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Abstract

In this paper we show that during the retrieval process in a binary Hebb recursive neural

network, spatial localized states can be observed when the connectivity of the network is distance-

dependent. We point out that the minimal condition that leads to this type of behavior is the

asymmetry between the retrieval and the learning states.
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1 Introduction

In a very recent publication [1] it was shown that using linear-threshold model neurons, the Hebb

learning rule, sparse coding and distance-dependent asymmetric connectivity, spatial asymmetric

retrieval states were observed and their biological relevance was pointed out. These asymmetric

states are characterized by a spatial localization of the activity of the neurons, described by the

formation of local bumps. For the biological relevance of the issue see the introductory part of

Refs.[1] and [2].

The observation is intriguing, because all components of the network are intrinsically sym-

metric in respect to the positions of the neurons and the retrieved state is clearly asymmetric.

However, until now, to our knowledge, spatial asymmetry states (SAS) have not been observed

in more simple models like the Hebb neural networks (NN) models with binary neurons.

The aim of this article is to impose a minimal set of restriction on a Hebb network with

binary neurons that can lead to SAS.

When the network is sufficiently diluted, say less then 5% of dilution, then the differences

between asymmetric and symmetric connectivity are minimal [3]. Therefore we expect that the

differences between symmetrically and asymmetrically connectivity is minimal in SAS. This can

also be observed by simulations.

There are several factors that possibly contribute to SAS in model network.

Talking about spatial events in NN, one essentially introduces distance measures and topol-

ogy between the neurons and also imposes some distribution on the connections’ probability

dependent on that topology. The major factor to observe spatial asymmetric activity is of

course the spatially dependent connectivity of the network. Actually this is an essential condi-

tion, because by applying random permutation to the enumeration of the neurons of a network,

one will obviously achieve states without SAS. Therefore, the topology of the connections must

depend on the distance between the neurons.

Due to these arguments, a symmetric and distance-dependent connectivity for all neurons is

chosen in this study.

We consider an attractor NN model of Hebbian type formed by N binary neurons {Si}, Si ∈
{−1, 1}, i = 1, ..., N , storing p patterns ξµ

i , µ ∈ {1...P}, and we assume a symmetric connectivity

cij = cji ∈ {0, 1}, cii = 0 between the neurons. cij = 1 means that neuron i and j are connected.

We regard only connectivities in which the fluctuations between the individual connectivity are

small, e.g. ∀i
∑

j cij ≈ cN , where c is the mean connectivity.

The learned patterns are symmetrically distributed from the following distribution:

P (ξµ
i ) =

1

2
δ(ξµ

i − 1) +
1

2
δ(ξµ

i + 1).

The Hamiltonian of the system is:

H0 =
1

N

∑

ijµ

Siξ
µ
i cijξ

µ
j Sj
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Figure 1: Binary attractor networks with the same distribution of the pattern and the retrieval activity.
The overlap m and the power of its first Fourier transform are chosen as a measure of the existence of
SAS. The left figure is for N = 6400, c = 80/N , σx = 100, the right one is for N = 6400, c = 160/N ,
σx = 200. None of the networks presents SAS. The same is true for sparse code, different dilution and
other topologies.

and the retrieval states are supposed to obey

P (Si) =
1

2
δ(Si − 1) +

1

2
δ(Si + 1).

However, as it will be shown later in the article, it is not possible to observe any SAS by these

conditions, with the exception of the areas near the phase transition point between retrieval and

non retrieval states.

In other words, imposing a symmetry between the retrieval and the learning states, i.e.

equal probability distributions of the patterns and the network activities, no SAS exists. Spatial

asymmetry can be observed only when asymmetry between both states is imposed.

Actually, by using binary network and symmetrically distributed patterns, the only asym-

metry that can be imposed, independent on the position of the neurons, is the total number

of the neurons in a given state. Having in mind that there are only two possible states, this

condition leads to a condition on mean activity of the network.

