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Abstract

We discuss a possible strategy for studies of a particular scenario of New
Physics (NP) at LHC. The NP is taken to be a). U -spin symmetric, i.e. it does
not distinguish d and s quarks; b). it makes no contribution to the tree processes,
but contributes differently to penguin and box diagrams and c). it does not spoil
the unitarity of CKM matrix. Our analysis is based on comparison of particular
CKM matrix elements, which can be obtained from the processes dominated by
diagrams of different topology. We argue that the standard formalism of the
overall unitarity triangle fit is not suitable for studies of NP of this kind. We
also stress the utmost importance of lattice computations of some particular set
of hadronic inputs relevant for NP searches.
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1 Introduction

The main interest of the present day flavor physics is focused towards search-
ing for possible signals of New Physics (NP) - the effects which are not taken
into account by the Standard Model (SM). These still hypothetical effects can
be roughly divided into two groups. The first, ”quantitative” one consists of
effects which are present in the SM but whose concrete SM prediction deviates
from actual experimental results. A well known example is given by rare de-
cays strongly suppressed in the SM but expected to be enhanced in some NP
scenarios. Another, ”qualitative” group, is formed by the effects which are not
present in the SM at all, like possible observation of nonconservation of any
charge (baryon, electric etc) strictly conserved in the SM. At the moment there
are no clear indications on possible NP effects of either kind. The strong hope
however is that the situation will change in the nearest future with the run of
LHC. Of prime importance in flavor physics is an analysis of the CKM mixing
matrix. The commonly accepted parametrization-independent language used to
discuss the rich physics encoded in CKM matrix is formalism of the unitarity
triangle (UT). For introduction into the subject and all details the reader is
refered to the materials presented on [1, 2, 3, 4] and to excellent recent reviews
[5, 6].

The issue of NP search in flavor physics context is certainly much broader
than the mere check of CKM matrix unitarity, however precise it can be. Of
course, any inconsistencies in the UT construction will undoubtedly indicate the
presence of physics beyond SM. The opposite is far from being true - there are
many reasonable NP scenarios which are well compatible with perfect unitarity
of CKM matrix.

There are different possible strategies to study the CKM matrix. The most
popular one, adopted in particular by UTfit and CKMfitter groups [1, 2] is to
use all available experimental data to overconstrain the triangle. Besides general
importance of this activity the hope is that the procedure will exhibit some
inconsistencies signaling NP effects. Up to now there is an overall agreement of
all constraints (see recent talks [7, 8]).

However, this approach also has some disadvantages. In our view, the most
important one is the fact that the set of constraints in use is not fitted to this
or that particular NP scenario. On the other hand, the relevance of this or that
observable from the point of view of its possible NP content strongly depends
on what kind of NP we discuss. Let us explain this point taking as a typical ex-
ample ∆Ms/∆Md ratio. For all scenarios where NP couples identically to s and
d quarks (U -spin symmetric NP) this ratio is not sensitive to NP contributions,
since in this case short-distance functions, even if modified with respect to the
SM predictions for each ∆Md, ∆Ms exactly cancel in the ratio. This pattern is
typical for, e.g. constrained minimal flavor violation (CMFV) NP models (see
review of MFV models in [11]). As a result this quantity informs us about ratio
of couplings of t-quark to d and s-quarks and also about long-distance SU(3)
breaking effects in QCD (see expression (10) below), but brings no information
about correctness of the short-distance SM calculation of ∆Md or ∆Ms sepa-
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rately. And it is precisely the latter short-distance piece we are interested in
most of all if we are looking for deviations from the SM at small distances. On
the other hand, there are NP scenarios such as, e.g. MSSM at large tanβ (see
[9] and references therein) and next-to-minimal flavor violation [10] where this
is not the case and the ratio under study is sensitive to NP. Moreover, it is very
natural to expect (and this is our general attitude in the present paper) that
NP contributes differently to the processes of different topology (i.e. tree and
penguin, penguin and box etc). Obviously, this effect can be lost in compari-
son of observables of the same topological type. In view of that an alternative
way has been proposed (see, e.g. [12, 13] and also [1, 2, 9, 14, 15] and refer-
ences therein). Generally speaking, it corresponds to construction of a few a
priori not coinciding unitarity triangles, each extracted from branching ratios
and asymmetries for processes of some particular kind. In this case any mis-
match between these UT’s, e.g the so called ”reference UT” [13] and ”universal
UT” (see recent discussion in [9]) would be a clear signal of NP, and, moreover,
one could in principle identify the place (EW penguin sector is among the most
promising ones) where it has come from.

