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Introduction

• I will use the inclusive jet cross section as a benchmark 
measurement.

• The expected dominating errors at LHC (√s = 14 TeV, 
design luminosity Lnom = 1034 cm-2s-1 – it will start at low 
luminosity L ~ 1033, I will focus on low luminosity ) are 

discussed.
• I will consider statistical, theoretical, experimental errors.

• The ability of the general purpose experiments 
(ATLAS,CMS) to reduce the errors with the first data is 

reviewed.
• Conclusions.
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Inclusive Jet cross-section measurement
Concerning QCD, the first LHC 

data will be used to evaluate the 
systematics connected to cross 

section measurements.

QCD is a background for almost 
all the interesting physics 

processes. 

High PT tails in the inclusive jet 
cross section are sensitive to 

new physics. 

A bad evaluation of the errors in 
the QCD predictions or 

experimental uncertainties can 
fake/mask new physics.

Computed using NLO jet cross 
section (hep-ph/0510324), CTEQ6.1, 
μF=μR=PT/2, KT algorithm (D=1)

I will consider statistical, theoretical, experimental errors
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Statistical Errors 

CMS – Assuming 1 month 
@ 1032 cm-2s-1 and 40% 
efficiency – contributions 
from different triggers are 
taken into account.  Only 
statistical error considered 

Naïve estimation of the statistical 
error: √N/N as a function of ET for 
different integrated luminosities.

Consider only jets in |η| < 3

For a jet PT of ~ 1 TeV one expects 
1% error for 1 fb-1. In the large 

pseudorapidity region (3.2 < |η| < 5) 
the error goes up to 10% 

CMS TDR CERN/LHCC 2006-001
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Theoretical Errors
The jet cross section is written in 
terms of the convolution of hard 
scattering process and parton 
momentum distributions in the 

proton 

Two main sources of theoretical errors 
(CDF):

1- Renormalization(μR)/Factorization(μF)
scale uncertainties (arise from the 

perturbative calculation of the 
perturbative cross section at fixed order)

2- PDF uncertainties

Study of 1: μR and μF have been 
varied independently between 0.5 

Pt
max and 2 Pt

max (Pt
max is the 

transverse momentum of the 
leading jet)

~10% uncertainty at 1 TeV
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Theoretical Errors (2)
• The PDF uncertainty has been evaluated using CTEQ6, 6.1 (CDF  

RUN 2 not included). They come together with a number of error 
sets. 

• Out of all the error sets, two (namely 29 and 30) are dominant in the 
uncertainty of the inclusive cross section in the ~TeV region. They are 
related to the high x gluon (relatively large uncertainty from DIS)  

KT algorithm has been 
used with the best fit 

PDF and with set 29 and 
30.

At PT=1 TeV, the error is 
approximately 15%

|η| < 3
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Constraining the PDF
• W and Z production cross section is precisely predicted.
• The main theoretical uncertainty: PDF parametrization: at Q2 = M2

Z, 
x~10-2-10-4 gluon PDF is relevant.

• The lepton decay of the W is investigated: its pseudorapidity distribution 
is sensitive to the PDF. 

• The cross-section uncertainty at η = 0 
is ±6% (ZEUS_S), ±4% (MRST01E), ±
8% (CTEQ6.1M)
•The study has been performed both at 
generator and at (fast simulated) 
detector level
•Asymmetry is almost independent from 
gluon uncertainties: SM benchmark
•Background and charge 
misidentification negligible

hep-ex/0509002v1
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Constraining the PDF 
1M (~200 pb-1) data have been generated (CTEQ6.1) and simulated

with the ATLAS fast detector simulation. Then they are corrected back 
for detector acceptance and included in the ZEUS PDF fit.

Experimental uncertainties “included” adding 4% random error on 
data point. Error on parameter λ (xg(x)~x-λ) reduced by 35% 

hep-ex/0509002v1
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Experimental errors
• There are many possible sources of 

experimental errors:
– Luminosity determination
– Jet Energy scale 
– Jet resolution, UE subtraction, 

trigger efficiency
– etc.

