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1 Introduction

In this paper we consider the singularly perturbed system (SPS) of functional differential equa-

tions (FDE-s)
ẋ(t) = L11xt + L12yt

εẏ(t) = L21xt + L22yt
(1.1)

where x ∈ C
n1 , y ∈ C

n2 , ε > 0 is a small parameter;

Lj1xt =
l∑

i=0

Ai
j1x(t − τi) +

0∫
−τl

Dj1(θ)x(t + θ)dθ

Lj2yt =
m∑

k=0

Ak
j2y(t − εµk) +

0∫
−µm

Dj2(θ)y(t + εθ)dθ

(1.2)

j = 1, 2, Ai
jk are constant matrices of appropriate dimensions, Djk(.) are integrable matrix-

valued functions, and 0 ≤ τ0 ≤ τ1 ≤ ... ≤ τp, 0 ≤ µ0 ≤ µ1 ≤ ... ≤ µm.

A lot of problems arising in various fields of science and engineering can be modelled by SPS-s

of differential equations with or without delay, e.g., see [8] and the references cited therein. The

system (1.1) was analyzed by Dragan and Ionita in [2]. By extending classical results of Klimusev

and Krasovskii, e.g., see [14], the authors gave a parameter-independent sufficient condition

ensuring the exponential-asymptotic stability of the zero solution of (1.1) for all sufficiently small

ε. For characterizing the robustness of asymptotic stability for linear systems, an appropriate

measure is the so-called stability radii introduced by Hinrichsen and Pritchard [10, 11, 12]. A

formula of the complex structured stability radius for linear systems was easily obtained in [11].

The result was extended to linear functional systems in [17]. The real stability radius for linear

systems, which is a more difficult issue, was investigated in a remarkable paper of Qiu et al. [15].

Recently, this result was extended to linear time-delay systems [13]. See also a fairly complete

reference list on the topic in [1]. In this paper, we focus on the complex stability radius, only.

Let us assume system (1.1),(1.2) is asymptotically stable for all sufficiently small ε. Following

the notions introduced in [17, 13], we consider the system (1.1) with the coefficients subjected

to structured perturbations as follows

L̃j1xt =
l∑

i=0

(Ai
j1 + Bj∆

i
1C

i
1)x(t − τi)+

0∫
−τl

(Dj1(θ) + Bjδ1(θ)C l+1
1

)x(t + θ)dθ

L̃j2yt =
m∑

k=0

(Ak
j2 + Bj∆

k
2C

k
2 )y(t − εµk)+

0∫
−µm

(Dj2(θ) + Bjδ2(θ)Cm+1
2

)y(t + εθ)dθ

(1.3)

where

{∆i
1}

l
i=0 ∈ C

p1×q1i , {∆k
2}

m
k=0 ∈ C

p2×q2k , δ1(θ) ∈ C
p1×q1(l+1) , δ2(θ) ∈ C

p2×q2(m+1)
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are uncertain perturbations, δ1(.), δ2(.) are integrable matrix-valued functions on the indicated

intervals; Bj ∈ C
nj×pj , j = 1, 2; C i

1 ∈ C
q1i×n1 , i = 0, 1, ..., l + 1;Ck

2 ∈ C
q2k×n2 , k = 0, 1, ...,m + 1

are sets of matrices determining perturbation structure. For brevity, let us denote

A =
{
{Ai

j1}
l
i=0

, {Ak
j2}

m
k=0

, {Dij(.)}
2
i,j=1

}
,

B = {B1, B2} ,

C =
{
{Ci

1}
l
i=0

, {Ck
2 }

m
k=0

}
,

∆ =
{
{∆i

1}
l
i=0

, {∆k
2}

m
k=0

, δ1(.), δ2(.)
}

.

Our aim is to determine the complex structured stability radius for (1.1),(1.2), which is defined

by

rε(A,B,C) := inf{‖∆‖, the perturbed system (1.1),(1.3) is not asym. stable}, (1.4)

where

‖∆‖ :=

l∑

i=0

‖∆i
1‖ +

m∑

k=0

‖∆k
2‖ +

∫
0

−τl

‖δ1(θ)‖dθ +

∫
0

−µm

‖δ2(θ)‖dθ,

and ‖.‖ is a matrix norm induced by vector norms. By multiplying both sides of the second

equation in (1.1) with ε−1, one obtains a regular explicit system of FDE-s. By applying an

extended variant of the result in [17], a formula of the stability radius for the system of differential

equation with multiple time-delays can easily be obtained. However, this formula may hardly be

realized in practical computation because of the appearance of ε−1. Therefore, we are interested

in the asymptotic behavior of the stability radius as the parameter tends to zero. Such a robust

stability analysis was done for the classical SPS of ordinary differential equations by Dragan in

[3]. Recently, by using an approach different from that in [3], Du and Linh have extended the

result to a more general class of singularly perturbed differential equations [4] and to index-1

DAE-s containing a small parameter [5]. Here, by using the same approach as in our preceding

papers, we will obtain a similar result for system (1.1),(1.2). That is, the stability radius of the

SPS-s is shown to converge to the minimum of the stability radii of the “reduced slow” system

and of the “boundary layer fast” system as the parameter tends to zero.

