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Abstract

We reconsider the influence of the Coulomb interaction on the process of relativistic Mott

scattering in a powerful electromagnetic plane wave for which the ponderomotive energy is of

the order of the magnitude of the electron’s rest mass. Coulomb effects of the bare nucleus

on the laser-dressed electron are treated more completely than in the previous work of Li et

al. [J. Phys. B: At. Mol. Opt. Phys. 37 (2004) 653]. To this end we use Coulomb-Dirac-

Volkov functions to describe the initial and the final states of the electron. First-order Born

differential cross sections of induced and inverse bremsstrahlung are obtained for circularly and

linearly polarized laser light. Numerical calculations are carried out from both polarizations, for

various nucleus charge values, three angular configurations and an incident energy in the MeV

range. It is found that for parameters used in the present work, incorporating Coulomb effects

of the target nucleus either in the initial state or in the final state yields cross sections which

are quite similar whatever the scattering geometry and polarization considered. When Coulomb

distortions are included in both states, the cross sections are strongly modified with the increase

of Z, as compared to the outcome of the prior form of the T-matrix treatment.
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1 Introduction

In recent years, impressive progress in the construction of increasingly powerful laser sources

has led to the availability of beams of ultra high intensities, namely 1018 Wcm−2 and above [1,

2, 3, 4]. With such beams giving rise to novel effects, it therefore has become of interest to

investigate relativistic modifications of several elementary scattering processes which are of sig-

nificance in many branches of physics, if they take place in a strong laser field. Among other

phenomena, laser-induced Compton scattering [5, 6, 7, 8, 9], generation of high harmonics [10],

laser-assisted electron scattering by a Coulomb Yukawa-type [11, 12, 13] and Coulomb poten-

tials [14, 15] have been intensively studied. A reinvestigation of the latter process, namely the

Mott scattering, focus of the present work, has been made recently by Szymanowski et al. [16]

and Li et al. [17] in a circularly and linearly polarized laser field of medium and relativistic in-

tensities. They derived analytical expressions for the spin-unpolarized cross sections under the

consideration of standard Dirac-Volkov (DV) wave functions [18, 19, 20] describing the electron

embedded in the joint influence of Coulomb and a vector potential. However, since the Coulomb

potential is of infinitely long range, the ingoing and outgoing laser-dressed electron can never be

decoupled from this field even for r → ∞. In other words, it feels the nuclear Coulomb potential

in both the entry and exit channels. Thus, the above mentioned Dirac-Volkov-based initial and

final states of the electron simultaneously exposed to the laser and Coulomb field of the target

nucleus, should be modified by the introduction of suitable corrections that take into account

Coulomb effects.

In nonrelativistic strong laser physics, such approximative wave functions presenting a rea-

sonable interpolation for both pure Coulomb and the plane wave fields, i.e. the so-called

Coulomb-Volkov wave functions (CVF), were proposed by Jain and Tzoar [21] and Cavaliere et

al. [22] for the first time, and have been in standard use for many years in theoretical stud-

ies. To be specific, many theoretical calculations have been carried out by various workers on

laser-assisted scattering [23], multiphoton ionization [24, 25, 26, 27, 28, 29], stimulated radia-

tive recombination and X-ray generation [30], etc. As a result, it appeared that the nuclear

field plays a significant role in these processes and the CVFs could provide reliable data. For

example, Duchateau et al. introduced a new simple non-perturbative approach to laser-induced

hydrogen ionization based on Coulomb-Volkov states in which the Coulomb field of the nucleus

is taken into account in the initial and final atomic states, but not in the dynamics of ionization

during the laser-atom interaction. Under the sudden approximation and up to laser field am-

plitudes comparable to the Coulomb field of the nucleus, these authors found that the energy

distributions of ejected electrons predicted by the CV method are in very good agreement with

exact results obtained by a full numerical treatment of the time-dependent Schrödinger equation

(TDSE) using a spherical B-spline expansion of the total wave function. Further, the Coulomb-

Volkov theory proved its efficacy in providing accurate predictions with reasonable computer
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times in regions where the TDSE calculations become very lengthy and finally do not converge.

As for the above-treshold ionization, it is noteworthy that Coulomb effects are also important to

yield the proper angular distribution of electrons in the case of elliptically polarized laser light

as was demonstrated by Basile et al. [31] and Mu [32] describing the ejected electron instead by

a Gordon-Volkov solution [33, 18] by a CVF. On the other hand, Kornev and Zon [34] applied

a time-dependent generalization of the Siegert theorem to test the accuracy of the CVFs.

