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Abstract

Let FF = Q(v/—dy) and E = Q(v/—d1,V/dz), di and dy squarefree integers, be an imaginary
field and a biquadratic field, respectively. Let S be the set consisting of all infinite primes, all
dyadic primes and all finite primes which ramify in E. Suppose the 4-rank of the class group of
F is zero and the S-ideal class group of F' has odd order, we give the forms of all elements of
order < 2 in K9Op and use the Hurrelbrink and Kolster’s method [5] to obtain the forms of all

elements of order 4 in K20p.
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1 Introduction

Let E = F(v/d) be a relative quadratic extension over a number field F, and let O and Of be
the rings of integers of E and F', respectively. Let S be the finite set of primes of F' consisting of
all dyadic primes, all finite primes that ramify in £ and all infinite primes and let Sy be the set
of finite primes in S. We will use the following notations for any abelian group A: 2A denotes
the subgroup of elements of order < 2 of A; A(2) denotes the 2-Sylow subgroup of A; ron(A)
denotes the 2™-rank of A.

For an arbitrary number field L with the ring of integers Oy, there is a surjective homomor-
phism

KyOp, — @ p2 — 0

v real
induced by the Hilbert symbols at the real infinite primes. Hence its kernel denoted by K207}
is of index 2"1(Y) in K50;,.

First we recall some results in [5]. Hurrelbrink and Kolster determined the structure of the
2-Sylow subgroups K20%(2) and K2Og(2), provided that K20%(2) = 0. If K20%(2) = 0, then
F has only one dyadic prime and the So-class group C*2(F) has odd order, where S is the set
of all infinite primes and the dyadic prime. Let Tr(E/F) denote the kernel of the transfer map
(see [7])

Trg/p: KoF — KoF.

In [5], there is a homomorphism 9¢p/r : 2T7(E/F) — 2Br(F)/(—d,Ar), where (—d,AF)
denotes the subgroup of the Brauer group of F' generated by all classes (—d,d) with § in the
Tate kernel Ap, satisfying {—1,0} =1 in KoF'; see [11].

Suppose 2¢p(;)/F is trivial and the S-class group cs (F) has odd order, then there exists an

exact sequence (see [5, Corollary 3.9])

0 — (,K205) N Tr(E/F) — 2K>05 N Tr(E/F) "2 BrS1(Ey/F)/(=d, Ap),
where B/ (Ey/F) consists of all classes of quaternion algebras of the form (—d,a) with a € F*
which are locally trivial at primes in Sy. Hence we can use the above exact sequence to compute
the 4-rank of KyOp NTr(E/F). In fact, if F is totally real or KoO%(2) = 0, then 2¢p(;/p is
trivial.

In the paper, we will always assume that F' = Q(v/—dy), di > 2 a squarefree integer, is
an imaginary quadratic field and E = F(\/dy), do a squarefree integer, is a biquadratic field.
Let C(F) and C%(F) denote the class group of F and the S-ideal class group of F, respec-
tively. We shall determine the structure of the 2-Sylow subgroup K,Opg(2) clearly, provided
that 74(C(F)) = 0 and C*°(F) has odd order.

In section 2, we give the forms of all elements of order at most 2 in KoOr N Tr(E/F) via

solutions of systems of Fo-linear equations whose coefficient matrices consist of the Legendre



symbols (Theorem 2.1); further, we obtain the forms of all elements of order at most 2 in K20F
and calculate ro(K2Op) via the determination of the Fo-ranks of certain matrices of Legendre
symbols (Theorem 2.2).

In section 3, we mainly use the results of section 2 and [5] to investigate r4(K20g). We
supply Proposition 3.1 and Proposition 3.2 such that we can use the preceding exact sequence
even if F' is an imaginary quadratic field with r4(C(F')) = 0, which removes the restriction on
a base field F' in [5]. Hence we use it to compute r4(K20g)(Theorem 3.2); we also give an
algorithm to get elements of order 2 and 4 of K5Op via the determination of the Fo-ranks of
certain matrices of local Hilbert symbols analogous to the Rédei’s matrix (Corollary 3.1). We
also illustrate the method through various examples.

In this paper, we express the forms of all elements of order at most 4 in KoOpg by various Fo-
matrices consisting of Legendre symbols and local Hilbert symbols analogous to Rédei matrix,
but it has to be pointed out that this paper uses the Hurrelbrink and Kolster’s method of relative
quadratic extension [5] to investigate specially biquadratic number fields E and generalizes the
results of Browkin, Schinzel [1] and Qin [9,10].

In this paper, we always assume that F' = Q(v/—d;) and E = Q(v/—d1,V/dz), di > 2 and d»

squarefree integers, are an imaginary quadratic field and a biquadratic field, respectively.

2 2-rank

Let S be the finite set of primes in F' consisting of all infinite primes, all dyadic primes, all finite

primes ramifying in E. In this section, we will give elements of order < 2 of K5Opg, provided

the 4-rank of the class group C(F) is 0 and the S-ideal class group C°(F) has odd order.
Suppose r4(C(F)) = 0, we observe the 2-Sylow subgroup of KoOp and the Tate kernel Ap.

Proposition 2.1 Let F = Q(v/—d1), di > 2 a squarefree integer, be an imaginary quadratic
number field and r4(C(F)) = 0.

(1) If diZ+1 mod 8 or di = —1 mod 8 with 2 ¢ NF, then r4(K20p) = 0 and Ap =
{2, m}F*2, m|d;.

(2) If dy =1 mod 8, then r4(K20r) =1, 713(K20p) = 0 and Ap = {2,m}F*?, m|d;.

(3) If dy = —1 mod 8 with 2 € NF, then r4(K20p) = 0 and Ap = {2,m(u + /—dp)} F*?,

where m|dy and u® — 2w? = —dy,u,w € N.

Proof. Let Fy = Q(v/dy) be a real quadratic field versus F' = Q(y/—d;) and C(Fy) the narrow
class group of Fy. We have the fact: r4(C(Fp)) < ra(C(F)) < ra(C(Fp)) + 1; compare e.g. [12].
Since r4(C(F)) =0, r4(C(Fp)) =0, s0 2 ¢ NF if dj%# — 1 mod 8.