Adopting the basic idea of the latter strategy we address the following prob-
lem. Let us assume the still hypothetical NP is, in the spirit of next-to-minimal
flavor violation scenario: a). U -spin symmetric; b). does not contribute to the
tree processes and c). does not spoil the unitarity of CKM matrix (i.e. we work
in the spirit of next-to-minimal flavor violation scenario). How can we see NP
from global UT fits and what observables are the most sensitive to NP effects
in this particular case?

To answer this question, we analyze theoretical and experimental (having in
mind mostly the LHCb experiment) perspectives for studies of some CKM ma-
trix parameters which can be extracted from the processes of different topology
and can be sensitive to NP of the discussed type. It is worth noticing that the
mismatch between sin 2β values from B → J/ψKS and from B → φKS modes
widely discussed in recent literature (see, e.g. [5, 16] and references therein)
represents exactly a kind of effects we are interested in. We will also stress the
urgent need for new refined lattice data on hadronic input parameters in order
to determine the product |VtsV ∗

tb|.
The paper is organized as follows. The section 2 is devoted to brief overview

of the existing strategies for CKM matrix analysis, while our procedure and
results are presented in the section 3 and conclusion in the section 4.

2 Overview of the standard strategy

In general one can choose different sets of independent parameters which enter
the basic unitarity relation1

VudV
∗

ub + VcdV
∗

cb + VtdV
∗

tb = 0 (1)

1As well as five other unitarity triangles
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It is worth noticing that the term ”independent” is usually used in the litera-
ture in mere algebraic sense, i.e. one assumes no relations between CKM matrix
elements other than those following from the unitarity constraints. This assump-
tion may be wrong if some more fundamental underlying structure behind CKM
matrix does exist. A common choice for one of the parameters is

s12 = λ = |Vus| =

{

(0.2265± 0.0020) [1]
(0.2258± 0.0014) [2]

(2)

This quantity can be determined with very good accuracy from the decay mode
K → πlν with the latter being dominated by tree level process. The main
source of error here is the poor knowledge of the corresponding formfactor f+(0),
namely, according to [17] δ|Vus|f+(0) = ±0.0018, δ|Vus|exp = ±0.0005.

The interior angles of the triangle (1) are conventionally labeled as

α = arg

(

− VtdV
∗

tb

VudV ∗

ub

)

, β = arg

(

−VcdV
∗

cb

VtdV ∗

tb

)

, γ = arg

(

−VudV
∗

ub

VcdV ∗

cb

)

(3)

The Cabbibo-suppressed angle χ important for Bs − B̄s oscillations is defined
by

χ = arg

(

−V
∗
csVcb
V ∗
tsVtb

)

(4)

and is also of interest. Let us briefly remind the strategy for γ. The cleanest
way to extract it is from the interference of the b→ cūs and b→ c̄us transitions
(the so called ”triangle” approach). Practically, this corresponds to the study
of B− → K−D0 and B− → K−D̄0 modes with the subsequent analysis of the
common final states for D and D̄ mesons decays. One considers CP -eigenstates
as final states for D, D̄ mesons decays (GLW approach [18]) or combines ob-
servables from different modes (B → K∗D, B → KD∗, B → KD, B → K∗D∗)
(ADS approach [19]) to overconstrain the system.2 Notice that the interfering
diagrams are the tree ones.3

The combined results for γ presented in [3] obtained by Dalitz plot analysis
[21] are given by

γ = 67◦ ± 28◦ ± 13◦ ± 11◦ [BaBar] ; γ = 53◦ ± 18◦ ± 3◦ ± 9◦ [Belle] (5)

where the errors are statistical, systematic and the error resulting from the
choice of D - decay model. For the discussion of the situation with γ determi-
nation in LHCb the reader is referred to [22].

Using various methods the overall uncertainty in γ at LHCb is expected to
be as small as 5◦ in 2fb−1 of running and will eventually reach the level of 1◦

with increase of statistics.

2The same strategy can be applied to the case of Bc mesons, where it has some theoretical
advantages [20]; however the experimental statistics becomes the main obstacle there.

3This mode is not completely NP-safe since in principle the latter can enter through D0
−D̄0

mixing.
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With the standard assignment for the elements of CKM matrix (see, e.g.,
[6])

s12 = λ ; s23 = Aλ2 ; s13 exp(−iδ13) = Aλ3(ρ− iη) (6)

to define the apex of the unitarity triangle

ρ̄ = ρ

[

1 − 1

2
λ2

]

; η̄ = η

[

1 − 1

2
λ2

]

(7)

one needs to know at least two independent quantities out of two sides

Rb =
|VudV ∗

ub|
|VcdV ∗

cb|
=

√

ρ̄2 + η̄2 ; Rt =
|VtdV ∗

tb|
|VcdV ∗

cb|
=

√

(1 − ρ̄)2 + η̄2

and three angles α, β, γ where the latter are defined by (3). In particular,
the authors of [15] analyzed all ten possible strategies, distinguished by the
mentioned choice of two independent parameters out of five from the point of
view of their efficiency in the determination of UT. For example, our geometrical
intuition tells us that it is easier to construct general non-squashed triangle
taking as inputs one of its angles and adjacent side (because the variations in
these parameters are approximately orthogonal) than taking the same angle and
the opposite side (because the variation in these parameters are approximately
parallel). Numerical simulation done in [15] fully supports this intuition, giving
the highest priority4 to the strategies based on combined use of either (γ, β) or
(γ,Rb).