To achieve this difference, we add an extra term Ha to the Hamiltonian

Ha = NR

(

∑

i

Si/N − a

)2

.

When R → ∞, the Ha term tends to fix the sum of Si to Na, yielding the proportion of neurons

Si = 1 of 1/2 + a/2 and the proportion of the neurons with Si = −1 equal to 1/2 − a/2. If

the goal is just to reduce the number of spins in high state Si = 1 without fixing their number,

the extra term in the Hamiltonian can be reduced to a linear one, that is easier to analyze

theoretically. In this article it is shown that the last condition is sufficient to observe SAS.
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Figure 2: Spatial asymmetry observed by its first Fourier component power m1. The left figure shows
the network with N = 6400, c = 0.05, σx = 500 and a = 0. The right one shows the network with
N = 6400, c = 0.05, σx = 500 and a = 0.1. It is clear that the SAS is observed only when a 6= 0. The
probability to get a value of m1 ≥ 0.1 by chance is less then 10−5.
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Figure 3: Spatial asymmetry observed by measuring the smoothed local fields, by length 100 and 600.
The left figure shows the network with p/(cN) = 0.1, the right one with p/(cN) = 0.03. N = 6400,
c = 0.05, σx = 500, a = 0.1.

2 Simulations

The dynamics of the network at time t + 1 and temperature T = 0 is

Si(t + 1) = sign





∑

j

ξµ
i cijSj(t) − Th



 ,

where Th is the threshold of the system, which in general is nonzero, due to the extra energy term

Ha. Taking the limit R → ∞, Ha actually fix the number of neurons in state 1 to (1 + a)N/2,

that can be implemented easily by a programme. That can easily be done by sorting the non-

normalized internal fields hi =
∑

j ξµ
i cijSj(t) and choosing h(1+a)N/2 as a threshold.

The topology of the network is chosen to be a circular ring, with distance

|i − j| ≡ min(i − j + N mod N, j − i + N mod N).

The same connectivity as in Ref.[1] with typical connectivity distance σxN is used, e.g.:

P (cij = 1) = c

[

1√
2πσxN

e−(|i−j|/N)2/2σ2
x + p0

]

.
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Figure 4: Sparse code influence on the spatial asymmetry observed by measuring the smoothed local
fields. Smoothing by length 100 and 600. The sparsity of the code was chosen to be 0.2, the asymmetry
factor a = 0.5. The load of the network in the right figure is p/(cN) = 0.1. N = 6400, c = 0.05, σx = 500,
a = 0.5.
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Figure 5: The components of the first eigenvectors of the connectivity matrix, normalized by the square
root of their eigenvalue, in order to eliminate the effect of the size of the network. The first eigenvector
has constant components, the second one - sine-like components. N = 6400, c = 320/N , λ1 = 319.8,
λ2 = 285.4. Note that the differences between the first and the second eigenvectors have comparable
magnitudes.

Here p0 is chosen to normalize the expression in the brackets. When σx is small enough, then

spatial asymmetry is expected.

If the retrieval state, corresponding to the pattern ξ0
i is Si, the mean overlap is m =

∑

ξ0
i Si/N

and the local overlap at site i is

mi = ξ0
i Si.

These quantities, even smoothed, are N measures of the locality of the overlap, that are best

for graphical representation, but serve only if the spatial asymmetry is evident. However we

need a single numerical measure of SAS. In the case when Si follow a single sine wave, the ideal

measure of spatial asymmetry would be

m(1) =
1

N

∣

∣

∣

∣

∣

∑

k

ξ0
kSke

2πik/N

∣

∣

∣

∣

∣

.

