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Abstract

Let F = Q(
√
−d1) and E = Q(

√
−d1,

√
d2), d1 and d2 squarefree integers, be an imaginary

field and a biquadratic field, respectively. Let S be the set consisting of all infinite primes, all

dyadic primes and all finite primes which ramify in E. Suppose the 4-rank of the class group of

F is zero and the S-ideal class group of F has odd order, we give the forms of all elements of

order ≤ 2 in K2OE and use the Hurrelbrink and Kolster’s method [5] to obtain the forms of all

elements of order 4 in K2OE .
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1 Introduction

Let E = F (
√
d) be a relative quadratic extension over a number field F , and let OE and OF be

the rings of integers of E and F , respectively. Let S be the finite set of primes of F consisting of

all dyadic primes, all finite primes that ramify in E and all infinite primes and let Sf be the set

of finite primes in S. We will use the following notations for any abelian group A: 2A denotes

the subgroup of elements of order ≤ 2 of A; A(2) denotes the 2-Sylow subgroup of A; r2n(A)

denotes the 2n-rank of A.

For an arbitrary number field L with the ring of integers OL, there is a surjective homomor-

phism

K2OL →
⊕

v real

µ2 → 0

induced by the Hilbert symbols at the real infinite primes. Hence its kernel denoted by K2O
′
L

is of index 2r1(L) in K2OL.

First we recall some results in [5]. Hurrelbrink and Kolster determined the structure of the

2-Sylow subgroups K2O
′
E(2) and K2OE(2), provided that K2O

′
F (2) = 0. If K2O

′
F (2) = 0, then

F has only one dyadic prime and the S2-class group CS2(F ) has odd order, where S2 is the set

of all infinite primes and the dyadic prime. Let Tr(E/F ) denote the kernel of the transfer map

(see [7])

TrE/F : K2E → K2F.

In [5], there is a homomorphism 2φE/F : 2Tr(E/F ) → 2Br(F )/(−d,∆F ), where (−d,∆F )

denotes the subgroup of the Brauer group of F generated by all classes (−d, δ) with δ in the

Tate kernel ∆F , satisfying {−1, δ} = 1 in K2F ; see [11].

Suppose 2φF (i)/F is trivial and the S-class group CS(F ) has odd order, then there exists an

exact sequence (see [5, Corollary 3.9])

0 → (2K2OE)2 ∩ Tr(E/F ) → 2K2OE ∩ Tr(E/F )
ψE/F→ BrSf (E0/F )/(−d,∆F ),

where BSf (E0/F ) consists of all classes of quaternion algebras of the form (−d, a) with a ∈ F ∗

which are locally trivial at primes in Sf . Hence we can use the above exact sequence to compute

the 4-rank of K2OE ∩ Tr(E/F ). In fact, if F is totally real or K2O
′
F (2) = 0, then 2φF (i)/F is

trivial.

In the paper, we will always assume that F = Q(
√−d1), d1 > 2 a squarefree integer, is

an imaginary quadratic field and E = F (
√
d2), d2 a squarefree integer, is a biquadratic field.

Let C(F ) and CS(F ) denote the class group of F and the S-ideal class group of F , respec-

tively. We shall determine the structure of the 2-Sylow subgroup K2OE(2) clearly, provided

that r4(C(F )) = 0 and CS(F ) has odd order.

In section 2, we give the forms of all elements of order at most 2 in K2OE ∩ Tr(E/F ) via

solutions of systems of F2-linear equations whose coefficient matrices consist of the Legendre
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symbols (Theorem 2.1); further, we obtain the forms of all elements of order at most 2 in K2OE

and calculate r2(K2OE) via the determination of the F2-ranks of certain matrices of Legendre

symbols (Theorem 2.2).

In section 3, we mainly use the results of section 2 and [5] to investigate r4(K2OE). We

supply Proposition 3.1 and Proposition 3.2 such that we can use the preceding exact sequence

even if F is an imaginary quadratic field with r4(C(F )) = 0, which removes the restriction on

a base field F in [5]. Hence we use it to compute r4(K2OE)(Theorem 3.2); we also give an

algorithm to get elements of order 2 and 4 of K2OE via the determination of the F2-ranks of

certain matrices of local Hilbert symbols analogous to the Rédei’s matrix (Corollary 3.1). We

also illustrate the method through various examples.

In this paper, we express the forms of all elements of order at most 4 in K2OE by various F2-

matrices consisting of Legendre symbols and local Hilbert symbols analogous to Rédei matrix,

but it has to be pointed out that this paper uses the Hurrelbrink and Kolster’s method of relative

quadratic extension [5] to investigate specially biquadratic number fields E and generalizes the

results of Browkin, Schinzel [1] and Qin [9,10].

In this paper, we always assume that F = Q(
√
−d1) and E = Q(

√
−d1,

√
d2), d1 > 2 and d2

squarefree integers, are an imaginary quadratic field and a biquadratic field, respectively.

2 2-rank

Let S be the finite set of primes in F consisting of all infinite primes, all dyadic primes, all finite

primes ramifying in E. In this section, we will give elements of order ≤ 2 of K2OE , provided

the 4-rank of the class group C(F ) is 0 and the S-ideal class group CS(F ) has odd order.

Suppose r4(C(F )) = 0, we observe the 2-Sylow subgroup of K2OF and the Tate kernel ∆F .

Proposition 2.1 Let F = Q(
√
−d1), d1 > 2 a squarefree integer, be an imaginary quadratic

number field and r4(C(F )) = 0.

(1) If d1 6≡±1 mod 8 or d1 ≡ −1 mod 8 with 2 /∈ NF , then r4(K2OF ) = 0 and ∆F =

{2,m}F ∗2, m|d1.

(2) If d1 ≡ 1 mod 8, then r4(K2OF ) = 1, r8(K2OF ) = 0 and ∆F = {2,m}F ∗2, m|d1.

(3) If d1 ≡ −1 mod 8 with 2 ∈ NF , then r4(K2OF ) = 0 and ∆F = {2,m(u +
√−d1)}F ∗2,

where m|d1 and u2 − 2w2 = −d1, u, w ∈ N.

Proof. Let F0 = Q(
√
d1) be a real quadratic field versus F = Q(

√
−d1) and C(F0) the narrow

class group of F0. We have the fact: r4(C(F0)) ≤ r4(C(F )) ≤ r4(C(F0)) + 1; compare e.g. [12].

Since r4(C(F )) = 0, r4(C(F0)) = 0, so 2 /∈ NF if d1 6≡ − 1 mod 8.

(1) If d1 6≡±1 mod 8 or d1 ≡ −1 mod 8 with 2 /∈ NF , then, by [17, theorem 4.1], r4(K2OF ) =

0, so ∆F = {2,m}F ∗2, m|d1, by [1] and [11].

(2) If d1 ≡ 1 mod 8, then r4(C(F )) = r4(C(F0)) = 0 and 2 /∈ NF . By [12, theorem 1(i)],

there is a positive divisor n ≡ ±3 mod 8 of d1 such that the equation nz2 = x2−d1y
2 is solvable
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over Z. By [14, theorem 4.1], r4(K2OF ) = 1, r8(K2OF ) = 0 and 1 6= {−1, n} ∈ (K2OF )2. By

[1] and 2 /∈ NF , we get ∆F = {2,m}F ∗2, m|d1.