(1) If d;#£+1 mod 8 or d; = —1 mod 8 with 2 ¢ NF, then, by [17, theorem 4.1], r4(K20F) =
0, so Ap = {2,m}F*2, m|dy, by [1] and [11].

(2) If d; = 1 mod 8, then r4(C(F)) = r4(C(Fp)) = 0 and 2 ¢ NF. By [12, theorem 1(i)],

2

there is a positive divisor n = +3 mod 8 of d; such that the equation nz? = x? — dyy? is solvable



over Z. By [14, theorem 4.1], r4(K20p) = 1, 7r3(K20r) = 0 and 1 # {—1,n} € (K2Or)?. By
[1] and 2 ¢ NF, we get Ap = {2,m}F*2 m|d;.

(3) If d; = —1 mod 8 with 2 € NF, then r4(C(F)) = r4(C(Fp)) = 0, so the class [D] =1 in
C(Fp), where D is a dyadic ideal of Fy. By [17, theorem 4.1 and 4.3] or [16], 74(K20r) = 0 and
m(u++/—dy) € Ap,m|dy, —d; = u? — 2w?,u,w € N. &

Let S be a finite set of primes of F' including all infinite primes and all dyadic primes. We
will give a method to determine that the S-ideal class group C*°(F) has odd order, provided

r4(C(F)) = 0. For convenience, we make a definition, which will always be applied for in this

paper.

Definition 2.1 Let F = Q(v/—d1) be an imaginary quadratic field. Set

(21) SI = {qo = 27Q1’ sy, (441 7qs+T}a

where S is the set of primes of Q, odd primes qi1,- - ,qs are decomposable in F and odd primes

Qs+1° ", Qs+r are inert in F. We define
S = { all primes Q of F | Q|oc or Qlg; for some q; in S'},

St ={ all primes Q of F' | Q|q; for some g; in S'}.
In fact, |Sf| = 2s +r + s, where sy is the number of dyadic primes of F.

In this paper, we will always assume that pi,---,p; are all primes which ramify in F' and
pt = 2 if 2|Dp, where Dp is the discriminant of F. Let Mp = (a;j) be the ¢ x t Rédei’s matrix
of I with coefficients a;; € Fa, where

(1) = (%) ifig [ G if i # .
(P ifi=g 0T (Y ifi=
p; the discriminant of p;. Let M} be the (¢t — 1) x ¢ matrix by deleting the ¢t—th row of Mp. It
is clear that r4(C(F')) = 0 if and only if rankMp =rankM}, = ¢ — 1.
Set the matrix over Fy
E)Y @y @y @y (2
(2.2) M= : ; : or : : :

(pt2_1)l (z%)l (1%)/ (1%)' (I%)/

where M? is the (t — 1) x s matrix only if —d; = 5 mod 8 and M* is the (t — 1) x (s + 1) matrix

otherwise.

Proposition 2.2 If r4(C(F)) = 0, then the S-ideal class group C°(F) has odd order if and
only if rankM® =t — 1.



Proof. Without loss of generality, suppose —d1#5 mod 8. Take ()9 = D a dyadic ideal and @);
integral ideals of F' over ¢;, j =1,---,s+1, respectively. Let G = ({[Q;]|7 = 0,1,---,s}) be the
subgroup of C(F') generated by the ideal classes [Q;],j =0,1,---,s (in fact: [Q;] =1, j > s, by
gj inert in F), then C¥(F) = C(F)/G.

If rankM® = t — 1, then, without loss of generality, we assume that the beginning ¢ — 1
columns of M?® are linear independent. Hence each column of M 7> can be linearly expressed by

the beginning ¢ — 1 columns of M*° over Fo:
pi / qiq ...qij /
p1 p1
i / qiq ...qij /
pPt—1 Pt—1

Therefore, by Legendre theorem (see [17]), the Diophantine equation p;q;, - - - ¢;; 22 = 22 + dyy?

has a nontrivial and relatively prime solution (z,y,z) = (a,b,c) over Z. Hence, in C(F),
[P)[Qi, - - - Qi;] = [P.]?, where P; is the ambiguous ideal over p; and P, is a ideal over c. Since
r4(C(F)) = 0, there is an odd number k such that [P;] = [Q;, - - Q;,]¥ € G. Hence each ambigu-
ous ideal class [P;] belongs to G by the genus theory (see [4]).

Suppose that an ideal class [X] of F satisfies [X]?2 = 1 mod G. Since r4(C(F)) = 0, there
is an ambiguous ideal class [P] such that [P][X] has odd order in the class group C(F). By
([P)[X])? = [X]? € G, [P][X] € G, so [X] € G. Hence C*(F) has odd order.

Conversely, if C'%(F) has odd order, then each ambiguous ideal class [P;] over p; belongs to
G. Hence [P][Qi, -+ Qy;] € G? c C(F)?, so the Diophantine equation p;q;, - - - i, 22 = 2?2+ diy?
has nontrivial solutions over Z. By Legendre theorem (see [17]), the i-th column of M. is linearly
expressed by columns of M*° over Fy. Hence each column of M 7> can be linearly expressed by
columns of M?® over Fy. So rankM?® =t — 1 by rankM, =¢t—1. B

Let E = Q(v/—d1,v/d2) be a biquadratic field. In this paper, we will assume that S defined
as Definition 2.1 is the set of all infinite primes, all dyadic primes, and all finite primes which
ramify in E. In fact, do = nqy - - - ¢s4r, n|2d1, is a squarefree integer. Suppose r4(C(F)) = 0 and
C%(F) has odd order, we will give all elements of order 2 of K0g.

For an arbitrary number field L with the ring of integers O we define
Dy, ={z € L*|vp(x) = 0 mod 2 for all finite primes P { 2}.
We obtain an exact sequence
0— AL — DL/L*2 — 9 K901, — 0,
where Ay, is the Tate kernel of L and KL = Ar/L*. Let

R(E/F) = {« € E*|Ngp(z) € Ap}, D(E/F) = R(E/F)N D.



We define € via

(23) 2¢ = [AFAFQNE/F(E*)]

Let Tr(E/F') denote the kernel of the transfer map Trg/p : Ko/ — KaF'. Tt is clear that

there is an exact sequence
(2.4) 0— Ag — D(E/F)/E*? — 4Ky0Op N Tr(E/F) — 0.