This result is particularly encouraging because the quantities Rb and γ define
the so called reference UT [12, 13]. The latter is built from the observables that
are expected to be unaffected by NP, since their dominant contributions come
from tree level processes. Then assuming unitarity of CKM matrix one can
compute from (1) reference values for

Rt =
√

1 +R2
b − 2Rb cos γ ; cotβ =

1 −Rb cos γ

Rb sin γ
(8)

and compare them with the ones obtained by direct measurements in the pro-
cesses involving loop graphs. Any difference could be a hint for a NP signal (see
recent quantitative discussion of this issue in [9]).

The elements of CKM matrix which enter the definition of Rb (up to terms
O(λ4)

Rb =

[

1 − 1

2
λ2

]

1

λ

|Vub|
|Vcb|

are known from semileptonic B-decays. The recent inclusive update is given by
[1] |Vcb| = (41.79 ± 0.63) · 10−3.

Experimental determination of |Vub|incl suffers from uncertainties, intro-
duced by specific cuts one has to apply in order to get rid of b→ c background.

4In other words, to compute (ρ̄, η̄) with a given precision pair (γ, β) may be known with
lower accuracy than, e.g. pair (Rb, β).
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As for |Vub|excl the main source of error is lattice uncertainty in calculations of
B → π, ρ form-factors. Up to date results are given by [3] as

|Vub|incl = (4.4 ± 0.3) · 10−3

and
|Vub|excl = (3.8 ± 0.6) · 10−3

At the moment the perspectives to increase the accuracy in experimental
determination of Rb up to a few percent level are unclear. As can be seen from
Fig.1 and Fig.2, the errors in γ and Rb play a very different role in fixing the
angle β with some given precision, which is a simple consequence of the fact
that the angle α is close to 90◦ and the triangle is almost rectangular. The
present accuracy in β extracted from the ”golden mode” B → J/ψKS is better
than ±2◦, the current world average for sin 2β from tree level decays provided
by [3] is (see recent talk [23] and references therein):

sin 2β = (0.674 ± 0.026) (9)

The corresponding penguin contribution to β is Cabibbo-suppressed (see, e.g.
[16]). As shown in Fig.1 an uncertainty window of ∼ 3◦ for β corresponds to
an uncertainty window of ∼ (24 ± 5)◦ for γ and therefore the precise data (9)
does not constrain γ via (8) strongly enough to make the comparison discussed
above meaningful. On the other hand, since both β from (9) and γ from (5)
are determined from the processes dominated by tree level decays, we do not
expect to see violation of the second expression from (8) with these values of the
angles. Anyway, the experimental uncertainty in γ and hadronic uncertainties
in Rb make (8) not valuable.

Let us briefly discuss the side Rt. The are two ways of extracting Rt by
means of relations not affected by NP contributions in some scenarios, notably
CMFV. These are the computation of Rt from the first expression in (8) and
the computation from the ratio ∆Md/∆Ms where, again, short distance contri-
butions to the box diagrams are canceled.5 Concerning the former algorithm,
because of the same geometrical reasons (angle α close to 90◦) Rt is sensitive
to the uncertainty in the angle γ only (see Fig.3). Thus, precise knowledge of γ
will constrain Rt effectively. In the latter approach one obtains the ratio

|Vtd|
|Vts|

= ξ

√

mBs

mBd

∆Md

∆Ms
(10)

with the nonperturbative parameter6

ξ2 =
B̂Bs

f2
Bs

B̂Bd
f2
Bd

(11)

5As has been already mentioned, in MSSM at large tan β the quantity Rt is sensitive to
the different Higgs couplings to d and s quarks.

6ξ = 1 in case of exact flavor SU(3).
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The typical error of current lattice simulations of ξ is estimated as 6% (see [24]
and recent analysis in [25]). Since up to O(λ4)

Rt =
ξ

λ

√

∆Md

∆Ms

√

mBs

mBd

[

1 − λξ cosβ

√

∆Md

∆Ms

√

mBs

mBd

+
λ2

2

]

then having at our disposal recent CDF results [26] (see (22)) we can straight-
forwardly extract for the mean value Rt = 0.92 with the uncertainty dominated
by ξ.

