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Introduction. Let k be a field, G a linear algebraic k-group and K/k a finite field extension.

We denote by H1(K,G) = H1(Gal(Ks/K,G(Ks)) the usual 1-Galois cohomology set, where Ks

denotes the separable closure of K in a fixed algebraic closure K̄. Assume that we have a map

which is functorial in K :

αK : Hp(K,G) → Hq(K,T ),

i.e., a map of functors α = (αK) : (K 7→ Hp(K,G)) → (K 7→ Hq(K,T )) where K runs over

all finite field extensions of k, T is a commutative linear algebraic k-group. If K/k is a finite

separable extension of k, then it is well-known that there exists corestriction homomorphism

CoresK/k,T : Hq(K,T ) → Hq(k, T ).

It is natural to ask whether or not the following inclusion holds

CoresK/k,T (Im (αK)) ⊂ Im (αk).

If it is the case for all K, then we say that the Corestriction Principle holds for the image of

the map αk : Hp(k,G) → Hq(k, T ). We may also consider similar notion for kernel of αk, when

G is commutative and T may be not. It is most natural to consider the class of maps (αK)

which arise as connecting maps in exact sequences of Galois cohomology induced from an exact

sequence of k-groups. We refer to [Gil], [Me], [T1] - [T3] and references therein for the discussion

of some results related to this notion. In [T2] we showed that over local and global fields k of

characteristic 0 the Corestriction Principle holds for the image (and kernel) of connecting maps,

where G is any connected linear algebraic k-group and T is a linear commutative algebraic

k-group.

In this note we prove the Corestriction Principle for image (and kernel) in the case k is a

local (resp. global) field of characteristic p > 0 (which are called also local or global function

fields) for connected reductive k-groups. We mention that there are two difficulties arising in

this case.

Firstly, we note that if k is perfect, then it is well-known (see, e.g., [Se], Ch. III) that 1-Galois

cohomology for unipotent groups is trivial and the proof of the main results of [T1] - [T3] is

reduced to the case of reductive groups. However, in the case k is non-perfect, this is no longer

the case, and moreover, the unipotent radical of a k-group does not need to be defined over k.

Thus in this case we have to restrict ourselves to the case of connected reductive groups G and

tori T .

Secondly, one of main tools used in the case char. k = 0 is the abelian Galois cohomology

theory of Borovoi and of Kottwitz ([Bo1-2], [Ko]), which has no analogue (for the time being)

in the case char. k > 0. So instead of using abelian Galois cohomology, we need to make some

further reductions.
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1 Statement of Theorem

We keep the following convention. All algebraic groups considered are linear algebraic groups,

i.e., absolutely reduced affine group schemes, except possibly for certain group schemes of multi-

plicative type whenever they encounter (which will be clearly indicated). For them, (only in the

characteristic p > 0 case) we need to use the flat (or the same, Amitsur) cohomology (denoted

by Hi
fl(., .)) instead of Galois cohomology. Recall that for linear algebraic groups G over k, it is

well-known (see e. g., [Mi], Chap. III) that the flat and Galois cohomology of G are canonically

isomorphic.

Recall that for a given exact sequence of algebraic k-groups A,B and quotient k-variety C

1 → A
f
→ B

g
→ C → 1,

we have a long exact sequence of pointed sets for any field extension K/k

(1) 1 → A(K)
fK→ B(K)

gK→ C(K)
δK→ H1

fl(K,A)
f ′

K→ H1
fl(K,B).

Here A may not be a normal k-subgroup of B, so C may not be a k-group. If A is a nor-

mal k-subgroup, we may consider a longer sequence involving H1
fl(K,C)

(2) 1 → A(K)
fK→ B(K)

gK→ C(K)
δK→

δK→ H1
fl(K,A)

f ′

K→ H1
fl(K,B)

g′
K→ H1

fl(K,C).