The paper is organized as follows. In the next section, we first recall the sufficient condition

obtained in [2] for the exponential-asymptotic stability of system (1.1),(1.2). Then, a formula

of the stability radius for implicit systems of differential equations with multiple time-delays is

proposed. This is in fact an extended variant of the formula obtained in [17]. The main results

come in Section 3. First, we analyze the robust stability of the reduced slow system, which is a

semi-explicit index-1 system of functional differential-algebraic equations (FDAE-s). Secondly,

the asymptotic behavior of the stability radius for the SPS is characterized as the parameter

tends to zero. Finally, a conclusion will close the paper.
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2 Preliminary

2.1 A sufficient stability condition

It is well-known that a linear system of functional differential equations is asymptotic stable if

and only if all roots of the associated characteristic equation are located in the open half plane

C
−, see [9]. However, in the case of the SPS (1.1),(1.2) it is not easy to check this condition. As

we mentioned above, we should multiply both sides of the second equation with ε−1 in order to

get a regular explicit system. Hence, the characteristic equation should contain ε−1, too, which

make the computation of roots become difficult.

Taking ε = 0 in (1.1), we obtain

ẋ(t) = L11xt + L̄12y(t)
0 = L21xt + L̄22y(t)

(2.1)

where

L̄j2 =

m∑

k=0

Ak
j2 +

0∫

−µm

Dj2(θ)dθ, j = 1, 2. (2.2)

That is, the second equation becomes an algebraic equation. Let us assume that L̄22 is invertible.

The reduced slow system (2.1),(2.2) is called an index-1 FDAE of semi-explicit form, see [6]. By

substituting y(t) = L̄−1
22

L21xt into the first equation, we obtain a linear functional differential

equation

ẋ(t) = LSxt, (2.3)

with

LSxt =
l∑

i=0

Ai
Sx(t − τi) +

∫
0

−τp

DS(θ)x(t + θ)dθ, (2.4)

where Ai
S = Ai

11 − L̄12L̄
−1

22
Ai

21, i = 0, 1, ..., l, DS(θ) = D11(θ) − L̄12L̄
−1

22
D21(θ).

We also consider the fast boundary layer system

ż(ζ) = LF zζ , (2.5)

where

LF zζ =
m∑

k=0

Ak
22z(ζ − µk) +

∫
0

−µm

D22(θ)y(ζ + θ)dθ

and ζ = ε−1t is the scaled time.

We assume the following

Assumption A1. All the roots of the equation

det (λIn2 −
m∑

k=0

Ai
22e

−λµk −

∫
0

−µm

D22(θ)eλθdθ) = 0

are located in the open left half plane C
− and
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Assumption A2. All the roots of the equation

det (λIn1 −

p∑

i=0

Ai
Se−λτi −

∫
0

−τp

DS(θ)eλθdθ) = 0

are located in the open left half plane C
−.

Note that these equations are the characteristic equations associated with the systems (2.5)

and (2.3), respectively. Furthermore, they are independent of the small parameter ε.

Theorem 1 (Dragan and Ionita [2]) Let Assumptions A1-2 hold. There exists ε0 > 0 such that

for arbitrary ε ∈ (0, ε0), the zero solution of the system (1.1),(1.2) is exponential-asymptotically

stable.

We remark that Assumption A1 implies the nonsingularity of L̄22. Furthermore, it is possible

to replace the open interval (0, ε0) by the closed one [0, ε0] (the case of ε = 0 is discussed in

details in the next section).

2.2 The complex stability radius for implicit FDE-s

Consider an implicit system of FDE-s

Eẋ(t) =

l∑

i=0

Aix(t − τi) +

m∑

k=0

∫
0

−µk

Dk(θ)x(t + θ)dθ, (2.6)

where x ∈ C
n, E, Ai ∈ C

n×n, i = 0, 1., ...l, are constant matrices, the leading term E is

supposed to be nonsingular; Dk(.) : [−µk, 0] → C
n×n, k = 0, 1, ...,m, are integrable matrix-

valued functions, and 0 ≤ τ0 ≤ τ1 ≤ ... ≤ τl, 0 ≤ µ0 ≤ µ1 ≤ ... ≤ µm. If one multiplies both

sides of (2.6) with E−1, one obtains an explicit systems of FDE-s which is well-known in the

literature, e.g., see [9]. However, the computation of E−1 may be expensive and complicated in

practice, especially when E contains one or some small parameters and may be nearly singular.

