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Abstract

The problem of charge relaxation in disordered systems has been solved. It is shown, that due

to the inhomogeneity of the medium the charge relaxation has a non-Maxwell character. The two

physical mechanisms of a such behavior have been founded. The first one is connected with the

”fractality” of conducting ways. The second mechanism of nonexponential non-Maxwell behavior

is connected with the frequency dispersion of effective conductivity of heterogeneous medium,

initially consisting of conducting phases without dispersion. The new generalized relaxation

equations in the form of fractional temporal integro-differential equations are deduced.
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1 Introduction

As is known the charge relaxation in the conducting medium with e conductivity σ is described

by the following system of the equations:

∂ρ(~r, t)

∂t
+ div(σE(~r, t) = o (1)

div

(

E(~r, t)

)

= 4πρ(~r, t) (2)

In the case of homogeneous isotropic system the relaxation equation follows from this system.

∂ρ(~r, t)

∂t
+ 4πσρ(~r, t) = 0 (3)

The solution of this relaxation has exponential Maxwell form:

ρ(~r, t) = ρ(~r, 0)exp

(

− t

τ

)

(4)

where τ = (4πσ)−1 is the Maxwell relaxation time.

What will be in the case of disordered media? Does the Maxwell exponential law conserve

in the disordered media? At first it seems that the relaxation law conserves its exponential

form with replacement the medium conductivity value for its effective value: σ ↔ σeff But as

it will be shown below that it is not so. The charge relaxation in the disordered system has

nonexponential non-Maxwell behavior in a general case.

Furthermore the nonexponential behavior is observed in many experiments. Usually the

following typical non-Maxwell dependencies are observed:

ρ(~r, t) = ρ(~r, 0)exp

[

−(
t

τ
)ν
]

(5)

It is the so-called empirical Kalraushe law or, in other words, the fractional-exponential law.

The following dependency is a power law [1],[2]:

ρ(~r, t) = ρ(~r, 0)

(

τ

t

)γ

(6)

Here the values of the exponents ν and γ are changed as: 0 < ν < 1, and 0 < γ < 1.

The aim of this paper is to study a charge relaxation in disordered systems and to understand

the physical mechanisms, which lead to such nonexponential behavior, and deduce the general-

ized relaxation equations, describing the nonexponential relaxation The structure of the paper

is as follows. The miscroscopic models of disordered media: comb model of percolation clusters

and heterogeneous two-phase media such as layered and random structures are considered in

paragraph 2. On the basis of these models the physical mechanisms of nonexponential charge

relaxation are established. The generalized relaxation equations of fractional order are deduced

in paragraph 3.
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2 Physical mechanisms of non-Maxwell relaxation

To understand the physical mechanisms of nonexponential and non-Maxwell charge relaxation

we will consider the following microscopical models of disordered systems: comb model structure

and heterogeneous two-phase media (layered and random inhomogeneous medium).

We will show that in the case of the comb model the charge relaxation has a nonexponential

character and it is connected with ”fractality” of conducting percolation ways. The non-Maxwell

relaxation is obtained in the case of the heterogeneous medium also. This mechanism is con-

nected with appearance of ”surface” charge at the interface between phases. The value of this

”surface” charge is changed in the alternative electric field. It results in the emergence of the

frequency dispersion of the effective conductivity of heterogeneous medium is appeared.

2.1 Relaxation on comb model of the percolation clusters

In this paragraph we consider the two-dimensional comb model of the percolation clusters. This

model consists of one-dimensionlal axis (backbone) with fingers of infinite lengths, which are

perpendicular to the axis. Firstly this model is introduced to study anomalous character of

random walks in disordered systems [3]. This model allows to take into account the influence of

the impasses -”dead ends” of the percolation clusters for transport. In Refs. [4], [5] the exact

solution of the diffusion problem on the comb model was given. The feature of the transport

transfer in the considered model is that the movement in the X-direction is possible only along

the axis of the structure (Y=0). This means that the the transfer coefficient σxx differs from

zero only at y = 0:

σxx = σ1δ(y) (7)

Here δ(y) is the Dirac delta-function, i.e. X− component of the current is equal to:

Jx = σxxEx = σ1δ(y)Ex (8)

The conductivity along fingers is considered as usual: σyy = σ2. Thus the charge relaxation on

the comb structure is described by the following conductivity tensor:

σ̂ =

(

σ1δ(y) 0
0 σ2

)