(3) If d1 ≡ −1 mod 8 with 2 ∈ NF , then r4(C(F )) = r4(C(F0)) = 0, so the class [D] = 1 in

C(F0), where D is a dyadic ideal of F0. By [17, theorem 4.1 and 4.3] or [16], r4(K2OF ) = 0 and

m(u+
√−d1) ∈ ∆F ,m|d1, −d1 = u2 − 2w2, u, w ∈ N. �

Let S be a finite set of primes of F including all infinite primes and all dyadic primes. We

will give a method to determine that the S-ideal class group CS(F ) has odd order, provided

r4(C(F )) = 0. For convenience, we make a definition, which will always be applied for in this

paper.

Definition 2.1 Let F = Q(
√
−d1) be an imaginary quadratic field. Set

S′ = {q0 = 2, q1, · · · , qs, qs+1 · · · , qs+r},(2.1)

where S′ is the set of primes of Q, odd primes q1, · · · , qs are decomposable in F and odd primes

qs+1 · · · , qs+r are inert in F . We define

S = { all primes Q of F | Q|∞ or Q|qi for some qi in S′},

Sf = { all primes Q of F | Q|qi for some qi in S′}.

In fact, |Sf | = 2s+ r + s2, where s2 is the number of dyadic primes of F .

In this paper, we will always assume that p1, · · · , pt are all primes which ramify in F and

pt = 2 if 2|DF , where DF is the discriminant of F . Let MF = (aij) be the t× t Rédei’s matrix

of F with coefficients aij ∈ F2, where

(−1)aij =

{
(
pj

pi
) if i 6= j,

(
DF /p

∗

i
pi

) if i = j,
aij =

{
(
pj

pi
)′ if i 6= j,

(
DF /p

∗

i
pi

)′ if i = j,

p∗i the discriminant of pi. Let M ′
F be the (t− 1) × t matrix by deleting the t−th row of MF . It

is clear that r4(C(F )) = 0 if and only if rankMF =rankM ′
F = t− 1.

Set the matrix over F2

MS =




( 2
p1

)′ ( q1p1 )′ · · · ( qsp1 )′

...
...

...
( 2
pt−1

)′ ( q1
pt−1

)′ · · · ( qs
pt−1

)′


 or




( q1p1 )′ · · · ( qsp1 )′

...
...

( q1
pt−1

)′ · · · ( qs
pt−1

)′


 ,(2.2)

where MS is the (t− 1)× s matrix only if −d1 ≡ 5 mod 8 and MS is the (t− 1)× (s+1) matrix

otherwise.

Proposition 2.2 If r4(C(F )) = 0, then the S-ideal class group CS(F ) has odd order if and

only if rankMS = t− 1.
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Proof. Without loss of generality, suppose −d1 6≡5 mod 8. Take Q0 = D a dyadic ideal and Qj

integral ideals of F over qj, j = 1, · · · , s+ r, respectively. Let G = ({[Qj ]|j = 0, 1, · · · , s}) be the

subgroup of C(F ) generated by the ideal classes [Qj ], j = 0, 1, · · · , s (in fact: [Qj ] = 1, j > s, by

qj inert in F ), then CS(F ) = C(F )/G.

If rankMS = t − 1, then, without loss of generality, we assume that the beginning t − 1

columns of MS are linear independent. Hence each column of M ′
F can be linearly expressed by

the beginning t− 1 columns of MS over F2:




(
pi

p1

)′

...(
pi

pt−1

)′


 =




(
qi1 ···qij
p1

)′

...(
qi1 ···qij
pt−1

)′


 .

Therefore, by Legendre theorem (see [17]), the Diophantine equation piqi1 · · · qijz2 = x2 + d1y
2

has a nontrivial and relatively prime solution (x, y, z) = (a, b, c) over Z. Hence, in C(F ),

[Pi][Qi1 · · ·Qij ] = [Pc]
2, where Pi is the ambiguous ideal over pi and Pc is a ideal over c. Since

r4(C(F )) = 0, there is an odd number k such that [Pi] = [Qi1 · · ·Qij ]
k ∈ G. Hence each ambigu-

ous ideal class [Pi] belongs to G by the genus theory (see [4]).

Suppose that an ideal class [X] of F satisfies [X]2 ≡ 1 mod G. Since r4(C(F )) = 0, there

is an ambiguous ideal class [P ] such that [P ][X] has odd order in the class group C(F ). By

([P ][X])2 = [X]2 ∈ G, [P ][X] ∈ G, so [X] ∈ G. Hence CS(F ) has odd order.

Conversely, if CS(F ) has odd order, then each ambiguous ideal class [Pi] over pi belongs to

G. Hence [Pi][Qi1 · · ·Qij ] ∈ G2 ⊂ C(F )2, so the Diophantine equation piqi1 · · · qijz2 = x2 + d1y
2

has nontrivial solutions over Z. By Legendre theorem (see [17]), the i-th column of M ′
F is linearly

expressed by columns of MS over F2. Hence each column of M ′
F can be linearly expressed by

columns of MS over F2. So rankMS = t− 1 by rankM ′
F = t− 1. �

Let E = Q(
√
−d1,

√
d2) be a biquadratic field. In this paper, we will assume that S defined

as Definition 2.1 is the set of all infinite primes, all dyadic primes, and all finite primes which

ramify in E. In fact, d2 = nq1 · · · qs+r, n|2d1, is a squarefree integer. Suppose r4(C(F )) = 0 and

CS(F ) has odd order, we will give all elements of order 2 of K2OE.

For an arbitrary number field L with the ring of integers OL we define

DL = {x ∈ L∗|vP (x) ≡ 0 mod 2 for all finite primes P - 2}.

We obtain an exact sequence

0 → ∆̃L → DL/L
∗2 → 2K2OL → 0,

where ∆L is the Tate kernel of L and ∆̃L = ∆L/L
∗2. Let

R(E/F ) = {x ∈ E∗|NE/F (x) ∈ ∆F }, D(E/F ) = R(E/F ) ∩DE .
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We define ε via

2ε = [∆F : ∆F ∩NE/F (E∗)].(2.3)

Let Tr(E/F ) denote the kernel of the transfer map TrE/F : K2E → K2F . It is clear that

there is an exact sequence

0 → ∆̃E → D(E/F )/E∗2 → 2K2OE ∩ Tr(E/F ) → 0.(2.4)

Suppose CS(F ) has odd order, by [5, lemma 2.4 and proposition 2.6], there is an exact

sequence

0 → Z/2Z →US/(US)2 → D(E/F )/E∗2 → (∆F ∩NE/F (E∗))/F ∗2 → 0,(2.5)

where US is the group of units of the ring of S-integers OS
F . Hence

r2(D(E/F )/E∗2) = r1 + r2 + |Sf | + r2 + 1 − ε− 1 = |Sf | + 2 − ε,

where Sf consists of all finite primes in S, ε is defined as (2.3), r1 = 0 and r2 = 1 (r1 and r2 are

the number of real and pairs of complex primes of F , respectively). By (2.4) and r2(∆̃E) = 3,

we get the result of [5, remark 2.8]:

r2(K2OE ∩ Tr(E/F )) = |Sf | − 1 − ε = 2s+ r + s2 − 1 − ε.(2.6)

Suppose r4(C(F )) = 0 and CS(F ) has odd order, then rankMS = t− 1 by Proposition 2.2

and 2 /∈ NF if −d2 6≡1 mod 8. In the following, we give the representative set of D(E/F )/E∗2.