Suppose that system (2.6) is asymptotically stable. It is easy to see the asymptotic stability

is equivalent to the condition that all the roots of the generalized characteristic equation

det (λE −

l∑

i=0

Aie
−λτi +

m∑

k=0

∫
0

−µk

Dk(θ)eλθdθ) = 0

are located in the open left half plane C
−. We also consider the perturbed system

Eẋ(t) =

l∑

i=0

(Ai + B∆iCi)x(t − τi) +

m∑

k=0

∫
0

−µk

(Dk(θ) + Bδk(θ)Cl+1+k)x(t + θ)dθ, (2.7)

where ∆i ∈ C
p×qi, i = 0, 1, ..., l, are uncertain perturbations, δk(.) : [−µk, 0] → C

p×ql+1+k, i =

0, 1, ...,m, are integrable perturbation functions, and B ∈ C
n×p and Ci ∈ C

qi×n, i = 0, 1, ...l +

m + 2), are matrices determining the perturbation structure. Denote

∆ =
{
{∆i}

l
i=0, {δk(.)}m

k=0

}
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and define

‖∆‖ =

l∑

i=0

‖∆i‖ +

m∑

k=0

∫
0

−µk

‖δ(θ)‖dθ,

where ‖.‖ is a matrix norm induced by vector norms. Following the notion of the complex

structured stability radius in [11, 17], we define

rC := inf{‖∆‖, the perturbed system (2.7) is not asym. stable}.

We will make the use of the following auxiliary functions

H(s) = sE −
∑l

i=0
Aie

−sτi +
∑m

k=0

∫
0

−µk
Dk(θ)esθdθ,

Gi(s) = Ci[H(s)]−1B, i = 0, 1, ..., l + m + 2.

with s ∈ C, <(s) ≥ 0.

Theorem 2 Suppose that system (2.6) is asymptotically stable and subjected to structured per-

turbations of the form (2.7). Then

rC = ( max
i=0,1,...,l+m+2

sup
s∈iR

‖Gi(s)‖)
−1.

This result is an extension of that given in [17], where E = In, l = m = 0, τ0 = 0, µ0 = 1 were

set. The proof can be carried out straightforward on a similar way.

3 Main Results

3.1 The complex stability radius for index-1 FDAE-s

Now let us consider the reduced slow system (2.1) again. This system of FDAE-s has index-1

if and only if L̄22 defined in (2.2) is nonsingular [6]. In this case, as we can see in the previous

section, (2.1) can be reduced to a regular linear FDE by eliminating y(t). Hence, we have

Proposition 1 Suppose that L̄22 is nonsingular. There exists the unique solution of the initial

value problem for the FDAE (2.1), t ≥ 0, with initial condition

x(t) = ϕ(t), t ∈ [−τl, 0], (3.1)

where ϕ(.) ∈ C([−τl, 0], C
n1) is arbitrarily given.

Note that the initial condition should be assigned to the differential component x(.), only. The

algebraic component y(.) can be determined uniquely and explicitly by x(.).

Definition 1 Suppose that L̄22 is nonsingular. The zero solution of the initial value problem

(2.1),(3.1) is said to be (exponential-)asymptotically stable if for any ϕ(.) ∈ C([−τ l, 0], C
n1),

there exist positive constants c and α such that

‖(x(t), y(t))‖ ≤ c|ϕ|e−αt

holds ∀t ≥ 0 with |ϕ| = sup−τl≤t≤0 ‖ϕ(t)‖.
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We also say that the linear time-invariant system (2.1) is asymptotically stable. It is easy to

check the following

Proposition 2 Suppose that L̄22 is nonsingular. The system (2.1) is asymptotically stable if

and only if all the roots of the characteristic equation

det

(
λ

(
In1 0
0 0

)
−

( ∑l
i=0

Ai
11e

−τiλ +
∫

0

−τl
D11(θ)eθλdθ L̄12∑l

i=0
Ai

21e
−τiλ +

∫
0

−τl
D21(θ)eθλdθ L̄22

))
= 0 (3.2)

are located in C
−.

Clearly, equation (3.2) is equivalent to that in Assumption A2. Consider system (2.1) subjected

to structured perturbations described as follows

L̃j1xt =
l∑

i=0

(Ai
j1 + Bj∆

i
1C

i
1)x(t − τi)+

0∫
−τl

(Dj1(θ) + Bjδ1(θ)C l+1
1

)x(t + θ)dθ,

˜̄Lj2y(t) =

(
m∑

k=0

(Ak
j2 + Bj∆

k
2C

k
2 ) +

0∫
−µm

(Dj2(θ) + Bjδ2(θ)Cm+1
2

)dθ

)
y(t),

(3.3)

where j = 1, 2. The definition of the stability radius is slightly different from that for implicit

regular systems. Namely, we define

r0(A,B,C) := inf{‖∆‖, the perturbed system (2.1),(3.3) is not asym. stable

or ˜̄L22 is singular}.
(3.4)

First, we look for the index-1 preserving radius defined by

rind := inf{
m∑

k=0

‖∆k
2‖ +

∫
0

−µm

‖δ2(θ)‖dθ, ˜̄L22 is singular}.