An earlier attempt devoted to Coulomb effects in the relativistic regime was made by Liu

and Kelly [35]. They improved the relativistic strong-field-approximation (SFA) calculation by

Reiss [39] of the KFR theory [36, 37, 38] that neglects the final-state interaction between the

photoelectrons and the residual ion potential. Using a treatment similar to CV solution for

the Schrödinger equation [40, 41], they introduced approximate Sommerfeld-Maue plus Volkov

states (SMV) of the Dirac equation solved nonperturbatively for the laser field and in the first-

order perturbation theory for the Coulomb potential, and investigated easily many important

physical parameters over a wide range of laser intensities for multiphoton ionization processes.

In the medium laser intensities, it has very recently come to our attention that a preliminary

description of the laser-assisted Mott scattering in a linearly polarized laser field has been done

by Li et al. [42]. These authors used another variant of Coulomb-Dirac-Volkov functions, i.e. a

Coulomb function phase-modulated by the laser in the same way as a relativistic Volkov state,

to incorporate both relativistic and initial-state Coulomb-potential effects. We refer to it as the

Coulomb-Dirac-Volkov approximation (CDVI). As a step to improve this treatment, we have

extended it to the final state of the electron (denoted FCDV) for relativistic laser intensities

with linear [42] and circular [43] polarizations, and energetic electrons.

The organization of this paper is as follows. Section 2 describes the essentials of the theory.

In section 3, we carry out a numerical study and compare our results with those obtained by

Attaourti et al. [43] and Li et al. [42]. Finally in section 4, we make some concluding remarks.

Atomic units (e = ~ = m = 1, c = 1/α) are used throughout, unless otherwise stated explicitly.

2 Theory

We start from the second order Dirac equation for electron in an electromagnetic field,

which can be found in the well-known standard QED texbook of Berestetskii, Lifshitz and

Pitaevskii [44]

[(

pµ − 1

c
Aµ

)(

pµ − 1

c
Aµ

)

− c2 − 1

2c
σµνFµν

]

ψ(x) = 0, (1)

where σµν = i
2 [γµ, γν ], γµ are Dirac matrices, Aµ = (V, ~A) is the four-vector potential and

Fµν = ∂µAν −∂νAµ is the electromagnetic field tensor. We follow the notation used in [44]. The

occurence in this equation of the product σµνFµν is due to the spin.

When the potential V turns off, i.e. Aµ = (0, ~A), solutions of Eq.(1) for a plane wave field first
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found by Volkov [18] are reviewed by Roman et al. in ref. [20]. The types of positive energy

which are needed here have the usual form

ψ =

(

1 − /k/A

2c(kp)

)

u√
2QV

exp

(

−i(qx) − i

∫ (kx) (pA)

c(kp)
dϕ

)

, (2)

where ϕ = (kx), /k, /A are denoted by the Feynman slash notation, u is the bispinor for the electron

which satisfies the first-order free-particle Dirac equation (/p− c)u = 0, and is normalized by the

condition ūu = 2c2. The bracket notation (ab) is a short form for the four-scalar product aνbν .

The averaged four-momentum qµ = (Q/c, ~q ) has the explicit form

qµ = pµ − Ā2

2c2(kp)
kµ, (3)

where kµ = (ω/c,~k) is the four-vector of the electromagnetic plane wave k2 = 0, satisfying the

Lorentz gauge (kA) = 0. The renormalized energy Q and momentum ~q fulfill the conservation

relation Q2 − c2~q 2 = m∗2c4, which corresponds to an outshell particle of effective mass m∗ =
(

1 − Ā2/c4
)1/2

.

In contrast, when the laser field turns off, solutions of Eq.(1) for Coulomb potential V (r) = −Z/r
is not separable in parabolic coordinates and cannot be obtained exactly in closed form, only

in an infinite series. They were constructed approximately by Furry [46], Sommerfield and

Maue [48] and are presented in Refs. [44, 46]. For positive energy, they may take the following

approximative forms which asymptotically comprise a plane wave and an outgoing or an ingoing

spherical waves

ψ(+) = N
u√

2EV
e−i(px)

(

1 − ic

2E
~α.~∇

)

1

F1 (iη, 1, i(pr − ~p.~r)) , (4)

ψ(−) = N∗
u√

2EV )
e−i(px)

(

1 − ic

2E
~α.~∇

)

1

F1 (−iη, 1,−i(pr + ~p.~r)) , (5)

where

N = eπη/2 Γ(1 − iη), η = zE/p, z = αZ, α = 1/c, c = 137. (6)

~p is the electron momentum at asymptotically large distances, and 1F1 is the confluent hyper-

geometric function. These wave functions are normalized in such a way that, the plane wave in

its asymptotic limit, corresponds to one particle in the volume V .

