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The mathematical model of reverse osmosis-the process of passing ions through a membrane-
can be applied to discribe many physical, biological processes. For this reason, special attention
is given to the building up of such a model. One of the well developed and consistent models
is the model created by D. Ya. Petrina [6] . To discribe the reverse osmosis, the model deals
with a system of diffusion equation in the self-consistent approximation and the electrostatic
equation with boundary conditions.

The solution of a set of equations reduces to the solution of the Poisson-Boltzmann’s equation.
The latter one reduced to the solution of a set of integral equations for the self-consistent
potential and the density of induced charges. The next step towards the solution of the system
of equations on Banach space is to apply Schauder’s theorem of contracting operators. In so
doing, it is essential that periodically located ball-like inhomogeneities created by a membrane
and the subtracting procedure applied in quantum mechanics should be used . In practice |,
the in homogeneities of a membrane can be randomly distributed. The authors of a series of
articles [1-7] devoted to study of the interaction of membrane with charges in its vicinity used
a membrane as a set of inhomogeneities which are distributed by the same functions .

In used models [1],[4],[6], the description of other physical processes, in particular, the il-
lustration of the interactions of ions or particles with a micromedium consisting of microin-
homogeneities or particles, say, electrons, must take both microccopic nature of the particles
and the fact that in a real system inhomogeneities may be randomly distributed around the
lattice sites . In this case the approach to the problem of understanding interaction is with
in the scope of the quantum theory. Hence, it is important that the desired space to solve a
system of equations for the self-consistent potential and the density of induced charges should
be a space of square-integrable functions. Here, the model of reverse osmosis developed in [1],
[4], [6] is generalized to a case of the interaction between a system of charged particles and a
membrane that contains inhomogeneities distributed in the neighbourhood of sites of a planar
cryslal lattice. The problem of the determination of the charge distribution is reduced to that of
a system of integral equations for the mean density of induced charges of microinhomogeneities.
To solve the problem, a space of square-integrable functions is introduced and the subtracting
procedure along with Schauder’s theorem are applied. Then the system of integral equations is
solved on this space. It has been proved that under certain conditions on the density of charges
and the density of microinhomogeneities the unique solution of the system of equations exists.
The results obtained also allow qualitative analyses of reverse osmosis in a studied system to be
made.

In [6] the integro-differential equation that provides a picture of the interaction of systems of
charges particles with a membrane consisting of inhomogeneities was investigated. The authors
of [6] proved the existence and the uniqueness of the solution for the self-consistent potential
under certain conditions if the membrane consists of inhomogeneities located at sites of a planar

crystal lattice on Banach space. Such a problem was studied on Hilbert space in work [8] in



which the same results were obtained. M.Yu.Rasulova [9-11], who studied a complicated process
of interaction, examined a membrane located by the same law in the visinity of sites in a planar
crystal lattice . Under such condition a system of equations for the self-consistent potential
Up(z;€0,€1, .6V, ...) and the density of induced charges o(z;£%, &1, ..., &N, ...) were introduced
and the chief results proved on Banach space.

The present work is an extention of that discussed in [9-11]. It was of interest to verify
the above model on another space. The work under study was made on Hilbert space. The
main results are the following: 1) a system of equations for the self-consistent potential and
the density of induced charges is solved; 2) the existence and the uniqueness of the solution is

proved on Hilbert space.
1.THE STATEMENT OF THE PROBLEM.

Let’s consider a medium filling the whole three-dimensional space R with the dielectric
constant £; and the diffusion coefficients D] and Dy for particles with the charges et and
e~. We introduce into this medium the inhomogeneities-balls of a radius R with the dielectric
constant €9 and the diffusion coefficients D;‘ D, .

Suppose these balls are distributed in the ranges region 7y, — § + Ry, < <+ 5 — Rey.
of the sites of a planar crystal lattice whose unit cells are squares with side a in accordance
with a distribution law with density f(¢¥). Here R, r.-the effective radius of interaction.Let the
densities of distribution functions f(&¥) satisfy the following conditions: f(P;¢F) = f(¢F), and
Sar f(EF)deF = 1. Here €F is the random deviation of the center of ball k from site k and P;
are transformations of reflection of the axes z1,x2,x3 separately: (Pix); = xj;i # j; (Px); =
—xi; A¥ = A, A are the squares of side a — 2R.y.. The set of the balls makes up a dynamic
membrane .