From the continuity equation (1) with the above tensor conductivity and Poisson equation (2)

one obtains the equation for an electric potential ϕ:

(

∂2

∂x2
+

∂2

∂y2

)

∂ϕ

∂t
+ 4π

(

σ1δ(y)
∂2

∂x2
+ σ2

∂2

∂y2

)

ϕ = 0 (9)

Let us make Fourier transformations with respect to time and on coordinate X. So we obtain

that the Green function in the mixed (ω, k, y)- representation is described by the equation:

(

−k2 +
∂2

∂y2

)

iωϕ(ω, k, y) + 4π

(

−σ1δ(y)k2 + σ2
∂2

∂y2

)

ϕ(ω, k, y) = 0 (10)
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Let us search the solution as:

ϕ(ω, k, y) = φ(ω, k)exp(−λ|y|) (11)

Inserting the solution (11) in the equation (10) one finds the parameter λ:

λ = |k| iω

iω + 4πσ2
(12)

and the expression for the function φ:

φ(ω, k) =
1

2λ(iω + 4πσ2) + 4πσ1k2
(13)

So one knows the electric potential (11), it is easy to establish the corresponding Green

function of the equation for a concentration:

G(ω, k, y) =
2λδ(y) + k2 − λ2

2λ(iω + 4πσ2) + 4πσ1k2
exp(−λ|y|) (14)

One can write this result (14) as a sum of the two parts: ”wire” concentration Gl and ”volume”

Gv:

G(ω, k, y) = Gl(ω, k) + Gv(iω, k, y) (15)

where

Gl(ω, k) =
2λδ(y)

2λ(iω + 4πσ2) + 4πσ1k2
(16)

and

Gv(ω, k, y) =
k2 − λ2

2λ(iω + 4πσ2) + 4πσ1k2
exp(−λ|y|) (17)

Let us in a more details consider the time evolution of the ”wire” concentration. As it follows

from (15) it describes by the following equation:

[2λ(iω + 4πσ2) + 4πσ1k
2]ρl(ω, k, 0) = 0 (18)

In the case (ω << σ2) it is simplified:

[
√

4πiσ2ω + 4πσ1|k|]ρl(ω, k, 0) = 0 (19)

Correspondingly, in the (k, t)-representation the generalized relaxation of fractional temporal

order is obtained:
(

∂
1

2

∂t
1

2

+ 4πD̃|k|
)

ρl(k, t) = 0 (20)

where D̃ = 2 σ1√
σ2

After some calculations one obtains the gaussain evolution of the one-dimensional charge

density along axis of the structure:

Gl(x, t) =
exp(− x2

4D̃t
)

2
√

πD̃t
(21)
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As another example we shall find the expression for the Green function, averaged on the coor-

dinate y:

Ĝ(ω, k) =

∫ ∞

−∞
G(ω, k, y)dy =

k2

λ2[2λ(iω + 4πσ2) + 4πσ1k2]
(22)

At the σ2 = 0 this Green function has a simple form:

Ĝ(ω, k) =
1

2|k|(iω + 2πσ1|k|)
(23)

that is it is described the following equation:

(

∂

∂t
+ 2πσ1|k|

)

ρ̂(k, t) = 0 (24)

One can see that it essentially differs from (20) and for (x, t)- representation one obtains a simple

formulae.

Ĝ(x, t) =
V t

x2 + (V t)2
(25)

A similar expression is obtained when the charges are located in the plane and the field has all

three components [6], [7].

In the general case and in the usual (x, t)-representation it is equal to:

Ĝ(x, t) =
V t

x2 + (V t)2
exp(−2πσ2t) +

σ2t

π

∫ ∞

0

V τ

x2 + (V τ)2
I0

(

σ2

√
t2 − τ2

2

)

+I1

(

σ2

√
t2 − τ2

2

)

τ√
t2 − τ2

dτ (26)

Here I0, I1 are the modified Bessel functions, V = 2πσ1.

So in this paragraph the study of the relaxation on comb structure allows to establish the

first mechanism of nonexponential non-Maxwell behavior. It is connected with that the electric

field has a three-dimensional components, but relaxation of charge is possible only along some

conducting lines (percolation ways).