Theorem 2.1 (1) If 2|DF and the rank of the following matrix is t− 1:

MS
1 =




(
2
p1

)′ (
q1
p1

)′
· · ·

(
qt−2

p1

)′

...
...

...(
2

pt−1

)′ (
q1
pt−1

)′
· · ·

(
qt−2

pt−1

)′


 ,(2.7)

then the representative set of D(E/F )/E∗2 is

{p1, · · · , pt = 2, q2, · · · , qs+r, at−1 +
√
−d1bt−1, · · · , as +

√
−d1bs} ∪ T

where, for each qi (i = t−1, · · · , s), there is {qi1 , · · · , qij} ⊂ {2, q1, · · · , qt−2} such that qiqi1 · · · qijz2 =

x2 + d1y
2 has a relatively prime solution (x, y, z) = (aj , bj , cj) over Z, and

T =





{e1 +
√
d2f1, e2 +

√
d2f2} if ε = 0,

{e1 +
√
d2f1} if ε = 1,

∅ if ε = 2,

with e2j − d2f
2
j = δj ∈ ∆F , ej , fj ∈ F ∗.

(2) If d1 ≡ −1 mod 8, 2 /∈ NF and the rank of the form (2.7) is t−1, then the representative

set of D(E/F )/E∗2 is

{p1, · · · , pt, 2, q2, · · · , qs+r, at−1 +
√
−d1bt−1, · · · , as +

√
−d1bs} ∪ T.
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(3) If d1 ≡ −5 mod 8 and the rank of the following matrix is t− 1:

MS
2 =




(
q1
p1

)′
· · ·

(
qt−1

p1

)′

...
...(

q1
pt−1

)′
· · ·

(
qt−1

pt−1

)′


 ,(2.8)

then the representative set of D(E/F )/E∗2 is

{p1, · · · , pt, 2, q2, · · · , qs+r, at +
√
−d1bt, · · · , as +

√
−d1bs} ∪ T.

(4) If d1 ≡ −1 mod 8, 2 ∈ NF, and the rank of the form (2.8) is t−1, then the representative

set of D(E/F )/E∗2 is

{p1, · · · , pt, 2, q2, · · · , qs+r, u+
√
−d1, at +

√
−d1bt, · · · , as +

√
−d1bs} ∪ T,

where −d1 = u2 − 2w2, u, w ∈ N.

Note: in (2), (3) and (4), ai +
√−d1bi and T are analogue to them in (1).

Proof. By the preceding discussion and the assumption, we get

r2(D(E/F )/E∗2) = |Sf | + 2 − ε = 2s+ r + s2 + 2 − ε,

where s2 is the number of Dyadic ideals in F .

(1) If 2|DF , then s2 = 1. By rankMS
1 = t − 1, each column (( qip1 )′, · · · , ( qi

pt−1
)′)T of MS can

be expressed by the columns of MS
1 , i.e.,




(
qiqi1 ···qij

p1
)′

...

(
qiqi1 ···qij
pt−1

)′


 = 0,

where {qi1 , · · · , qij} ⊂ {2, q1, · · · , qt−1}. By Legendre theorem (see [17]), the Diophantine equa-

tion qiqi1 · · · qijz2 = x2 +d1y
2 has a relatively prime solution (x, y, z) = (ai, bi, ci) over Z. Hence

we get {p1, · · · , pt, q2, · · · , qs+r, at−1+
√−d1bt−1, · · · , as+

√−d1bs} ⊆ D(E/F ) and such 2s+r+1

elements must be distinct modulo E∗2 each other.

On the other hand, suppose δ ∈ ∆F , δ /∈ F ∗2, is a norm from E∗, i.e., δ = NE/F (α),

α ∈ E, then clearly the valuation of α is even at all undecomposed non-dyadic finite primes and

vP(α) ≡ vPσ(α) mod 2 at finite decomposed primes P = PPσ of F . Since CS(F ) has odd order,

we can find f ∈ F ∗ such that α · f ∈ D(E/F ), so α · f ∈ T.

By the property of norm, it is verified that each product of such distinct elements does not

belong to E∗2. Note the definition of ε in (2.3), then (1) holds.

In cases (2) and (4), 2 - D and s2 = 2; in case (3), 2 - D and s2 = 1. Similarly to case (1),

we can prove them. �
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Remark 2.1 (1) By Theorem 2.1 and (2.4), we have given all elements of order at most 2 in

K2OE ∩ Tr(E/F ).

(2) Since r4(C(F )) = 0, by Proposition 2.1 we get ∆F = {2, δ}F ∗2, so 2, δ ∈ ∆E. Suppose

2, δ, 2δ /∈ E∗2, then ∆̃E = {2, δ, δ′}/E∗2. Although ∆E ⊂ D(E/F ), it is difficult to find δ′ from

the representative set of D(E/F ) in Theorem 2.1.

About T in Theorem 2.1 (4), we have the following result.

Proposition 2.3 Let −d1 ≡ 1 mod 8, 2 ∈ NF and u2 − 2w2 = −d1, u, w ∈ N. Suppose

m(u+
√
−d1) ∈ NE/F (E∗) ∩ ∆F ,m|d1, then

(1) qj ≡ ±1 mod 8 for each odd prime divisor qj of d2.

(2) If −d1 ≡ 9 mod 16, then d2 ≡ ±1 mod 8.

Proof. Let u2 − 2w2 = −d1, u, w ∈ N, w ≡ 4 mod 8. Suppose m(u+
√
−d1) ∈ NE/F (E∗) ∩ ∆F .

By m(u +
√−d1) ∈ ∆F , in the field F the Hilbert symbol (m(u +

√−d1),−1)2 = 1 and

m+u ≡ 2 mod 4, e.g. see [14]. By m(u+
√
−d1) ∈ NE/F (E∗), in the field F the Hilbert symbol

(m(u+
√
−d1), d2)2 = 1 and (m(u−

√
−d1), d2)2 = 1. Hence (2m2w2, d2)2 = (2, d2)2 = 1, so the

local Hilbert symbol
(

2,d2
Qj

)
=
(

2
qj

)
= 1 for each odd prime Qj|qj of F . Hence qj ≡ ±1 mod 8

for each qj|d2.

If −d1 ≡ 9 mod 16, then u ≡ ±3 mod 8. By m+u ≡ 2 mod 4 and m|d1, i.e. m ≡ ±1 mod 8,

m
u+

√−d1

2
≡ mu ≡ 5 mod (2,

u−√−d1

2
)3 = D3.

Suppose that m(u+
√
−d1) ∈ NE/F (E∗), then in the complete field FD, D|2, the local Hilbert

symbol

(
m(u+

√−d1), d2

D ) = (
5, d2

D ) = 1.

Hence d2 ≡ ±1 mod 8.�

Although we know the forms of all elements of order ≤ 2 in K2OE ∩Tr(E/F ) from Theorem

2.1, we are interested in the forms of all elements of order ≤ 2 in K2OE .