Suppose C¥(F) has odd order, by [5, lemma 2.4 and proposition 2.6], there is an exact

sequence

(25) 0= Z/2Z—US/(US)? — D(E/F)/E* — (Ap 0\ Npyw(E)/F* — 0,

where U is the group of units of the ring of S-integers O%.. Hence
ro(D(E/F)/E**) =7 +719+ |Sf| +r9+1—e—1=|S;|+2—¢,

where Sy consists of all finite primes in S, € is defined as (2.3), 71 = 0 and o =1 (1 and ro are
the number of real and pairs of complex primes of F, respectively). By (2.4) and ro(Ag) = 3,
we get the result of [5, remark 2.8]:

(2.6) ro(KoOp NTr(E/F)) =|Sf|l —1—€=25s+r+s3—1—e.

Suppose r4(C(F)) = 0 and C°(F) has odd order, then rankM* =t — 1 by Proposition 2.2
and 2 ¢ NF if —dy#1 mod 8. In the following, we give the representative set of D(E/F)/E*2.

Theorem 2.1 (1) If 2|Dp and the rank of the following matriz is t — 1:

@ @ o)

/ / /
i) \mi) 7 b
=) G=) o (62)

then the representative set of D(E/F)/E*? is

{pla P = 27Q27' Qs Qt—1 + V _dlbt—17' c, Qg + V _dlbs} urT

where, f07" each g; (2 =t—=1,---, 8)7 there is {qilv e 7Qij} - {27 qi,--- 7Qt—2} such that qiqiy * - qijz2 =

2?2 + d1y? has a relatively prime solution (z,y,z) = (a;,bj,c;) over Z, and
{er + Vdafi,ea + Vo fa} if e=0,
T =< {eir+Vdaof1} ife=1,
@ lf6 = 27
with 6? — dzf]2 = 5j € Ap, ej,fj e F*.
(2) If dy = —1 mod 8, 2 ¢ NF and the rank of the form (2.7) ist—1, then the representative
set of D(E/F)/E*? is

{p17”' 7pt727q27"' y Qs+r, At—1 + V _dlbt—17"' y As + V _dlbs} ur.



(8) If di = =5 mod 8 and the rank of the following matriz is t — 1:

/
gi—1

(2:8) My = : :
! !
q1 . gt—1
(pt—l) (pt—l)

then the representative set of D(E/F)/E*? is

{pl,"' apt52yq2a"' y Qs+r, At + V _dlbta"' , Us + V _dlbs}UT

(4) If di = =1 mod 8, 2 € NF, and the rank of the form (2.8) is t—1, then the representative
set of D(E/F)/E*? is

{p17”'7pt727q27"'7QS+7‘7u+ _dlaat+ V _dlbt7"'7a8 + \V _dlbs}UTv

where —d, = u? — 2w?,u,w € N.
Note: in (2), (3) and (4), a; +/—dib; and T are analogue to them in (1).

Proof. By the preceding discussion and the assumption, we get
ro(D(E/F)JE*?) = |Ss| +2 —€e=25+7+ 59 +2—¢,

where ss is the number of Dyadic ideals in F.
(1) If 2|Dp, then s = 1. By rankM{ =t — 1, each column (&), (I%)')T of M5 can
be expressed by the columns of M 15 , i.e.,

(QiQi;'l"Qij y

(Qiqlii'_“lQij )/

where {gi,, -+, ¢i;} C{2,q1,---,q:-1}. By Legendre theorem (see [17]), the Diophantine equa-
tion q;qi, - - qi; 22 = 22 + d1y? has a relatively prime solution (z,v,2) = (a;, b;, ¢;) over Z. Hence
we get {p1,- P62, s Qstrs -1+ —d1bi—1, -, as++/—dibs} € D(E/F) and such 2s+r+1
elements must be distinct modulo E*? each other.

On the other hand, suppose § € Ap, § ¢ F*2, is a norm from E*, ie., § = Ng/p(a),
a € E, then clearly the valuation of « is even at all undecomposed non-dyadic finite primes and
vp(a) = vpe () mod 2 at finite decomposed primes P = PP of F. Since C5(F) has odd order,
we can find f € F* such that a- f € D(E/F),so a- f € T.

By the property of norm, it is verified that each product of such distinct elements does not
belong to E*2. Note the definition of € in (2.3), then (1) holds.

In cases (2) and (4), 21 D and sy = 2; in case (3), 24 D and s = 1. Similarly to case (1),

we can prove them. W



Remark 2.1 (1) By Theorem 2.1 and (2.4), we have given all elements of order at most 2 in
KyOp NTr(E/F).

(2) Since r4(C(F)) = 0, by Proposition 2.1 we get Ap = {2,6}F*2, s0 2,6 € Ag. Suppose
2,8, 20 ¢ E*?, then Ap = {2,6,0'Y/E*2. Although Ay C D(E/F), it is difficult to find &' from
the representative set of D(E/F) in Theorem 2.1.

About T in Theorem 2.1 (4), we have the following result.

Proposition 2.3 Let —d; = 1 mod 8, 2 € NF and u® — 2w?> = —dj,u,w € N. Suppose
m(u+/—=di) € Ng/p(E*) N Ap,m|dy, then

(1) gj = 1 mod 8 for each odd prime divisor q; of ds.

(2) If —dy =9 mod 16, then do = +1 mod 8.

Proof. Let u? — 2w? = —dy,u,w € N,w = 4 mod 8. Suppose m(u + /—d;) € Ng/p(E*) N Ap.
By m(u + /—dy) € Ap, in the field F the Hilbert symbol (m(u + v/—d;),—1); = 1 and
m+u =2 mod 4, e.g. see [14]. By m(u++/—dy) € Ng/p(E*), in the field F' the Hilbert symbol
(m(u++/—dy),ds)s = 1 and (m(u —+/—dy),d2)2 = 1. Hence (2m2w?,dy)s = (2,d2)2 = 1, so the
local Hilbert symbol (%) = <%) =1 for each odd prime Q;|g; of F. Hence ¢; = +1 mod 8
for each g¢;|ds.

If —d; =9 mod 16, then u = £3 mod 8. By m+u = 2 mod 4 and m|dy, i.e. m = £+1 mod 8,

mu+\/—d1 u—+/—dy
2

= mu =5 mod (2, 5

)3 _ D3.