Let © = (x1;29;23) € R3, we dispose the origin in the center of one of the balls;zq,zo axes
are in the membrane plane, i. e. centres of all balls are in the plane x3 = 0.

Denote the density distribution functions of particles with charges e™ and e~ trough
W (2, €0, ..., &N, ..) and W_(z,£9,...,6N, ...), the self-consistent potential via U(x,£°, ..., &N, ...),
and by etUs(z,£0,...,¢N,..)) and e Us(x, €0, ..., €N, ...) the potentials of the interaction of the
point charges e™ and e~ with the charges induced by them on the surface of the membrane.

Suppose that charged particles may exist only in a layer |z3] < L < oo and they are retained

in it by an external field e*U (z, £0,....&N, ...);

e U(z,80,..,6N,.) = { oo if s > L,

0 if |asg| <L,

We shall assume that the potential

‘Ug(l',fo, ---7€N7 )‘ <0



is known. To solve the problem we write down the system of nonlinear diffusion equations
for the distribution functions Wy (z,£°,...,&N,...) and W_(x, £, ...,V ...) and the electrostatic

equation for self-consistent potential Uy (z, &9, ..., &N, ..) [1].

DiAWi(xyéoy ) é—Na ) + 6iﬂDiV(VU({E, 60, sty é—N, "')Wi(‘ryéoa ) é—Na )) = Oa (1)

Uz, €0, .., 6N, ) = eF (U1 (2,60, ..., &N, ) + eFUp(a, €0, . 6N )+ U(x,69,...,€N, ),
Wz, 9. &N, ) =W (2,6, ...,6N,..) =0, |z3] > L,DF = Df ,z € R3/M,

D* = DF x € M;

AU (z,8%,..., 6N, ..) = —6—11(6+W+(x,§0,...,§N,...) +e W_(2,8%,...,6N, ),

AU (2,8, €)= = 60— y)y € R, (2)

1
0 N _ 0 N B B
U2($a€ a"'?g a) - (U2('T’€ ""ag ’) (47T€1|£E—y| =y (3)
with the following conjugation conditions on the membrane surface:
0 N 0 N
Df—aW-f—(x?g 7+7€ 7) _ D;8W+($,§ 7775 7) (4)
ong. ong
_OW_(x, 69, €N . COW (2,69, .., 6N L)
oU (z,€°,..., 6N, ..) oU(z,€°,..., 6N, ..)
€1 T = €2 - )
0 N 0 N
. OUs(x, & ,..Jr.,ﬁ yer) _ gzaUg(m,g ,.;.,5 ,...)’x c oM.

Here # denotes the limiting values of the normal derivations on the outside and on the inside
of the balls, n, is the vector of the unit normal at the point x € OM, and [ is the inverse
temperature.

Besides the conditions (4), we require that

WJr(magOa "'7§Na )7 W,(.T,fo, "'agNa )7 Ul (l‘agoa --'7§N, )7 UQ(mayagoa "'7§Na )

be continuous functions on the membrane surface (for y outside the membrane) and that

W (z, &0 &N, ), W (2,6, ...,6N, )

satisfy the condition of electrical neutrality:

/RS/M 11 /,.(€+W+(x,§°, &N ) e W (2,60, €N L)) F(ED)dx = 0. (5)
=0
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As it is well known [1], the particular solution

Wi(xyéoy'“agN,"') = %emp(—ﬁeiU(m,go,...,gN, )),LE € RB/M (6)

Wi(z, &9 .., &N,..) =W_(z,6°,...¢N,...) =0,z € M,

of the diffusion equation satisfies the conditions (4) and (5) if Uy(x,£0,...,&V,...) is bounded
together with its derivatives. Here, U%r and v% are constants, equal in the spatially homogeneous
case to the densities of the particles. Make up the equation for the mean values with followed

by the solution [3].
Substituting (6) in (2), we obtain a generalized Poisson-Boltzmann’s equation for the self-

consistent potential:

1 1
A< Uy (2,8, .., 6N, ) >= = < [e+v—+(U1(ac,§0, e L) et U (2, €0, €N L))+ (T)