Since CS(F ) has odd order, we use the method of proving [5, proposition 2.1] to get the

following result.

Lemma 2.1 If x ∈ NE/F (E∗), then x ∈ DF if and only if there is α ∈ DE with NE/F (α) =

xf2, f ∈ F ∗.

Proof. We only need to prove the necessary condition. Suppose NE/F (α′) = x, α′ ∈ E,

x ∈ DF , then the valuation of α′ is even at all undecomposed non-dyadic finite primes and

vP(α′) = vPσ(α′) mod 2 at finite decomposed primes POE = PPσ . Since CS(F ) has odd order,

we find f ∈ F ∗ such that α = α′f ∈ DE and NE/F (α) = xf 2. �

Let F = Q(
√
−d1) and E = F (

√
d2). Suppose m is a positive divisor of 2d1. We have that

m ∈ NE/F (E∗)

8



⇐⇒ the Hilbert symbol (m, d2)2 = 1 of F

⇐⇒ the local Hilbert symbol (m,d2P ) = 1 for each primes P of F .

By [8, theorem 5.4], for each finite non-dyadic prime P ,

(
m, d2

P

)
= ((−1)vP (m)vP (d2)mvP (d2)d

−vP (m)
2 )(NP−1)/2 mod P.

Hence, for each finite prime P /∈ S,
(
m,d2
P

)
= 1 and, for each finite non-dyadic prime Q ∈ S,

(
m,d2
Q

)
=
(
m
Q

)
=
(
m
q

)
, where Q is a prime over q. In the following, we find out all m with

(m,d2Q ) = (mq ) = 1 for all Q ∈ Sf , Q|q.
If 2|DF , i.e., pt = 2. We define the system of homogeneous equations over F2

AX = 0,(2.9)

where

A =




(
p1
q1

)′
· · ·

(
pt

q1

)′

...
...(

p1
qs+r

)′
· · ·

(
pt

qs+r

)′


 .(2.10)

Let a non-zero vector X = (x1, · · · , xt)T over F2 be corresponding to m =
∏
xi=1

pi. Hence each

non-zero solution of the system (2.9) is 1-1 corresponding to m ∈ NE/F (E∗).

If 2-DF , i.e., pt 6= 2. We also define the system of homogeneous equations over F2

(2.9′), A′X = 0,

where

(2.10′) A′ =




(
2
q1

)′ (
p1
q1

)′
· · ·

(
pt

q1

)′

...
...

...(
2

qs+r

)′ (
p1
qs+r

)′
· · ·

(
pt

qs+r

)′
(

2,d2
D

)′ (
p1,d2
D

)′
· · ·

(
pt,d2
D

)′



,

where D is a dyadic prime of F ( in fact, we need the last row of A′ only if d1 ≡ −1 mod

8). Hence each non-zero solution of the system (2.10’) is 1-1 corresponding to m ∈ NE/F (E∗).

Hence we get:

Lemma 2.2 If 2|DF , then there is a non-zero solution X = (x1, · · · , xt)T of (2.9) if and only

if m ∈ NE/F (E∗), where m =
∏
xi=1

pi; if 2 - DF and p0 = 2, then there is a non-zero solution

X = (x0, x1, · · · , xt)T of (2.9’) if and only if m ∈ NE/F (E∗), where m =
∏
xi=1

pi. �

Theorem 2.2 Suppose A and A′ are defined as (2.10) and (2.10’), respectively. If 2|DF , then

r2(K2OE) = 2s+ r + s2 + t− 3 − rankA;

9



if 2 - DF , then

r2(K2OE) = 2s+ r + s2 + t− 2 − rankA′ + ε,

where ε = 1 if m(u+
√−d1) ∈ NE/F (E∗), u2 − 2w2 = −d1, some m|2d1, and ε = 0 otherwise.

Proof. Since F = Q(
√−d1) and E = Q(

√−d1,
√
d2), by [5] there is a commutative diagram

0 → K2OE → K2E → ⊕

v fin.
Ev → 0

↓ Tr ↓ Tr ↓
0 → K2OF → K2F → ⊕

v fin.
F v → 0.

Hence there is a restrictive homomorphism of two elementary subgroups Tr : 2K2OE →
2K2OF . Set H = Tr(2K2OE), then there is an exact sequence

0 → 2(K2OE ∩ Tr(E/F )) → 2K2OE
Tr→ H → 0.

Therefore we have

2K2OE = 2(K2OE ∩ Tr(E/F )) ⊕H,Tr(H) = H.(2.11)

By (2.6), we only need to computer r2(H) in the following two cases.

Case 1: 2 /∈ NF . By [1], all elements of order ≤ 2 in K2OF are the forms: {−1,m}, where

m are all positive divisors of 2d1, and ∆F = {2,m′}F ∗2, where m′ is a positive odd divisor of

d1.

If 2|DF , i.e. pt = 2, then, by Lemma 2.1 and 2.2, there is β ∈ H with Tr(β) = {−1,m} ∈ H
if and only if m ∈ NE/F (E∗) if and only if there is a non-zero solution of (2.9) corresponding to

m. By the Tate kernel ∆F = {2,m′}F ∗2 and the definition of ε in (2.3), we get

r2(H) = t− rankA− (2 − ε),

r2(K2OE) = 2s+ r + s2 + t− 3 − rankA

If 2 - DF and 26∈NF , then, similarly, we get

r2(H) = t+ 1 − rankA′ − (2 − ε),

r2(K2OE) = 2s+ r + s2 + t− 2 − rankA′.

Moreover, let ∆F = {2,m′}F ∗2, we can determine the value of ε from the system (2.9) or

(2.9’). In fact, m′ ∈ NE/F (E∗) ∩ ∆E if and only if the column vector X corresponding to m′

must be a solution of (2.9) or (2.9’).

Case 2: d1 ≡ −1 mod 8 and 2 ∈ NF . By [1] all elements of order ≤ 2 inK2OF are the forms:

{−1,m}, {−1,m(u+
√
d)}, where m are all positive divisors of d1 and u2−2w2 = −d1, u, w ∈ N;

by Proposition 2.1 ∆F = {2,m′(u+
√
d)}F ∗2, where m′ is a positive odd divisor of d1.
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First, suppose m(u+
√−d1) /∈ NE/F (E∗) for each m|2d1, then, by the preceding discussion,

we get the same results as case 1. E.g., if there is some qi ≡ ±3 mod 8, then m(u +
√
−d1) /∈

NE/F (E∗) for each such m.

On the other hand, suppose m′(u+
√
−d1) ∈ NE/F (E∗), then, by Proposition 2.2 each prime

qi ≡ ±1 mod 8 and ε = 0 in (2.3). By the preceding discussion, we get

r2(H) = t+ 1 − rankA′ − 1.

Suppose ε = 1 and m′′(u+
√
−d1) ∈ NE/F (E∗) for some m′′ 6= m′, m′′|2d1, then 2 ∈ NE/F (E∗)

by Proposition 2.2 and

r2(H) = t+ 1 − rankA′ − 1 + 1.

In the above two cases, we always have

r2(K2OE) = 2s+ r + s2 + t− 2 − rankA′ + ε, ε = 1. �

We prove Theorem 2.2 by the method of construction, hence we can represent all elements

of order ≤ 2 in K2OE .