Suppose that m(u + /—di) € Ng/p(E*), then in the complete field Fip, D|2, the local Hilbert
symbol
5, do

( )= (5

m(u+\/—d1),d2 ) 1
) .

Hence dy = £1 mod 8.1

Although we know the forms of all elements of order < 2 in K9OrNTr(E/F) from Theorem
2.1, we are interested in the forms of all elements of order < 2 in K9Opg.

Since C®¥(F) has odd order, we use the method of proving [5, proposition 2.1] to get the

following result.

Lemma 2.1 Ifz € Ng/p(E"), then x € Dp if and only if there is « € Dg with Ng/p(a) =
zf? f € F*.

Proof. We only need to prove the necessary condition. Suppose NE/F(O/) =ux, d € FE,
x € Dp, then the valuation of o’ is even at all undecomposed non-dyadic finite primes and
vp(a’) = vps () mod 2 at finite decomposed primes POg = PP°. Since C¥(F) has odd order,
we find f € F* such that o« = o/f € D and Ng/p(a) = zf>. W
Let F = Q(v/—d;) and E = F(\/ds). Suppose m is a positive divisor of 2d;. We have that
m € Ngp(E")



<= the Hilbert symbol (m,ds)2 =1 of F
<= the local Hilbert symbol (%552 dg) =1 for each primes P of F.
By [8, theorem 5.4], for each finite non-dyadic prime P,

<m1’3d2> _ ((_1)vp(m)vp(dz)mvp(dz)d;”P(m))(prl)/2 mod P.

Hence, for each finite prime P ¢ S, (de2> = 1 and, for each finite non-dyadic prime Q € S,

<m7d2) — <%) = <%), where @) is a prime over ¢. In the following, we find out all m with
(%@) = (2) =1forall Q € S7,Qlg.

If 2| Dp, i.e., pr = 2. We define the system of homogeneous equations over Fo
(2.9) AX =0,

where

(5)

(2.10) A= | :
/ /
P1 R bt
<q.s+7"> <(Is+r>
Let a non-zero vector X = (x1,---,2¢) over Fy be corresponding to m = [] p;. Hence each

;=1
non-zero solution of the system (2.9) is 1-1 corresponding to m € Ng,p(E™").
If 2{Dp, i.e., p; # 2. We also define the system of homogeneous equations over Fo
(2.9), A'X =0,

where
!
Dt

< .
< 32T> (qs T),/ <%>'/ ;
< > (pl’d> <pt,Td2>

where D is a dyadic prime of F' ( in fact, we need the last row of A’ only if d; = —1 mod

(2.10) A=

}\3 L~
w

8). Hence each non-zero solution of the system (2.10%) is 1-1 corresponding to m € Ng,p(E").

Hence we get:

Lemma 2.2 If 2|Dp, then there is a non-zero solution X = (xy,---,x;)T of (2.9) if and only
if m € Ng/p(E*), where m = [] pi; if 21 Dr and pg = 2, then there is a non-zero solution

z;=1

X = (zo,21,- -, 3)" of (2.9°) if and only if m € Ng;p(E*), where m = [ p;. B

x;=1

Theorem 2.2 Suppose A and A’ are defined as (2.10) and (2.10°), respectively. If 2|Dp, then

ro(Ko0g) = 2s+ 1 + s9 + t — 3 — rankA;



if 21 D, then
ro(Ky0g) =25+ 71 + sy +t — 2 — rankA’ + ¢,

where € = 1 if m(u+ /—d1) € Ng,p(E7), u? — 2w? = —dy, some m|2dy, and € = 0 otherwise.

Proof. Since F = Q(y/—d;) and E = Q(v/—di,/dz), by [5] there is a commutative diagram

0— KyOp — KyE— @ E,—0

v fin.
1 Tr 1 Tr l
0— KQOF — KQF—> @FUHO
v fin.

Hence there is a restrictive homomorphism of two elementary subgroups Tr : s KoOp —

2K50p. Set H = Tr(3K20g), then there is an exact sequence
0— Q(KQOE N T’I“(E/F)) — 9K50g 7;7; H— 0.

Therefore we have
(2.11) 2KyOp = o(KoOp NTr(E/F)) & H,Tr(H) = H.

By (2.6), we only need to computer ro(H) in the following two cases.

Case 1: 2 ¢ NF. By [1], all elements of order < 2 in K9Op are the forms: {—1,m}, where
m are all positive divisors of 2d1, and Ap = {2,m'}F*2, where m/ is a positive odd divisor of
dy.

If 2|Dp, i.e. p; = 2, then, by Lemma 2.1 and 2.2, there is 3 € H with Tr(8) = {-1,m} € H
if and only if m € Ng,p(£*) if and only if there is a non-zero solution of (2.9) corresponding to

m. By the Tate kernel Ap = {2,m'} F*? and the definition of € in (2.3), we get
ro(H) =t —rankA — (2 —¢),

ro(K90R) =25+ 1+ s9 +t — 3 — rankA

If 21 Dp and 2¢NF, then, similarly, we get
ro(H) =t + 1 —rankA’ — (2 —¢),

ro(K20E) = 25 + 1 + 89+t — 2 — rankA’.

Moreover, let Ap = {2,m'}F*2, we can determine the value of ¢ from the system (2.9) or
(2.9°). In fact, m' € Ng/p(E*) N Ag if and only if the column vector X corresponding to m’
must be a solution of (2.9) or (2.9”).

Case 2: d; = —1mod 8 and 2 € NF. By [1] all elements of order < 2 in K30 are the forms:
{—=1,m}, {—1,m(u++/d)}, where m are all positive divisors of d; and u? —2w? = —d;,u,w € N;
by Proposition 2.1 Ap = {2,m'(u + Vd)}F*?, where m’ is a positive odd divisor of dj.

10



First, suppose m(u ++v/—dy) ¢ N / r(E*) for each m|2d;, then, by the preceding discussion,
we get the same results as case 1. E.g., if there is some ¢; = +3 mod 8, then m(u + /—d;) ¢
Ng/p(E*) for each such m.