_1 _ _

+e Fexp(—ﬁe (Uy (2, 8%, .., €N, ) + e Up(w, €0, ., €N, )] >,
€ R*/M()|zs] < LA < Us(,°,...,6N,..) >= 0,2 € M.
The solution of the problem (7), (4) is represented in [1] as a sum of volume potentials and

simple-layer potentials created by the induced charges < o (y, €%, ...,£V,...) > on the surface S},
of the balls & :

0 N < Uk: 50 7€N ) >
<Uile. L Z/sk 47r51!m S )

W (y, €0, N L) e Wo(y, €0, 6N L
+/ <e +(y7£ ) 7€ ) )+6 (yvg ) 7€ ) )>dy,l'€R3/Mﬂ|x3|<L7
B /M dreq |z — y|

the densities of the surface charges < oo (x,£%,...,&V,...) > being solutions of the integral equa-

tions

K
< Oa(w(€9),80, eV, ) >= LT 22 Z/ < o ((€), &% €, > 9)

£1+ e 21| < w(€k) > — < y(&F) > |2
x cos(< (%) > — < y(&¥) >, n, <a(ea)>)dS cy(ek)y> — ey
’ Y e1+ &2

/ cos(< x(£%) > Y, Mo, <z (g)>)
" X
R3/M

21| < w(€%) > —yl?
X{< 6+W+(y7§07 a3 €N7 ) + eiw—(y7§07 ey €N7 )} > dy7

where
< oy, &0, €N ) =< op(y(€F), €0, 8 eV L) >=



=11 /A or(y(e"), 60, 8 e L) (e e,
=0

<a(€™) > - <y(Eh) >

is the vector directed from the point < y(£F) > to the point z < £%) >, Ng,<a(¢e)> 1S the outher

normal to S, at the point
<a(e”) >= [ alemr(edsn
Since the total induced charge on each ball on the average is zero,we must have

k

[ IL [ onlo€), €0, s, ) s withagias, =0,
Sk j—o A
We divide the space R? into parallelepipeds:
a a
Vie(z||z1 — aky| < 2 |xe — aks| < 5 00 <3 < 00).

Since
etU (2,89, ..., &N, ..) = 0o, Wy (z,&0,....N,..) =0

for |z3| > L, we determine Uy (z,£°,...,6N,...) in the region
a a d
Vie(z||z1 — aky] < o |z — aks| < o |zs| < L,|z| > 5)
Then the matematical expectations
< U (2,80, .., &N, .) > < ooz, €0, . N, ) >
have the form

L 0 N i i __
11 [ Ui €€ p e = (10)

/ <ak(yk+5k_ak,§0’,..,£k L EN L) > 1S N
- k
W JSk(<er>) dmer|z — yk— < &F > —ak| v

N / <e+W+(yk+ak,§0,...,§N,...)+e*W_(yk+ak,§0,...,§N,...)>dyk
AL drer|x — yk — ak| ’

r=a2"+am,a=0,1,2,..., y() =y + & +ak,k=0,1,2,....

I [ oalole). €, g™ ) x (11)
i=0
N ei €1 €
N et = —
< F§de = -2
s / cos(< z(£Y) > — —yF— < &k > —ak, g cpca)>)
X
0 Si(<ek>) 21| < x(€%) > —yF— < &k > —akl|?



x < op(y® 4+ €F + ak, €9, ...5’“...,§N, ) > dSr—

€1 —¢&2

/ <etWiF+ak, &0, . &N, )+ e Wo(y* +ak, &0, . &N, ) >x
€1+ &2 I Vi
cos(< (&%) > —y* — ak, Mg, cq(eo)>)

d k
o1 < (€%) > —yF — ak|? v

where

z(§Y) = 2%+ &% + ao,a = 0, 1,2,...,y(§k) = yk —i—fk +ak,k=0,1,2,...

(see in [3]).

It follows from the symmetry of the problem that the mean density of the surface changes
<oz, &0, N, ) >
is invariant with respect to the period a, i.e.,
<o(x+ak, &0, N, ) >=<o(z,% .,V ) >.

It also follows from this symmetry that < Uy(z + ak,£&0,..., &N, ..) >=< Uy(z,£°, ..., &N, ..) >.
In addition,it follows from the property f(§) = f(P§) that

§—Rey.
<e>= [ 7 eredg =o.