• Detector effects: how do we 
reconstruct and calibrate jets?
– Use seeded cone and KT
– From the calorimeter jet to the 

particle jet (jet obtained running 
the reconstruction algorithm on 
the final state MC particles): use 
the MonteCarlo tuned on the 
test beam data

A 1% uncertainty in the jet scale 
gives an error of 10% on σ(jet).

A 5% uncertainty in the jet scale 
gives an error of 30% on σ(jet).
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Geant 4 Vs Test Beam data
A long test beam program has been 
done in the past years – results in 

the central calorimeters.

Linearity shown as a function of the 
beam energy 

Good agreement reached between 
the Geant 4 detector simulation 

and the test beam data between 20 
GeV and 350 GeV.

Analysis of low energy data 
ongoing

ATLAS – combined 
calorimetry

QGSP 2.7
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Correcting to the Particle Jet 

i
i

i
rec EwE ∑=

ATLAS:

The calibrated jet energy is obtained 
applying (at cell level) weights that 
depend on the cell energy density. 

The weights are obtained minimizing 
the jet energy resolution with respect 
to the particle jet (i.e., reconstructed 
from final state particles using the 

same algorithm).  

It allows to recover the linearity and 
improve the resolution

Under study: correct for detector 
effects at cluster level, before jet 
reconstruction (local calibration)

Jet ET

Jet ET
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Correcting to the Particle Jet (2)

CMS:

The jet energy is found 
multiplying Eraw

jet for a factor 
R(ET). The analytical form of 

R has been found 
comparing the 

reconstructed jet with the 
particle jet.

The angular resolution 
obtained for the iterative 

cone algorithm (ΔR = 0.5) is 
below the tower granularity.

CMS NOTE 2006/036
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Using the Data to Cross Check the Jet Energy
Different available processes for in-situ calibration (γ/Z+jet, W jj (from top decay))

Example:CMS - make use of the PT balance in γ+jets

Event selection: selection of events with isolated photons, no high-PT secondary jet, 
photon and jet well separated in the transverse plane (Et

isol < 5 GeV, ET
jet2 < 20 GeV, 

Δφγ,jet > 172°)

Trigger efficiencies included in the analysis

Statistical error small (well below 1%) after 10 fb-1

The main systematics is due to non leading radiation effects, QCD backgrounds, gluon-
light jet difference, etc. 

CMS TDR CERN/LHCC 2006-001
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Conclusions
• The measurement of the inclusive jet cross section 
suffers from theoretical and experimental uncertainties
• The main theoretical error comes from the PDF 

uncertainties.
• The first data can be used to constrain the PDF. The W 

and Z productions will be used.
• Experimental errors not dominant if the jet scale is 

known at the 1-2% level.
• The careful comparison of the geant 4 simulation of the 

detector with real data at the test beam shows good 
agreement.

• Various processes (γ/Z+jet, W jj (from top decay)) can 
be used to cross check the jet calibration
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Detector / jet rec
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Calorimeters in ATLAS
Tile Calorimeter

Forward 
Calorimeter

EM barrel and EndCap

Hadronic 
EndCap

EM LAr |η| < 3 :
Pb/LAr  24-26 X0

3 longitudinal sections1.2 λ
Δη×Δϕ = 0.025 × 0.025 
Central Hadronic |η| < 1.7 :
Fe(82%)/scintillator(18%) 
3 longitudinal sections 7.2 λ
Δη×Δϕ = 0.1 × 0.1 
End Cap Hadronic 1.7 < η < 3.2 :
Cu/LAr – 4 longitudinal sections
Δη×Δϕ < 0.2 × 0.2
Forward calorimeter 3 < η < 4.9 :
EM Cu/LAr – HAD W/Lar 
3 longitudinal sections

EE
8.1%8.1%9.41

E
⊕⎟
⎠

⎞
⎜
⎝

⎛ +=σ

EM LAr + TileCal resolution (obtained EM LAr + TileCal resolution (obtained 
at 1998 Combined TestBeam, at 1998 Combined TestBeam, ηη=0.35=0.35) ) 