Let us summarize this part. Suppose we would be able to measure Rb and γ
with some very high precision. This defines the position of the UT apex which
is universal as soon as NP does not contribute to tree processes Rb and γ have
been extracted from. Let us also assume that we get Rt from ∆Md/∆Ms and
β from B → J/ψKS, and these observables perfectly agree with Rb and γ via
(8) (i.e. the UT apex defined from Rt and β coincides with the one found7 from
Rb and γ). Does this fact mean dramatic shrinking of NP parameter space?
Not at all: for NP scenarios with U -spin invariance and without sizeable NP
mixing effects8 this coincidence is trivial and brings no any information about
the parameter space. One can tell that UT is simply too rough tool to see NP
of this kind. In other words, the precise knowledge of ξ is important in this case
to calibrate the lattice, but not to find the NP.

3 Direct comparison of CKM matrix elements

from different processes

In what follows we are going to explore a complementary strategy whose essence
is the comparison of values of CKM matrix elements, obtained from processes
with dominant contributions coming from diagrams of essentially different topol-
ogy. Again one can consider angles and sides in this respect. We are interested
in observables, corresponding to the processes whose dominant contributions
come from topologically different diagrams, namely:

• radiative penguin in decay modes B → K∗γ, Bs → φγ and B → (ρ, ω)γ,
Bs → K̄∗γ, for s and d quarks, respectively

• oscillations of neutral B0 and Bs mesons with the dominant contribution
given by box diagram, resulting in the mass shifts ∆Ms, ∆Md

• tree and strong penguin interference in B decays into 2-body final states
made of light hadrons π, K, ρ and mixing relevant for the angle α deter-
mination

7Of course, any other pair can actually be used, see discussion above.
8NP physics contributions in the box diagrams could in principle affect both γ and β via

D0 − D̄0 and B0 − B̄0 mixings.
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For the first and the second mode the object of our interest is the product
|V ∗

tbVts|. For the third mode we confine our attention to the angles α, β and χ.
The reference values for these quantities are defined from tree level processes,

since we adopt the usual assumption that they are free from NP pollution. One
can make use of the ”tree level definition” for |V ∗

tbVts| ↔ |V ∗

tbVts|tree, which up
to terms O(λ4) reads

|VtsV ∗

tb|tree = |Vcb|
[

1 − λ2

2
(1 − 2Rb cos γ)

]

(12)

We have already discussed the corresponding numerical values and their uncer-
tainties. Plugging them in, we get

|VtsV ∗

tb|tree = (41.3 ± 0.8) · 10−3 (13)

As for the angle α, its reference value is given by

αtree = π − β − γ (14)

where the extraction of β and γ from tree level processes is described above.
As for the angle χ, there are no experimental constraints on it at the moment.
The SM prediction is |χ| ≈ 0.02 ÷ 0.04.

3.1 Analysis of |V ∗

tbVts|.
Let us start with the analysis of |V ∗

tbVts|. Values of these elements of the CKM
matrix must exactly coincide in the SM, regardless of the way they are extracted.
On the other hand, lack of such coincidence will be a definite signal of NP,
contributing differently to these different types of processes. Qualitatively, one
can consider ratios of the following kind

ζ
(1)
q,V =

|V ∗

tbVtq|∆Mq

|V ∗

tbVtq|B→V γ
; ζ

(2)
q,V =

|V ∗

tbVtq|B→V γ

|V ∗

tbVtq|tree
; ζ

(3)
q,V =

|V ∗

tbVtq|tree
|V ∗

tbVtq|∆Mq

(15)

where q = d, s and V stands for K∗, φ, ρ, ω. Thus we have three ways to extract
the product |V ∗

tbVtq| of CKM matrix elements: via expression (18) from the
process dominated by the radiative penguin diagram, via expression (19) from
the process dominated by the box diagram, and via (12) from the reference tree
level processes. It is obvious that by construction one has

ζ
(1)
q,V · ζ(2)

q,V · ζ(3)
q,V ≡ 1 (16)

In the SM however much more restricted condition has to be fulfilled:

ζ
(1)
q,V = ζ

(2)
q,V = ζ

(3)
q,V = 1 (17)

It is convenient to present a set of three numbers {ζ(1)
q,V , ζ

(2)
q,V , ζ

(3)
q,V } as a single

point on the ternary coordinate system with log ζ
(i)
q,V as an (algebraic) distance
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from the i-th axis. Then the SM case corresponds to the only point on this
diagram - its origin, while any deviation from it is a hint to NP.