If, moreover, A is a central k-subgroup of B, we may also consider a longer exact sequence

involving also H2
fl(k,A) :

(3) 1 → A(K)
fK→ B(K)

gK→ C(K)
δK→

δK→ H1
fl(K,A)

f ′

K→ H1
fl(K,B)

g′
K→ H1

fl(K,C)
∆K→ H2

fl(K,A).

All the maps fK , gK , δK , f ′
K , ... arising this way are called simply connecting maps. We have the

following

Theorem A. Let k be a local or global field of characteristic p > 0.

a) Let αk : Hp(k,G) → Hq(k, T ) be a connecting map induced from an exact sequence involving

k-groups as in (1), (2) or (3). Assume that G is connected, reductive and T is a torus. Then the

Corestriction Principle for the image of αk holds.

b) Let αk : Hp(k, T ) → Hq(k,G) be a connecting map induced from an exact sequence involving

k-groups as in (1), (2) or (3). Assume that G is connected, reductive and T is a torus. Then the

Corestriction Principle for the kernel of αk holds.
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Theorem A makes use of, among other things, the following theorem (see Theorem 2.4 be-

low) which is an analogue of a theorem of Kneser in the number field case, and it seems to be

of independent interest.

Theorem B. Let G be a semisimple group over a local or global function field k, π : G̃ → G the

universal covering of G, F = Ker (π). Then the coboundary map

∆k : H1
fl(k,G) → H2

fl(k, F )

is bijective.

Notice that in [Do], Douai has announced that the map ∆k above in the case of global function

field is always surjective. The proof seems quite different from ours, which makes use band

(gerbes) theory of Giraud.

2 Preliminaries

2.0. We recall (cf. [Bo1,Bo2], [Ko]) that for a connected reductive group G defined over a field

k, a z-extension of G is a connected reductive k-group H such that the semisimple part of H

(the derived subgroup of H) is simply connected and H is an extension (in the sense of algebraic

groups) of G by means of an induced k-torus Z, i.e., we have an exact sequence of k-groups

1 → Z → H → G → 1.

This notion was introduced (and the existence of such extensions for any given G was proved)

by Langlands in the case of characteristic 0, but one checks that the same also holds in the case

of positive characteristic. If K is a field extension of k, x ∈ H1(K,G), then a z-extension H of

G over k is called x-lifting, if x ∈ Im (H1(K,H) → H1(K,G)).

We need the following lemma in the sequel, which extends some results regarding z-extensions

in the case of char. 0 to that of char. p > 0 (cf. [Bo1]).

2.1. Lemma. Let k be any field.

a) Let G be a connected reductive k-group. Then there exist z-extensions of G over k.

b) Given an exact sequence 1 → G0 → G1 → G2 → 1 of connected reductive k-groups there exists

a z-extension of this sequence, i.e., an exact sequence 1 → H0 → H1 → H2 → 1 of connected

reductive k-groups and a commutative diagram

1 → H0 → H1 → H2 → 1

↓ ↓ ↓

1 → G0 → G1 → G2 → 1
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of connected reductive k-groups such that each group Hi is a z-extension of Gi, i = 0, 1, 2.

c) Let K be a finite separable extension of k, G a connected reductive k-group. Then for any

element x ∈ H1(K,G) there exists a x-lifting z-extension H of G.

d) Let K be as above and let π : G1 → G2 be a k-homomorphism of connected reductive k-groups.

Then there exists a z-extension π′ : H1 → H2 of π : G1 → G2, such that H1 is x-lifting z-

extension of G1 for any given x ∈ H1(K,G1).

