlights

move slowly around regions of high curvature, but dart rapidly across flatter regions.

The mobility of specular highlights means that they also have unusual binocular

behaviour.  Under binocular viewing, the two eyes view the surface from different

viewpoints.  This means that the position of the highlight relative to the surface is

different for the two eyes.  Note that this is quite unlike texture markings or shadows,

which remain attached to the surface irrespective of the position of the viewer.  Because

highlights appear at different locations for the two eyes, they do not fall at the same

stereoscopic depth as the surface that generated them.  For convex geometries, they fall

behind the surface, while for concave surfaces they fall in front, as depicted in Figure 6.

Blake and Bülthoff (1990, 1991) have shown that the binocular placement of highlights

affects how the visual system interprets them.  For example, if a highlight is placed

unnaturally at the same depth as the surface, it tends to look like a stain or marking

instead of a reflection.



Fleming, Torralba, Adelson Shape from sheen

8

Figure 6.  Stereoscopic depth placement of specular highlights.  When A is reflected in a convex
object, its reflection A’ falls behind the surface.  Conversely, when B is reflected in a concave object,
it reflection B’, floats in front of the surface.

For the current discussion, the most important consequence of these effects is that

it is not trivial to recover shape from motion parallax or binocular stereopsis when the

surface is specular.  If the visual system treated reflections as if they were simply surface

markings, diffuse shading, or cast shadows, then it would almost always arrive at an

erroneous estimate of 3D shape.

Mirrored objects are even more recalcitrant if you consider how they appear in

single, static images.  If you look at a textured object, the contrasts that occur in the

retinal image are caused directly by the markings on the surface.  For example, where

there is a change from white paint to dark paint on the surface, there will be a

corresponding change from light to dark intensities in the image.  This is not true of

mirror reflections.  If you look into a mirrored surface, all you will see is a reflection of

the other objects in the scene.  This is depicted beautifully in a number of works by M.C

Escher, such as Hand with Reflecting Sphere (1935), which is shown in Figure 7.  The

image of the sphere contains reflections of the artist’s room, his books and furniture, and
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even himself.  However, it does not contain any shading patterns or texture of its own.

To put it fancifully, there is a sense in which a perfectly mirrored surface is ‘invisible’

because none of the features that can be seen in the surface belong to the mirror itself.

Although you can look ‘through’ or ‘into’ a perfect mirror, you can never look directly at

the surface itself1.

Figure 7.  Hand with Reflecting Sphere, Lithograph by M. C. Escher (1935).  Note
that the image of the sphere contains nothing other than reflections of the
surrounding objects, including the artist himself.  [Permissions necessary ?]

One consequence of this is that the image produced by a mirrored object changes

completely depending on the world surrounding the object.  As the object is moved from

                                                  
1 Indeed, in mediaeval alchemy, quicksilver was thought to be endowed with metaphysical properties
(specifically it was thought to represent the mind) because the curious practitioner who gazes into a bead of
mercury sees nothing but a reflection of himself.  Mercury, does of course, have numerous other unusual
properties, such as being a dense metal that is liquid at room-temperature, and having a meniscus that
curves in the opposite direction from most commonly encountered liquids.  These other extraordinary
attributes doubtless also contributed to its mystical reputation.
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scene to scene different surroundings will be reflected in the surface, and so the image

changes dramatically depending on the context.  It is hard to imagine that the visual

system can make sense of the infinitely variable patterns of light and dark that are

generated by a mirrored object.

To make matters worse, because the image is just a reflection of the surrounding

scene, it is possible to create almost any arbitrary image by carefully manipulating the

environment in which the object is placed.  For example, an object can be made to appear

to have a bump or dent in its surface simply by distorting the pattern reflected in the

surface.  To the visual system, the input would be the same, so the visual system would

have know way of knowing whether the environment or the shape of the object is

responsible.

Because specular reflections ‘misbehave’ in so many ways, it might seem quite

impossible to recover the shape of an object from the twisted patterns that are reflected in

its surface.  Indeed, in computer vision specularities have often been treated simply as a

nuisance, and a number of schemes exist for removing them or mitigating their effects.

In summary, we have seen that:

(1) Specularities slide around relative to the surface whenever the object, viewer

or light sources move, so the visual system cannot recover shape using

standard structure for motion processing.

(2) Specularities fall at the ‘wrong’ stereoscopic depth, so the visual system

cannot use standard binocular processing to recover surface depth.

(3) In the case of a perfectly mirror, the image consists of nothing more than a

distorted reflection of the environment surrounding the object.
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(4) A single 3D shape can produce many different images (depending on the

context), while a single image is consistent with many different 3D shapes.

Despite this, as we saw in Figure 1, a single static image of a perfectly mirrored

object placed in a complex realistic setting generally yields a vivid sense of 3D shape.

Somehow we appear to be solving the task.  In the next section we discuss how the visual

system might go about using specular reflections for 3D shape estimation.  Our starting

point is the following observation.  Even though the image of the mirrored object only

contains reflections of the other objects in the scene, nevertheless, the way that these

reflections are distorted can furnish the visual system with information about 3D shape.

Approaching the problem of estimating 3D shape from specular reflections

If you place an object in front of a curved mirror, such as a polished kettle or the

back of a spoon, you will notice that the reflection of the object is warped out of shape.

An example of this is shown in Figure 8.  Note that the reflection of the square is

deformed: the sides are not parallel, and indeed, they are not even straight.  Note also that

the other objects in the surrounding scene are smeared and twisted out of shape.
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Figure 8.  Distorted reflections in the surface of a metallic kettle.  Note that square card is warped out of
shape in the reflected image.  This is emphasized in the close-up.  If the visual system could estimate
the deforming transformation that has been applied to the card, it could in principle use this information
to infer the 3D shape of the kettle.

Importantly, the distortions introduced by the reflecting surface depend directly

on its 3D shape.  We will discuss the relationship between 3D shape and image distortion

in more detail shortly.  For the moment the important point is that the way that a

reflection is distorted bears the signature of the reflecting object’s geometrical form: tacit

in the warps and twists of the reflection lies information about the 3D shape of the

underlying surface.  This means that, at least in principal, the visual system could use the

way that a reflection is distorted to recover information about the object that is doing the

reflecting.