The analysis of ratios of the mass shifts ∆Md/∆Ms and branchings Br(B →
ργ)/Br(B → K∗γ) widely discussed in the recent literature [25, 27, 28] deals

in our language not directly with the quantities ζ
(i)
q,V , but with their ratios like

ζ
(1)
s,K∗/ζ

(1)
d,ρ. The important advantage of these ratios is the improved accuracy

of their theoretical determination, especially from the point of view of hadronic
uncertainties. However the price to pay is high - the short distance factors which
could contain contributions of NP are canceled in these ratios. In logarithmic
coordinates it corresponds to a parallel translation, which could miss a consid-
erable piece of NP, which is clearly seen from the analysis of [25]. In short,

ζ
(1)
s,K∗ = ζ

(1)
d,ρ = 1 implies ζ

(1)
s,K∗/ζ

(1)
d,ρ = 1, but not vice versa.

Generally speaking, it is meaningless to look for (short-distance) deviations
from the SM predictions if one has no quantitative knowledge what the latter
actually are. Therefore as soon as we are discussing absolute values of mass
shifts, widths etc, these short distance parameters should be determined and
not just canceled in the ratios. Corresponding loss in an accuracy for hadronic
contributions is perhaps inevitable. Anyway we are stressing that one has to
deal with this ”less accurate” low energy hadronic inputs if one tries to capture
the short-distance effects of NP. For example, it is meaningless, in our view,
to consider soft quantities as free parameters to fit observable branching ratios.
Any possible NP induced difference between, e.g. the SM prediction for Br(B →
V γ) and actual experimental result would be just hidden inside such ”extracted

from experiment” |ξ(K
∗)

⊥
(0)|, which is clearly unacceptable. Simply speaking, to

discuss deviations from the SM prediction we have first to know the latter.9

In principle, one can discuss five expressions of the kind (16), corresponding
to the following choices for (q, V ): (s,K∗), (s, φ), (d, ω), (d, ρ), (d, K̄∗). How-
ever all these channels have universal short-distance structure, while the long-
distance contributions are related to each other by SU(3) flavor arguments. The
optimal strategy therefore seems to choose just one particular case, which we
take to be (s,K∗) in the rest of the paper. The results for the other ones could
provide important cross-checks (like, e.g. |Vtd|/|Vts| ratio), but presumably no
new information about a NP content of (16).

We are using the standard SM expressions for the decay rate for B → K∗γ
and the mass difference ∆Ms. The former can be written as [28, 29, 30]:

Γ(B → K∗γ) =
G2
Fαm

3
Bm

2
b

32π4
(1 − r)3|a7(µ)|2|ξ(K

∗)
⊥

(0)|2|VtsV ∗

tb|2 (18)

In the above expression r = m2
K∗/m2

B, mb stands for the pole mass of b-quark,

a7(µ) = C
(0)
7 +A(1)(µ) is an absolute value of the corresponding short-distance

function including Wilson coefficient C
(0)
7 , hard scattering contributions and

9As is correctly pointed out in [2] ”a model-independent UT analysis beyond the SM
cannot be carried out without some a priori theoretical knowledge of the relevant hadronic
parameters.”
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annihilation corrections. The detailed computation of this function at the next-
to-leading order can be found in the cited papers. Notice that we omit terms

of the order of m2
s/m

2
b. The factor |ξ(K

∗)
⊥

(0)| differs from the corresponding
form-factor TB→K∗

1 (0) by O(αs) corrections; according to [31] numerically one

has |ξ(K
∗)

⊥
(0)| ≈ 0.93 · TB→K∗

1 (0).
The expression for ∆Ms reads as follows:

∆Ms =
G2
F

6π2
ηB[M2

WFtt]mBs
(B̂Bs

f2
Bs

)|VtsV ∗

tb|2 (19)

where ηB is calculable short-distance QCD factor, while the mt/MW -dependent
factor FttM

2
W has come from calculation of the box diagram ([32], see also

[33, 34]).
According to our strategy we invert the expressions (18) and (19) to the

following form:

|VtsV ∗

tb|B→K∗γ =
4π2

|a7(µ)| ·
√

2Γ(B → K∗γ)

G2
Fαm

5
B(1 − r)3

·
[

1

|ξ(K∗)
⊥

(0)|

(

mB

mb

)

]

(20)

and

|VtsV ∗

tb|∆Ms
=

π√
ηBFtt

·
√

6∆Ms

G2
FM

2
Wm

3
Bs





mBs

fBs

√

B̂Bs



 (21)

The structure of the above expressions is clear. The first factors in the
r.h.s. are the short-distance SM contribution, which have to be calculated an-
alytically. These are just numbers of order 1 and it is assumed that we have
reliable theoretical control of this part. The typical accuracy of these factors
is better than 5%. The second factors (the square roots) are composed from
experimentally measurable quantities. The error in these factors is dominantly
experimental and is currently at the 5% level for (20) and 1-2 % level for (21) .
The third factors (in the square brackets) encode information about soft QCD
contributions (and related problem of b quark pole mass mb) for which we have
no systematic approach of studying. The main hope here is focussed on the
lattice simulations.10 The uncertainty of currently available data can be conser-
vatively estimated as 10-20 %. The use of (20), (21) as probes for NP entirely
depends on improvement in the determination of these hadronic factors.