The singularity of ˜̄L22 means exactly that at least one eigenvalue of this matrix moves to zero

under the effect of perturbation. It is obvious that

r0(A,B,C) ≤ rind.

Using the same techniques used in [11, 12, 17], it is easy to prove

Proposition 3 Suppose that L̄22 is nonsingular. Then

rind = { max
k=0,1,...,m+1

‖Ck
2 L̄−1

22
B2‖}

−1.

Furthermore, there exists a minimal norm perturbation under which ˜̄L22 is singular.

Note that in this “robust stability” problem, the stable and unstable regions are Cg = C \ {0}

and Cb = {0}, respectively.
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We introduce the following auxiliary functions

HS(s) = s

(
In1 0
0 0

)
−

( ∑l
i=0

Ai
11e

−τis +
∫

0

−τl
D11(θ)eθsdθ L̄12∑l

i=0
Ai

21e
−τis +

∫
0

−τl
D21(θ)eθsdθ L̄22

)

and

Gi
S1(s) =

(
Ci

1 0
)
HS(s)−1

(
B1

B2

)
, i = 0, 1, ..., l + 1;

Gk
S2(s) =

(
0 Ck

2

)
HS(s)−1

(
B1

B2

)
, k = 0, 1, ...,m + 1;

with s ∈ C, <s ≥ 0.

For computing the inverse matrix, we use a well-known factorization of block matrices, e.g.,

see [7]. By some matrix calculations, these functions can be reformulated as follows

Gi
S1

(s) = C i
1

(
sI − L̄11(s) + L̄12L̄

−1
22

L̄21(s)
)−1

(B1 − L̄12L̄
−1
22

B2),

Gk
S2

(s) = −Ck
2 L̄−1

22
B2 − Ck

2 L̄−1
22

L̄21(s)
(
sI − L̄11(s) + L̄12L̄

−1
22

L̄21(s)
)−1

×(B1 − L̄12L̄
−1
22

B2),

(3.5)

where
L̄11(s) =

∑l
i=0

Ai
11e

−τis +
∫

0

−τl
D11(θ)eθsdθ,

L̄21(s) =
∑l

i=0
Ai

21e
−τis +

∫
0

−τl
D21(θ)eθsdθ.

Lemma 1 Assume that L̄22 is nonsingular and the reduced slow system (2.1) is asymptotically

stable. Then

rind ≥

(
max{ max

0≤i≤l+1
sup
s∈iR

‖Gi
S1(s)‖, max

0≤k≤m+1
sup
s∈iR

‖Gk
S2(s)‖}

)−1

.

Proof Taking into consideration that L̄11(.), L̄12(.) are bounded in iR and

lim
|s|→+∞

‖
(
sIn1 − L̄11(s) + L̄12L̄

−1
22

L̄21(s)
)−1

‖ = 0,

the inequality is easily obtained from (3.5).

For brevity, let us denote the right-hand side of the inequality in Lemma 1 by rstab.

Theorem 3 Assume that L̄22 is nonsingular and the reduced slow system (2.1) is asymptotically

stable. Then

r0(A,B,C) = rstab.

Proof There are two cases: either rstab < rind or rstab = rind.

Case A. If rstab < rind:

1. Suppose there exists no destabilizing perturbation set ∆ such that ‖∆‖ < rind. By

definition, it would imply immediately

r0(A,B,C) = rind.

We will see later that this subcase is impossible.
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2. Otherwise, there exists a perturbation set ∆ such that ‖∆‖ < rind and the perturbed

system is not asymptotically stable. Since the perturbed system remains index-1, it follows that

the associated characteristic equation has a root outside C
−. Hence, there exist s0, <s0 ≥ 0

and a nonzero vector x0 ∈ C
n such that

HS(s0)x0 =

(
B1

B2

){∑l
i=0

∆i
1e

−τis0
(

Ci
1 0

)
+
∫

0

−τl
δ1(θ)eθs0dθ

(
C l+1

1 0
)

+
∑m

k=0
∆k

2

(
0 Ck

2

)
+
∫

0

−µm
δ2(θ)dθ

(
0 Cm+1

2

)}
x0.

(3.6)

Multiplying both sides of (3.6) with HS(s0)
−1 from the left, we have

x0 = HS(s0)
−1

(
B1

B2

){∑l
i=0

∆i
1e

−τis0
(

Ci
1 0

)
+

+
∫

0

−τl
δ1(θ)eθs0dθ

(
C l+1

1 0
)

+
∑m

k=0
∆k

2

(
0 Ck

2

)
+

+
∫

0

−µm
δ2(θ)dθ

(
0 Cm+1

2

)}
x0.