On the other hand, suppose m/(u++/—d;) € Ng/p(E*), then, by Proposition 2.2 each prime
¢i = £1 mod 8 and € = 0 in (2.3). By the preceding discussion, we get

ro(H) =t +1—rankA’ — 1.

Suppose € = 1 and m” (u 4 v/—d1) € Ng/p(E*) for some m” # m/, m"|2dy, then 2 € Ng,p(E*)
by Proposition 2.2 and
ro(H) =t +1—rankA’ — 1+ 1.

In the above two cases, we always have
ro(Ky0g) =25 +71+sy+t—2—tankd' +¢, e =1. &

We prove Theorem 2.2 by the method of construction, hence we can represent all elements

of order < 2 in K7O0pg.

Example 2.1 FF=Q(v/-3x7),E=Q(v/-3 x 7,5 x 11 x 13).

For F = Q(v/—3-7), set p1 = 3,pa = 7,p3 = 2. There is the Rédei’s matrix

o (BPRly oy my =Ty Iy 2y (10 1
MF_<<£—;>’ (Clazy <£—2>’>‘<<%3>’ (S <§>/>‘<1 L)

Hence r4(C(F)) = 0. It is clear that Ag = {2, 7} F*2. On the other hand, 5,11 are decomposable

in F' and 13 is inert in F'. Set q1 = 5,q2 = 11, ¢3 = 13, there is a matrix as (2.2)

s_ Gy @y (@YY _(111
() & & )-(G 1)

(B (=) (B 111
A= G G Gy ={ 0 11
) (&) (&) 011

Hence rankA = 2, 2-7 € Ng/p(E*) N Ag and ro(H) = 0 in (2.11), so 72(K20E) = 25 + 7 +
so+t—3 —rankA = 4. By Theorem 2.1 and Theorem 2.2, we have the representative set of
D(E/F)/E*?:

{3,7,2,11,13,1 + V=3 -7} U {27+ V5 - 11 - 13},
where 2-11-12=124+3.7-12and 2-7-12 =272 —5-11-13-12. Since 2,7 € Ar C Apg, the
representative set of o KoOp is

{—1,3},{—1,11},{—1,13}, {—1,1 + v—=21},{—1,27 + V715},

where there is only one dependent relation. l
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Example 2.2 F = Q(v/—23), F = Q(v/—23, V47).

It is clear that ro(C(F)) = 0 and C¥(F) has odd order. Since —23 = 32 —2-42, Ap = {2,23(3+
V—23)}F*2. Also 20%+23-12 = 47-3%, P = (20++/—23,47) and P’ = (20—+/—23,47) are prime
ideals of F over 47, then the local Hilbert symbol (w) = 1. Hence 2,23(3 ++/—23) €
Ap N Ng/p(E*), so Ng/p(7T+ VA7) = 2 and N p(a) = 23(3 + /—23) f? for o € D(E/F). By
Theorem 2.1 and Theorem 2.2, ro(K2Op NTr(E/F)) =24+0+2—-1—€¢=3,r3(H) =0 in
(2.11) and the representative set of s K2Op is

{—1,23},{=1,20 + vV=23},{=1,7 + V47}, {-1,a},

where there is only one dependent relation. l

3 4-rank

Let F = Q(v/—dy) and E = Q(v/—d1,+/d2) be an imaginary quadratic field and a biquadratic
field, respectively. Let S be the finite set of primes in F' consisting of all infinite primes, all
dyadic primes, all finite primes ramifying in E. In this section, we will use the Hurrelbrink and
Kolsters’ results in [5] to investigate elements of order 4 of K2Op, provided the 4-rank of the
class group C(F) is 0 and the S-ideal class group C*°(F) has odd order.

First, we describe those results of [5]. Let Tr(E/F) is the kernel of a homomorphism
Tr: KoF — KoF and let v = 5 € Tr(E/F), then we define a homomorphism

¢p/p Tr(E/F) — KoF/ {~dy,Ap} - (KoF)? = 2Br(F)/(—d2, Ap)
v — Tr(a) mod {—ds, Ap}- (KQF)za

where (—dy, Ap) denotes the subgroup of the Brauer group of F generated by the classes
(—dg,€),e € Ap. Suppose C¥(F) has odd order, there are exact sequences in [5, proposition
2.10, corollary 2.12]

0 — Tr(E/F)? — Tr(E/F) "5y Br(F)/(—dy, Ap),

0 — (K20p)? NTr(E/F) — K20p NTr(E/F) 24 3BrS(F)/(=ds, Ar).
Ify={-1,t} € Tr(E/F),t € F*, then ¢g/p(7) = (—dz,t) by [5, proposition 2.13].
To compute the homomorphism ¢/ p easier, we define another homomorphism in [5]. Let

Ei = E = F(Vdy) # By = F(i), B3 = By = F(v/=d3). Suppose = € R(E/F) = Np (Af) and
y € F(i), satisfying Ng/p(v) = Npg)/r(y). We call y admissible for x if

Tregyr({iy}) =1 and tg/p(z) + tre) ry) #0,

where tg/p and tp(;)/p denote the trace maps from E and F(i) to F, respectively. In this case

we also call (z,y) an admissible pair. Moreover, provided that each element € R(E/F) has

12



an admissible element y, we define the homomorphism

VYp/p i 2IT(E/F) — Br(E/F)/(—d2, Ap),
{-Laz} — (=do,tg/r(z) +trur)),

where Br(Ey/F') consists of all classes of quaternion algebras of the form (—ds,a) with a € F*.
Hence, by [5, theorem 3.7 and corollary 3.9] and D(E/F) = R(E/F) N Dg in section 2, there is

a result:

Lemma 3.1 Suppose C°(F) has odd and each element x € D(E/F) has an admissible element

y € F(i). Then there is a exact sequence

0 — 9 Ky05 N THE/F) N K20% — 5Ky0p N Tr(E/F) "24F 3 BrS(Ey/F)/(—da, Ap).

In the section, we will use Lemma 3.1 to compute the 4-rank of K9Op. Hence we need to
investigate the condition of Lemma 3.1. In fact, if ¢p(;) p is trivial, then there is always an
admissible y € F (i) for x € R(E/F); specially, if K207(2) = 0, then 2¢ 5 )/ is trivial, compare
e.g. [2, proposition 2.17].