For an electron in the fields of both an attractive Coulomb centre and a laser radiation, no

exact solution is available in this case. Comparing Eqs.(3)-(5), Li et al. [42] simply took the

initial state to be an interpolating wave function given by

ψ
(+)
i = Ni 1F1 (iηi, 1, i(qir − ~qi.~r))

(

1 − /k/A

2c(kpi)

)

ui√
2QiV

× exp

(

−i(qix) − i

∫ (kx) (piA)

c(kpi)
dϕ

)

, (7)
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with Ni = eπηi/2 Γ(1 − iηi), ηi = zQi/qi. It is worth underlining that, unlike the SMV

approximate solution, the laser-field properties determines the behavior of the CDV functions

trough the frequency-dependence of the four-quasimomentum q which enters the normalization

factor and the argument of the 1F1 function. One easily verifies that Eq.(7) transforms into

Eq.(4) at ~A = 0 and into Eq.(2) at Z = 0. It is the purpose of the present work to extend this

approximation to the final ingoing wave function, namely that

ψ
(−)
f = Nf 1F1 (−iηf , 1,−i(qfr + ~qf .~r))

(

1 − /k/A

2c(kpf )

)

uf
√

2QfV

× exp

(

−i(qfx) − i

∫ (kx) (pfA)

c(kpf )
dϕ

)

, (8)

with Nf = eπηf /2 Γ(1− iηf ), ηf = zQf/qf . The indices i and f label the initial and final states.

For considering Mott scattering in a powerful laser field in the first-order Born approximation,

we have to evaluate the T-matrix element

Tfi = −i
∫

d4x ψ̄f
(−)

(x) /a ψ
(+)
i (x), (9)

where aµ = (−Z/r, 0, 0, 0) is the central Coulomb field. For our purpose, we consider the cases

of circularly [16] and linearly [42] polarized laser radiation given respectively by the potential

vectors

A = Ax cos(ϕ) +Ay sin(ϕ), Ax = (0, | ~A|, 0, 0), Ay = (0, 0, | ~A|, 0), (10)

and

A = Az cos(ϕ), Az = (0, 0, 0, | ~A|). (11)

Substituting Eqs.(7) and (8) into Eq. (9), we decompose this matrix element into its Fourier

components in space and time. The time integral is readily performed to extract the energy-

conservation relation Qf = Qi + nω which can be presented in terms of quantities considered

outside the laser beam

Ef = Ei −
Ā2

2c2

[

1

(kpf )
− 1

(kpi)

]

+ nω, (12)

where Ef = Tf + c2 and Ei = Ti + c2 are the relativistic energies of the scattered and ingoing

electron respectively. In most experiments, the transition rates are actually measured with

unpolarized initial states and without regard to the spin orientation of the scattered electrons.

Then using the usual trace technique for γ matrices, summing and averaging over polarizations of

the electron in the final and in the initial states, one gets the following expressions for differential

cross-sections

dσ

dΩf
=

∞
∑

n=−∞

dσn

dΩf
,
dσn

dΩf
= |In|2

dσ
(0)
n

dΩf
, (13)
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where

In =

∫

d3~r
ei~q.~r

r
1F1(iηi, 1, i(qir − ~qi.~r)) 1F1(iηf , 1, i(qf r + ~qf .~r)), (14)

and

dσ
(0)
n

dΩf
=

2Z2

c2
qf
qi

Mn

q4
, ~q = ~qi − ~qf + n~k, (15)

are respectively the factor in which Coulomb modifications are reflected, and the Coulomb-

uncorrected differential cross sections of the laser-assisted nonlinear scattering processes of the

order n, with this latter being the number of emitted (induced bremsstrahlung) and absorbed

(inverse bremsstrahlung) laser photons. Ωf is the scattering solid angle. The nonlinear matrix

elements Mn derived in Refs. [42, 43] and given below to make this article self-contained.