Example 2.1 F = Q(
√
−3 × 7), E = Q(

√
−3 × 7,

√
5 × 11 × 13).

For F = Q(
√
−3 · 7), set p1 = 3, p2 = 7, p3 = 2. There is the Rédei’s matrix

M ′
F =

(
(
D/p∗1
p1

)′ (p2p1 )′ (p3p1 )′

(p1p2 )′ (
D/p∗

2

p2
)′ (p3p2 )′

)
=

(
(−7

3 )′ (7
3 )′ (2

3 )′

(3
7 )′ (−3

7 )′ (2
7 )′

)
=

(
1 0 1
1 1 0

)
.

Hence r4(C(F )) = 0. It is clear that ∆F = {2, 7}F ∗2. On the other hand, 5, 11 are decomposable

in F and 13 is inert in F . Set q1 = 5, q2 = 11, q3 = 13, there is a matrix as (2.2)

MS =

(
( 2
p1

)′ ( q1p1 )′ ( q2p1 )′

( 2
p2

) ( q1p2 )′ ( q2p2 )′

)
=

(
1 1 1
0 1 0

)
.

Since rankMS = 2, CS(F ) has odd order. We also have a matrix as (2.10)

A =




(p1q1 )′ (p2q1 )′ (p3q1 )′

(p1q2 )′ (p2q2 )′ (p3q2 )′

(p1q3 )′ (p2q3 )′ (p3q3 )′


 =




1 1 1
0 1 1
0 1 1


 .

Hence rankA = 2, 2 · 7 ∈ NE/F (E∗) ∩ ∆E and r2(H) = 0 in (2.11), so r2(K2OE) = 2s + r +

s2 + t − 3 − rankA = 4. By Theorem 2.1 and Theorem 2.2, we have the representative set of

D(E/F )/E∗2:

{3, 7, 2, 11, 13, 1 +
√
−3 · 7} ∪ {27 +

√
5 · 11 · 13},

where 2 · 11 · 12 = 12 + 3 · 7 · 12 and 2 · 7 · 12 = 272 − 5 · 11 · 13 · 12. Since 2, 7 ∈ ∆F ⊂ ∆E, the

representative set of 2K2OE is

{−1, 3}, {−1, 11}, {−1, 13}, {−1, 1 +
√
−21}, {−1, 27 +

√
715},

where there is only one dependent relation. �
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Example 2.2 F = Q(
√
−23), E = Q(

√
−23,

√
47).

It is clear that r2(C(F )) = 0 and CS(F ) has odd order. Since −23 = 32−2 ·42, ∆F = {2, 23(3+
√
−23)}F ∗2. Also 202+23 ·12 = 47 ·32, P = (20+

√
−23, 47) and P ′ = (20−

√
−23, 47) are prime

ideals of F over 47, then the local Hilbert symbol ( 23(3+
√
−23),47
P ) = 1. Hence 2, 23(3 +

√
−23) ∈

∆F ∩NE/F (E∗), so NE/F (7 +
√

47) = 2 and NE/F (α) = 23(3 +
√
−23)f2 for α ∈ D(E/F ). By

Theorem 2.1 and Theorem 2.2, r2(K2OE ∩ Tr(E/F )) = 2 + 0 + 2 − 1 − ε = 3, r2(H) = 0 in

(2.11) and the representative set of 2K2OE is

{−1, 23}, {−1, 20 +
√
−23}, {−1, 7 +

√
47}, {−1, α},

where there is only one dependent relation. �

3 4-rank

Let F = Q(
√
−d1) and E = Q(

√
−d1,

√
d2) be an imaginary quadratic field and a biquadratic

field, respectively. Let S be the finite set of primes in F consisting of all infinite primes, all

dyadic primes, all finite primes ramifying in E. In this section, we will use the Hurrelbrink and

Kolsters’ results in [5] to investigate elements of order 4 of K2OE , provided the 4-rank of the

class group C(F ) is 0 and the S-ideal class group CS(F ) has odd order.

First, we describe those results of [5]. Let Tr(E/F ) is the kernel of a homomorphism

Tr : K2E → K2F and let γ = α
ασ ∈ Tr(E/F ), then we define a homomorphism

φE/F : Tr(E/F ) → K2F/ {−d2,∆F } · (K2F )2 ∼= 2Br(F )/(−d2,∆F )

γ 7→ Tr(α) mod {−d2,∆F } · (K2F )2,

where (−d2,∆F ) denotes the subgroup of the Brauer group of F generated by the classes

(−d2, ε), ε ∈ ∆F . Suppose CS(F ) has odd order, there are exact sequences in [5, proposition

2.10, corollary 2.12]

0 → Tr(E/F )2 → Tr(E/F )
φE/F→ 2 Br(F )/(−d2,∆F ),

0 → (K2OE)2 ∩ Tr(E/F ) → K2OF ∩ Tr(E/F )
φE/F→ 2Br

S(F )/(−d2,∆F ).

If γ = {−1, t} ∈ Tr(E/F ), t ∈ F ∗, then φE/F (γ) = (−d2, t) by [5, proposition 2.13].

To compute the homomorphism φE/F easier, we define another homomorphism in [5]. Let

E1 = E = F (
√
d2) 6= E2 = F (i), E3 = E0 = F (

√−d2). Suppose x ∈ R(E/F ) = N−1
E/F (∆F ) and

y ∈ F (i), satisfying NE/F (x) = NF (i)/F (y). We call y admissible for x if

TrF (i)/F ({i, y}) = 1 and tE/F (x) + tF (i)/F (y) 6= 0,

where tE/F and tF (i)/F denote the trace maps from E and F (i) to F, respectively. In this case

we also call (x, y) an admissible pair. Moreover, provided that each element x ∈ R(E/F ) has
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an admissible element y, we define the homomorphism

ψE/F : 2Tr(E/F ) → Br(E0/F )/(−d2,∆F ),

{−1, x} 7→ (−d2, tE/F (x) + tF (i)/F (y)),

where Br(E0/F ) consists of all classes of quaternion algebras of the form (−d2, a) with a ∈ F ∗.

Hence, by [5, theorem 3.7 and corollary 3.9] and D(E/F ) = R(E/F ) ∩DE in section 2, there is

a result:

Lemma 3.1 Suppose CS(F ) has odd and each element x ∈ D(E/F ) has an admissible element

y ∈ F (i). Then there is a exact sequence

0 → 2K2OE ∩ Tr(E/F ) ∩K2O
2
E → 2K2OE ∩ Tr(E/F )

ψE/F→ 2Br
S(E0/F )/(−d2,∆F ).

�

In the section, we will use Lemma 3.1 to compute the 4-rank of K2OE . Hence we need to

investigate the condition of Lemma 3.1. In fact, if φF (i)/F is trivial, then there is always an

admissible y ∈ F (i) for x ∈ R(E/F ); specially, if K2O
′
F (2) = 0, then 2φF (i)/F is trivial, compare

e.g. [2, proposition 2.17].

Let F = Q(
√−d1) and E = Q(

√−d1,
√
d2) be an imaginary quadratic field and a biquadratic

field, respectively. We have a quite general result:

Proposition 3.1 Suppose that r4(C(F )) = 0, 2 /∈ NF and CS(F ) has odd order. Then each

element x ∈ D(E/F ) has an admissible element y ∈ F (i).