Proof. a) Let G = SG′, where S is a central k-subtorus of G, and G′ = [G,G] is connected,

semisimple, and the product is almost simple. Denote by G̃ the simply connected k-covering of

G′, µ the (schematic) kernel of the central k-isogeny G̃ × S → G′S. Then it is known ([Ha1],

Satz 1.2.1) that µ can be embedded into a maximal torus M lying in a Borel k-subgroup B of

a quasi-split simply connected semisimple k-group Gq of the same Dynkin type as G̃. One may

check also that such a k-torus is an induced k-torus (see [BrT1], Proposition 4.4.16). Then µ is

embedded diagonally into the direct product M × (G̃×S), and we may identify µ with a central

finite k-subgroup scheme of multiplicative type in M × (G̃ × S). We denote by H the quotient

M × (G̃ × S)/µ. One checks as in [Ha1], Satz 1.2.1 that we have the following commutative

diagram

1 1





y





y

1 → µ → G̃ × S
α
→ G → 1





y





y





y =

1 → M → H
α
→ G → 1

γ




y





yγ

T = T





y





y

1 1

(which is nothing else than the Ono’s cross diagram ([O], [Sa])), where H is a connected reduc-

tive k-group which is an extension of G by an induced k-torus M .

b) Once the existence of z-extensions is established, many other results regarding z-extensions

may be extended to the case of characteristic p > 0 too. The proofs of many of them are the

same as in the case of char. 0. For the convenience of readers we recall briefly the argument (cf.

[Bo1] for more details).
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First choose z-extensions H → G1 and H2 → G2. Then we set

H1 := H ×G2
H2,H0 := Ker (H1 → H2).

Then one checks that Hi → Gi, i = 0, 1, are z-extensions and we have the commutative diagram

as desired.

The proof of c) and d) follow from a) and b) above by repeating the same proof in the case of

characteristic 0 (cf. the proof of Lemmas 2.3 and 2.4 of [T2]).

The following is an analogue of an important result of Kneser ([Kn1], Sec. 15) for the case

of local function fields.

2.2. Lemma. Let G be a semisimple group defined over a local function field k. Then there

exist maximal k-tori of G which are anisotropic over k and have trivial 2-dimensional Galois

cohomology.

The proof is essentially the same as in the case of characteristic 0, so we omit it. (For the

second assertion one needs Tate - Nakayama duality for tori over local function fields, which has

been proved in [Sh], Chap. VI, Sec. 5). Also, we need Lemma 2.2 basically only in the case of

groups of type A × A × · · · × A, which can be reduced to the case of a single type A only and

can be proved directly just as in [Kn2], pp. 64 - 65, or [PR], Chap. VI.)

2.3. Lemma. Let G be a semisimple group (resp. and of Dynkin type A×A× · · · ×A) defined

over a local (resp. global) function field k, F a central k-subgroup of G. Then the coboundary

map

H1
fl(k,G/F ) → H2

fl(k, F )

is surjective.

Proof. The case of global field is proved in [Ha2], Sec. 3, Lemma 2. So we assume that k

is a local function field. By Lemma 2.2, there exists a maximal k-torus T ⊂ G which has trivial

Galois (hence flat) cohomology in dimension 2.

From the exact sequence

H1
fl(k, T ) → H1

fl(k, T/F )
∆
→ H2

fl(k, F ) → H2
fl(k, T ) = 0,

we see that ∆ is surjective, hence the map

H1
fl(k,G/F ) → H2

fl(k, F )
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is also surjective as desired.

The following is an analogue of another important results of Kneser for the case of local and

global function fields (see [Kn2], Theorem 2, p. 60, and Theorem 2, p. 77). Its validity itself is

already of independent interest and some ideas of its proof have been already indicated in [BH],

p. 523 and p. 528.

2.4. Theorem. Let G be a semisimple group over a local or global function field k, π : G̃ → G

the universal covering of G, F = Ker (π). Then the coboundary map

∆k : H1
fl(k,G) → H2

fl(k, F )

is bijective.

Proof. Since H1
fl(k, G̃) ' H1(k, G̃) = 0 if k is a local (resp. global) function field by Bruhat -

Tits [BrT2] (resp. by Harder [Ha2]), the usual twisting argument shows that it suffices to prove

the surjectivity of the coboundary map ∆k.