Let I = Q(v/—dy) and E = Q(v/—d1, v/d2) be an imaginary quadratic field and a biquadratic

field, respectively. We have a quite general result:

Proposition 3.1 Suppose that r4(C(F)) = 0, 2 ¢ NF and C°(F) has odd order. Then each
element x € D(E/F) has an admissible element y € F(i).

Proof. By Proposition 2.1, the Tate kernel Ap = {2,m}F*? m|d;. If + € D(E/F) and
Ng/p(r) = 2 € Ap, then y = 1+ or =1 +4 € F(i) satisfies Trpg)/r({i,y}) = 1 and
tg/r() +tpey/r(y) # 0, so y is admissible for x. We only need to find an admissible element y
for each element x € D(E/F), Ng/p(x) = m or 2m € Ap.

Case 1: di#=£1mod 8. By r4(C(F)) = 0, Proposition 2.1 and [17, theorem 4.3], r4(K20p) =
0, Ap = {2,m}F*? and [P,,] = 1 in the narrow class group C(Fp) of Fy = Q(v/d1). Without

loss of generality, we assume that there are integers a, b€ N such that
m = a® — dib°.
Take a = a + (—/—d;b)i € F(i), then
Trpaypli,a} = Trpgyr{a/a,/=dibja} = {m/a®,\/—dib/a}.
Note that a? — d1b?> = m € A and Tr @ rid a}? ={-1,m} =1, then

(3.12) = {a—";, v _adlb

} = {—1,t} (S KQOF
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By d1# £ 1 mod 8 and F' imaginary,
B e KyF?.

Hence there is an element o’ € F(i) such that t = Np(;),p(a’). We get such y = tLaa'? € F(i)
with Trrgy/r({i,y}) =1 and Npg;)/p(y) = m. Hence (z,y) is an admissible pair.

Case 2: d; = 1 mod 8. By r4(C(F)) = 0 and the process of proving Proposition 2.1 (2), we
get that r4(C'(Fp)) = 0 and the ambiguous class [P,] = 1 in C(Fp), where C(Fp) is the narrow
class group of Fy = Q(v/d1) and n = 43 mod 8 is a positive divisor of d;. Hence, without loss
of generality, n = a® — d1b2,a,b € N. Since the rank of Rédei t x ¢ matrix Mg, of Fy is equal to
t—1and dy =p;---p: =1 mod 8, the system of equations

Mp, X =

(2)

is solvable over Fy. Hence there must be a positive divisor m = £1 mod 8 of d; such that the
Diophantine equation

omz? = z? — diy?

is solvable over Z, see e.g. [17]. Hence {—1,m} € (K20p)?, so m € Ag by Proposition 2.1 (2).
Moreover, the ideal class [D][P,,] € C(Fp)?, where D is a dyadic ideal and P, is an ambiguous
ideal over m. Since r4(C(Fp)) = 0, [D][P,,] must be of odd order k, so ([D][P,.])* = [D]*[Pn] = 1.
Hence there are a,b € N satisfying that

2%*m = a® — dib°.

By the process of proving case 1, we also find y € F(i) satisfying Trpg;)/r({7,y}) = 1 and
Nr@)r(y) = m. Hence (z,y) is an admissible pair.

Case 3: —d; = 1 mod 8 with 2 ¢ NF. By Proposition 2.1 Ap = {2, m}F*?, where m = 1
mod 4 is a positive divisor of d;. In the following, we prove that m,2m ¢ Ng/p(E*). We assume
that primes qo = 2,q1, - - -, gt_o satisfy that rankM} = ¢ — 1 in (2.7). Set Q;lg;, i = 1,---,t — 2.

Suppose that m € Ng/p(E*), ie., the Hilbert symbol (m,ds)2 = 1. By Minkowski-Hasse
theorem, each local Hilbert symbol (7d2) — (5:)=1,i=1,---,t—2. Since m = 1 mod 4, each

Qi
Jacobi symbol

(ﬁ>:1, i=1,- 12
m

Set m' = dym = —1 mod 4, 1 = (;—d) = (2)(=F) = (=+),i=1,---,t — 2, hence the Jacobi
symbol

q; .

By _qi=1,...t—2.

(&) =1i=1
Moreover, by d; = mm’ = —1 mod 8,

2 2
(2)=(2)



It is contradictory to rankM =t — 1 in (2.7).
Suppose that 2m € Ng/p(E*), ie., the Hilbert symbol (2m,dz)2 = 1. the local Hilbert
symbols (2722—6[2) = (%;n) =1,0=1,---,t — 2. Since m = 1 mod 4, the Jacobi symbols

: 2
(ﬂ) - <—>,¢:1,~~,t—2.
m q;

Set m' = dy/m = —1 mod 4, 1 = (=24) = (2m)(=2m

Jacobi symbol
; 2
(q—l/> - (—) =1, -2,
m qi

Moreover, by di = mm’ = —1 mod 8,

),i = 1,-+-,t — 2, hence the

It is also contradictory with rankM; =t — 1 in (2.7).
Therefore m,2m ¢ Ng/p(E*), where Ap = {2,m}F*2. 1

Proposition 3.2 Suppose that r4(C(F)) = 0, C¥(F) has odd order and —dy = 1 mod 8 with
2e NF.
(1) If —d1y =1 mod 16, then each element x € D(E/F') has an admissible element y € F(i).
(2) If —dy = 9 mod 16 and m(u+~/—d1) € ApNNg,p(E*),m|d,u® —2w? € Ap, then there
is not an admissible pair (z,y) such that Ng/p(x) = Npy/r(y) = m(u+v/—d1), © € D(E/F),
y € F(i).

Proof. Since r4(C(F)) =0 and —d; = 1 mod 8 with 2 € NF', by Proposition 2.1 r4(C(Fp)) =0
for Fy = Q(v/dy) and Ap = {2,m(u + v/—d1)} F*?, where —d; = u® — 2w? u,w € N, m|d;, and
u+m = 2 mod 4. In the following, we will find an element y € F(i) such that Np;) p(y) =
m(u+/=di) and Trg/p({i,y}) = 1.

By 74(C(Fp)) = 0 and 2 € NF, the dyadic class [D] in C(Fp) is trivial. Also —d; = u?—2w? =
2(u 4+ w)? — (u+2w)?, u,w € N, and

20u +w)(u+ /—dp) = w? + (u+w+ /—dp)>.