The quantities of our interest are TB→K∗

1 (0) and fBs

√

B̂Bs
.The reader is

referred to the papers [35] - [40] and the papers [41, 42] for lattice and sum
rule determination of TB→K∗

1 (0), respectively. The corresponding values are in

the range 0.2 − 0.4. The relevant references for fBs

√

B̂Bs
are given by papers

[43] - [46]. Looking at the data one can see that there is no clear agreement

10Notice that we have included the B-meson mass mB to both factors in (20) to provide
normalization. Indeed, it can be understood as being taken from real experiment, on the other
hand since any reliable lattice simulation must be correctly normalized to this experimental
value of the mass, the treatment of mB as a lattice output should make in fact no difference.
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between, e.g. lattice computations and light-cone sum rules results. Moreover,
the errors given by the authors of the cited lattice papers are mostly statistical
ones. The procedure of correct treatment of systematic errors in this case is not
yet known. In fact, the same is true for the sum rule calculations. In general,
precise determination of TB→K∗

1 (0) on the lattice is very difficult and reliability
of the calculations done so far is debatable (see [47] and recent discussion in
[48]). However the utmost importance of this measurement, which hopefully
will be done in the nearest future on new improved lattices in unquenched case
cannot be overestimated.

Thus, having no better strategy at the moment, we will be conservative in

our error treatment and take for the input value of fBs

√

B̂Bs

fBs

√

B̂Bs
= (280 ± 40) MeV

while we also consider three sets of possible values for TB→K∗

1 (0), where the
errors correspond to those reported in the cited papers:

Set A : TB→K∗

1A (0) = (0.25 ± 0.05)

Set B : TB→K∗

1B (0) = (0.30 ± 0.05)

Set C : TB→K∗

1C (0) = (0.35 ± 0.05)

The ultimate goal should be to reach the accuracy of the lattice computations
comparable to the accuracy of the r.h.s. of (25).

Finally, let us recall the experimental data for Bs meson levels splitting ∆Ms

[26] and branching ratios for the decay B → K∗γ. They are given by

∆Ms = [17.33+0.42
−0.21(stat) ± 0.07(sys)]ps−1 (22)

and

Br(B− → K∗−γ) = (4.25 ± 0.31 ± 0.24) · 10−5 [49] (23)

Br(B− → K∗−γ) = (3.87 ± 0.28 ± 0.26) · 10−5 [50] (24)

For the life time of B− meson we use the value τ = (1.652±0.014) ps [51], while
the masses (in MeV) are given by [51]

mB = (5279.0 ± 0.5) ; mBs
= (5367.5± 1.8) ; mK∗ = (891.66± 0.26)

Other short-distance inputs are collected in the Table 1.
We have all input data now to estimate the ratios ζs,K∗ . According to the

three choices of numerical value for the form-factor TB→K∗

1 (0) we get three sets

of ζ
(i)
s,K∗ . The results are presented in Table 2. For graphical presentation one

can use planar ternary coordinates where the constraint
∑3
i=1 log ζ

(i)
s,K∗ = 0 is

satisfied automatically. Each solution is represented by a single point on this

plane with the distance from the i-th axis to the point given by log ζ
(i)
s,K∗ . It is
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taken positive for two axes forming an angle the point belongs to and negative
for the remaining distant axis. With this rule each point on the plane satisfies
the constraint (16). Some sample result for the case [44]-B is shown on Figure

4. Notice, that the bars correspond to 1σ deviation in ζ
(i)
s,K∗ , not in log ζ

(i)
s,K∗ .

The fact that they cross the corresponding axes means less than 1σ deviation of
the actual result from the SM prediction. The origin of this ternary coordinate

system corresponds to log ζ
(i)
s,K∗ = 0 for all i, which is the SM solution.

The main qualitative conclusion is perhaps not surprising: with the rea-
sonable choice of parameters we observe no evidence for NP within error bars.
There are two optimistic remarks however. The first is that our errors are very
conservative and significant reduction of at least some of them is foreseen in
the nearest future. Secondly, the errors in the Table 2 are not independent.
There are two sorts of correlations. The first is the uninteresting ”kinematical”
one, following from the constraint (16). The second pattern corresponds to the

error correlation for lattice simulations of TB→K∗

1 (0) and fBs

√

B̂Bs
. So far

these two inputs have been measured independently, by different lattice groups
and within different procedures. Correspondingly, the errors shown in the Ta-
ble 2 are also treated as independent. On the other hand, it is reasonable to
expect an error reduction for the simultaneous calculation of TB→K∗