We show first that if G is quasi-split k-group then the assertion of Theorem 2.4 holds. Given F as

above, we claim that there exists a semisimple k-subgroup H of G̃ of Dynkin type A×A×· · ·×A

of G̃ such that F ⊂ H. Since G̃ is simply connected, to prove our claim we may assume that G̃ is

absolutely almost simple over k. Set F̃ = Cent(G̃) the (schematic) center of G̃. It suffices then

to find such a subgroup H of given type in G̃ such that F̃ ⊂ H. We consider the following cases

by distinguishing the Dynkin type (Tits index) (see [Ti]) of G̃. We may assume that G̃ is not of

type An. For a maximal k-torus T containing a maximal k-split torus S of G̃, let Φ = Φ(T, G̃)

be the root system of G̃ with respect to T , {α1, ..., αn} be a system of simple roots of Φ, such

that the corresponding Tits index is given below, where αi corresponds to the vertex i, and α̃

corresponds to the maximal root of the corresponding root system.

We extend an argument of Serre to the case of a non-algebraically closed fields (see [CT],

Proof of Prop. 8.2, which treats the case of groups over algebraically closed fields), by claiming

that there exists a semisimple k-subgroup H of G̃ of type A× · · · ×A and rank(H) = rank(G̃).

Then H contains a maximal k-torus of G̃, hence also the center of G̃. (Below we indicate also an-

other choice of the group H containing the center of G̃, which is not necessary of maximal rank.)

2.4.1. Type Bn, n ≥ 2. The group G̃ is split over k and its Tits index is as follows

1◦ =⇒ ◦2 ⇐= ◦α̃

for n = 2, and
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1 ◦ − −2 ◦ − − · · · − − ◦ − −n−1 ◦ =⇒ ◦n

|

α̃

for n ≥ 3. Here the maximal root α̃ is given by (see [Bou], Table II)

α̃ = α1 + 2α2 + · · · + 2αn.

We use induction on n. If n = 2 (resp. n = 3) let H be the regular simply connected semisimple

k-subgroup of G̃ with the root system {α̃, α1}. (resp. {α̃, α1, α3}). Then H is of type A1 × A1

(resp. A1 × A1 × A1) and of maximal rank. Assume that n ≥ 4. Then we consider the regular

k-subgroups H1,H2,H3 of G̃ with the root system {α̃}, {α1}, {α3, ..., αn}, respectively, and

take H ′ = H1 × H2 × H3. Then it is clear that H ′ is defined over k, semisimple k-split of type

A1 × A1 × Bn−2 and of maximal rank. By induction, H3 contains a regular k-subgroup H ′
3

which is semisimple k-split of type A× · · · ×A and of maximal rank in H3. Then one may take

H = H1 × H2 × H ′
3, which is of desired type.

(One may take also H to be the regular semisimple k-subgroup of G̃ with the root system

{αn}. Then H is of type A1 and contains the center of G̃.)

2.4.2. Type Cn, n ≥ 3. G̃ is k-split and the Tits index of G̃ is as follows

α̃◦ =⇒ ◦1 −− ◦2 −− · · · − −n−1◦ ⇐= ◦n

Here the maximal root α̃ is given by (see [Bou], Table III)

α̃ = 2α1 + · · · + 2αn−1 + αn.

We use induction on n. If n = 3, we consider the regular semisimple k-subgroups H1,H2 with

the root system {α̃}, {α2, α3}, respectively. Since B2 ' C2, H2 contains a regular k-subgroup

H ′
2 of type A1×A1, so we may take H = H1×H ′

2. If n > 3, let H1,H2 be the regular semisimple

k-subgroups of G̃ with the root system {α̃}, {α2, ..., αn}, respectively. Then H2 is of type Cn−1,

which, by induction hypothesis, contains a regular semisimple k-subgroup H ′
2 of type A×· · ·×A

of maximal rank in H2. Then H = H1×H ′
2 is of type A×· · ·×A, defined over k and of maximal

rank in G̃.

(One may also take Hi to be the regular semisimple k-subgroup of G̃ with root system

{α2i−1}, 1 ≤ i ≤ [n + 1]/2, and H =
∏

1≤ı≤[n+1]/2 Hi. Then one checks that H contains the

center of G̃ and is of type A × · · · × A.)