Because we are looking for a single-bump spatial activity, the ratio m(1)/m is a good measure

of SAS. If the bump has a form of pure sine wave, then m(1)/m = 1/2, and if it has a form
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of a Gaussian with variance σ1N with small σ1, then m(1)/m ≈ e−2πσ2
1 , that is about 0.8 for

σ1 = 0.1. Because the sine waves appear first, m(1)/m results also to be a sensitive asymmetric

measure, at least compared with the visual inspection of mi.

Let us note that m(1) can be regarded as the power of the first Fourier component and m can

be regarded as a 0−th Fourier component, that is the power of the direct-current component.

More sophisticated SAS measures can be elaborated, counting higher frequencies, but for the

purpose of these simulation m(1)/m results good enough. If m ≈ 1 then m(1)/m is equivalent to

m(1).

Simulations with “small-world” topology and more sharp localized connectivity

P (cij = 1) ∝ 1 − b cos ϕ

1 − 2b cos ϕ + b2
,

with ϕ ≡ 2π|i − j|/N and b being some parameter, show similar results. The last connectivity

has the advantage that the eigenvector of the connectivity matrix are cosine waves and the

eigenvalues are known.

The results of the simulations for different σ and a are shown in Figures 1,2 and 3.

If a = 0, no asymmetry can be observed at any σx, up to the level of the network fragmen-

tation (Fig. 1). No difference between asymmetric and symmetric connectivity is observable for

any connectivity c < 0.05 and any of the topologies tested.

The sparse code increases SAS effects Fig. 4, but SAS cannot be observed by any sparsity

as if the proportion of the firing neurons is kept to be equal to as (not shown).

The hint from the simulations is that no asymmetric states can be observed if the retrieval

and the memorized state have the same level of activity. On the other hand, SAS is observed

when a 6= 0, as shown in Figs. 2,3,4.

3 Analytical analysis

For the analytical analysis of SAS states, we consider the decomposition of the connectivity

matrix cij by its eigenvectors a
(k)
i :

cij =
∑

k

λka
(k)
i a

(k)
j ,

∑

i

a
(k)
i a

(l)
i = δkl,

where λk are the corresponding (positive) eigenvalues. For convenience we denote bk
i ≡ a

(k)
i

√
λk,

having

cij =
∑

k

bk
i b

k
j .

We will assume that a
(k)
i are ordered by its eigenvalues in decreasing order, e.g.

∀a
(k)
j , a

(l)
j k > l ⇒ λk ≤ λl

To have some intuition of what a
(k)
j look like, we plot in Fig. 5 the first two eigenvectors.
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Moreover, for a wide variety of connectivities, the first three eigenvectors approximate:

a
(1)
k =

√

1/N, (1)

a
(2)
k =

√

2/N cos(2π|k − k0|/N) (2)

and

a
(3)
k =

√

2/N sin(2π|k − k0|/N). (3)

Following the classical analysis of Amit et al [4], we use Bogolyubov’s method of quasi

averages [5] to have into account a finite number of overlaps that condense macroscopically.

To this aim we introduce an external field, conjugate to a finite number of patterns {ξν
i }, ν =

1, 2, ..., s, adding a term

Hh =
s
∑

ν=1

hν
∑

i

ξν
i Si (4)

to the Hamiltonian.

Finally, as we already mentioned in the Introduction, in order to impose some asymmetry

in the neural network’s states, we also add the term

Ha = NR

(

∑

i

Si/N − a

)

(5)

The whole Hamiltonian we are studying is now:

H =
1

N

∑

ijµ

Siξ
µ
i cijξ

µ
j Sj +

s
∑

ν=1

hν
∑

i

ξν
i Si + NR(

∑

i

Si/N − a). (6)

By using the “replica method” [6] for the averaged free energy per spin we get:

f = − lim
n→0

lim
N→∞

1

βnN
(〈〈Zn〉〉 − 1), (7)

where 〈〈...〉〉 stands for the average over the pattern distribution P (ξµ
i ), n is the number of the

replicas, which are later taken to zero and β is the inverse temperature.