2.2 Relaxation in heterogeneous two-phase media: effective medium aproxi-

mation

To consider charge relaxation in the heterogeneous two-phase conducting media let us transform

the above system equation (1) and (2) to the form of the direct current equations:

div

(

~j(~r, t)

)

= 0, ~j = (σ +
iω

4π
)~e (27)

Consequently, the conductivity at the frequency ω is described by the expression:

σ(ω) = (σ +
iω

4π
) (28)

Accordingly similar equations are hold in an inhomogeneous media for the averaged quantities

~J =< ~j >, ~E =< ~e >:

div ~J = 0, div ~E = 4π < ρ >, J = σeff
~E (29)
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The effective conductivity of the medium σeff depends both the medium parameters and the

frequency. At this approach all information of the medium inhomogeneity is contained in the

effective conductivity. Thus according to (29) to describe charge relaxation in an inhomogeneous

medium within the considered approximation it is enough to know the frequence dependency of

its effective conductivity.

2.2.1 Layered structures

Consider inhomogeneous medium obtained by the random alternation of layers with equal size

and different conductivities σ1 and σ2. Firstly we study the cherge relaxation along layers.

A) Along layers

In this case due to boundary conditions the electric field is homogeneous ~E = const and the

averaging over random placement of phases is carried easily. So in this case:

σeff =< σ > +
iω

4π
(30)

where < σ >= xσ1+(1−x)σ2, and x is the concentration of the first phase. So the corresponding

equation for the averaged concentration is following:

(iω + 4πσ) < ρ >= 0 (31)

The Green’s function of equation (31) is:

G‖(ω) =
G0

(iω + 4π < σ >)
(32)

Transforming this expression to the t-representation one obtains:

G‖(t) = G0 exp[−4πxσ1 − 4π(1 − x)σ2] (33)

B) Across layers

In the case of charge relaxation relaxation across the layers the current is constant ~J = const

and the resistance averages out. Therefore, the effective conductivity of the medum equals:

σeff =

(

x

σ1 + iω
4π

+
1 − x

σ2 + iω
4π

)−1

(34)

while the Green’s function is:

G⊥ =

(

iω + 4π[σ1(1 − x) + σ2x]

(iω + 4πσ1)(iω + 4πσ2)

)

(35)

Consequently, after necessary calculations one obtains in the t-representation:

G‖(t) = G0

[

xexp(−4πσ1) − (1−)exp(−4πσ2)

]

(36)
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2.2.2 Randomly inhomogeneous two-phase medium

In the case of randomly inhomogeneous medium we will use the effective medium approximation

to find the frequency dispersion of the conductivity of the medium, obtained by the random

mixture of two phases. Two-dimensional system is considered for a simplicity. As well known

in this approximation the effective conductivity of this medium is equal to [8]:

σeff = (σ1 − σ2)ε + [(σ1 − σ2)
2ε2 + σ1σ2]

1

2 (37)

where ε = (x−xc)
xc

is the deviation from the percolation threshold xc. (In two-dimensional case

xc = 1
2). As described above in the effective medium aproximation the conductivity of each

phase at the frequency ω is described by the expression (28): σ + iω
4π

. Consequently from (28)

and (37) the following expression for the frequency dependence of the effective conductivity of

a two-phase medium is obtained:

σeff (ω) = (σ1 − σ2)ε + [(σ1 − σ2)
2ε2 +

(

σ1 +
iω

4π

)(

σ2 +
iω

4π

)

]
1

2 (38)

Let us consider some limitings cases.

A) At the percolation threshold ε = 0

In this case the low-frequency generalization of the well known Dykhne result [9] is obtained

from (38):

σeff (ω; ε = 0) = [

(

σ1 +
iω

4π

)(

σ2 +
iω

4π

)

]
1

2 (39)

So the corresponding Green’s function has a following form:

< G(t; 0) >= I0(2π(σ1 − σ2)t)exp[−2π(σ1 + σ2)t] (40)

where I0(x) is a modified Bessel function (σ2 < σ1). Using the known asymptotic expression for

a Bessel function the long-time asymptotic is obtained:

< G(t; 0) >∼ exp(−4πσ2t)

[(σ1 − σ2)t]
1

2

(41)

It is the expected result. At large times the time relaxation is determined by the badly conduc-

tiving phase.