When the field has circular polarization, Mn has the explicit form

Mn = U1J
2
n(ζ) + U2

(

J2
n+1(ζ) + J2

n−1(ζ)
)

+ U3 (Jn+1(ζ)Jn−1(ζ))

+ U4Jn(ζ) (Jn+1(ζ) + Jn−1(ζ)) , (16)

Jn(ζ) is the ordinary Bessel function. Here, we have introduced the abbreviations

ζ =
√

ζ2
x + ζ2

y , ζx =
(piAx)

c(kpi)
− (pfAx)

c(kpf )
, ζy =

(piAy)

c(kpi)
− (pfAy)

c(kpf )
. (17)

The coefficients U1, U2, U3 and U4 are found to be

U1 =
(

(qfqi) − c2
)

(

A2ω2

c4(kqf )(kqi)
− 1

)

+
2QiQf

c2
− A2

2c2

(

(kqf )

(kqi)
+

(kqi)

(kqf )

)

+
(A2ω)2

c6(kqf )(kqi)
+
A2ω

c4
(Qf −Qi)

(

1

(kqi)
− 1

(kqf )

)

, (18)

U2 = − (A2ω)2

2c6(kqf )(kqi)
+
ω2

2c4

(

(Axqf )

(kqf )

(Axqi)

(kqi)
+

(Ayqf )

(kqf )

(Ayqi)

(kqi)

)

− A2

2c2

+
A2

4c2

(

(kqf )

(kqi)
+

(kqi)

(kqf )

)

− A2ω2

2c4(kqf )(kqi)

(

(qfqi) − c2
)

+
A2ω

2c4
(Qf −Qi)

(

1

(kqf )
− 1

(kqi)

)

, (19)

U3 =
ω2

c4(kqf )(kqi)
[cos(2φ0){(Axqf )(Axqi) − (Ayqf )(Ayqi)}

+ sin(2φ0){(Axqf )(Ayqi) + (Axqi)(Ayqf )}], (20)

U4 =
1

2c

{

(

Ãqi

)

+
(

Ãqf

)

− (kqf )

(kqi)

(

Ãqi

)

− (kqi)

(kqf )

(

Ãqf

)

}

+
ω

c3





Qi

(

Ãqf

)

(kqf )
+
Qf

(

Ãqi

)

(kqi)



 , (21)
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where

Ã = Ax cos(φ0) +Ay sin(φ0), cos(φ0) =
ζx
ζ
, sin(φ0) =

ζy
ζ
, Ā2 = −| ~A|2. (22)

It is worth noting that Attaourti et al. in their comment [43] point out the differences between

Eqs.(16)-(22) and the corresponding formulas presented in Ref. [16]. They claim that their

result is the correct relativistic generalization of the Bunkin and Fedorov treatment [47] that

is valid for an arbitrary geometry. Comparison of their numerical calculations with those of

Szymanowski et al. shows qualitative and quantitative difference particularly for initial electron

kinetic energies and electric field strength in the relativistic regime of interest in this paper. The

use of the foregoing equations here stems from that point.

In the case of linear polarization, the matrix element reads

Mn = c2[∆2
0 + 4 (∆1∆2 − ∆0∆3)A

2k2
0 ] + ∆2

0 (2pi0pf0 − ~pi. ~pf ) + ∆2
1{2A2[(kpi)(kpf )

− 2k0pf0(kpi)]} + ∆2
2{2A2[(kpi)(kpf ) − 2k0pi0(kpf )]} + ∆2

3[8A
4k2

0(kpi)(kpf )]

+ 2∆0∆1[2k0pf0(Api) + (kpi)(Apf ) − (kpf )(Api)] + 2∆0∆2[2k0pi0(Apf )

+ (kpf )(Api) − (kpi)(Apf )] + 2∆0∆3{2A2k0[k0(pipf ) − pi0(kpf ) − pf0(kpi)]}

+ 2∆1∆2{4k2
0(Api)(Apf ) + 2A2[k0pi0(kpf ) + k0pf0(kpi) − k2

0(pipf )

− (kpi)(kpf )]} + 2∆1∆3[−4A2k2
0(kpi)(Apf )] + 2∆2∆3[−4A2k2

0(kpf )(Api)], (23)

where

ξ =
(pfAz)

c(kpf )
− (piAz)

c(kpi)
, ∆0 = Jn(ξ), ∆1 = − nJn(ξ)

2c(kpi)ξ
, (24)

∆2 = − nJn(ξ)

2c(kpf )ξ
, ∆3 =

Jn−2(ξ) + 2Jn(ξ) + Jn+2(ξ)

16c2(kpi)(kpf )
. (25)

Note that we have Ā2 = −| ~A|2/2 in this case.