_%“I‘Reﬁ

Therefore, Egs. (10) and (11) can be written in the form:
<Ui(z® + aa,&°, .., &N, ) >=< Uy (2*,&°, .., &N, ) >= (12)

o0 k k ¢0 N
:Z/ <op(y®+£7%,6°,..,¢ "")>dSyk+
=5 drep|x® — y® — ak|

<etWi(yF, €0 .. &N, ) +e W_(yF €0 .. N, ..) >
+Z/ Gy &) (y". &, 80, ) ",
Vi drey |z — y® — ak]|
<op(a®+EF 4,0 LN, ) >= (13)
=< ooz + 62,60, 5N, ) >=
__f1—& > / cos(x® — y* — ak,ng go) < o (y* + €5, €0, L8 EN, ) >dS .
e1ter f= /s, 27|z — yk — ak|? v

R / cos(x® — y* — ak,nq z0)
e1t+e2 = /s, 27|z — yk — ak|?

x< et W (yF, &0, . &N ) e Wo(yF, €0, .. &N, ) >dyF.

Since the value of a definite integral does not depend on the symbol used for the variable of

integration, in the expressions in the integrand we can make successive changes of variables:

012, = £, am012,. = C,
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and then

yk’k = 0, 1, 2, ee = y,ﬂca\a:m,z... =x.
After these substitutions A =A'= ... =AN=..=A,5 =85 =5 =..=Sy=..=S and
Egs. (12) and (13) take the form
k
<o BN L) >
U ds, 14
< 1(:1? 6 ) ) Z/ 47['61‘.%'— —CLk‘| y+ ( )

Z dy N o N
W.
- & /\/47T61|$—y_ak|{<€ +(ya€ e &5 )+

e W_(y,€°, ..., N, ..) >L

€1 —¢€
oy +&80,.5. N, ) >= —61 — gz X (15)
cos(z —y — ak,ny) 0 € (N €1 — €2
...... s, —
S S o e > s - 2
cos(x —ak,ny) + 0 N - 0 N
XZ/ 27[_‘1,_ —CLkP {< € W+(y7£ 7"'7€ 7-")+e W—(y7f 7"'7€ 7) >}dy7

where V' = Vi |p=0,12,...-

We shall consider the system of equations (14) and (15) in the space whose elements are the

0 N _ U(:E?éo,"'?gN"")
p(x, &, 80, .) = <X(x,§0,,.,,§N,...) ) ’

where U(x,£°, ...,V ...) is concentrated in V = {z € V,£° € A, ....&N € A, ...}, and x(=, €0, ..., &V, )

is concentrated in x € S,£° € A, ...,V € A, ... and satisfies the condition

- 0 N iy g¢i _
/ 11 [ x@ €€, s (€ dg s, 0. 0

pairs of functions

The set of such pairs of functions is a linear space if we perform linear operations over the

columns per component. Introduce a scalar product in the space that:

(p1p2) = /[Ul(m,go,...,gN, (@ 60, €N, )+ (17)
—i—Xl(m,fO,...,XN,...)XQ(x,fo,...,XN,...]d:cdé,
where
0 N _(Ur(w, €0, €N ) 0 N ~(Us(m, €0, .. €N
pl(.%',g 7...,€ 7) = (Xl(x,xo,...,XN,---)) ) PQ(%X 7-.-75 7) = ( X(xjg(]’.“’é'N’_“) )7

and d¢ = deVdel...deN ... The integration goes over all spaces. Next, we introduce the norm in

accordance with the formula

IOI»—‘

ol = [/[U(x,go, oy EN U (2,60, L EN L)+ (2, €0, €N L)X (2, €0, . 6N L)) dx) 2. (18)



The set of such functions with norm (18) is a Hilbert space and we denoted this space by H
Suppose also that < Uy(z,£0,...,&N,..) > and x(x, &Y, ..., &V, ...) > are invariant with respect

to the transformations of reflections of the axes x1,xo,x3 in separate:
<U(Pz, P, ..., PEN | ..) >=< U(x,€°,...,6V,..) >