1 (0) and

fBs

√

B̂Bs
and we call the attention to importance of such simulation, using the

same framework (lattice action, chiral extrapolation procedure etc) and uniform
error treatment. It is reasonable to expect that this would result in a better

accuracy, first of all for the quantity ζ
(1)
s,K∗ . Speaking differently, if one assumes

no NP (i.e. ζ
(1)
s,K∗ = 1) one is to get

mb|TB→K∗

1 (0)|

fBs

√

B̂Bs

= 778 · [Br(B → K∗γ)]
1/2

(25)

where the uncertainty in the numerical factor 778 is of order 5% and is mostly
theoretical.11 This SM prediction demonstrates the level of precision the lattice
computations must reach in order to make reliable conclusion about NP based
on the lattice results. We consider the check of (25) on the lattice as a task of
primary importance.

3.2 Analysis of the angle α

The angle α can be extracted from the two-body decay modes of B into light
hadrons π, ρ and K (see recent review [52]). From the theoretical point of view
the best channel seems at present to be B → ρρ [53, 54]. The most promising
channel for α at LHCb however is B → ρπ → πππ [55, 56]. The basic idea of the
analysis [57] is to study the interference of the tree amplitude proportional to
the weak phase factor eiγ from V ∗

ubVud and the penguin amplitude proportional

11The uncertainty in experimental value of ∆Ms is small.
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to factor e−iβ from V ∗

tbVtd. Writing down also the amplitudes for CP -conjugated
modes and imposing isospin relations, one can fit four amplitudes, four strong
phases and one weak phase from 11 observables (see details in [56]). The ex-
pected uncertainty in α of LHCb is about 10◦ in one year of running [22]. It
can be mentioned that the recent result presented by BaBar collaboration [58]
for α from B → ρπ channel is

α = (114 ± 39)◦ (26)

while the data uncertainty for B → ρρ mode is ±13◦ [49]. The above analysis
assumes no electroweak penguin contributions. According to the estimates [54],
δαEWP = −1.5◦. The isospin breaking effects controlled by parameter (md −
mu)/ΛQCD are expected to be of the same order of magnitude.

For α defined as an argument of the amplitude ratio one gets (see details in,
e.g. [6])

2αeff = arg

[

−e−iθ12A(B̄ → f)

A(B → f)

]

= arg

[

−e−iθ12 e
−iγ − reiθ+iδα

eiγ − reiθ−iδα

]

(27)

where θ12 is the B0 − B̄0 mixing angle, θ is strong penguin phase, r is an
absolute value of penguin-to-tree ratio and δα is possible weak NP penguin
phase.12 In the absence of penguins, i.e. if r = 0 and if θ12 = 2β (as in the
SM), one gets αeff = αtree with αtree defined by (14). It is worth stressing
(see early discussion of related issue in [12]) that for the discussed scenario the
corresponding NP phase shift δα is to coincide up to a sign with that to the
angles β and χ:

δβNP = β(B→φKS) − β(B→J/ψKS) = −δα = δχ (28)

due to the assumed U -spin invariance.13 Also it has to be noticed that the box
diagram corresponding to the B0 − B̄0 mixing contributes identically to the
discussed decay modes and its contribution to the phase (with a possible NP
part) is canceled in (28). Certainly beyond the SM one could have θ12 6= 2β,
but this phase shift may have no direct relation to the discussed shift δα =
−δβ, resulted from the penguin process. Thus we are left with the only NP
contribution from the penguin-mediated decay (with respect to the tree level
one). We see that the ability to extract δα from experiment (i.e. from αeff )
crucially depends on the value of r, since given experimental uncertainty in αeff
corresponds to larger uncertainty in δα smaller the ratio r is. The combined
fit of the data for B → ρπ and other modes (notably B0 → K∗

0ρ0) taking into
account nonzero penguin NP phase δα is being performed and will be reported
elsewhere. Here we would like to notice that the experimental accuracy of δβ
is currently limited by the statistics of B → φKS decay and recent update for
sin 2β from penguin decay modes as given by [23] is sin 2β|peng = 0.58+0.12

−0.09±0.13

12The above assignment is self-consistent for r <
∼

1, where terms in r which are nonlinear
in penguin amplitudes can be neglected.

13See discussion of the related issue in supersymmetric context in [60].
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which correspond to about 15◦ uncertainty window in the angle β. It is worth
mentioning that this penguin-dominated mode would not allow to get sin 2β
(and hence δβ) with competitive precision at LHCb, since the latter is expected
to be about 0.2 in 2fb−1 of running [22]. Higher accuracy should be possible for
Super-B factories.