Linearity within Linearity within ±±2% (102% (10--300 GeV)300 GeV)
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CMS Calorimeters

Hcal barrel and 
EndCap

Very Forward 
Calorimeter

EM barrel and EndCapPreshower EM |η| < 3 :
PbWO4 cristals 24.7-25.8 X0, 1.1 λ
1 longitudinal section+preshower (3 X0)
Δη×Δϕ = 0.0175 × 0.0175 

Barrel HCal |η| < 1.74, Brass/Scintillator 
2 longitudinal sections (5.9 λ) +
Outer Hcal (2.5 λ for |η| < 1.4)
End Cap HCAL 1.3<|η|<3.0, Brass/Scintillator:
2 longitudinal sections
Δη×Δϕ ≥ 0.0875 × 0.0875

Forward calorimeter 3 < |η| < 5 :
Fe/Quartz Fibre, Cerenkov light

2 longitudinal sections (em for 16 λ,had for 
9 λ)

%4%101
E

⊕=
E

σ

%5.6%127
E

⊕=
E

σ

Single Single ππ resolution (HAD+EM obtained at resolution (HAD+EM obtained at 
combined test beamcombined test beam 1996)1996)

Pions mip in EcalPions mip in Ecal

Full pion sampleFull pion sample
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Jet Reconstruction Algorithms
Both KT and Cone (seeded and seedless) algorithm are being used in ATLAS.

Clusters: any object that can be used as input for the jet reconstruction algorithm 
(calorimetric cells/clusters, MC tracks etc.)

SEEDED CONE ALGORITHM

- Use clusters with ET > 2 GeV as seed.

- Associate all the clusters with ΔR< 0.7 
w.r.t. the seed.

-Iterate until a stable cone axis is found

- Split & Merge: merge two 
jets if overlapping energy is 

more than 50%

The jet has a precise 
geometric shape and 

dimension

KT ALGORITHM

For each cluster pair ij:

- Calculate d=

- If dmin= dii then the jet is done

- if dmin= dij then merge i and j

2

2
ij2

jT,
2

iT,ij

2
iT,ii

D

ΔR
)k,min(kd

kd

=

=

-The shape of the jet is not 
fixed a priori 

- No overlapping jets

D = 1

ΔR = √Δη2+Δf2
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Clustering

Cluster for 120 GeV pion in 
EMEC and HEC (2002 Test Beam data)

At present, cells are clusterized in two ways w.r.t. jet reconstruction:

-Consider calorimetric towers (2D)

-3D clustering accordingly to energy deposits in neighbouring cells (Topological 
Clusters)

TopoClusters – some details:

• Cells with |E/σnoise|>Tseed are used to generate 
a TopoCluster. The adiacent cells are checked 

to be associated to the cluster. Default:             
Tseed = 4σnoise

• Cells with |E/σnoise| > Tneigh are used to expand 
the cluster. The adiacent cells are checked to 

be associated to the cluster. Default:              
Tneigh = 2σnoise

• Cells with |E/σnoise| > Tused can be used to 
expand the cluster. Default Tused=0



27/7/2006 I. Vivarelli-INFN/Università Pisa 21ICHEP ‘06

Noise suppression
Noise treatment is a delicate issue with respect to jet calibration. 
Topological Clusters are a powerful tool to suppress noise. Other  

algorithms are also used to suppress noise

-Negative energy cancellation at 
tower level: KT algorithm cannot 

take negative energies in input. Sum 
up negative towers to the 

neighbours until positive energy is 
reached. Used if towers are used as 

input for the jet reconstruction 
algorithm

-2σnoise symmetric cut: do not 
consider cells with |E| < 2σnoise

Tower noise

2σnoise cut

TopoClusters
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CTB 2004

Middle: 3x3 cluster Energy (GeV)
0 0.5 1 1.5 20

50

100

150

200

250

300
20 GeV pions

Small shift of MC to lower scale.