The replicated partition function is

〈〈Zn〉〉 =

〈〈

TrSρ exp

[

β

2N

∑

ijµρ

(ξµ
i Sρ

i )cij(ξ
µ
j Sρ

j ) − 1

2
βpn +

β
∑

ν

hν
∑

i,ρ

ξν
i Sρ

i −
∑

ρ

βNR(
∑

i

Sρ
i /N − a)

]〉〉

. (8)

The term 1
2βpn comes from the i = j term and therefore cii = 1. Following [4], we decouple the

sites by using an expansion of the connectivity matrix cij over its eigenvalues λl, l = 1, ...,M

and eigenvectors al
i (eq.3).

We thus have:

〈〈Zn〉〉 = e−βpn/2
〈〈

TrSρ exp

[

β

2N

∑

µρl

∑

ij

(ξµ
i Sρ

i bl
i)(ξ

µ
j Sρ

j bl
j) +

β
∑

ν

hν
∑

iρ

ξν
i Sρ

i −
∑

ρ

βRN(
∑

i

Sρ
i /N − a)

]〉〉

. (9)
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Introducing variables mµ
ρl at each replica ρ, each configuration and each eigenvalue, we get:

〈〈Zn〉〉 = e−βpn/2+βRaN

〈〈

TrSρ

∫

∏

µlρ

dmµ
l√

2π
expβN



−1

2

∑

µρl

(mµ
ρl)

2 +
∑

µρl

mµ
ρl

1

cN

∑

i

ξµ
i Sρ

i bl
i





expβN



−1

2

∑

νρl

(mν
ρl)

2 +
∑

νρl

mν
ρl

1

N

∑

i

ξν
i Sρ

i bl
i + hν 1

N

∑

i

(ξν
i Sρ

i + RSρ
i )





〉〉

.(10)

In the last expression we have split the sums over the first s-patterns and the remaining (infinite)

p − s ones.

After taking the averages over the patterns, supposing them equally distributed 3, the first

term gives:

I = exp



−βN

2

∑

µρl

(mµ
ρl)

2 +
∑

iµ

ln coshβ
∑

ρl

mµ
ρlS

ρ
i bl

i



 , (11)

which expanded up to second order in m and its rescaling mµ
ρ → mµ

ρ/
√

N , leads to:

I = expβ



−1

2

∑

µρl

(mµ
ρl)

2 +
β

2N

∑

ρσlkiµ

mµ
ρlm

µ
σkS

ρ
i Sσ

i bl
ib

k
i



 . (12)

We have:

∫

∏

µρl

dmµ
ρl√

2π
I =

∫

∏

ρσlk

dqlk
ρσ exp

(

−p

2
Tr ln[Alk

ρσ ]

)

∏

ρσlk

δ(qlk
ρσ − 1

N

∑

i

Sρ
i Sσ

i bl
ib

k
i ). (13)

Introducing the parameter rlk
ρσ, conjugate to qlk

ρσ, for the last expression we get:

∫

∏

µρl

dmµ
ρl√

2π
I =

∫

∏

ρσlk

dqlk
ρσ

∏

ρσlk

drlk
ρσ exp

(

−p

2
Tr ln[Alk

ρσ]

)

expN



−1

2
αβ2

∑

ρσlk

rlk
ρσqlk

ρσ +
1

2
αcβ2N−1

∑

iρσlk

rlk
ρσSρ

i Sσ
i bl

ib
k
i



 , (14)

where the parameter α ≡ p/N is the storage capacity of the network and the matrix Alk
ρσ is

Alk
ρσ = δρσδlk(1 − βλk) + βδρσqlk − βqlk. (15)