Turning finally to the Coulomb factor In in Eq.(13) and following the procedure presented

in Ref [45], we obtain in closed form

In = NiN
∗

f

(

D1

q2

)

−iηf
(

D2

q2

)

−iηi

2F1(iηi, iηf ; 1; ρ), (26)

where

D1 =
(

~qi + n~k
)2

− q2f , D2 =
(

~qf − n~k
)2

− q2i , (27)

ρ = 2
q2 [qiqf + ~qi. ~qf − 2(~q.~qi)(~q. ~qf )]

(q2 − ~q.~qi) (q2 + ~q. ~qf )
, (28)

and 2F1 is the hypergeometric function [49].
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When examining of Eq.(26), we note two limiting cases of interest. Firstly, if the Coulomb

field of the residual ion is taken into account only in the initial state, i.e. ηf = 0, Eq. (26)

becomes

In = eπηi/2 Γ(1 − iηi)

(

D2

q2

)

−iηi

, (29)

which is identical with Eq.(9) of [42] by Li et al. in which ~qi and ~qf should be replaced by −~qi

and −~qf respectively. Secondly, including the Coulomb distortion in the final state, i.e. ηi = 0,

leads to

In = eπηf /2 Γ(1 + iηf )

(

D1

q2

)

−iηf

. (30)

We have used Eqs.(29) and (30) to evaluate the effects of the initial- (CDVI prior form) and

final-state (CDVF post form) Coulomb potential respectively. It should be noticed that these

prior and post Coulomb factors are not identical which means that a difference between both

forms may occur in the relativistic regime.

3 Numerical examples

In this section, the results of applications of the foregoing equations are presented by nu-

merically evaluating the differential cross-sections for several values of the charge of the nu-

cleus, namely Z = 1, 5, 10, 15, 20, 25, 30, 35, 40. We have chosen the angular frequency

ω = 0.043 a.u. of a Nd:YAG laser, the electrical field E = 5.89 a.u. of relativistic strength and

the kinetic energy of ingoing electron Ti = 4c2 in the MeV range, for all numerical evaluations.

We assume that the origin of the coordinate system coincides with the target which is supposed

to be an infinitely massive nucleus. θ and φ denote the usual polar and azimuthal angles in

spherical coordinates. In order to assess the influence of the polarization on Coulomb effects

in this regime, we have considered the two cases of circularly and linearly polarized laser field

described in Refs. [17, 42]. In the scattering geometry of the first case, the z -axis is set along the

field wave vector ~k (meaning that θγ = φγ = 0), the x -axis along the direction of the incident

electron ( θi = π/2, φi = 0), the momentum of the outgoing electron ~pf is supposed to be

either in the yz -plane (φf = π/2, 3π/2, scattering geometry denoted SG1) or in the xy-plane

(θf = π/2, SG2). As for the second case, SG3 is defined by θγ = φγ = π/2, θi = φi = 0 and

φf = 0, π.

First of all, we have not reported the CDVF results because they are practically identical

to those of CDVI whatever the parameters Ti and Z used in the circular and linear polar

polarizations laser field in the figures presented below. In other words, the difference between

both forms is negligible. This has already been pointed out by Li et al. [42] for the medium

field laser intensity considered in their calculation.

Figures 1 and 2 show the differential cross sections summed over ±100 multiphoton processes

around the elastic peak as a function of the angle θf for the scattering geometry SG1 as given by
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Eqs. (13), (15), (16). Included in figure 2 are the results for FCDV (solid line), CDVI (dashed

line) and the DV (dash-dotted line). Qualitatively, they exhibit almost the same shape and

maxima occur for θf = 0, ± 180 ◦. From a physical point of view, this shape is comprehensible

because according to the SG1 geometry, scattering at these angles requires a close encounter

with the target nucleus. Quantitatively, The difference between CDVI and DV is not so striking

for Z = 1. As Z increases to 40, the FCDV summed differential cross sections are greatly

enhanced steadily by about two orders. In contrast, the CDVI cross sections do not show such a

behavior as compared to the DV ones. This clearly indicates the strong coupling of the electron

with the nucleus in the initial and final states.

In figures 3 and 4, an analogous comparison is made for the scattering geometry SG3 of

linear polarization laser field. The values of parameters used here are the same as in figures

1 and 2 respectively. At small scattering angles FCDV, CDVI and DV curves merge together

since the Coulomb distortion in the electron initial and final states is less prominent at large

impact parameters. With the increase of Z to 40, FCDV and CDVI curves varying tendencies

with respect to DV are more or less the same as in circular case.