This opens a strategy for recovering 3D shape.  The visual system could first

identify a recognizable object within the reflection of the environment.  Having

segmented the reflected object’s boundary, the visual system could then estimate the
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deforming transformation that has been applied to the boundary.  In theory, once this

transformation is known, the visual system could infer the 3D shape of the surface that is

responsible for the distortion.

However, one major problem with this approach is that the visual system can only

interpret the distorted image of an object, if it knows what the undistorted object looks

like.  This means that the visual system has to accurately locate the corresponding

features in the surrounding scene, or at least make strong assumptions about the world

(e.g. lines are generally straight rather than curved).

There are a number of reasons for thinking that the visual system probably does

not recover shape from specular reflections in this way.  The first is simply that it seems

unlikely that the visual system forms such a precise estimate of the scene surrounding an

object.  When we want to know the shape of a highly polished object, we do not

generally look around the room first to estimate the positions of all the structures in the

scene; it is usually sufficient just to look directly at the object of interest.

Second, we can get a good sense of an object’s 3D shape even when the scene

surrounding the object is not visible.  In Figure 9, an object has been cropped out of its

original context and shown against a neutral black background.  This means that there is

no information about the surrounding scene except what can be seen in the surface itself.

Despite this we have a vivid sense of the object’s 3D shape.
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(a)  natural environment (b)  1/f noise

Figure 9.  An irregularly shaped mirror that has been cropped out of its original contexts and placed
on a neutral background.  In (a) the object is rendered in a natural environment.  Note that at some
locations it is difficult to discern what objects are reflected in the surface.  In (b) the same object is
reflecting a pattern of random noise.  Despite the fact that no recognizable objects are present in the
reflections, we nevertheless get a fairly compelling sense of the object’s 3D shape.

We have verified this impression psychophysically (Fleming et al, 2004).  Using

the gauge figure task, we have found that subjects are capable of estimating the 3D

surface orientations of mirrored objects reliably and accurately even when the objects are

shown against a black background.  This suggests that the human visual system does not

need to know the precise locations of objects in the surrounding scene in order to

interpret distorted reflections.

Third, note that at many points on the surface the reflection is so smeared that the

reflected object is totally unrecognizable.  The reflections look more like a streaky texture

than a recognizable scene.  It seems highly unlikely, then, that the visual system could

find correspondences between locations in the scene and their reflections in the surface.

In fact, we can get a rather good impression of the 3D shape even when no

recognizable structures are reflected in the object’s surface.  Figure 9(b) shows the same
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shape reflecting a pattern of random noise.  The pattern reflected in the surface of the

object does not contain recognizable objects like buildings or trees, or even extended

edges that the visual system could assume are straight.  Instead, the patterns look more

like a texture that has been warped onto the surface.

The very fact that the reflections look more like a smeared texture than a

recognizable scene suggests that perhaps we should change our conception of the patterns

that are reflected in the surface.  Instead of conceiving of the reflected world as an

aggregation of discrete physical bodies, perhaps we should think of it instead as a sort of

continuous texture that is stretched over the surface.  If this were the case then the visual

system might be able to recover shape from specular reflections by analogy to the way

that it recovers shape from texture.  In the next section, we elaborate this way of thinking

about the patterns that impinge on specular surfaces.

The environmental patterns that illuminate a mirrored object.

In the real world, light is emitted from luminous sources, such as the sun, and

bounces many times before it reaches our eyes.  Light reverberates between surfaces,

reflecting back and forth from object to object, and spraying out in all directions to fill

the world with light.  The reverberation of light creates a dense and highly structured

field of luminous flux throughout the environment, which Gibson (1979) called the

ambient optic array.  In practice, the ambient optic array means that a point in the real

world typically receives light from almost every direction.

Consider what the world looks like from this isolated point in space.  Rays

converge on this point from every direction, bearing light from all the surfaces in the
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surrounding scene.  These rays form an image of the surrounding world.  In particular,

we can represent the set of all converging rays as a spherical image.  Each location on the

sphere represents a different incident direction, and the intensity at that location is the

amount of light arriving from that direction.  We refer to these spherical images as

‘illumination maps’.

Paul Debevec (1998; Debevec, Hawkins, Tcho, Duiker, Sarokin and Sagar, 2000)

has pioneered photographic techniques for acquiring illumination maps from locations in

the real world.  These illumination maps are extremely useful for computer graphics as

they allow us to illuminate a synthetic object with patterns of light from the real world.

The result is an image of the synthetic object that almost perfectly simulates how the

object would have looked were it actually placed at that location in the world.  We saw

examples of such images in Figures 1 and 9.

Note that in an illumination map, all incident rays are treated equally.  The

illumination map is simply an image — like any other image — which contains raw

intensity values at each location: it does not explicitly encode any information about the

physical origin of the intensity.  It makes no difference whether light arrives directly from

a luminous source, or indirectly, reflected from surfaces in the surrounding scene, the

result is simply a particular incident intensity value at the corresponding pixel.  Thus, it

does not make sense to think of an object as being illuminated by distinct light sources.

Furthermore, neighbouring pixels in the illumination map may originate from

separate objects.  The same light-dark transition in the illumination map could be caused

by events that occur on a single surface, or by the boundary between two objects.  As far

as the structure of the illumination map is concerned, this is irrelevant.
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This changes our conception of the world surrounding a specular object.  We

should not think of the scene that is reflected in a surface as a complex 3D arrangement

of discrete physical bodies.  Instead we should concentrate on the overall pattern

generated by this complex scene.  The illumination map can be thought of a sort of

texture that is projected onto the surface of the object.  This is important because it means

that the visual system does not have to interpret the distorted outlines of particular

environmental objects.  Instead, it can interpret the way that the texture-like patterns are

distorted by 3D shape.  In the next section will use the concept of the illumination map to

explain the relationship between 3D shape and image distortions.

Sampling the illumination map: how shape distorts reflections

Suppose we place a mirror inside an illumination map.  The mirror projects points

from the illumination map into the retinal image.  Which point is projected into the image

depends solely on the orientation of the mirror’s surface, as shown in Figure 10.  As the

orientation of the mirror changes, different points in the illumination map are projected

into the image.
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Figure 10.  A mirror projects points from the illumination map into the image.  Which point is seen in
the image (A or B) depends solely on the orientation of the mirror.