Proof. By Proposition 2.1, the Tate kernel ∆F = {2,m}F ∗2,m|d1. If x ∈ D(E/F ) and

NE/F (x) = 2 ∈ ∆F , then y = 1 + i or −1 + i ∈ F (i) satisfies TrF (i)/F ({i, y}) = 1 and

tE/F (x) + tF (i)/F (y) 6= 0, so y is admissible for x. We only need to find an admissible element y

for each element x ∈ D(E/F ), NE/F (x) = m or 2m ∈ ∆F .

Case 1: d1 6≡±1 mod 8. By r4(C(F )) = 0, Proposition 2.1 and [17, theorem 4.3], r4(K2OF ) =

0, ∆F = {2,m}F ∗2 and [Pm] = 1 in the narrow class group C(F0) of F0 = Q(
√
d1). Without

loss of generality, we assume that there are integers a, b∈ N such that

m = a2 − d1b
2.

Take α = a+ (−
√
−d1b)i ∈ F (i), then

TrF (i)/F {i, α} = TrF (i)/F {α/a,
√

−d1b/a} = {m/a2,
√
−d1b/a}.

Note that a2 − d1b
2 = m ∈ ∆F and TrF (i)/F {i, α}2 = {−1,m} = 1, then

β = {m
a2
,

√−d1b

a
} = {−1, t} ∈ K2OF(3.12)
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By d1 6≡ ± 1 mod 8 and F imaginary,

β ∈ K2F
2.

Hence there is an element α′ ∈ F (i) such that t = NF (i)/F (α′). We get such y = t−1αα
′2 ∈ F (i)

with TrF (i)/F ({i, y}) = 1 and NF (i)/F (y) = m. Hence (x, y) is an admissible pair.

Case 2: d1 ≡ 1 mod 8. By r4(C(F )) = 0 and the process of proving Proposition 2.1 (2), we

get that r4(C(F0)) = 0 and the ambiguous class [Pn] = 1 in C(F0), where C(F0) is the narrow

class group of F0 = Q(
√
d1) and n ≡ ±3 mod 8 is a positive divisor of d1. Hence, without loss

of generality, n = a2 − d1b
2, a, b ∈ N. Since the rank of Rédei t× t matrix MF0

of F0 is equal to

t− 1 and d1 = p1 · · · pt ≡ 1 mod 8, the system of equations

MF0
X =




(
2
p1

)′

...(
2
pt

)′




is solvable over F2. Hence there must be a positive divisor m ≡ ±1 mod 8 of d1 such that the

Diophantine equation

2mz2 = x2 − d1y
2

is solvable over Z, see e.g. [17]. Hence {−1,m} ∈ (K2OF )2, so m ∈ ∆F by Proposition 2.1 (2).

Moreover, the ideal class [D][Pm] ∈ C(F0)
2, where D is a dyadic ideal and Pm is an ambiguous

ideal overm. Since r4(C(F0)) = 0, [D][Pm] must be of odd order k, so ([D][Pm])k = [D]k[Pm] = 1.

Hence there are a, b ∈ N satisfying that

2km = a2 − d1b
2.

By the process of proving case 1, we also find y ∈ F (i) satisfying TrF (i)/F ({i, y}) = 1 and

NF (i)/F (y) = m. Hence (x, y) is an admissible pair.

Case 3: −d1 ≡ 1 mod 8 with 2 /∈ NF . By Proposition 2.1 ∆F = {2,m}F ∗2, where m ≡ 1

mod 4 is a positive divisor of d1. In the following, we prove that m, 2m /∈ NE/F (E∗). We assume

that primes q0 = 2, q1, · · · , qt−2 satisfy that rankMS
1 = t− 1 in (2.7). Set Qi|qi, i = 1, · · · , t− 2.

Suppose that m ∈ NE/F (E∗), i.e., the Hilbert symbol (m, d2)2 = 1. By Minkowski-Hasse

theorem, each local Hilbert symbol (m,d2Qi
) = (mqi ) = 1, i = 1, · · · , t− 2. Since m ≡ 1 mod 4, each

Jacobi symbol ( qi
m

)
= 1, i = 1, · · · , t− 2.

Set m′ = d1m ≡ −1 mod 4, 1 = (−dqi ) = (mqi )(
−m′

qi
) = (−m

′

qi
), i = 1, · · · , t − 2, hence the Jacobi

symbol

(
qi
m

) = 1, i = 1, · · · , t− 2.

Moreover, by d1 = mm′ ≡ −1 mod 8,

(
2

m′ ) = (
2

m
).
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It is contradictory to rankMS
1 = t− 1 in (2.7).

Suppose that 2m ∈ NE/F (E∗), i.e., the Hilbert symbol (2m, d2)2 = 1. the local Hilbert

symbols
(

2m,d2
Qi

)
= (2m

qi
) = 1, i = 1, · · · , t− 2. Since m ≡ 1 mod 4, the Jacobi symbols

( qi
m

)
=

(
2

qi

)
, i = 1, · · · , t− 2.

Set m′ = d1/m ≡ −1 mod 4, 1 = (−4d1
qi

) = (2m
qi

)(−2m′

qi
) = (−2m′

qi
), i = 1, · · · , t − 2, hence the

Jacobi symbol ( qi
m′

)
=

(
2

qi

)
, i = 1, · · · , t− 2.

Moreover, by d1 = mṁ′ ≡ −1 mod 8,

(
2

m
) = (

2

m′ ).

It is also contradictory with rankMS
1 = t− 1 in (2.7).

Therefore m, 2m /∈ NE/F (E∗), where ∆F = {2,m}F ∗2. �

Proposition 3.2 Suppose that r4(C(F )) = 0, CS(F ) has odd order and −d1 ≡ 1 mod 8 with

2 ∈ NF.
(1) If −d1 ≡ 1 mod 16, then each element x ∈ D(E/F ) has an admissible element y ∈ F (i).

(2) If −d1 ≡ 9 mod 16 and m(u+
√−d1) ∈ ∆F ∩NE/F (E∗),m|d1, u

2−2w2 ∈ ∆F , then there

is not an admissible pair (x, y) such that NE/F (x) = NF (i)/F (y) = m(u+
√
−d1), x ∈ D(E/F ),

y ∈ F (i).

Proof. Since r4(C(F )) = 0 and −d1 ≡ 1 mod 8 with 2 ∈ NF , by Proposition 2.1 r4(C(F0)) = 0

for F0 = Q(
√
d1) and ∆F = {2,m(u +

√−d1)}F ∗2, where −d1 = u2 − 2w2, u, w ∈ N, m|d1, and

u + m ≡ 2 mod 4. In the following, we will find an element y ∈ F (i) such that NF (i)/F (y) =

m(u+
√−d1) and TrE/F ({i, y}) = 1.

By r4(C(F0)) = 0 and 2 ∈ NF, the dyadic class [D] in C(F0) is trivial. Also −d1 = u2−2w2 =

2(u+ w)2 − (u+ 2w)2, u, w ∈ N, and

2(u+ w)(u+
√

−d1) = w2 + (u+ w +
√
−d1)

2.