For getting a better idea on the incorporation of the Coulomb field effects of the nucleus in

FCDV and CDVI approaches, let

∆σ =
|dσa/dΩf − dσb/dΩf |
dσa/dΩf + dσb/dΩf

(31)

be a measure of the difference between dσa/dΩf and dσb/dΩf data. This normalized difference

which can have the values 0 ≤ ∆σ ≤ 1 was introduced by Panek et al. [13]. For comparative

purposes, we have the considered scattering geometries SG2 and SG3 for θf = π/2. In addition,

the azimuthal angle is π/2 and 0 in the former and the latter respectively. The results obtained

for FCDV and CDVI with DV as reference values are depicted in figures 5 and 6. It clearly

appears that the deviation between CDVI and DV is small and only gradually increases for Z

approaching 40. In contrast, a significance discrepancy between FCDV and DV is recognized

for Z higher than 10. The higher the charge is, the more the electron states are distorted, thus

the more the cross section is modified. This has led us to evaluate in the angular distribution

once more the difference ∆σ between FCDV and CDVI as a function of Z. The results obtained

are displayed in figures 7, 8 and 9. For the data presented, we have chosen in figure 8, i.e. for

SG1 geometry, θf = π/2 and 0 ≤ φf ≤ 180 the angle between the ingoing and scattered electron

in the xy-plane. We observe that the deviations are particularly large for Z higher than 10

whatever the scattering geometry and the polarization of the laser field. However, the spectra

are not so smooth but rather show some structures.

4 Conclusion

In the present work we have investigated the Mott scattering taking place in a relativistic

laser intensity, when Coulomb field of the target nucleus is taken into account in the electron
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initial and final states. Coulomb-corrected Dirac-Volkov wavefunctions proposed recently by Li

et al. have been used to describe an electron moving under the joint influence of a Coulomb

and a vector potential. We have considered three scattering configurations, a laser field of rel-

ativistic intensity, and a kinetic energy of the projectile in the MeV range. Cross sections for

this laser-assisted process have been obtained with circularly and linearly polarized light for

various nucleus charge values. The CDVI and CDVF results are identical, but both of them are

about two orders of magnitude smaller than the FCDV ones. The fact that Coulomb interac-

tion significantly enlarges the latter outcome presumably shows that the prior and post form

approximations are less realistic.
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Figure 1: Plot of the summed differential cross sections in a.u. of ±100 peaks around the elastic
one versus the angle θf for the scattering geometry SG1 in the case of circular polarization. The
nucleus charge is Z = 1. The solid line is the FCDV result and the dashed one sketches the
values obtained within CDVI.
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Figure 2: Plot of the summed differential cross sections in a.u. of ±100 peaks around the elastic
one versus the angle θf for the scattering geometry SG1 in the case of circular polarization. The
nucleus charge is Z=40. The solid line is the FCDV result, the dashed and dash-dotted lines
denote values obtained within CDVI and DV.
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Figure 3: Plot of the summed differential cross sections in a.u. of ±100 peaks around the elastic
one versus the angle θf for the scattering geometry SG3 in the case of the linear polarization.
The nucleus charge is Z = 1. The solid line is the FCDV result and the dashed one sketches the
values obtained within CDVI.
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Figure 4: Plot of the summed differential cross sections in a.u. of ±100 peaks around the elastic
one versus the angle θf for the scattering geometry SG3 in the case of the linear polarization.
The nucleus charge is Z = 40. The solid line the FCDV result, the dashed and dash-dotted lines
denote values obtained within CDVI and DV.
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Figure 5: Normalized deviations of the FCDV (solid line) and CDVI (dashed line) cross sections
from DV ones as a function of the nucleus charge for SG2 in the case of circular polarization.
For comparative purpose with the linear polarization, the scattering direction is θf = φf = π/2.
Curves are drawn to guide the eye.
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Figure 6: Normalized deviations of the FCDV (solid line) and CDVI (dashed line) cross sections
from DV ones as a function of the nucleus charge for SG3 in the case of linear polarization.
Curves are drawn to guide the eye.
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Figure 7: Normalized deviations of the FCDV cross sections from the CDVI ones versus the
angle θf and the nucleus charge for SG1 in the case of circular polarization.
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Figure 8: Normalized deviations of the FCDV cross sections from the CDVI ones versus the
angle φf and the nucleus charge for SG3 in the case of circular polarization.
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Figure 9: Normalized deviations of the FCDV cross sections from the CDVI ones versus the
angle θf and the nucleus charge for SG2 in the case of linear polarization.
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