(3.7)

For simplicity, denote

Ci =
(

Ci
1 0

)
, i = 0, 1, ..., l + 1; C l+2+k =

(
0 Ck

2

)
, k = 0, 1, ...m,

Gi
S(s) = Gi

S1
(s), i = 0, 1, ..., l + 1; G l+2+k

S (s) = Gk
S2

(s), k = 0, 1, ...m,

and let N be the index such that

‖CNx0‖ = max
0≤i≤l+m+2

{‖Cix0‖}.

It is clear that CNx0 6= 0. Multiplying both sides of equality (3.7) with Cn from the left and

taking norm, we obtain

‖CNx0‖ ≤ ‖GN
S (s0)‖‖∆‖‖CN x0‖.

To verify this inequality, we use the estimates

‖∆i
1e

−τis0‖ ≤ ‖∆i
1‖ and ‖

∫
0

−τl

δ1(θ)eθs0dθ‖ ≤ ‖δ1(.)‖

and the definition of ‖∆‖. It follows that

‖∆‖ ≥ ‖GN
S (s0)‖

−1 ≥

(
max

1≤i≤l+m+2
sup
<s≥0

‖Gi
S(s)‖

)−1

.

Since each function Gi
S(s), i = 0, 1, ..., l + m + 2, is analytic in C \C

−, due to the the maximum

principle, their least upper bound is attained on iR (at a finite point or at infinity). Hence,

r0(A,B,C) ≥

(
max

1≤i≤l+m+2
sup
s∈iR

‖Gi
S(s)‖

)−1

= rstab. (3.8)

3. Now we prove the inverse inequality of (3.8). To this end, we construct a destabilizing

perturbation which has the norm arbitrarily close to rstab. Suppose that ε > 0 is an arbitrary,

9



but sufficiently small number such that rstab + ε < rind. Then, there exist an index M and

s1 ∈ iR such that

‖GM
S (s1)‖

−1 ≤

(
max

1≤i≤l+m+2
sup
s∈iR

‖Gi
S(s)‖

)−1

+ ε < rind.

Due to the definition, there exists a vector u ∈ C
p, ‖u‖ = 1 such that ‖GM

S (s1)u‖ = ‖GM
S (s1)‖.

Invoking a corollary of the Hahn-Banach theorem, there exists a column vector v∗ ∈ C
q, ‖v∗‖ =

1 such that ‖v∗GM
S (s1)u‖ = ‖GM

S (s1)u‖. Let us define

∆b := ‖GM
S (s1)‖

−1uv∗ ∈ C
p×q.

It is easy to see that ‖∆b‖ = ‖GM
S (s1)‖

−1. We construct a destabilizing perturbation ∆ as

follows:

- If M ≤ l, set ∆M
1 := ∆be

τis1 , and all the other perturbations are zero;

- If M = l + 1, set δ1(θ) := τ−1

l ∆be
−θs1 , and all the others are zero;

- If l + 2 ≤ M ≤ l + m + 1, set ∆M
2 := ∆b, and all the others are zero;

- If M = l + m + 2, set δ2(θ) := µ−1
m ∆b, and all the others are zero.

It is clear that, in any case, ‖∆‖ = ‖∆b‖ holds. After some elementary calculations, one can

easily verify that

∆bG
M
S (s1)u = u ⇒ ∆bBHS(s1)

−1CMu = u ⇒ CM∆bBw = HS(s1)w,

where w := HS(s1)
−1CMu 6= 0. From the construction of ∆ above, the characteristic equation

associated with the perturbed system has the root s1 located in iR. Note that the perturbed

system remains index-1. By Proposition 2, the perturbed system is not asymptotically stable.

Since ε is arbitrarily chosen, we obtain

r0(A,B,C) ≤

(
max

1≤i≤l+m+2
sup
s∈iR

‖Gi
S(s)‖

)−1

(3.9)

Inequality (3.9) implies that the case r0(A,B,C) = rind > rstab (discussed at Point 1) cannot

occur. Thus, r0(A,B,C) = rstab.

As another consequence of the above argument, if

(
max

1≤i≤l+m+2
sup
s∈iR

‖Gi
S(s)‖

)

is attained at a finite number s2 ∈ iR, then the minimal norm destabilizing perturbation exists.

Furthermore, it can be constructed as in Point 3 by setting ε = 0, s1 = s2.

Case B. If rstab = rind:

Take an arbitrary perturbation set ∆ such that ‖∆‖ < rind. It is clear that ∆ cannot be

a destabilizing perturbation. Otherwise, by repeating the argument in Point 2, we would have

‖∆‖ ≥ rstab = rind which yields contradictions. It means that the perturbed system remains
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index-1 and asymptotically stable. By the definition of the stability radius for index-1 FDAE-s,

we obtain r0(A,B,C) = rind = rstab.