The first term of Alk
ρσ comes form the Gaussian integration over mµ

ρlm
µ
σl, the second one is the

value of qlk
ρσ when ρ ≡ σ, i.e. qlk

ρσ = 1
N

∑

i(S
ρ
i )2

√
λl
√

λkak
i a

l
i ≡

√
λl
√

λkδlk, because of the fact

that S2
i = 1 and the orthogonality of the eigenvectors

∑

i ak
i a

l
i = δlk. The third and the fourth

term correspond to the situation when ρ 6= σ. For 〈〈Zn〉〉, after taking the limit hν → 0, we

3The sparse code distribution P (ξµ

i ) = aδ(ξµ

i −1)+(1−a)δ(ξµ

i +1) leads to a renormalization of the temperature
β → β(1 − a2)
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have:

〈〈Zn〉〉 = e−βpn/2+βRanN
∫

∏

ν

dmν
ρl

∫

∏

ρσlk

dqlk
ρσdrlk

ρσ

expN



−β

2

∑

νρl

(mν
ρl)

2 − 1

2
Tr ln[Alk

ρσ ] − 1

2
αβ2

∑

ρ6=σ,lk

rlk
ρσqlk

ρσ





〈〈

TrSρ expN

[

1

2
αβ2N−1

∑

iρσlk

rlk
ρσSρ

i Sσ
i bl

ib
k
i +

β
∑

νρl

mν
ρl

1

N

∑

i

ξν
i Sρ

i bl
i + βR

∑

i

Sρ
i

]〉〉

. (16)

Supposing Replica Symmetry (RS) ansatz, we can write mν
ρ = mν , qlk

ρ,σ = qlk for ρ 6= σ and

rlk
ρ,σ = rlk for ρ 6= σ. The free energy (eq. 7) then reads:

f =
α

2
+ Ra +

α

2βn
Tr ln[Alk

ρσ ] +
1

2

∑

νl

(mν
l )2 − αβ

2

∑

lk

rlkq
lk −

1

nβ

〈〈

lnTrSρ exp

[

1

2
αβ2N−1

∑

iρσlk

rlk
ρσSρ

i Sσ
i bl

ib
k
i − 1

2
nαβ2

∑

l

rllλ
l +

β
∑

νρl

mν
ρl

1

N

∑

i

ξν
i Sρ

i bl
i + βR

∑

i

Sρ
i

]〉〉

. (17)

After taking the TrSρ in the last expression, for the last term of it, we get:

− 1

nβ

1

N

∑

i

∫

dz(i)

√
2π

e−(z(i))2/2[1 + n ln 2 cosh β(
√

αbl
irlkb

k
i z

(i) + mν
l ξ

ν
i bl

i + R)]. (18)

Changing the integration variables z(i) → zmam
i and having in mind that because of ortonor-

mality of am
i the Jacobian of the transformation is 1, one obtains:

− 1

nN

∑

i

∫

dzm√
2π

e−z2
m/2[1 + n ln 2 cosh β(

√
αrlkw

lk
m,izm + mν

l ξ
ν
i bl

i + R)], (19)

where wlk
m,i ≡

√

bl
ib

k
i (a

m
i ).

The sum over i can be taken, because it depends only on the topology. The coefficient before

zm can be complex.

After taking the limit n → 0, we end up with the following expression for the free energy:

f =
α

2
+ Ra +

α

2βn
Tr ln[Alk

ρσ] +
1

2

∑

νl

(mν
l )

2 − αβ

2

∑

lk

rlkq
lk +

αβ

2

∑

l

rllλ
l −

〈〈

1

β

1

N

∑

i

∫

dzm√
2π

exp(−zm
2/2) ln 2 cosh β(

√
αrlkw

lk
m,izm + mν

l ξ
ν
i bl

i + R)

〉〉

. (20)

The calculation of the term Tr ln[Alk
ρσ ] is done in analogy with the case of Ref. [4].