This means that the image of an irregularly shaped 3D mirror is the image

contained in the illumination map: it is just a distorted version of the image.  Another

way of putting this is that we can think of a 3D mirror as a ‘look-up-table’ for the

contents of the illumination map.  This look-up-table is ‘indexed’ by the object’s surface

normal.  As the surface normal varies continuously across the surface, the index sweeps

smoothly through the illumination map, projecting different portions of the illumination

map onto the retinal image.

The following observation is crucial to the subsequent arguments.  Note that the

rate at which the surface samples the illumination map depends solely on the rate at

which the surface normal varies across the surface.  This is depicted in Figure 11.  When

the normal varies slowly across the object (i.e. the surface is slightly curved), the surface

sweeps through only a small portion of the illumination map.  Consequently, the patterns

that are reflected in the mirror will be stretched out over the surface.  By contrast, when

the surface normal varies rapidly across the object (i.e. the surface is highly curved), the
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surface sweeps through a large swath of the illumination map.  Thus, a large number of

features from the illumination map are compressed into a small region of the retinal

image.

Figure 11.  An irregular 3D mirror projects portions of the illumination map into the image.
Around point A, the surface normal varies slowly.  Thus, only a small portion of the illumination
map, A' is projected into the image.  By contrast, around point B, the surface normal varies
quickly.  This region of the mirror compresses a large portion of the illumination map, B' into the
image.

In general, when the illumination map is reflected in an irregular 3D surface, it is

effectively subjected to a complex coordinate transformation that stretches and

compresses the patterns it contains.  Crucially, however, the coordinate transformation

depends directly on a property of the 3D shape: the rate at which the surface normal

varies across the surface.  This systematic relationship between surface curvature and

image compression is basis of the approach to recovering shape from specular reflections

that we elaborate in more detail throughout the rest of this chapter.
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There are a couple of important points to note.  The first is that the coordinate

transform depends solely on the 3D geometry of the reflecting surface, it does not depend

on the contents of the illumination map.  In other words, the distortions are independent

of the scene that is being reflected in the surface.  This is useful because it means that if

we can measure the local stretches and compressions of the image, we can recover the

local surface curvatures without having to interpret specific features in the reflection.  We

are not interested in the contents of the reflection, simply how it is distorted.

This second important point is that stretching or compressing an image

dramatically affects the local image statistics.  In the next section will discuss this in

more detail.  The important point is that with minimal assumptions about the content of a

pattern, it is possible to estimate how it has been stretched, just by looking at the local

image statistics.

Effects of non-uniform scaling transformations on local image statistics.

As we have already mentioned, when the surface normal changes rapidly across

the surface the reflection is compressed in the image.  Conversely, when the surface

normal changes slowly across the surface, the reflection is stretched out, by comparison.

What effects do these stretches and compressions have on the local image statistics of the

reflected pattern?

Suppose we take a natural texture of some pebbles, as shown in Figure 12(a), and

compress it along one direction.  The result is shown in Figure 12(b).  We can see that the

features of the texture are compressed into parallel streaks.  The effects of this distortion
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are visible in the Fourier spectrum of the pattern.  Before the distortion, the pattern has an

approximately uniform distribution of orientations.  After the distortion, the pattern is

distinctly anisotropic: power is concentrated along the direction orthogonal to the

compression.  In fact, any affine transformation applied to the image results in an

equivalent affine transformation of the Fourier spectrum.

Images Fourier spectra

(a)  original image

(b) compressed image
Figure 12.  Effects of compression along one axis on the Fourier spectra of images.
The original image (a) has an approximately isotropic spectrum.  After
compression (b), the Fourier spectrum is anisotropic.  Note that this anisotropy is
the same across scales.

This way of modifying the Fourier spectrum is quite different from standard

image filtering.  We are accustomed to thinking about the effects of simple filters on

images, but distortions do not behave the same way.  We will now discuss three critical

differences.
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First, note that distorting a Fourier plot shifts individual components through

Fourier space.  Thus, the transformed image can contain frequencies and orientations that

were not present in the original.  For example, consider the plaid shown in Figure x.

After the stretching transformation, the components have shifted to different orientations,

and higher spatial frequencies than in the original.

(a) original (b) compressed (4:1) along x-axis

Figure 13.  Compressing a plaid along the x-axis shifts the component gratings to different orientations
and frequencies.  Unlike filtering, the total power of the pattern remains constant.

Second, filtering an image necessarily reduces its power.  This is not true of non-

uniform scaling transformations.  Compressing an image along one axis changes the

orientation and frequency content without affecting the overall power of the image.

Thus, after the transformation, even a highly anisotropic image patch will remain high

contrast.  This has the secondary effect that compressed images have unnaturally high

power at high frequencies.

Third, filters are generally designed to operate at specific orientations and scales.

For example, a filter may permit one orientation-band to pass at low spatial frequencies

and a different orientation-band to pass at high frequencies.  This is not possible with

non-uniform scaling transformations.  Compressions and stretches apply an affine

deformation to the entire Fourier spectrum.  Therefore, they are constrained to have
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consistent effects on orientation across scales.  This has the important consequence that

stretched images tend exhibit similar anisotropies at all scales.

The fact that distorting transformations are more constrained than standard image

filtering means that they have dramatic and easily detectable effects on the local statistics

of images.  This is very important for the recovery of shape from specular reflections.  It

means that the visual system can measure the way that a reflection is distorted directly

from a local image patch, without having to segment the boundaries of reflected objects,

and without having to locate the corresponding features in the surrounding environment.

Instead, simple image measurements can provide a direct estimate of how the surface

normal varies across the surface.  For example, in Figure 14, we show how the Fourier

spectra of local patches of a mirrored object are systematically related to properties of the

object’s 3D shape.

Figure 14.  How the Fourier spectrum varies across the image of a mirrored object.  The direction in
which the surface normal changes most slowly is shown with the arrows.  Note how the reflection is
stretched into parallel streaks along these directions.  This ‘streakiness’ has a clear effect on the Fourier
spectra of the local patches.
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Along directions of low curvature, the reflections are stretched out into parallel

streaks.  By contrast, along the orthogonal directions, the reflections are bunched up.  The

streakiness of the reflections is easily visible in the local Fourier spectra, which are

pronouncedly anisotropic.  This means that the visual system can use the local

distribution of image orientations at each location in the image to infer properties of 3D

shape.  We discuss this idea in more detail in the next section.