The formula of the complex stability radius in Theorem 3 generalizes the result for index-1

DAE-s (without time-delay and perturbation structure) proposed in [16], where, by a different

approach, an estimate analogous to that in Lemma 1 was given, too. Note also that Proposition

2 is proven for FDAE-s of index-1, only, which makes the proof of Theorem 3 a little bit more

complicated. For more details on delay DAE-s, e.g., see [6, 18] and the references therein.

3.2 Asymptotic behavior of the stability radius for the SPS

Now, we turn to the main point of the paper, the asymptotic behavior of the stability radius for

the SPS (1.1),(1.3).

First, we introduce the following auxiliary functions:

L̄12(ε, s) =
m∑

k=0

Ak
12e

−εµks +
0∫

−µm

D12(θ)eεθsdθ,

L̄22(ε, s) =
m∑

k=0

Ak
22e

−εµks +
0∫

−µm

D22(θ)eεθsdθ,

Hε(s) = s

(
In1 0
0 εIn2

)
−

(
L̄11(s) L̄12(ε, s)
L̄21(s) L̄22(ε, s)

)

with s ∈ C, <s ≥ 0, ε ∈ (0, ε0], where ε0 is provided by Theorem 1. The functions L̄11(s), L̄21(s)

were introduced previously in (3.5). Furthermore,

Gi
ε1(s) =

(
Ci

1 0
)
Hε(s)

−1

(
B1

B2

)
, i = 0, 1, ..., l + 1;

Gk
ε2(s) =

(
0 Ck

2

)
Hε(s)

−1

(
B1

B2

)
, k = 0, 1, ...,m + 1;

By some matrix calculations, the latter functions can be reformulated as follows

Gi
ε1(s) = C i

1

[
sIn1 − L̄11(s) − L̄12(ε, s)(εsIn2 − L̄22(ε, s))

−1L̄21(s)
]−1

×(B1 + L̄12(ε, s)(εsIn2 − L̄22(ε, s))
−1B2),

Gk
ε2(s) = Ck

2 (εsIn2 − L̄22(ε, s))
−1B2 + Ck

2 (εsIn2 − L̄22(ε, s))
−1L̄21(s)

×
[
sIn1 − L̄11(s) − L̄12(ε, s)(εsIn2 − L̄22(ε, s))

−1L̄21(s)
]−1

×(B1 + L̄12(ε, s)(εsIn2 − L̄22)
−1B2).

(3.10)

Let us fix a closed interval [0, ε0] provided by Theorem 1. Applying Theorem 2 to the SPS

(1.1),(1.3), we easily obtain

Proposition 4 Let Assumption A1-A2 hold. Then

rε(A,B,C) =

(
max{ max

0≤i≤l+1
sup
s∈iR

‖Gi
ε1(s)‖, max

0≤k≤m+1
sup
s∈iR

‖Gk
ε2(s)‖}

)−1

.

for all ε ∈ (0, ε0].

The following auxiliary result can also be easily proven.

11



Lemma 2 Let Assumption A1-A2 hold. Then the matrix functions

L̄j1(.), L̄j2(ε, .), j = 1, 2, and (.εIn2 − L̄22(ε, .))
−1

are bounded in iR and their bounds are independent of ε ∈ (0, ε0].

Proof The uniform boundedness of L̄j1(s), L̄j2(ε, s), j = 1, 2, is obvious. To verify the

uniform boundedness of (.εIn2 − L̄22(ε, .))
−1, we observe that

sup
s∈iR

‖(εsIn2 − L̄22(ε, s))
−1‖ = sup

s∈iR

‖(sIn2 − L̂22(s))
−1‖,

where

L̂22(s) =

m∑

k=0

Ak
22e

−µks +

∫
0

−µm

D22(θ)eθsdθ.

Furthermore,

lim
|s|→+∞

‖(sIn2 − L̂22(s))
−1‖ = 0.

Hence, the function in question is bounded in iR and its bound does not depend on ε.

Considering the fast boundary layer system (2.5) introduced in Section 2 again. We associate

to this system the following auxiliary functions

Gk
F (s) = Ck

2 (sIn2 − L̂22(s))
−1B2, k = 0, 1, ...,m + 1; <s ≥ 0. (3.11)

Applying Theorem 2 again to the boundary layer fast system (2.5) subjected to the corre-

sponding structured perturbation, we have

r(A22, B2,C2) =

(
max

0≤k≤m+1
sup
s∈iR

‖Gk
F (s)‖

)−1

, (3.12)

where A22 =
{
{Ak

22}
m
k=0

, D22(.)
}

, C2 = {Ck
2 }

m+1

k=0
and r(A22, B2,C2) denotes the structured

complex stability radius for (2.5).