2.4.3. Type Dn, n ≥ 4. If G̃ is k-split then it has the following Tits index
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◦n

◦1 −− ◦2 −− ◦ −− · · · − − ◦n−3 −− ◦n−2
〈

| ◦n−1

α̃

If G̃ is k-quasi-split, then it has the following Tits index

◦n

◦1 −− ◦2 −− ◦ −− · · · − − ◦n−3 −− ◦n−2
(

l

| ◦n−1

α̃

Here the maximal root α̃ is given by (cf. [Bou], Table IV)

α̃ = α1 + 2α2 + · · · + 2αn−2 + αn−1 + αn.

In both cases we denote by H1,H2,H3 the regular simply connected semisimple k-subgroups of

G̃ with root system {α̃}, {α1}, {α3, ..., αn}, respectively and use induction on n. If n = 4 (resp.

n = 5), then H3 is of type A1 × A1 (resp. is of type A3), hence H = H1 × H2 × H3 is of type

A × · · · × A and is regular, semisimple of maximal rank. If n > 5, H3 is of type Dn−2 and by

induction, it contains a regular semisimple k-subgroup H ′
3 of type A × · · · × A. Then we may

take H = H1 × H2 × H ′
3. It rests to show that all the groups Hi are defined over k.

It is clear for H2 and H3, and also for H1 in the case G̃ is k-split. Assume that G̃ is k-quasi-

split. There exists a separable quadratic extension K of k, which splits G̃. Let Γ = Gal(K/k) =

{1, σ} be the corresponding Galois group. Then T is defined over k and is K-split, and the

action of Gal(ks/k) on the character group X∗(T ) of T factors through Γ. The same is true for

the action of Gal(ks/k) on the cocharacter group X∗(T ). For α ∈ X∗(T ), h ∈ X∗(T ) (which are

always defined over K), the Γ-action (hence the action of σ) is defined as follows

ασ(t) = σ(α(σ−1(t))), t ∈ T (K),

hσ(z) = σ(h(σ−1(z))), z ∈ K∗.

In [T] there was given the action of σ in the case k = R, K = C, but one can check that the

results proved there (and their proofs) also hold in our situation. In particular, we have (see

[T], p. 1105)

ασ
i =











αi if i < n − 1,
αn if i = n − 1,
αn−1 if i = n.

Thus α̃σ = α̃, hence H1 (the root subgroup corresponding to α̃) is defined (in fact split) over k.
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(We may also take H to be the regular semisimple k-subgroup of G̃ with the root system

{α̃, α2, ..., αn}. Then H is of maximal rank in G̃. If n is even, let H be the regular semisimple k-

subgroup of G̃ with the root system {α1, α3, ..., αn−3, αn−1, αn}. Then H is of type A1×· · ·×A1

and is k-split (resp. k-quasi-split) if G̃ is so.) If n is odd, let H be the regular semisimple

k-subgroup of G̃ with the root system {α1, α3, ..., αn−4, αn−2, αn−1, αn}. Then H is of type

A1 × · · · × A1 × A3 and is k-split (resp. k-quasi-split) if G̃ is so. In all cases above, H contains

the center of G̃ as desired.)

2.4.4. Type E6. If G̃ is k-split, its Tits index is as follows

α̃
|

2◦
∣

∣

∣

◦1 −− ◦3 −− ◦4 −− ◦5 −− ◦6

and if G̃ is k-quasi-split, its Tits index is as follows

◦1 −−◦3

α̃ ◦ − −2 ◦ −−4 ◦
(

l l

◦5 −−◦6

Here the maximal root α̃ is given by (cf. [Bou], Table V)

α̃ = α1 + 2α2 + 2α3 + 2α4 + 2α5 + α6.