Image orientations in the perception of 3D shape

We have argued that local image statistics are directly related to properties of 3D

shape.  In this section, we will explain how these measurements can be carried out with a

population of simple oriented filters, and how shape properties are systematically related

to the population response.

Imagine placing a spherical mirror in a world of random noise with a 1/f

amplitude spectrum.  This is shown in Figure 15(a).
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Figure 15.  Mirrored surfaces in a world of 1/f noise, with responses of a population of oriented filters to
the reflections.  (a)  A spherical mirror. (b) and (c) ellipsoid mirrors.  Note that the population response
exhibits a peak that is aligned with direction of minimum surface curvature.  Peak size increases with
surface anisotropy. [Figure reproduced from JOV article --- obtain copyright permission]

Now suppose we have a population of simple filters that are tuned to different

orientations.  How will this population respond to the image of the mirrored sphere?

Note that at the centre of the image, the surface normal changes slowly in all directions.

This means that the reflection of the random features is slightly miniaturized, but the

Population
Response

Close-up
(a)

(b)

(c)
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scaling does not have any preferential axis.  Because the original noise pattern has a

uniform distribution of orientations, the reflection (which is simply scaled uniformly) will

also contain features at all orientations.  Consequently, the filters in the population will

respond roughly equally strongly, indicating that there is no preferential direction in

which the surface normal changes more rapidly.

Now consider what happens if we elongate the sphere along one direction, to

create an ellipsoid, as shown in Figure 15(b).  Note that by doing this, we change rate at

which the surface normal changes in different directions.  Around the narrow axis of the

ellipsoid, the surface normal changes rapidly, compressing a large number of features

from the environment into a small portion of the image.  Along the longer axis of the

ellipsoid, the surface normal changes more slowly, sampling a smaller portion of the

illumination map.  Consequently, the reflections are elongated into parallel streaks that

are aligned with the long axis of the ellipsoid.  This is clearly visible in the response of

the population of filters.  Filters that are aligned with the streaks respond more strongly

than the others, which results in a peak in the population response.  Importantly, this peak

response is directly related to a property of the 3D shape of the object: it is aligned with

the direction in which the surface normal changes most slowly across the image.

We will now modify the 3D shape again.  Suppose that we rotate the ellipsoid and

elongate it further.  This changes two relevant aspects of the 3D shape. First, the axis of

least curvature is different: now, the surface normal changes most slowly in the

perpendicular diagonal direction.  Second, the surface is more anisotropic — the rate at

which the surface normal changes along the long axes of the ellipsoid is even slower than

previously, or, put another way, the ratio between the maximum and minimum curvatures
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is greater.  These two effects have visible consequences for the reflections.  First, the

reflected features are stretched out in a different direction.  This means that the peak of

the population response shifts to a different orientation.  Second, the reflected features are

more stretched than for the previous ellipsoid.  This exaggerates the difference in

response between the various filters: those filters that are aligned with the streaks respond

more strongly than before, while those that are poorly aligned with the streaks respond

less strongly before.

This is important as it means that a simple population of filters can make two key

measurements that are directly related to the 3D shape of the surface.  The peak of the

population response indicates the direction of minimum surface curvature, and the size of

the peak indicates the anisotropy of the surface.  Together these provide two local

constraints on 3D shape.  In the Appendix, we express this basic intuition more formally.

Differences between intrinsic curvatures and second derivatives

Note that image orientations depend on the rate at which the surface normals vary

across the image plane.  We have used the term ‘curvature’ loosely to refer to the rate at

which the surface normal changes across the image.  It is important to clarify, however,

that image distortion depends on the second derivative of surface depths, not on the

intrinsic curvature of the surface.  This is a subtle but very important distinction to make.

We will now run through a quick example to make this distinction clearer.

Figure 16 shows a mirrored sphere.  The intrinsic curvature of a sphere is the same

at every point on its surface.  This means that if you are standing on the surface itself and
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walk around, the curvature under your feet will always be constant.  However when we

make an image of a sphere, we view it from a distant vantage point.  The distance from

this point to the surface varies across the image, creating a depth-map, such as the one

shown in Figure 16.  Here bright image values represent close points and dark values

represent distant points.  The iso-depth contours are intended to make the organization of

the depth variations more salient.

Figure 16.  A specular sphere with its corresponding depth-map.  In the center of the sphere, the second
derivative of the depth-map is small and equal in all directions, correspondingly, the reflected image is
not preferentially stretched in any direction.  By contrast, at the edge of the sphere, the second derivative
is large along the radial direction, but small along the circular arc parallel to the circumference.
Accordingly, the reflected image is stretched along this direction.
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Unlike intrinsic curvatures, the second derivatives of the depth map are not constant

across the image.  At the middle point of the sphere, the surface normal points directly at

the viewer.  If we move away from this point in any direction, the surface normal changes

slowly.  Thus, at the middle of the depth-map, the second derivative is small and constant

in all directions.  This means that the reflected image is somewhat miniaturized here, but

not stretched in any given direction.  This can be seen in the highlighted central region of

the sphere.

By contrast, towards the edge of the depth-map, the sphere curves out of view.  As

we follow a radial line towards the circumference, the surface normal changes more and

more rapidly.  In other words, the second derivative is large in this direction.  However, if

we follow a circular path parallel to the circumference, the surface normal changes more

slowly (in fact the slant is constant).  This means along this direction the second

derivative is small.  The consequence of this is that the reflected image becomes bunched

up as we approach the boundary of the sphere, and stretched out into concentric streaks in

the orthogonal direction.  This is depicted in the highlighted region at the edge of the

sphere.  While principle directions are ill-defined for the intrinsic curvature of a sphere,

they are well-defined for second derivatives, because at all locations except the very

center of the sphere, the maximum and minimum second derivates are different from one

another.

Note that the second derivative has some correspondence with our perceptual sense

of curvature.  We seem to have a clear visual impression that the edge of a sphere curves

out of view more rapidly than the center of the sphere.  This is because second
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derivatives concatenate information about slant and intrinsic curvature.  A slightly curved

surface that is highly slanted with respect to the viewer has a large second derivative2.