Our main result is the following

Theorem 4 Let Assumption A1-A2 hold. Then,

lim
ε→+0

rε(A,B,C) = min{r0(A,B,C), r(A22, B2,C2)}.

Proof The key point of the proof is the uniform convergence

‖
[
sIn1 − L̄11(s) − L̄12(ε, s)(εsIn2 − L̄22(ε, s))

−1L̄21(s)
]−1

‖ ⇒ 0 (3.13)

as |s| → +∞ with respect to ε ∈ [0, ε0]. We recall that, throughout the proof, the variable s is

considered restrictively in the line iR, only. Due to Lemma 2, (3.13) is evident.

Based on the results in Theorem 3, Proposition 4, and (3.12), it is sufficient to prove first,

lim
ε→+0

sup
s∈iR

‖Gi
ε1(s)‖ = sup

s∈iR

‖Gi
S1(s)‖, i = 0, 1, ..., l + 1, (3.14)

12



and secondly,

lim
ε→+0

sup
s∈iR

‖Gk
ε2(s)‖ = max{sup

s∈iR

‖Gk
S2(s)‖, sup

s∈iR

‖Gk
F (s)‖}, k = 0, 1, ...,m + 1. (3.15)

1. Fix an arbitrary index i, 0 ≤ i ≤ l + 1 and an arbitrarily small number ρ > 0. From (3.13),

it is easy to see that ‖Gi
ε1(s)‖ converges uniformly to zero as |s| tends to infinity. Therefore,

there exists a bound T1, T1 is independent of ε, such that

‖Gi
ε1(s)‖ ≤ ρ, ∀ |s| ≥ T1.

On the other hand, in the compact domain {(s, ε), |s| ≤ T1, 0 ≤ ε ≤ ε0},
∥∥Gi

ε1(s)
∥∥ is continuous

as a two-variable function, hence uniformly continuous, too. Therefore, there exists a sufficiently

small ε1 = ε1(ρ) such that for ε ≤ ε1, we have

sup
|s|≤T1

∥∥Gi
ε1(s)

∥∥ ≤ sup
|s|≤T1

∥∥Gi
S1(s)

∥∥+ ρ ≤ sup
s∈iR

∥∥Gi
S1(s)

∥∥+ ρ.

Thus, for ε ≤ ε1, we obtain

sup
s∈iR

∥∥Gi
ε1(s)

∥∥ ≤ sup
s∈iR

∥∥Gi
S1(s)

∥∥+ ρ.

Since sups∈iR

∥∥Gi
S1

(s)
∥∥ is finite, there exists a number s1 = s1(ρ) ∈ iR such that

∥∥Gi
S1(s1)

∥∥ ≥ sup
s∈iR

∥∥Gi
S1(s)

∥∥− ρ.

Furthermore, because of the continuity of
∥∥Gi

ε1(s1)
∥∥ as a function of ε, there exists a sufficiently

small ε2 = ε2(ρ) such that for ε ≤ ε2, we obtain

sup
s∈iR

∥∥Gi
ε1(s)

∥∥ ≥
∥∥Gi

ε1(s1)
∥∥ ≥

∥∥Gi
S1(s1)

∥∥− ρ ≥ sup
s∈iR

∥∥Gi
S1(s)

∥∥− 2ρ.

Therefore, for ε ≤ min{ε1, ε2}, the estimate

sup
s∈iR

∥∥Gi
S1(s)

∥∥− 2ρ ≤ sup
s∈iR

∥∥Gi
ε1(s)

∥∥ ≤ sup
s∈iR

∥∥Gi
S1(s)

∥∥+ ρ

holds. This proves (3.14).

2. To prove (3.15), we proceed as in [4] and [5]. Analogously to above, fix an index k, 0 ≤ k ≤

m + 1 and an arbitrarily small % > 0. We show that the inequalities

max
{
sups∈iR

∥∥Gk
S2

(s)
∥∥ , sups∈iR

∥∥Gk
F (s)

∥∥}− 2% ≤ sups∈iR

∥∥Gk
ε2(s)

∥∥
≤ max

{
sups∈iR

∥∥Gk
S2

(s)
∥∥ , sups∈iR

∥∥Gk
F (s)

∥∥}+ %
(3.16)

hold for all sufficiently small ε.

a, First, we prove the last inequality in (3.16).

By a similar argument as in proving (3.14), there exists a sufficiently large number T2 = T2(%),

T2 is independent of ε, such that
∥∥Ck

2 (εsIn2 − L̄22(ε, s))
−1L̄21(s)

×
[
sI − L̄11(s) − L̄12(ε, s)(εsIn2 − L̄22(ε, s))

−1L̄21(s)
]−1

× (B1 + L̄12(ε, s)(εsIn2 − L̄22)
−1B2)

∥∥ ≤ %, |s| ≥ T2.
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Therefore, for s with |s| ≥ T2, we have
∥∥∥Gk

ε2(s)
∥∥∥ ≤

∥∥∥Ck
2 (sIn2 − L̂22(s))

−1B2

∥∥∥+ %.