We consider the regular semisimple subgroups H1,H2 of G̃ with the root system {α̃}, {α1, α3, α4, α5, α6},

respectively. Then it is clear that H = H1 × H2 is semisimple of type A1 × A5. To check that

H is defined over k we may proceed as in 2.4.3. Namely it suffices to treat the case G̃ is

quasi-split (non-split). Let K be a separable quadratic extension of k which splits G̃. Let

Γ = Gal(K/k) = {1, σ} be the corresponding Galois group. Then as in [T], p. 1107, we have

the following action of σ on simple roots {α1, ..., α6}.

ασ
i =



























αi if i = 2, 4,
α5 if i = 3,
α6 if i = 1,
α1 if i = 6,
α3 if i = 5.

Hence one sees that the root subgroup H1 corresponding to α̃ is defined (and split) over k. Thus

H is defined over k.
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(For these cases we can take the regular semisimple k-subgroup H of G̃ with the root system

{α1, α3, α5, α6}. Then one checks that H is of type A2 × A2 and contains the center of G̃.

2.4.5. Type E7. The group G is k-split and its Tits index is given by

2◦
∣

∣

∣

α̃ ◦ − − ◦1 −− ◦3 −− ◦4 −− ◦5 −− ◦6 −− ◦7

Here the maximal root α̃ is given by (cf. [Bou], Table VI)

α̃ = 2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7.

We consider the regular semisimple subgroups H1,H2 of G̃ with the root system {α̃},

{α2, α3, α4, α5, α6, α7}, respectively. Then it is clear that H2 is a semisimple k-split subgroup

of G̃ of type D6, which contains a regular simply connected semisimple k-subgroup H ′
2 of type

A × · · · × A of maximal rank in H2 (by 2.4.3 above), hence H = H1 × H ′
2 is a semisimple

k-subgroup of type A × · · · × A of maximal rank in G̃.

(We may also take the regular semisimple regular k-subgroup H of G̃ with root system

{α2, α5, α7} (or root system {α2, α4, α5, α6, α7}). Then one checks that H is of type A1×A1×A1

(or A5) and contains the center of G̃ and the claim follows.)

From Lemma 2.3 above, for H ′ = H/F , we see that the coboundary map ∆H′ : H1
fl(k,H ′) →

H2
fl(k, F ) is surjective, hence the same is true for ∆G : H1

fl(k,G) → H2
fl(k, F ), since ∆H′ factors

through ∆G.

In the general case, G̃ is obtained from a quasi-split k-group G̃q by an inner twisting. Such a

twisting does not change the center of G̃, so G is an inner twisting of Gq = G̃q/F. The following

lemma will finish the proof of Theorem 2.4.

2.5. Lemma. If the coboundary map ∆q : H1
fl(k,Gq) → H2

fl(k, F ) is surjective then so is

the map ∆ : H1
fl(k,G) → H2

fl(k, F ).

Proof . We have the following commutative diagram, where all vertical maps are bijections

(the right one is just a ”translation map”) (see [Se], Chap. I, Prop. 44, in the case of Ga-

lois cohomology, and [Gi], Chap. IV, Prop. 4.3.4, in the case of ”general” (including flat)

cohomology)

H1
fl(k,G)

∆
→ H2

fl(k, F )

τq ↓ ↓ τ

H1
fl(k,Gq)

∆q
→ H2

fl(k, F ).
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Since ∆q is surjective, it follows readily that ∆ is also.

In the case of flat cohomology, we need the following application of the trace theory (for

abelian sheaves in flat topology) due to Deligne [De1,De2] applied to the case of commutative

group schemes over fields, which was pointed out by Gille in [Gil], Sec. 0.4.

2.6. Lemma. (Cf. [Gil, Sec. 0.4]) Let G be a commutative group scheme over a field k,

L a finite extension of k. Then for i ≥ 0, there exists corestriction homomorphism

CoresL/k,G : Hi
fl(L,G) → Hi

fl(k,G)

which are functorial in G.

3 Proof of Theorem A, part a)

We consider the following cases.