< x(Pz, PEY, o, PEN, L) >=< x(z, £, LN, ) >

We examine Egs. (14) and (15) in this Hilbert space H. We find divergences associated with

the series

Z 1 Z cos(z —y — ak,ny)
der|x —y — ak|’ 2|z — y — akl|?
when < o(2,60, ..., &N, ) > < et Wi (y, €0, .., N, .) +e W (y,£°, ..., 6N, ...) > . To eliminate
these divergences,we use the substractional procedure of [1]. We expande the kernels of egs.
(14) and (15) in Taylor series in the variables z; — y; at the point 0. The remainder terms of

these expansions are expressed as:

1 1 13 1
K () = - = Y e ilamyol@i — 4] 19
1(z,y) 47T€1[’1'—y—ak| ]ak\ ;(]x—y—ak\)‘ Y o(z y)] ( )
zeV,yeS orxeV,yeV.
xi —yi —ak; | ak;
;L'y):ZCOS(nm,l‘i)(‘x_y_akP+‘ak’?)),k?):O,xvyesorxesaye‘/’ (20)

where the symbol (.); denotes the derivative with respect to (x — y);. We estimate

Z/H/ Ki(z,y)f(€))dedS,, Z/H/ Ka(z,y) f(€1)de1dS,.
k[>2 |k[>2
First we establish some lemmas here.To derivate our theorem;

LEMMA 1. For inhomogeneities in the form of balls of diameter d = 2R takes place:

sup rz/H/ €)d€' K1 (2, )dS,| < sup H/ F(€)de

zeV
eoen  |K[22 geA i=0

gNeA gNeA

X Z/|K1my)]d5 <ed? el < .
|k[>2

LEMMA 2. The following estimation takes place:

3

cos(z —ak,ny i i d
sup i | Z / H/ a2 )f(éf )d&tdS,| < C23,C2 < 00.

B> 27T|$

5NA

For the proof of lemmas 1 and 2 see [1], [3].



THEOREM. For sufficiently low values of the parameters +, L dnd® g leimee] e system

v= 7 3a3 e1+eg ?

of Egs. (14) and (15) has a unique solution in the ball ||p — p°|| < R of the Hilbert space H.

Proof. As a starting point for our proof we apply the substractional procedure to Egs. (14)
and (15) and consider the equations
> [ <o > o f}——i——ﬂw olai = 5)ldS, =0
) |ak| —y—ak| Jle—y=0\L1g 7 Yy )

k|>2 |«

Z / < 6+W+ y €0 € 7"') + eiW_(y7 507 "'7€N7 "') > X
|k|>2
M+ S o= ldy =0
T 7 T 7 lz—y=0\Ti — Y y=2yv,
‘ak’ i=1 ]w—y—ak|] =

ak;
Z / <o y,§0 ,§N >Zcos Ny, T | k|3dS =0,
k|>2
Z / < 6+W+ y €0 € 7"')+€7W_(y7£07"'7€N7"') > X
k|>2
3
aki
X Z cos(Ng, ;) ——=dy = 0,
P lak|3

which follow from the conditions (5) and (16) and also from the invariance of < o(xz,£°,.... &N, ...) > |
< Wi(z,€°,...,6N,...) > with respect to reflections.
We then obtain in the Hilbert space H the equation

< F>=<KF >, (21)
where O )
<F ) >= (Lo e ).
0 N
<o) 2= (S T ) 2),
Here

<oly+68,. 5N, ) >
KF 0 ... &N = /
< 1)(1’75 e & > Z 27751|$—y—ak| d5y+

|k|<2
+> /K1 (2,y) <oy +&¢% .5, 6N ) > dS,+
|k|>2
+ N — 0 N
+Z/ <€ W+ y?é b ?g 7"')+e Wf(?/?é 7"'?6 7"') >dy+
2 dreq|z —y — ak|
+ 3 / K1 (2, y)< e W (5, €0, o €8, ) + e W (5,0, .., €N, ) Sdy+
|k|>2

+ < Uz, €0, .., N, .) >,z eV,

< (KF)(x,€%,...,eN,..) >= — L2y

€1 +ég
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< 0., &N .. —
oW+, 8 )>cos(:v—y—ak‘,nm)d5y—€1 2
€1+ &2

. Z/ 2|z —y —ak‘\Q

k| <2
X%Q/KQ z,y) <oly+&6€° .. &N, )>dSy_%x
x D / Co;r\x - af;;ﬁ””) < Wy, )+ W (y,80, Y ) > dy—
k<2
S /v Cozsga:_—yy_ afl;;x) < Wiy, €0 &V, ) e W (3,60, ., 6N, ) > dy—

f1te2 17
1 _
L / Koz, y){< "W, (5,0, . &Y ) + e W (3,€°, .. €N ) >}dy+

€1+ ¢e2 k>2

+ < 0%, 8%, N, ) >z e S;