Hence, we obtain

sup|s|≥T2

∥∥Gk
ε2(s)

∥∥ ≤ sup|s|≥T2

∥∥∥Ck
2 (εsIn2 − L̂22(εs))

−1B2

∥∥∥+ % =

= sup|s|≥εT2

∥∥Gk
F (s)

∥∥+ % ≤ sups∈iR

∥∥Gk
F (s)

∥∥+ %.
(3.17)

On the other hand, in the compact domain {(s, ε), |s| ≤ T2, 0 ≤ ε ≤ ε0},
∥∥Gk

ε2(s)
∥∥ is

continuous as a two-variable function, hence uniformly continuous, too. Therefore, there exists

a sufficiently small ε3 = ε3(%) such that for ε ≤ ε3, we have

sup
|s|≤T2

∥∥∥Gk
ε2(s)

∥∥∥ ≤ sup
|s|≤T2

∥∥∥Gk
S2(s)

∥∥∥+ % ≤ sup
s∈iR

∥∥∥Gk
S2(s)

∥∥∥+ %.

Thus, for ε ≤ ε3, we obtain

sup
s∈iR

∥∥∥Gk
ε2(s)

∥∥∥ ≤ max

{
sup
s∈iR

∥∥∥Gk
S2(s)

∥∥∥ , sup
s∈iR

∥∥∥Gk
F (s)

∥∥∥
}

+ %.

b, Now, we prove the first inequality in (3.16).

Analogously to (3.17), we have

sup
|s|≥T2

∥∥∥Gk
ε2(s)

∥∥∥ ≥ sup
|s|≥εT2

∥∥∥Gk
F (s)

∥∥∥− %.

Since
∥∥Gk

F (s)
∥∥ is continuous, s ∈ iR, there exists a sufficiently small ε4 = ε4(%) such that for

ε ≤ ε4, the inequality

sup
|s|≥εT2

∥∥∥Gk
F (s)

∥∥∥ ≥ sup
s∈iR

∥∥∥Gk
F (s)

∥∥∥− %

holds. Hence, we obtain

sup
|s|≥T2

∥∥∥Gk
ε2(s)

∥∥∥ ≥ sup
s∈iR

∥∥∥Gk
F (s)

∥∥∥− 2%.

On the other hand, since sups∈iR

∥∥Gk
S2

(s)
∥∥ is finite, there exists a number s2 = s2(%) ∈ iR

such that ∥∥∥Gk
S2(s2)

∥∥∥ ≥ sup
s∈iR

∥∥∥Gk
S2(s)

∥∥∥− %.

Furthermore, because of the continuity of
∥∥Gk

ε2(s2)
∥∥ as a function of ε, there exists a sufficiently

small ε5 = ε5(%) such that for ε ≤ ε5, we obtain

sup
s∈iR

∥∥∥Gk
ε2(s)

∥∥∥ ≥
∥∥∥Gk

ε2(s2)
∥∥∥ ≥

∥∥∥Gk
S2(s2)

∥∥∥− % ≥ sup
s∈iR

∥∥∥Gk
S2(s)

∥∥∥− 2%.

Therefore, for ε ≤ min{ε4, ε5}, the inequality

sup
s∈iR

∥∥∥Gk
ε2(s)

∥∥∥ ≥ max

{
sup
s∈iR

∥∥∥Gk
S2(s)

∥∥∥ , sup
s∈iR

∥∥∥Gk
F (s)

∥∥∥
}
− 2%

holds.

Then, for ε ≤ min{ε3, ε4, ε5}, the inequalities in (3.16) hold. The proof of (3.15) is complete.

Since (3.14),(3.15) hold for all i = 0, 1, ..., l + 1 and k = 0, 1, ...,m + 1, the proof of Theorem

4 is complete.
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4 Conclusion

In this paper, a class of SPS-s of differential equations with multiple delays has been considered.

Motivated by and considered as a continuation of the stability analysis given in [2], the stability

robustness of the SPS-s has been launched. The notion of the structured stability radius is

extended to the reduced systems which are index-1 FDAE-s. By using the implicit-system

approach, asymptotic behavior of the stability radius for the SPS-s is characterized as the

parameter tends to zero. It is known that the complex stability radius for explicit linear systems

depends continuously on data [12]. Here, we have shown that this property does not hold for

the SPS-s, i.e., the stability radius may be discontinuous in parameter. The SPS analyzed here

includes that in [3] as a special case. An extension of the results to more general systems of

FDAE-s containing a small parameter would be of interest.
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