I) Case p = q = 0 (cf. also [De2] and [MS]). We are given an exact sequence of k-groups

1 → K → G → T → 1,

where G is connected reductive, K is a closed subgroup scheme of G and T is a torus, and k is

a local or global field of characteristic p > 0. Since T ' G/K is commutative, K contains the

derived subgroup G′ = [G,G] of G. We have G = G′S, where S is a central k-torus of G, and

K = G′S′, where S′ is a k-subgroup scheme of S.

a) Assume that G′ is simply connected. Assume also K = G′. For any finite extension L/k we

have the following exact sequence of pointed sets in Galois cohomology

G(L) → T (L) → H1(L,K) = 0,

where the triviality of H1(L,K) follows from a theorem of Bruhat - Tits [BrT2] (in the local

field case), and a theorem of Harder [Ha2] (in the global field case). Therefore the Corestriction

Principle holds in this case.

Assume that K 6= G′ . Then we have the following commutative diagram with exact rows

in flat cohomology

G′(L) → G(L)
πL→ (G/G′)(L) → 0

↓ ↓= ↓ βL

K(L) → G(L)
αL→ T (L) → H1

fl(L,K)

.

Since αL = βLπL and πL is surjective, so everything is reduced to βL and the assertion trivially

holds.
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b) G′ is not simply connected. Consider a z-extension of G, which exists by Lemma 2.1 :

1 → Z → H → G → 1.

Denote by T1 = H/[H,H], which is a k-torus and consider the following commutative diagrams

related with the above exact sequence, for any extension field L/k

Z(L) → H(L)
πL→ G(L) → 1

↓ βL ↓ αL

T1(L)
γL→ T (L)

Here βL and πL are surjective for any L, thus the image of αL is just the image of γL. Since

the Corestriction Principle holds automatically for γk, it also holds for αk. Therefore the case

p = q = 0 is proved.

II) Case p = 0, q = 1. In this case we are given the following exact sequence

1 → T → G1 → G → 1,

where T is a torus and G is connected, reductive, hence so is G1. By Lemma 1.1 there is a

z-extension 1 → H0 → H1
π
→ H2 → 1 of the above sequence. Since for any field extension

L/k we have surjective homomorphism βL : H2(L) → G(L), so from the following commutative

diagram with exact rows

H2(L)
δL→ H1(L,H0)

↓ βL ↓ αL

G(L)
δ′
L→ H1(L, T )

it follows that it suffices to prove the assertion for the connecting map δk : H2(k) → H1(k,H0).

Notice that since T is a torus, H0 is also a torus. Also the semisimple part of H1 and H2

are simply connected k-groups. Therefore the restriction of π to the semsimple part G̃ of H1 is

an isomorphism, so we may assume that G̃ = [H2,H2] is the semsimple part of H2, and we have

the following decompositions into almost direct product

H1 = G̃S1,H2 = G̃S2,

where Si is a central k-subtorus of Hi, i = 1, 2. From this we derive the following commutative

diagram with exact rows
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1 1

↓ ↓

G̃ ' G̃

↓ ↓

1 → H0 → G̃S1 → G̃S2 → 1

↓' ↓ ↓

1 → H̄0 → S̄1 → S̄2 → 1

↓ ↓

1 1

where S̄i is the corresponding quotient of Si, i = 1, 2. From this diagram by making use the

vanishing of H1 for simply connected groups over local or global fields of positive characteristic

as above, we derive the following commutative diagram for any finite field extension L/k

(G̃S2)(L)
δL→ H1(L,H0)

↓ ↓'

S̄2(L)
δ′
L→ H1(L, H̄0)

↓

1

It follows that the image of δL is just the image of the composite map S̄2(L)
δ′
L→ H1(L, H̄0) '

H1(L,H0), and the assertion follows.

III) Case p = q = 1. We are given an exact sequence of k-groups

1 → G1 → G → T → 1.

Since T is a torus, it follows that it suffices to prove the assertion for the case G1 = G′. Let L

be a finite field extension of k. Let G = G′S, where S is a central k-subtorus of G, G′ = [G,G].