One final distinction is worthy of note.  Consider the depth-map of an irregularly

shaped object, such as the one shown in Figure 17.  Euler (1760/1767) proved that

directions of maximum and minimum curvature are orthogonal to one another at every

location on such an object.  For intrinsic curvatures, the principal directions are

orthogonal to one another with respect to the intrinsic coordinates of the surface.  When

projected into the image plane, these are generally no longer perpendicular (because of

foreshortening).  This can be seen in the detail shown in Figure 17(b).  By contrast,

second derivatives are defined with respect to the image plane.  Thus the directions of

maximum and minimum curvature are always orthogonal to one another in the image

plane.  This can be seen in the detail shown in Figure 17(c).

                                                  
2 This has one very interesting consequence.  For closed, globally convex objects, the first
and second derivatives tend to be partially correlated.  This means that textured and
reflecting surfaces often tend to generate similar orientation fields in highly slanted
regions.
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(a)  Depth-map

(b)  Intrinsic surface curvature (c)  Second derivative

Figure 17.  Principal directions of curvature are different when measured on the surface or on the
projection into the image plane.  (a) The depth-map of an irregularly shaped object.  Grey boundary
highlights region shown in (b) and (c).  (b)  The principal curvature directions as measured on the
surface itself.  Note that the directions are not orthogonal in the image.  (c)  The principal curvature
directions derived from the second derivatives of the depth-map.  Note that the directions are
orthogonal in the image.
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From local to global: orientation fields and the perception of 3D shape

We have outlined how simple image measurements can be informative about local

3D shape properties.  However, these measurements become much more powerful when

applied globally.  The streaky patterns in a small patch of surface tell us relatively little

about 3D shape when presented in isolation, as can be seen in Figure 18.  The important

information arises from the way that reflections twist and writhe across the entire surface

of an object.  For complex, irregular shapes, the second derivatives of the surface change

continuously from location to location.  This means that the distribution of orientations in

the image also changes continuously, creating distinctive swirling patterns, or orientation

fields, which seem to carry most of the important information about 3D shape.

Figure 18.  Local patches yield weak percepts of 3D shape.  In the right panel the patches are shown in
their original context, where they contribute to a strong overall sense of 3D shape.
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One of the most interesting properties of orientation fields is that they remain

surprisingly stable, irrespective of the patterns that are reflected in the surface.  This is

shown in Figure 19.

Shape A Shape B

Figure 19.  Shapes A and B are shown reflecting three different environments.  Next to each rendered
image is a colour visualization of the orientation field: hue denotes dominant image orientation, colour
saturation denotes local image anisotropy.  The orientation fields remain surprisingly stable across
changes in the reflected world.  At the bottom is shown the ‘ground-truth’ directions of minimum second
derivative and surface anisotropy, which are measured directly from the 3D shape model that was used
to render the images.  Note the striking similarity between the image-based orientation fields and the
ground truth measurements.  [reproduced from JOV article --- obtain permission]

Two shapes (A and B) are shown rendered in three different environments.  In

different scenes, the images appear quite different from one another — for example,
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locations that are dark in one scene may be bright in another scene, depending on what

happens to be reflected in the surface of the object.  Despite these variations, the

orientation content of the image remains quite stable.  The orientation fields for each

image are shown using a colour visualization.  Hue denotes the dominant image

orientation, so, for example, red means that the image is locally dominated by vertical

structures.  Note that the hue changes continuously across the orientation field, indicating

the local orientation of the image modulates smoothly across the image.  Colour

saturation indicates the local anisotropy of the image.  Where the image is highly

anisotropic (i.e one orientation dominates the others), the colour is highly saturated.  By

contrast, where the image is weakly oriented, the colour washes out to neutral white.

Note that the overall pattern of the orientation fields stays quite stable across the different

scenes, but is distinctly different for shape A and shape B.

At the bottom of each column in Figure 19, is shown an additional orientation

field.  This one represent the ‘ground truth’ data derived directly from the 3D shape

model that was used to render the images.  This time, hue represents the actual direction

of minimum second derivative, and saturation represents actual surface anisotropy.

There is quite a striking correspondence between the orientation fields derived from the

rendered images and the ones derived directly from the shape model.  It is almost as if

orientation fields allow us to ‘look through’ the complex reflections in the image, to see

the underlying properties of the 3D shape.

Why are orientation fields so stable?  In the next section we discuss this question

in more detail.  The basic intuition is as follows.  When a mirrored object is moved from

scene to scene, the distribution of lights and darks can change radically because they
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depend solely on the content of the illumination map.  However, the orientation content

of the image depends much more on the way the reflection is distorted.  Image distortions

depend on the 3D shape of the reflection object, not on the contents of the illumination

map.  Consequently, orientation fields remain more stable as the object is moved from

scene to scene.

Anisotropies in the illumination map and their effects on orientation fields.

How important are the statistics of the reflected scene for the orientation fields

that are generated by an object?  As we have already argued, if the illumination map is

roughly isotropic (i.e. only weakly oriented), then the orientations in the image result

solely from the way that the reflection is distorted.  However, what happens if the

illumination map is highly anisotropic?  Surely, this will create misleading patterns of

orientation in the image?

In Figure 20, we show a mirrored object reflecting a series of illumination maps

that consist of parallel stripes.  These patterns are radically more anisotropic than we

would normally encounter in the real world.  In each consecutive frame, the stripes in the

illumination map are aligned with a different orientation
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(a)  Striped illuminations

(b)  Real-world illumination

Figure 20.  Mirrored objects rendered under
stripy illuminations.  In (a), the shapes remain
constant, all that changes is the orientation of
the stripes in the illumination map.  As the
stripes rotate, different features of the object
are accentuated.  Also shown are the
orientation maps for each image.  Hue is
dominant orientation, saturation is anisotropy.
For comparison (b) shows the same object
under real-world illumination.
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The extreme anisotropy of the illumination maps has a marked effect on our

impression of 3D shape.  Most observers agree that when the object is rendered under the

striped illuminations (Figure 20a), the sense of 3D shape is generally poorer than under

the real-world illumination (Figure 20b).