Set a1 = w+ (u+w++v/—dy)i = (u+2w—+/dy)+(1+i)(u+w) € F(i). In the field Fy = Q(\/dy),
by (u+ 2w)? — dy = 2(u + w)?

(u+2w —+/dy) = DP3+w,

where D is the dyadic ideal and P,,, is an integer ideal over u 4+ w. Hence, in the class group
C(Fy), [D][Pusw)? = [Purw]? =1 and [Py ]? = 1, where P, is the conjugate ideal of P, .

Hence there is an ambiguous class [P,,] such that [P,,][Py+w] = 1, so there is the integral element

ar =a+bVd € Op, such that
(a4 b\/dy) = PpPuyw and a® — dib* = m(u + w).
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Set @« = ajag = e+ fi € F(i) and set p an odd prime, P a prime of F over p and P a prime
of F(i) over P. Then vp(Np(;)/r(a))/2 +vp(a) = 0 mod 2, for all odd primes P of F. Thus, by
[6, proposition 1.5] or [2],

/—d 2
g = TTF(Z)/F{%O[} :{Qm(u+ 621)(u+w) 7_5}
= Trpgrii, a1} Tregy pii a2}
- Pl yod) wretvedy i) VI ¢ gop,
62 = {-1Lm(u++/—d)} =1,
SO
(3.13) ﬂ = TTF(i)/F{i,Oz} = {—1,t} S KQOF.

For all non-dyadic finite primes P, the local Hilbert symbol np(3) = 1. Since F has two dyadic
primes D1, Dz, t € Np(;y,p(F(i)*) if and only if the Hilbert symbol np, () = 1. We need to
compute the value of the local Hilbert symbol np, (3) in a dyadic prime D;.
If —d; = 1 mod 16, then we assume that —d; = u? — 2w?, u,w € N,w = 4 mod 8, and
u = +1 mod 8 (see [3, 14]). Set D1 = (2, %\/le) Since “_‘é:h . “+‘§Td1 = %2 = 0 mod 8,
utv=d _ - u—y=di
2 2

u = +1 mod Dj

and

U+ v —d1

m-fzmuzlmodl)iS

by m - (u+v—d1) € Ap,m +u =2 mod 4. In the complete field Fp, = Qa, Np(;)/r(a/2) =

m . utY=d V2_d1 - (u+w)? =1 mod D}. Hence

2m(u 4+ v —dq)(u + w)2 _i}) _1q
2 ) -

(& (&

D, (TT‘{i, a}) =D, ({

Therefore, in the case, 3 = {—1,t} € (K2F)? ie., t € Npayp(F(i)*). By the process of proving
Proposition 3.1, we find y € F(i) such that Npg),p(y) = m(u + v—=dy) and Trpg) p{i, y} = 1.
Therefore every element x € D(E/F') has an admissible element y € F'(7).

If —d; = 9 mod 16, then we assume that —d; = u? — 2w?,u,w € N;w = 4 mod 8, and
u = 43 mod 8. Hence

w+ /=
meTy

= mu = 5 mod D3,

In the complete field Fp, = Q2, m - @ “(u+w)? =5 mod D} and % =2 or 6 mod Dj by
e2 + 2 =2m(u + v—dy)(u +w)?. By [13, p.252 table]

e
S
Hence 3 = Tr{i,a} ¢ (K2F)?, so there is not any element y € F(i) such that Npq/p(y) =
m(u++v/—dy) and Tr{i,y} =1. B

In the following we compute 4-rank of K2Op for the biquadratic field E = Q(v/—dy, /da).

D, (Tr{i7a}) =MD, (5 ) =—1.
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Theorem 3.1 Suppose r4(C(F)) =0, C°(F) have odd order and di#1 mod 8. Then ry(K2Op) =
TZ(ZKQOE N KQO% N TT(E/F).

Proof. Since r4(C(F)) = 0 and d1#1 mod 8, r4(K20F) = 0 by Proposition 2.1, i.e. K20p(2)
is elementary. There is a homomorphism Tr : K90 (2) — K20p(2) for two 2-Sylow subgroups,

so there is an exact sequence
0 — K205(2) NTr(E/F) — K+0g(2) 5 Tr(K,05)(2) — 0.
By Tr(K20g(2)) C K20p(2) elementary, s KoOp N K20% C KsOg(2) N Tr(E/F). Then
r4(K20g) = (2 K205 N K20%) = 19 (s K20 N K205 NTr(E/F)). B

Remark 3.1 If dy =1 mod 8, then by Proposition 2.1 there is a positive divisor n = £3 mod 8
of dy such that 3 € K2Op, %2 = {—1,n} # 1. Suppose there is not any 3 € K2Og of order 2 such
that Tr(B) = {—1,n}, then we get the same result as Theorem 3.1. Suppose there is f € KoOg of
order 2 such that Tr(B) = {—1,n}, then r4(K2Og) —r2(2 K20 N KoO%L NTr(E/F))) =0 or 1.

In fact, we can determine the above conditions by the method of proving Theorem 2.1.

By Proposition 3.1, Proposition 3.2, Theorem 3.1 and [5, corollary 3.9], we get

Theorem 3.2 Suppose r4(C(F)) =0, C%(F) has odd order and the assumption of Proposition

3.2(2) does not hold, then there is an exact sequence

0 — o K20 NKyO0LNTr(E/F)  — 3(K20p NTr(E/F))

VB BrS(Eo/F)/(—da, Ap).

Moreover, if diZ1 mod 8, then
7“4(K20E) = 2s +7r+ 82— 1—€— TQ(Ime/F). [ |

It is clear that this result with the representative set of R(£/F') and the action of ¢ g/ yields
a computational approach to the 4-rank of K5Opg. For convenience, we describe the algorithm
of r4(K20g) in detail (see [5, P173]).