Denote by Z(G) (resp. F ′) the schematic center of G (resp. G′), Ḡ = G′/F ′ the corresponding

adjoint group, then we have

G/F ′ ' Ḡ × S′,

where S′ is a torus quotient of S, namely S ′ = S/F with F the (schematic) intersection F :=

F ′ ∩ S. Consider the exact sequences

1 → F ′ → G′ → Ḡ → 1,
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1 → F ′ → Z(G) → S′ → 1,

and

1 → F ′ → G′S → Ḡ × S′ → 1,

and the long exact sequence of cohomology deduced from it, we have the following exact se-

quences of cohomology :

H1
fl(k, F ′) → H1

fl(k,G′) → H1
fl(k, Ḡ)

∆1,k
→ H2

fl(k, F ′),

H1
fl(k, F ′) → H1

fl(k, Z(G)) → H1
fl(k, S′)

∆2,k
→ H2

fl(k, F ′),

and also similar sequences when k is replaced by L. We have also the following commutative

diagram with the exact first row

H1
fl(L,G)

βL→ H1
fl(L, Ḡ) × H1

fl(L, S′)
∆L→ H2

fl(L,F ′)





y =




y

H1
fl(L,G)

αL→ H1
fl(L, S′)

Since Ḡ × S′ is a direct product and S is in the center of G′S, one checks by computing the

corresponding 2-cocycles that the map ∆L is given by

∆L(g, s) = ∆1,L(g) + ∆2,L(s),

where the ”+” is taken in H2
fl(L,F ′). Let x′ ∈ H1

fl(L,G), βL(x′) = (g′, s′), g′ ∈ H1
fl(L, Ḡ), s′ ∈

H1
fl(L, S′), s = CoresL/k,S′(s′) ∈ H1

fl(k, S′). Then we have ∆L(g′, s′) = 0, so ∆2,L(s′) =

−∆1,L(g′). By Theorem 2.4, for F̃ the schematic center of G̃, the coboundary map (in the

long exact sequence induced from the exact sequence 1 → F̃ → G̃ → Ḡ → 1)

∆∗
L : H1

fl(L, Ḡ) → H2
fl(L, F̃ )

is surjective for any finite extension L of k. We have the following exact sequence for finite

group schemes

1 → F0 → F̃ → F ′ → 1,

where F0 = Ker (G̃ → G′), which induces a homomorphism pL : H2
fl(L, F̃ ) → H2

fl(L,F ′). Since

∆1,L = pL◦∆∗
L, and by Theorem 2.4, ∆∗

L is always surjective, so by Lemma 2.6, the Corestriction

Principle holds for the image of ∆1,k and via corestriction map we have

CoresL/k,F ′(∆2,L(s′)) = ∆2,k(s)

= CoresL/k,F ′(−∆1,L(g′))

= −CoresL/k,F ′(∆1,L(g′))

= −∆1,k(ḡ)
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for some ḡ ∈ H1
fl(k, Ḡ). Therefore ∆k(ḡ, s) = 0, i.e., (ḡ, s) = βk(g), g ∈ H1

fl(k,G), or equivalently

s = αk(g) ∈ Im (αk).

4 Proof of Theorem A, part b)

We consider separately the possible values of p, q, so we have the following cases.

a) Case p = q = 0. We are given the following exact sequence of k-groups

1 → T → G → G1 → 1

and the assertion is trivial in this case.

b) Case p = 0, q = 1. We are given the exact sequence

1 → G → G1 → T → 1.

Since T,G are connected, reductive k-group, the same is true for G1. Since we are interested in

the kernel of the coboundary map

δk : T (k) → H1(k,G),

which is nothing else than the image of G1(k) → T (k), so we are back to the first case a) of

Theorem.

c) Case p = q = 1. We consider the following exact sequence of k-groups

1 → T → G → G1 → 1.

Since T is a k-subtorus of G, it is contained in a maximal k-torus of G, so we may assume that

T is already a maximal one. Then by making use of Lemma 2.1, the proof in the case char.0

(see [T2], p. 296) carries over to the case of characteristic p > 0.
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