There are a couple of important points to note.  First, observe that as the stripes

rotate through different orientations, they selectively accentuate different features of the

3D shape. For example, when the illumination consists of vertical stripes (top panel), the

horizontal shape features are de-emphasized.  Intuitively, this occurs whenever the

reflection is compressed along the axis of the stripes because no amount of compression

along this direction can alter the orientation of the stripes.  Consequently, the underlying

shape leaves no measurable trace in the orientations in the image for the visual system to

detect.  Thus, when the stripes are orthogonal to the direction of minimum second

derivative, the orientation information in the image becomes weak and inconsistent,

whereas, when they are aligned with the direction of minimum curvature, they accentuate

the feature.

Second, note that although the illumination map contains only a single orientation,

the reflections nevertheless contain continuously varying orientations.  The distortions

introduced by shape change the orientations of the stripes at most locations in the image.

Even though the orientation maps are less reliable than under real-world illumination, the

orientations are nevertheless biased towards the correct directions.  Indeed, it is

interesting to note that the images whose apparent shapes most closely resemble (b), are

those whose orientation fields most closely resemble the orientation field of (b).
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Furthermore, within an image, the features of the shape that are most compelling are

generally those whose orientation fields are most similar to those of (b).

The fact that even highly anisotropic illumination maps yield orientation fields

that are biased toward the correct directions, is the reason why orientation fields are so

stable in the real world.  This can be examined more systematically by considering the

relationship between orientations in the illumination map, surface anisotropy and the

resulting orientations in the image.  As discussed in the Appendix, there is a lawful

relationship between these factors, which we will now explore in more detail.

In general the local orientation in the illumination map is at some arbitrary angle

relative to the direction of minimum second derivative at the corresponding location on

the surface.  We will call this angle θR.  When θR is 0deg, the illumination map happens,

by chance, to contain a structure that is aligned with the direction of minimum second

derivative.  When θR is 90deg the structure in the illumination map is orthogonal to the

direction of minumum second derivative on the surface.

The mirrored surface subjects the orientation of the illumination map to a

transformation as it projects it into the image.  The result is an image orientation that is at

some new angle, θ, relative to the actual direction of minimum second derivative.  Theta

is the error in estimating the direction of minimum second derivative based on the

orientation observed in the image.  When θ is small, the image orientation closely

approximates the direction of minimum second derivative.  When θ is large, the image

orientation is a poor estimate of the direction of minimum second derivative.

When the surface is slightly anisotropic, it has a weak effect on the orientation,

and thus θ  will be close to θR.  However, when the surface is highly anisotropic, it warps
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the projected orientation towards the direction of minimum surface curvature, creating a

small value of θ.  The function relating theta to surface anisotropy is shown in Figure 21.

The different lines show how theta is affected by surface anisotropy (α) for different

values of θR.

Figure x.  Error in estimated direction of minimum second derivative as a function of surface
anisotropy for different values of θR.  Note that when the surface is highly anisotropic, estimation
error tends to zero, irrespective of θR.

Note that when the surface is approximately isotropic (i.e. small values of

anisotropy), the direction of minimum second derivative is poorly-defined, and theta

tends to θR, as expected.  By contrast, when the surface is perfectly anisotropic (i.e. the

value of the minimum second derivative is zero), theta tends to zero, irrespective of the

angle θR.  For the special case when θR =90deg, theta is a step-function, which is 90deg

for all values of alpha, except 1, when theta plummets to zero.  This is the case discussed
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above in which the stripes in the illumination map are perfectly orthogonal to the

direction of minimum second derivative.  In the real world, surface curvatures are likely

to be poorly correlated with the orientations of structures in the surrounding scene.  Thus,

on average, θR will be close to 45deg.

We can re-plot this family of functions as a two-dimensional ‘generative space’,

as shown in Figure 22.  Here, theta is plotted as a function of surface anisotropy and θR.

This space covers all possible generative configurations; that is, all combinations of

surface curvatures and orientations of the illumination map.  For example, in the bottom

right hand corner, we have occasions when the surface is highly anisotropic, and, by

chance, the illumination map is well aligned with the direction of minimum second

derivative.  Naturally, this combination leads to image orientations that are very closely

aligned with the direction of minimum second derivative (i.e. low θ).  By contrast, in the

top left of the generative space, the surface is only slightly anisotropic and, by bad luck,

the illumination map contains structures that are almost orthogonal to the direction of

minimum second derivatives.  Under these circumstances, θ is large.
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A number of points are worthy of comment.  First, note that the majority of the

space is relatively dark (i.e. θ is small).  This means that for most possible scene

configurations, the estimated direction of minimum second derivative is quite accurate.

Second, nearly three-quarters of the generative space yields θ values that are less than

45deg (the area below the white contour).  So, for most possible scene configurations, the

image orientation is closer to the correct direction than to the orthogonal direction.  Third,

at every point in the space theta is smaller than θR, which means that the image

orientation is always biased towards the correct direction.  And finally, for nearly a third

of the space—the darkened region—the image orientation is closer to the direction of

Figure 22.  The generative space. θ is plotted as a function of θR and surface anisotropy.  This
space includes all possible combinations of illumination orientation and surface curvatures.
Grey contours show equal values of θ.  White contour shows θ = 45deg.  Note that most of
the space is below this line.  Dark area shows region of space for which θ < θR /2.
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minimum second derivative than it is to the orientation in the illumination map.  In other

words, for a considerable portion of possible scene configurations, image orientation

depends more on 3D shape than on the scene reflected in the surface.

In Figure 23, we summarize how much of the generative space yields reliable

estimates of the direction of minimum second derivative.  Note that the curve is

positively bowed.  This again shows that most of the generative space produces small

values of theta.  In particular, note that half of all possible scene configurations yield

image orientations that are within about 23deg of the actual direction of minimum surface

curvature.

Figure 23.  Cumulative proportion of the generative space that yields a given value of θ.
Note that the curve is positively bowed.  Thus, for example, half of the generative space
yields theta values that are less than about 23deg.

This systematic relationship between the orientations in the illumination map,

surface anisotropy and the orientations in the image reveals why orientation fields are

generally so reliable and accurate in the real world.  Most possible worlds yield quite

reliable orientation fields, and completely random illumination maps yield the least
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biased orientation fields of all.  Thus, the visual system may not have to explicitly

estimate the specific statistics of our natural environment in order recover shape from

specular reflections.  Instead, it can implicitly rely on the geometry of specular reflection

to warp the world into alignment with the curvatures of the 3D shape.