Set α1 = w+(u+w+
√
−d1)i = (u+2w−

√
d1)+(1+i)(u+w) ∈ F (i). In the field F0 = Q(

√
d1),

by (u+ 2w)2 − d1 = 2(u +w)2

(u+ 2w −
√
d1) = DP 2

u+w,

where D is the dyadic ideal and Pu+w is an integer ideal over u+ w. Hence, in the class group

C(F0), [D][Pu+w]2 = [Pu+w]2 = 1 and [P u+w]2 = 1, where P u+w is the conjugate ideal of Pu+w.

Hence there is an ambiguous class [Pm] such that [Pm][P u+w] = 1, so there is the integral element

α2 = a+ b
√
d1 ∈ OF0

such that

(a+ b
√
d1) = PmP u+w and a2 − d1b

2 = m(u+ w).
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Set α = α1α2 = e + fi ∈ F (i) and set p an odd prime, P a prime of F over p and P a prime

of F (i) over P. Then vP (NF (i)/F (α))/2 + vP(α) ≡ 0 mod 2, for all odd primes P of F. Thus, by

[6, proposition 1.5] or [2],

β = TrF (i)/F {i, α} = {2m(u+
√−d1)(u+ w)2

e2
,−f

e
}

= TrF (i)/F {i, α1}TrF (i)/F {i, α2}

= {2(u+ w)(u +
√
−d1)

w2
,−u+ w +

√
−d1

w
}{m(u+ w)

a2
,−

√
−d1b

a
} ∈ K2OF ,

β2 = {−1,m(u+
√

−d1)} = 1,

so

β = TrF (i)/F {i, α} = {−1, t} ∈ K2OF .(3.13)

For all non-dyadic finite primes P, the local Hilbert symbol ηP (β) = 1. Since F has two dyadic

primes D1,D2, t ∈ NF (i)/F (F (i)∗) if and only if the Hilbert symbol ηD1
(β) = 1. We need to

compute the value of the local Hilbert symbol ηD1
(β) in a dyadic prime D1.

If −d1 ≡ 1 mod 16, then we assume that −d1 = u2 − 2w2, u, w ∈ N, w ≡ 4 mod 8, and

u ≡ ±1 mod 8 (see [3, 14]). Set D1 = (2, u−
√
−d1

2 ). Since u−
√
−d1

2 · u+
√
−d1

2 = w2

2 ≡ 0 mod 8,

u+
√
−d1

2
= u− u−

√
−d1

2
≡ u ≡ ±1 mod D3

1

and

m · u+
√
−d1

2
≡ mu ≡ 1 mod D3

1

by m · (u +
√
−d1) ∈ ∆F ,m + u ≡ 2 mod 4. In the complete field FD1

∼= Q2, NF (i)/F (α/2) =

m · u+
√
−d1

2 · (u+ w)2 ≡ 1 mod D3
1. Hence

ηD1
(Tr{i, α}) = ηD1

({2m(u +
√
−d1)(u+ w)2

e2
,−f

e
}) = 1.

Therefore, in the case, β = {−1, t} ∈ (K2F )2, i.e., t ∈ NF (i)/F (F (i)∗). By the process of proving

Proposition 3.1, we find y ∈ F (i) such that NF (i)/F (y) = m(u+
√
−d1) and TrF (i)/F {i, y} = 1.

Therefore every element x ∈ D(E/F ) has an admissible element y ∈ F (i).

If −d1 ≡ 9 mod 16, then we assume that −d1 = u2 − 2w2, u, w ∈ N, w ≡ 4 mod 8, and

u ≡ ±3 mod 8. Hence

m · u+
√
−d1

2
≡ mu ≡ 5 mod D3

1.

In the complete field FD1
∼= Q2, m · u+

√
−d1

2 · (u+ w)2 ≡ 5 mod D3
1 and f

e ≡ 2 or 6 mod D3
1 by

e2 + f2 = 2m(u+
√
−d1)(u+ w)2. By [13, p.252 table]

ηD1
(Tr{i, α}) = ηD1

(5,− e

f
) = −1.

Hence β = Tr{i, α} /∈ (K2F )2, so there is not any element y ∈ F (i) such that NF (i)/F (y) =

m(u+
√
−d1) and Tr{i, y} = 1. �

In the following we compute 4-rank of K2OE for the biquadratic field E = Q(
√−d1,

√
d2).
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Theorem 3.1 Suppose r4(C(F )) = 0, CS(F ) have odd order and d1 6≡1 mod 8. Then r4(K2OE) =

r2(2K2OE ∩K2O
2
E ∩ Tr(E/F ).

Proof. Since r4(C(F )) = 0 and d1 6≡1 mod 8, r4(K2OF ) = 0 by Proposition 2.1, i.e. K2OF (2)

is elementary. There is a homomorphism Tr : K2OE(2) → K2OF (2) for two 2-Sylow subgroups,

so there is an exact sequence

0 → K2OE(2) ∩ Tr(E/F ) → K2OE(2)
Tr→ Tr(K2OE)(2) → 0.

By Tr(K2OE(2)) ⊂ K2OF (2) elementary, 2K2OE ∩K2O
2
E ⊂ K2OE(2) ∩ Tr(E/F ). Then

r4(K2OE) = r2(2K2OE ∩K2O
2
E) = r2(2K2OE ∩K2O

2
E ∩ Tr(E/F )). �

Remark 3.1 If d1 ≡ 1 mod 8, then by Proposition 2.1 there is a positive divisor n ≡ ±3 mod 8

of d1 such that β ∈ K2OF , β2 = {−1, n} 6= 1. Suppose there is not any β ∈ K2OE of order 2 such

that Tr(β) = {−1, n}, then we get the same result as Theorem 3.1. Suppose there is β ∈ K2OE of

order 2 such that Tr(β) = {−1, n}, then r4(K2OE)− r2(2K2OE ∩K2O
2
E ∩ Tr(E/F ))) = 0 or 1.

In fact, we can determine the above conditions by the method of proving Theorem 2.1.

By Proposition 3.1, Proposition 3.2, Theorem 3.1 and [5, corollary 3.9], we get

Theorem 3.2 Suppose r4(C(F )) = 0, CS(F ) has odd order and the assumption of Proposition

3.2(2) does not hold, then there is an exact sequence

0 → 2K2OE ∩K2O
2
E ∩ Tr(E/F ) → 2(K2OF ∩ Tr(E/F ))

ψE/F→ 2Br
S(E0/F )/(−d2,∆F ).

Moreover, if d1 6≡1 mod 8, then

r4(K2OE) = 2s+ r + s2 − 1 − ε− r2(ImψE/F ). �

It is clear that this result with the representative set of R(E/F ) and the action of ψE/F yields

a computational approach to the 4-rank of K2OE . For convenience, we describe the algorithm

of r4(K2OE) in detail (see [5, P173]).

Let Q0, Q
′
0, Q1, · · · , Qs+r denote the primes in Sf with Q0, Q

′
0 dyadic primes (note Q0 = Q′

0

if d1 6≡ − 1 mod 8). Let [x1], [x2], · · · , [xl] denote a basis of the cokernel of the map

(∆F ∩NE/F (E∗))/F ∗2 → D(E/F )/E∗2.