N L) = Uiemp(—ﬁ(ei)QUQ(y,fO, LN ...))[e:cp(—ﬁeiU(y,{O, L EN, ) =1

W:?:(y7€07"'7
0 0 N el +12 0
U (x,&°, ..., |k<2/ 47T€1|$— —ak|{e exp( Be™)Ua(y, &, ..., &, ..))+
+€7%6$P(—5(67)2U2(y350a---ny ) ydy + Z / Ki(z,y){e" —emp( BleT)?x
k|>2

XUQ(y’éo, EES) é—N, )) + 6_1)%6‘Tp(_5(6_)2U2(y’50’ EES) é—N, ))}dyv

€1 — €2 cos(x —y —ak,n
O-O(‘T,éo’ "'aé—N’ ) = _E +e / 27(_‘_’1, _y 93) {€+U—€$p(—ﬁ(6+)2x
1F & 2 IV
Z / Ko(x,y)x

1
L))+ e‘v_—exp(—ﬂ(e_)zUz(y,€°7 nr € by — €1 +€2 k]>2

xUs(y, €0, ..., €
X (e Zreap(~H(eT 2y, €, €V, ) + e eap(~ (e Unly, €, - €V, )y,

L dnd® e1-e2 g operator K is contractive in the ball

We show that for sufficiently small U+, i 7. Sl
lo ="l < R, (22)
where
o (< U >)
<x%>

l<Kp>—<p® > =([[lm [ 1<K e ) >~

— < UO(:E’&O’ "'7€Na ) > |2 +| < (KF)2(‘T’€O""7§N5 ) -
— <X, €0, €N L) > 2]de0.dgN L )da)E =

< 0 ..8...&eN ..
/ / [ lim / O EE, e &00) > je0 geN 1
eV k<2 S N—oo JAN 27['[—31’1‘ — Y — ak|

+ Y [Lim [ K@) <o+t

k| >2

N > de0.deN . ]dS,+

11



< etWh(y, &0 . . &N, ) +e W (y, &9, .., &N, ..) >
[1 DS S oo rns deldet...deN .. )d
+|];2/ Nl—rgo/AN drei|x —y — ak| §dg. e Jdy+

+ Z/ [ lim /NKl(m;y){< 6+Wi(y,fo,...,§N,...)+

N
Ik|>2 oo A

+e W (y,€9,..., &N, ) >1de0..deN | dy + [ lim (< Uz, €0, ..., N, ..) > —

0 0 N 0 2 12
- < ,E0,..,E0 ) >)dET .. d + X
(0,0 €,.0) ) g P | - D
<o(y+&6€0,..5.,6N, ) 0l N
X Z / J\}I—I}(I)o//\N S P—— cos(x — y — ak,ny)dE dE ... dEY ...|dSy—
|k|<2
g1 —¢€
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. _ +\2 0 N 0 N 2
/ %Q/VNI@OO/AN |Ka(z;y)lexp(—B(eT)?Us(y, €9, ..., €N, ..))dEO...deN .. | dy)?)
|€1 — €2| |cos ey yp— CL/C,TL:B)|
€1+ &9 / k|<2/V ]\}gnoo /AN 27'(’37 — 9 — ak‘Q X
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/Z/V i [ Ko (2 ) [exp(—B(e ) 2Un(y, €0, ... €, . ))dE0...deN . |dy)2dz) .

N
k| >2 e

|2

In the notation b = max(cs, cg), g = max(cg, 7, cg, ¢10), the inequality (21) takes the form || <
Kp> — <> [ = (0l + R){b+ glB(e™ 2k eap(Be* (1| + R))+ Ble~ Y-k eap(Ble | (160 +
R))}. Tt is possible to choose b,g, 4, L so that || < Kp > — < p’ > || < R, i. e. b+
glB(e®)? Frexp(Bet (10°l] + R)) + Ble™ [*s=exp(Ble”|([I2°l] + R))] < & < 1. Then K is a con-
tractive operator and, Eq. (21) has a unique solution in the ball (22).
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