Orientations fields as a common currency for 3D shape perception.

The orientation fields that are generated by specular surfaces are simple to extract

from the image, and provide reliable and accurate constraints on 3D shape.  However,

most surfaces in the world are not purely specular.  Although glossiness is common, so is

diffuse shading and patterns of surface texture.  As Figure 24 shows, specular, diffuse

and textured versions of an object can all lead to a compelling percept of its 3D shape.

How do we recover 3D shape from these different optical properties of objects?

As discussed at the beginning of this chapter, there are many respects in which

shading, highlights and texture behave differently from one another.  Diffuse reflectance

leads to smooth patterns of shading, while both textures and specularities lead to dense,

complex patterns across the shape.  Texture patterns depend solely on the way that the

surface is pigmented, while both specularities and shading patterns depend on the

position of light sources and other objects in the environment.  Specularities move around

when the observer changes position, while both shading and texture remain effectively

attached to the surface irrespective of the viewpoint.

Given that shading, highlights and texture behave differently from an optical point

of view, it might seem likely that the visual system has to apply fundamentally different
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strategies to estimate 3D shape from these cues.  Shape-from-shading has traditionally

been thought to be quite separate from shape-from-texture, and those few authors who

discuss specular reflections as a source of information about 3D shape (e.g. Norman et

al., 2004; Oren and Nayer, 1996, Savarese Li and Perona, 2003) generally treat them as a

complimentary source of information, which is quite independent from classical shape-

from-shading.

Figure 24.  Three renderings of an object: mirrored, diffuse and textured.  The three images look very
different, and have traditionally thought to provide the visual system with distinct visual cues to 3D
shape.  However, in all three cases, the orientation content of the image (bottom row) seems to carry
important information that could be used for 3D shape estimation.

However, if we look at the orientation content of the images, we see that these

seemingly different cues may have more in common than previously thought.  Figure 24

(bottom row) shows the dominant image orientation at each location in the image of

specular, diffuse and textured versions of an object.  The striking observation is that in all
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three cases, the images contain smooth, continuously varying patterns of image

orientation that seem to vary in a way that is directly related to the 3D shape of the

object.

This is particularly surprising in the case of the diffuse object: the image is so

smooth, that we do not readily perceive the fact that it contains continuously varying

orientations.  Nevertheless, simple filters are capable of detecting this latent orientation

structure.  Note, indeed, that the orientation field is very similar to the one produced by

the specular surface.  This is because the same basic logic is responsible for the

orientation structure of the image.  The intensity of the surface depends on the direction

in which it is pointing.  Thus, when the surface normal changes slowly, the image

intensity will tend to vary slowly.  By contrast, when the surface normal changes rapidly,

the image intensity will tend to change rapidly too.  This leads to a systematic

relationship between the second derivatives of the surface and the orientations in the

image.  Although orientation fields are less stable for diffuse surfaces than for specular

surfaces, the fact that shaded and textured objects produce orientation fields that are

related to 3D shape suggests that the visual system could use some of the same

processing strategies for these seemingly disparate cues.

A few researchers have previously argued that the orientation content of shaded

images could be used to recover 3D shape (e.g., Ben-Shahar and Zucker, 2001; Breton

and Zucker, 1996; Huggins, Chen, Belhumeur, and Zucker, 2001), and a number of

algorithms exist for estimating shape-from-texture using simple image statistics (Malik

and Rosenholtz, 1997; Super and Bovik 1991, 1995).  Thus, we suggest that orientation
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fields could act as the basic ‘common currency’ that the visual system uses for recovering

3D shape from a range of different cues.

Conclusions

In this chapter, we have laid out some theoretical observations on the recovery of

3D shape from specular reflections.  We started by reviewing some of the eccentric

properties of specular reflections that make them potentially problematic for the visual

system.  Specular reflections can make a surface very bright or very dark, depending on

what happens to be facing the object.  Indeed, a specular object could in principle be

made to take on any arbitrary appearance by carefully modifying the world that is

reflected in its surface.  This makes specular reflections unstable and ambiguous, and yet

somehow, the visual system is capable of recovering the 3D shape of an object from the

distorted reflections in its surface.

We outlined one approach to solving this problem based on identifying

recognizable objects in the reflection and estimating the way that these reflections are

distorted.  However, we argued that the human visual system probably does not go about

the problem in this way.  Instead, we suggested that the visual system can estimate the

way the reflection is distorted directly from its local image statistics.

We showed that the rate at which the surface normal changes across the surface

determines the way the reflection is distorted.  Specifically, when the surface normal

changes rapidly, the reflection is compressed, and when the surface normal changes

slowly, the reflection is stretched out by comparison.  Put another way, surface curvatures
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apply non-uniform scaling transformations to the reflected image.  These transformations

have dramatic effects on the local statistics of the reflection because they introduce

reliable anisotropies across scales.

We showed that populations of simple oriented filters are capable of measuring

these image properties and can thereby provide the visual system with estimates of the

direction of minimum second derivative and surface anisotropy.  If you look at the output

of these filters at every point in the image, you will find smoothly varying patterns, which

we call orientation fields.  Orientation fields provide accurate and surprisingly stable

constraints on 3D shape, which suggests that it is possible to recover the shape of a

mirrored surface without knowing the organization of the scene surrounding the object.

Orientation fields are stable in the real world because the geometry of specular

reflection always warps orientations in the world closer to the direction of minimum

second derivative.  We analyzed the generative space that describes all possible

combinations of surface curvatures and orientations in the world, and showed that in most

possible worlds, image orientation provides a reliable indication of the direction of

minimum curvature.

Finally, we argued that image orientations could play a more general role in the

perception of 3D shape.  It is well-known that early stages of visual processing involve

extraction of image orientations.  Here we have argued that these measurements are not

useful solely for filtering the image into orientation bands; rather, they could, in principle,

be put directly to good use in the estimation of 3D shape.
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Appendix:  Relationship between image derivatives and second derivatives of surface

height.

We will now elaborate more formally the basic intuition that describe in the main

body of the text.  To anticipate, we will show how the local orientation structure of the

image is closely related to the rate at which the surface normal changes across the

surface.  Consequently, the visual system can use simple orientation-detection

mechanisms to recover some important constraints on 3D shape.