9



Tr ln[Alk
ρσ] = Trσρlk ln[δρσδlk(1 − βλk) + βδρσqlk − βqlk] =

= Trσρlk ln

[

(δρσ − 1/n)(δlk(1 − βλk) + βqlk)

+1/n
(

δlk(1 − βλk) + βqlk − βnqlk
)

]

=

= (n − 1)Trlk ln(δlk(1 − βλk)

+βqlk) + Trlk ln(δlk(1 − βλk) + βqlk(1 − n))

Let us denote δlk(1 − βλk) + βqlk as E − βΛ + βQ. Regrouping the expression and taking

the limit n → 0, we obtain:

lim
n→0

Tr ln[A]

n
= Tr ln[E− βΛ + βQ]

+
d

dn
Trml ln[δlk(1 − βλk) + βqlk(1 − n)]|n=0 = (21)

= Tr ln[E− βΛ + βQ] − βTr[(E− βΛ + βQ)−1.Q]

The last expression reproduces the limit of Ref.[4] when the index k = 1, λk = 1 and Q = q.

The expression for the free energy thus reads:

f =
α

2
+ Ra +

α

2β

(

Tr ln[E− βΛ + βQ] − βTr[(E− βΛ + βQ)−1.Q]
)

+
1

2

∑

νl

(mν
l )2 − αβ

2

∑

lk

rlkq
lk +

αβ

2

∑

l

rllλ
l −

〈〈

1

β

1

N

∑

i

∫

dzm√
2π

exp(−zm
2/2) ln 2 cosh β(

√
αrlkw

lk
m,izm + mν

l ξ
ν
i bl

i + R)

〉〉

. (22)

The saddle point method applied to the free energy eq.(22) gives the following equations for

the order parameters:

mν
s =

〈〈

1

N

∑

i

ξν
i bs

i tanhβ(
√

αrlkw
lk
m,izm + mν

l ξ
ν
i bl

i + R)

〉〉

, (23)

qst =

〈〈

1

N

∑

i

bs
i b

t
i

∫

dzm√
2π

e−zm
2/2 tanh2 β(

√
αrlkw

lk
m,izm + mν

l ξ
ν
i bl

i + R)

〉〉

(24)

and

rkl = [(E − βΛ + βQ)−1Q(E− βΛ + βQ)−1]kl. (25)

For zero temperature T = 0, the equations can be transformed in the same way as in [4],

having in mind that Cst ≡ β(δstλs − qst) are finite.

Now we assume that only few order parameters, namely those that correspond to the several

largest eigenvalues, are different from zero.
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In order to perform numerical estimations of the parameters we keep only three order param-

eters mk and assume that the eigenvectors have the form of eqs. (1-3). Then the components of

ξ, projected over a0, a1, a2 are independent and we can assume that a self-averaging occurs with

distribution of the self-averaged components proportional to the original distribution of ξ, in the

case of a0, and proportional to arcsin(x), with uniformly distributed x in the interval [0, 1], in

the case of a1 and a2. Having this in mind for R = 0 and solving numerically the corresponding

equations at T = 0, we obtain m2 = m3 = 0,m1 6= 0 as only solution.

For R > 0.5 the numerical simulation shows that the solution with m1 6= 0 is not stable. The

components m2 and m3 are different from zero, with m2
2 + m2

3 converging to some limit. Note

that the components m2 and m3 are degenerated with the same energy, thus any fluctuation of

the connectivity will break this symmetry and will fix their values.

Further analysis of the system, subject to ongoing work, will present a more detailed solution

of the problem.

4 Conclusions

In this paper we have studied the minimal conditions for the appearance of spatial dependent

activity in a binary neural network model. This analysis has been done analytically and also

confirmed by simulations, which have been possible due to the finite number of relevant eigen-

values of the connectivity matrix. The latter gives a closed form for the equations describing

the different order parameters and permits their later analysis.

We have shown that the appearance of asymmetric states of the neurons is related to the

fact that the probability distributions of the patterns and the neural states are different. We

point out that this condition is the minimal one to observe the effect.

Further analysis of the problem will be presented in a forthcoming publication.
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