B) Strongly inhomogeneous medium (σ2 << σ1)

In this case we will use the expansion (38) in the form:

σeff (ω; ε) ∼ (σ1 − σ2)|ε|(1 ± 1) +
1

2

(σ1 + iω
4π

)(σ2 + iω
4π

)

(σ1 − σ2)|ε|
(42)

for σ2

σ1
<< ε2 << 1. It is valid far from percolation threshold and a low frequency limit. In this

approximation one obtains in t-representation following expression:

< G(t; 0)± >∼ exp([−4πσ2t − 8πσ1|ε|(1±)1] − exp(−4πσ1t) (43)
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where +(-) sign refers to the situation above (below) the percolation threshold. Thus above

percolation threshold the charge relaxation time depends on the deviation from threshold:

tε (σ1|ε|2)−1. In the case of the dielectric -metal mixture and below threshold a charge, which

placed in the metal cluster, doesn’t spread:

< ρ(t) >∼ ρ0[1 − exp(−4πσ1t)] (44)

One can expect this result, because the metal cluster has a finite size.

In the general case the averaged Green’s function at considered approximation equals:

< G(ω)) >=

[

(σ1 − σ2)ε + [(σ1 − σ2)
2ε2 +

(

σ1 +
iω

4π

)(

σ2 +
iω

4π

)

]
1

2

]−1

(45)

Using the identity
∫ ∞

0
exp(−ατ)dτ =

1

α
(46)

one can transform this equation in a more useful intergral form. After integration over ω one

calculates the Green’s function in the t-represntation:

< G(t; ε) > = I0

(

2π[σ1 − σ2][1 − 4ε2]t

)

exp[−2π(σ1 + σ2)t] − 4πε(σ1 − σ2)

×
∫ t

−∞
exp[−4π(σ1 − σ2)ετ ]I0(2π[σ1 − σ2][(1 − 4ε2)(t2 − τ2)]

1

2 )dτ (47)

The physical reason, which lead to nonexponential non-Maxwell relaxation in the hetetoge-

neous many-phase medium, is connected with frequency dispersion of the effective conductivity.

3 Fractional relaxation equations

Let’s return to the usual relaxation equation:

∂ρ(~r, t)

∂t
+ 4πσρ(~r, t) = 0 (48)

One can see that to describe the nonexponential non-Maxwell evolution of charge relaxation it

is nessesary to change it. Which ways are possible ? We believe that there are two possibilities

of transforming this simple equation in according with physical mechanisms described above.

The first of them - ”fractality” of conducting ways. In this case the electric field is present

in all space, but charge can be spread only along some conductiving ways. These conducting

ways do not get penetrated in all space and they formed the so called ”fractal” space less than

Euclead space. We call it as ”fractality”. The similar reason is discussed also for low-dimensional

systems [6], [7]. As it was shown above for comb model of percolation clusters it is necessary to

write fractional temporal relaxation equation:
(

∂ν

∂tν
+ 4πσ̃

)

ρ(k, t) = 0 (49)

Before the equation in the same form of fractional temporal equation was deduced for regular

fractals [10].
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For a value ν = 1
2 the solution of fractional temporal equation may be written in the obvious

form, using the identity (47) :

< G(t) >=

∫ ∞

0

exp(− τ2

4t
− 4σ̃t)

2
√

πt
dτ (50)

At big times the power law asymptotics is followed from the formulae (51):

< ρ(t) >∼ ρ0

(σ̃t)
1

2

(51)

In the case of heterogeneous two-phase medium the change of the relaxation law from expo-

nential to nonexponential nonMaxwell relaxation law is connected with the frequency dispersion

of the effective conductivity. Let us emphasize that the initial conductivities of the phases σ1, σ2

are independent on frequency. But the frequency dependency arises in the composite material,

consisting of random mixture of the phases. At the interface of the phases the ”surface” charge

appears and when the electric field is changed in time this charge is changed also. It is the reason

of the frequency dependency of the effective conductivity σeff (ω). So the relaxation equation

in this case should have the form in the ω-representation:

(

iω + 4πσeff (iω)

)

ρ(ω) = 0 (52)

Near percolation threshold [11] the singular power dependency of effective conductivity σeff

on frequency ω is possible:

σeff (ω) = σ(ω)µ (53)

where o < µ < 1

Consequently, another fractional temporal relaxation equation is obtained:
(

∂

∂t
+ 4πσ̌

∂µ

∂tµ

)

ρ(r, t) = 0 (54)

One can obtain the fractional-exponential Karlraushe law (5) from (53) using the saddle

point method.

So it is shown that two types of the generalized relaxation equations in the form of the

fractional temporal equations are possible. They correspond to two physical mechanisms, which

lead to the nonexponential non-Maxwell relaxation.
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