4 Conclusion

The standard approach to study CKM matrix is to overconstrain the UT using
all available experimental information. However not all constrains on the (ρ, η)
plane are sensitive to NP, at least if the latter is taken in the form of next-to-
minimal flavor violation. Some (such as ∆Md/∆Ms) do not distinguish the SM
from many NP scenarios just by construction, while others (such as relation
(8)) are insensitive to NP because of the specific profile of the UT (α close to
90◦). In this sense there are two possible points of view regarding the fact that
up to now all constraints on (ρ, η) plane agree with each other. The first one
is that there are no sizeable NP effects seen in flavor physics. The second one
is that UT is simply not suitable for the purpose (since NP is not present in
the angles determined from the tree processes and could also cancel from the
sides) and the room for manifestations of NP in b-physics observables is in fact
not so small (because the uncertainties are still rather large). Following the
latter attitude, we have discussed in this paper a complementary analysis of the
data on the CKM matrix elements. Its key feature is the use of CKM matrix
elements ratios which are sensitive to NP provided it contributes differently

to the processes of different topology. In this sense the quantities ζ
(i)
s,K∗ are

different from the ratios like ∆Md/∆Ms since the short-distance part is kept
in the former. Moreover, since we have more than one choice for observables
a given CKM matrix element is extracted from, we could have relations of
the form (16), leaving unconstrained more than one degree of freedom. Thus
the lattice simulations must match several hadronic inputs simultaneously (and
not just one). This, we believe, will allow to reduce the corresponding errors
and consequently to make the proposed probes more sensitive to the NP.14

Speaking differently, one of our main messages to the lattice community is that
the importance of further reducing uncertainties in the ratio ξ is limited with
respect to the calculation of hadronic inputs entering the definition of ζ’s since
the latter are more sensitive to NP than the former.

Concerning the determination of UT angles which are free from lattice uncer-
tainties, we advocate the importance of estimates of the angle δα corresponding
to the penguin amplitude extracted from B → ρπ and other modes (and hence
subject of possible NP shifts). The accuracy of such a comparison can be com-
parable or better at LHCb than for sin 2β extracted from B → J/ψKS and
B → φKS modes, while the physical meaning is the same; any discrepancy
between these values would undoubtedly indicate NP.

14The importance of correlating of ∆F = 1 and ∆F = 2 processes is stressed in another
respect in [10].
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In principle, nothing prevents one to include the discussed quantities ζ
(i)
q,V

and δ(α, β, χ) into the global fit of the CKM matrix. It is clear that one gets
essentially no new information in this way, since we deal with the same experi-
mental observables the standard fitting procedure does. We feel, however, that
careful analysis of the proposed observables provides an alternative and trans-
parent way of looking at NP effects. This strategy can become useful in the
nearest future when LHC data will improve the accuracy of our knowledge of
the CKM matrix elements dramatically.
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Table 1: Short-distance quantities from the definition of κ.

Quantity Mean Error Reference
ηB 0.551 0.008 [33]
Ftt 2.35 0.06 [34]
m̄t(mt), GeV 164.7 2.8 [59]
m̄b(pole), GeV 4.65 0.10 [28]

|C(0)
7 +A(1)(µ)|2 0.16 0.01 [28]

mW , GeV 80.40 0.03 [51]

Table 2: Numerical results for ζ
(i)
s,K∗/∆ζ

(i)
s,K∗ . The abbreviation [43]-A corre-

sponds to the branching ratio for B → K∗γ from [43] and the Set A choice for
TB→K∗

1 (0) = 0.25 ± 0.05, and analogously for other columns.

[43]-A [43]-B [43]-C [44]-A [44]-B [44]-C

ζ
(1)
s,K∗ 0.81/0.21 0.97/0.23 1.13/0.25 0.85/0.22 1.02/0.24 1.18/0.26

ζ
(2)
s,K∗ 1.12/0.24 0.94/0.18 0.80/0.13 1.07/0.23 0.89/0.17 0.77/0.12

ζ
(3)
s,K∗ 1.10/0.17 1.10/0.17 1.10/0.17 1.10/0.17 1.10/0.17 1.10/0.17
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Figure 1: Error propagation corresponding to the second expression from (8).
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Figure 2: The same as Fig.1 for different values of the angle α.
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Figure 3: Error propagation for Rt from (8). The curves correspond to σ(Rt) =
0.02 and 0.04. The choice for other parameters is Rb = 0.41, γ = 1 rad.
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Figure 4: The results for log ζ
(i)
s,K∗ , the case [44]-B plotted as a point in ternary

coordinates. The SM solution is the point at the origin. The algebraic distance

from the i-th axis is given by log ζ
(i)
s,K∗ , positive for two axes forming an angle

a point belongs to and negative for the remaining distant axis. With this rule
each point on the plain satisfies the constraint (16). The bars correspond to 1σ

deviation in ζ
(i)
s,K∗ , not in log ζ

(i)
s,K∗ . The marks on axes set the scale and serve

mainly for guiding eyes.
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