The starting point is the process of rendering an image from an object, as depicted

in Figure 25.

Figure 25.  Rendering an image of an object.  Rays are cast through an image plane towards a 3D
surface.  Image intensity, I(x, y) is determined by the surface normal at the corresponding surface
location S(x, y, z).  Under orthographic projection the observer is infinitely far away and the image is
simply projection along the z-axis.
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Each point on the object’s surface has a unique location, S(x, y, z) in 3D space.  In

order to create an image of the object, rays are cast through an image plane until they

strike the surface.  The intensity at a given point in the image, I(x, y) is simply the

intensity of the surface at the corresponding point S(x, y, z).  Note that for a distant

viewer, the image is effectively a projection of S(x, y, z) along the z-dimension.  Thus, we

can represent the shape of the object, as seen from the image plane, as a 2D function: a

map of how the z-dimension varies across the image, which we will call Z(x, y).

What determines I(x, y)?  Suppose we want to render an image I(x, y) of a

mirrored surface whose shape (surface height) across the image is Z(x, y).  The intensity

of a point on the surface depends solely on the direction that it is pointing.  Thus, the

image irradiance equation is:

I(x, y) = R(p(x,y), q(x,y))

Where R is the reflectance map, which is indexed by the surface derivatives p =

Zx and q = Zy. For convenience, we will use the notation Zx = ∂Z/∂x and Zy = ∂Z/∂y. The

function R is unknown and can be quite complicated.  Our goal is to find properties of the

image that reflect properties of the shape independent of the reflectance function.

The gradient of the image depends on the gradient of the intensities in

illumination map, and on the rate at which the surface sweeps through the illumination

map (i.e. on the rate at which the surface normal changes).  Thus:

ZyxRqZxxRpIx ⋅+⋅=

ZyyRqZxyRpIy ⋅+⋅=

Using matrix formulation and factoring out the contributions of shape and the

illumination map to the image derivatives, we can write:
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RH
Rq

Rp

ZyyZxy

ZyxZxx
I ∇=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡=∇

Where H is the Hessian matrix containing the second order derivatives of the surface Z(x,

y).  This is the basic equation that states the dependency of the image derivatives on both

the rate of change of the surface normal and on the derivatives of the illumination map.

Importantly, we can re-express the surface in terms of its principal curvatures by

decomposing H into eigenvectors:

H = k1 (e1 e1
T) + k2 (e2 e2

T)

Where e1 and e2 are eigenvectors (column vectors) and k1 and k2 are the corresponding

eigenvalues, i.e. the magnitudes of the principal curvatures.  By convention k1 < k2.

Thus, we can re-express the image gradient as:

∇I = k1(e1
T∇R)e1 + k2 (e2

T∇R)e2

∇I = k1 'e1 + k2 'e2

Where k1’ = k1 (e1
T R∇ ) and k2’ = k 2 (e 2

T R∇ ).  Note that when the surface has one

direction with null curvature, k1 = 0, then the image gradient is parallel to e2: 2'2 ekI =∇

irrespective of R∇ . Now, let’s see how the orientation of the reflectance map ( R∇ )

affects the correlation between the image orientation and the direction of minimum

curvature.  If Rθ  is the angle between R∇  and the direction of maximum curvature, e 2,

then the error angle between I∇  and e2 will be:

( )
( )Rk

k
θ

θ
2

2
2

2

tan1

1
cos

1+

=
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This is the equation used for constructing the ‘generative space’ in the section

entitled Anisotropies in the illumination map and their effects on orientation fields.

Surface anisotropy is defined as:

α = 1− k1
k2

In the main text, we argue that local anisotropy of the image can be estimated

using a population of filters tuned to different orientations.  A more stable measurement

of image orientation and estimate of the local image anisotropy can be obtained using the

structure tensor (Knutsson, 1989).  The structure tensor is a matrix obtained as:

ρρ K
IyIxIy

IxIyIx
KIIyxJi T ∗⎥

⎦

⎤
⎢
⎣

⎡
=∗∇∇=

2

2

)(

)(
)(),(

Where * is the convolution operation and Kρ is a spatial gaussian of variance ρ2. Ji(x,y) is

a 2x2 matrix at each image location. Without spatial smoothing, the matrix Ji is rank one.

After smoothing by integrating over a small neighborhood, the eigenvalues and

eigenvectors describe the local image structure.  The matrix Ji can be decomposed as Ji =

µ1 w1 w1
T + µ2 w2 w2

T, where w1 and w2 are the eigenvectors of Ji, and the eigenvalues are

µ1 ≥µ2. The streakiness (anisotropy) of the image is captured by the eigenvalues (µ1 and

µ2) of Ji.  Image regions with linear structure (highly streaky) have one vanishing

eigenvalue.  In an isotropic neighborhood both eigenvalues are equal. If µ1 > µ2 then the

image has oriented structure.

From the rendering equation, the image structure is related to the structure of the

reflectance map:
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( ) ρKHRRHJi T ∗∇∇=

If the second order derivatives of the shape change slowly we can approximate the

structure tensor by treating the matrix H as constant in the region of support of the

gaussian kernel Kρ (this approximation will be correct if we can approximate locally the

surface Z by a second order polynomial):

HJrHJi ≈

This equation describes how the image structure (orientation and anisotropy)

relates to the second order derivatives of the surface and to the local structure of the

reflectance map.

As discussed in the main text, there are some cases in which the image structure is

oriented exactly along the principal direction of the surface curvature.  If the surface has

one direction with null curvature (e.g. a point on a cylinder), then eigenvectors of Ji are

also the eigenvectors of H and this is independent of the illumination.  If Jr is the identity

(this approximately obtained for a specular object reflecting a 1/f noise illumination

map), then the eigenvectors of Ji are the eigenvectors of H: image flow lines are parallel

to direction of minimum curvature.  If Jr is the identity, then µ1 / µ 2  =  (k1 / k2)2. This

gives an estimation of which image regions might have a large difference between image

orientation and the directions of principal curvature of the shape.  The smaller the ratio µ1

/ µ2 the closer is the image orientation to the direction parallel to the direction of maximal

surface curvature.
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