Let Qo, Q) Q1 -+, Qs4r denote the primes in Sy with Qo, Q dyadic primes (note Qo = Q)
if di#Z — 1 mod 8). Let [x1],[z2],- -, [z;] denote a basis of the cokernel of the map

(Ap N Ng/p(E*))/F*? — D(E/F)/E**.
Since [d2] ¢ Ap/F*2, the above map is injective and | = |S¢| = 25 + 7 + sp. We form the
(25 +r + s2) x (2s + r + s2) matrix over Fy by replacing the 1’s by 0’s and the -1’s by 1’s
Mpp = ((—da, tp/r(x:) + trayr(Yi)g,),

where y; € F (i) is admissible for x;. By [5, lemma 3.8] the local Hilbert symbols (—da, t g/ p(2;)+
tg/r(yi))p = 1 for all finite primes P ¢ S. Hence by the quadratic reciprocity law rankM g/ p <
2s + 1 + s — 1. By the definition of ¢ and Theorem 3.2 ro(Imyg/r) = rankMpg/p — € and
ro(K2Op NTr(E/F)) =|Sf| —1 — €. By Theorem 3.2 and [5, lemma 5.1], we get
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Corollary 3.1 The assumption is as Theorem 3.2.
(1) r2(2 K205 N K20 NTr(E/F)) =25+ 1+ sy — 1 —rankMgp.
(2)If diZ 1 mod 8, then r4(K2Op) =2s+71r+ 59 — 1 — rankMp;p. B

We now illustrate the method through some examples.

Example 3.1 Let F = Q(v/-3x7),F = Q(v/—3 x 7,5 x 11 x 13). Describe the structure of
the 2-Sylow subgroup of KoOpg.

In Example 2.1, we know that 74(C(F)) = 0, C*(F) has odd order, Ap = {2,7}F*? and the
representative set of D(E/F)/E*2. Since 5,11 are decomposed in F, 13 is inert in F, s = 2,
r=1,s =1land 2x7 € Ap N Ng/p(E*), let 21 = 2,22 = 3,03 = 1,24 = 13,25 =
14+ v=21,26 = 27 + /715 and let Qo|2,Q1]5,Q2|5, Q3]11,Q4|11,Q5|13. There is the 6 x 6

matrix

(_d27x1)IQO (_d27x1)221 * (_d27x1)223 * (_d27x1)/Q5
(=do,x2)g, (—d2,22)p, * (—do,m2)g, * (—d2,22)g,
—d2,$3 / —dy, T3 ! * —do, T3 4 * —do, T3 4
Mayr = (_ )IQO (_ )/Ql (_ )/Qg, (_ )95
(=d2,24)g, (—d2,24)g, * (—da,xa)g, * (—d2,24)q,
(=d2,x5)g, (—d2,25), * (—do,75)p, * (—d2,@5)g,
(_d27x/6)IQO (_d27x16)/Q1 * (_d27x16)/Q3 * (_d27x16)/Q5

* 1 1 1 1 1

* 11 0 0 0

B £ 00 1 11

o * 11 1 1 0

*+ 01 1 1 =

* x x 0 1 =

In the following, we verify the value of (—d2,7)q,

(1) In the 5-th row of Mg/, since (2) = -1, (=dy,1 + V-21)g, = 1 and (—dp,1 +
vV—21)g, = —1. Note (—d2,1++/—21) = (2-5-13- (1 —y/—21), 1+ +/—21), we get other values.

(2) In the 6-th row of Mg /p, 6 = 27+ V715 € E and Ng/p(w6) = 14, hence we need to find
an rg-admissible element y € F(i). Since 7-22 = 7% —21-12 and o = 7/2 +iy/—21/2 € F(i),
by (3.12) B = Tr{i,a} = {4/7,v/—-21/7} = {28,/—21} € K20 and % = 1, in fact, 3 = 1
(see [15]). Then y = a(—1—1) is admissible for 26 and zf = tg,p(26) +tg/p)(y) = 47— V21
Hence N, p(zg) = 2230 and (%39) = —1, so we get the values of the 6-th row.

Therefore rankMp,r = 5 and r4(K20F) = 0. From the matrix Mg, we know that
Ypp({—1,3-11}) = 1,50 Ap = {2,7,-11}E*. W
By Proposition 3.2, we can not use our method to investigate the 4-rank of KoOF in Example

2.2.

Example 3.2 Let F' = Q(v/—47), E = Q(/—47,+/—23). Describe the structure of the 2-Sylow
subgroup of KoOp.
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It is clear that 7o(C(F)) = 0, C°(F) has odd order and 23 is inert in F. Since —47 = 92 —
2-82 Ap = {2,9 4+ V=4T}F*2. By 20% + 23 - 12 = 4732, {-1,20 + v/—23} € K3,0p and
Trg/r({—1,20 + /=23}) = {—1,—1}, so ra(H) = 1 in (2.8) of Theorem 2.2. It is clear that
2,94 V=47 € Ap N Ng/p(E*), i.e, Ng/p(3 +v/—23) =2-2* and

43— VAT | 235+ VAT)
€Tr =
12 12

s NE/F(x) =9 —+ —47.

By Theorem 2.1 and Theorem 2.2, ro( KoOpNTr(E/F)) =0+142—-1—€=2, r9(K20p) =3

and the representative set of s KoOp is
{-1,47},{-1,3 + v—23},{—1,2},{—1,20 + v/—23},

where there is only one dependent relation.

In the following, we use Theorem 3.2 to investigate the 4-rank of K2Op. Let Qo|2, Q|2
and Q1]23 and let x1 = 47,29 = (3 + v/—23)/4,23 = x. We know that yo = —1 —i € F(i) is
ro-admissible and we find an xz-admissible element. By 2(9 + /—47) = 82 + (1 + v/—47)2, Let
yh =8 +i(1 ++/—47) € F(i), then

B="Tr{iy;} = {2(9 VA7) ,— Lt 8" _47} = {1+ v/—47,4}.

82
Since 82 = 1,8 € KyOp and 3 € KoF? 3 = 1 by r4(K20Fr) = 0 and C(F) of odd order.

Set y3 = —yh(1 +1i)/2 = — 1= V2747 — 2 V2747 € F(i), then ys is xg-admissible. Hence z}, =
145v/—47
6

tp/r(x2) +tpr(y2) = 5 and @b =ty p(ws) + tryy/r(ys) = , SO we get

1
Mgip=1|1
0

— =
_= o O

Hence rankMp p = 2, 74(K20p) = 0 and Ap = {2, -3 — /=23,9+ V/—47}E**. W
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