Agreement in the noise/MIP region

Analysis of the Combined Test Beam 2004 data is ongoing. First 
results about the comparison G4/data 

Data considered: electrons, pions. Energy considered: 20-350 
GeV, at different pseudorapidities. 

Comparison with low energy particles (1-9 GeV) not yet available. 

PRELIM
INARY

PRELIM
INARY

E(MeV)
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CTB2004 (2)
Overall agreement within 2% (η = 0.35). The point at 320 GeV 

needs better understanding.

However, preliminary results 
show that the shower shape has 

to be improved

η
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FP Calibration Scheme

The reconstructed energy Erec is calculated as :

iiMC
i

ic EEEwE ),(Re ∑=
where Ei is the energy of the cell in the sample i. 

The response F=<E/EMC> is calculated in each η bin and a factor 1/F is 
applied as an additional weight 

The dependence of the weights wi on the cell energy are parametrized as:

id
i

i

i
i

iii VolE
VolE

cb
aEw

)/(
)/()(

α
α

+
+=

Where Ei is the cell energy in sample i and Vol is the cell volume
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Theo uncertainties
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Separating Separating PDFsPDFs From The IntegralFrom The Integral
•A NLO Cross-Section for DIS is normally calculated using MC by:

),(
2

)( 2
2

1
mm

p

ms
N

m
m QxqQwW

m

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=∑

= π
α

For events m=1….N, (wm is an MC weight, 
q(x,Q2) a PDF).

•Can instead define a weight grid in (x,Q2), which is updated for each event m:

m
p
ji

p
ji wWW += )(

,
)(

,

Where i, j define a discrete 
point in x,Q2 space relating 
to the event.

•A PDF grid is also defined in x,Q2 as qi,j.

ji

p

s

i j

p
ji qQWW ,

2
)(

, 2
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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α

•Cross-Section can be reproduced by combining the PDF and weight grids 
after the Monte-Carlo run:
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Separating Separating PDFsPDFs From The IntegralFrom The Integral

•This method can recreate the Monte-Carlo cross-section exactly assuming 
grids could be made with an infinitely small spacing in (x,Q2).

•Instead grids with a finite spacing  in x,Q2 are used and interpolation 
methods used between points.

•The situation is a little more 
complicated in the case of hadron-
hadron collisions as PDFs have to 
be considered for both incoming 
particles, hence the grid is three 
dimensional (x1,x2,Q2).

x1

x2

Q2

NLO 
weight

D.Graudenz, M.Hampel, A. Vogt, C 
Berger, D.A. Kosower, C. Adloff, 
S.Chekanov, M Wobisch…..
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Using Integration GridsUsing Integration Grids

NLO event 
generator

Event with 
weight wi,     
x1, x2, Q2

Fill Grid with weight wi, at point 
(x1,x2,Q2)

Step 1: Fill the Grid

Grid of weights in 
(x1,x2,Q2)

PDFs defined at 
(x1,x2,Q2)

Jet Cross-Section

Multiply and add 
over (x1,x2,Q2)

Step 2: Multiply grid by PDFs to generate Cross-Section

SLOW

FAST

QCD Fit

Fortran 
interface
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In situ calibration 
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Use W jj from top decay
Calibration constants to obtain the parton energy in the W jj 

channel (where the W comes from the top decay) can be 
extracted:

• compute R for k bins in E

• apply αk factors on R and recompute R n times => 

jet
i

part
i

iW
PDG
W E

EwithMMR ==≡ ααα 21/

1 2k j jα α α=< >
True n
k k

n

α α= ∏

R

E

EP
ar

t
/ E

E
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Results after recalibration
EP

ar
t
/ E

E

• Corrections calculated on the top sample have been used on a Z+jet 
sample

• Apply same cuts on jets energies
• Jets in the Z sample calibrated at 3-4% level
• Background not included in the analysis

After calib ‘Top’

E

EP
ar

t
/ E

Top        
Z+jets
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