Since [d2] /∈ ∆F/F
∗2, the above map is injective and l = |Sf | = 2s + r + s2. We form the

(2s+ r + s2) × (2s+ r + s2) matrix over F2 by replacing the 1’s by 0’s and the -1’s by 1’s

ME/F = ((−d2, tE/F (xi) + tF (i)/F (yi))
′
Qj

),

where yi ∈ F (i) is admissible for xi. By [5, lemma 3.8] the local Hilbert symbols (−d2, tE/F (xi)+

tE/F (yi))P = 1 for all finite primes P /∈ S. Hence by the quadratic reciprocity law rankME/F ≤
2s + r + s2 − 1. By the definition of ε and Theorem 3.2 r2(ImψE/F ) = rankME/F − ε and

r2(K2OE ∩ Tr(E/F )) = |Sf | − 1 − ε. By Theorem 3.2 and [5, lemma 5.1], we get
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Corollary 3.1 The assumption is as Theorem 3.2.

(1) r2(2K2OE ∩K2O
2
E ∩ Tr(E/F )) = 2s+ r + s2 − 1 − rankME/F .

(2)If d1 6≡ 1 mod 8, then r4(K2OE) = 2s+ r + s2 − 1 − rankME/F . �

We now illustrate the method through some examples.

Example 3.1 Let F = Q(
√
−3 × 7), E = Q(

√
−3 × 7,

√
5 × 11 × 13). Describe the structure of

the 2-Sylow subgroup of K2OE.

In Example 2.1, we know that r4(C(F )) = 0, CS(F ) has odd order, ∆F = {2, 7}F ∗2 and the

representative set of D(E/F )/E∗2. Since 5, 11 are decomposed in F , 13 is inert in F , s = 2,

r = 1, s2 = 1 and 2 × 7 ∈ ∆F ∩ NE/F (E∗), let x1 = 2, x2 = 3, x3 = 11, x4 = 13, x5 =

1 +
√
−21, x6 = 27 +

√
715 and let Q0|2, Q1|5, Q2|5, Q3|11, Q4|11, Q5|13. There is the 6 × 6

matrix

ME/F =




(−d2, x1)
′
Q0

(−d2, x1)
′
Q1

∗ (−d2, x1)
′
Q3

∗ (−d2, x1)
′
Q5

(−d2, x2)
′
Q0

(−d2, x2)
′
Q1

∗ (−d2, x2)
′
Q3

∗ (−d2, x2)
′
Q5

(−d2, x3)
′
Q0

(−d2, x3)
′
Q1

∗ (−d2, x3)
′
Q3

∗ (−d2, x3)
′
Q5

(−d2, x4)
′
Q0

(−d2, x4)
′
Q1

∗ (−d2, x4)
′
Q3

∗ (−d2, x4)
′
Q5

(−d2, x5)
′
Q0

(−d2, x5)
′
Q1

∗ (−d2, x5)
′
Q3

∗ (−d2, x5)
′
Q5

(−d2, x
′
6)

′
Q0

(−d2, x
′
6)

′
Q1

∗ (−d2, x
′
6)

′
Q3

∗ (−d2, x
′
6)

′
Q5




=




∗ 1 1 1 1 1
∗ 1 1 0 0 0
∗ 0 0 1 1 1
∗ 1 1 1 1 0
∗ 0 1 1 1 ∗
∗ ∗ ∗ 0 1 ∗



.

In the following, we verify the value of (−d2, xi)Qj of ME/F .

(1) In the 5-th row of ME/F , since ( 22
5 ) = −1, (−d2, 1 +

√
−21)Q3

= 1 and (−d2, 1 +
√
−21)Q4

= −1. Note (−d2, 1+
√
−21) = (2 · 5 · 13 · (1−

√
−21), 1+

√
−21), we get other values.

(2) In the 6-th row of ME/F , x6 = 27+
√

715 ∈ E and NE/F (x6) = 14, hence we need to find

an x6-admissible element y ∈ F (i). Since 7 · 22 = 72 − 21 · 12 and α = 7/2 + i
√
−21/2 ∈ F (i),

by (3.12) β = Tr{i, α} = {4/7,
√
−21/7} = {28,

√
−21} ∈ K2OF and β2 = 1, in fact, β = 1

(see [15]). Then y = α(−1− i) is admissible for x6 and x′6 = tE/F (x6)+ tE/F (i)(y) = 47−
√
−21.

Hence NE/F (x′6) = 2230 and ( 2230
11 ) = −1, so we get the values of the 6-th row.

Therefore rankME/F = 5 and r4(K2OF ) = 0. From the matrix ME/F , we know that

ψE/F ({−1, 3 · 11}) = 1, so ∆E = {2, 7,−11}E∗2 . �

By Proposition 3.2, we can not use our method to investigate the 4-rank of K2OE in Example

2.2.

Example 3.2 Let F = Q(
√
−47), E = Q(

√
−47,

√
−23). Describe the structure of the 2-Sylow

subgroup of K2OE.
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It is clear that r2(C(F )) = 0, CS(F ) has odd order and 23 is inert in F . Since −47 = 92 −
2 · 82, ∆F = {2, 9 +

√
−47}F ∗2. By 202 + 23 · 12 = 47 · 32, {−1, 20 +

√
−23} ∈ K2OE and

TrE/F ({−1, 20 +
√
−23}) = {−1,−1}, so r2(H) = 1 in (2.8) of Theorem 2.2. It is clear that

2, 9 +
√
−47 ∈ ∆F ∩NE/F (E∗), i.e, NE/F (3 +

√
−23) = 2 · 24 and

x =
43 −

√
−47

12
+

√
−23(5 +

√
−47)

12
, NE/F (x) = 9 +

√
−47.

By Theorem 2.1 and Theorem 2.2, r2(K2OE ∩Tr(E/F )) = 0 +1 + 2− 1− ε = 2, r2(K2OE) = 3

and the representative set of 2K2OE is

{−1, 47}, {−1, 3 +
√
−23}, {−1, x}, {−1, 20 +

√
−23},

where there is only one dependent relation.

In the following, we use Theorem 3.2 to investigate the 4-rank of K2OE . Let Q0|2, Q′
0|2

and Q1|23 and let x1 = 47, x2 = (3 +
√
−23)/4, x3 = x. We know that y2 = −1 − i ∈ F (i) is

x2-admissible and we find an x3-admissible element. By 2(9 +
√
−47) = 82 + (1 +

√
−47)2, Let

y′3 = 8 + i(1 +
√
−47) ∈ F (i), then

β = Tr{i, y′3} = {2(9 +
√
−47)

82
,−1 +

√
−47

8
} = {1 +

√
−47, 4}.

Since β2 = 1, β ∈ K2OF and β ∈ K2F
2, β = 1 by r4(K2OF ) = 0 and C(F ) of odd order.

Set y3 = −y′3(1 + i)/2 = − 7−
√
−47

2 − i9+
√
−47

2 ∈ F (i), then y3 is x3-admissible. Hence x′2 =

tE/F (x2) + tE/F (y2) = −1
2 and x′3 = tE/F (x3) + tF (i)/F (y3) = 1+5

√
−47

6 , so we get

ME/F =




1 1 0
1 1 0
0 1 1


 .

Hence rankME/F = 2, r4(K2OE) = 0 and ∆E = {2,−3 −
√
−23, 9 +

√
−47}E∗2. �
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