A NOTE ON DISCRIMINATING EQUALLY OPTIMAL SEMI-LATIN SQUARES FOR SIXTEEN TREATMENTS IN BLOCKS OF SIZE FOUR

P.E. Chigbu ${ }^{1}$
Department of Statistics, University of Nigeria, Nsukka, Nigeria
and
The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy.

Abstract

A semi-Latin square for sixteen treatments in blocks of size four is like a 4×4 Latin square except that there exist four treatments in each cell and each of the sixteen treatments occurs once in each row and once in each column. In the literature, three of this class of squares has been found to be A-, D- and E-optimal while an analytic approach has been adopted to further distinguish these optimal ones with the view of identifying the best for experimentation. With this analytic approach the 'best' square was identified; however, it neither provided a common basis for the discrimination of the three squares nor the further classification of the other two good squares. In this paper, therefore, a numerical approach, which basically involves the computation of the generalized inverses of the information matrices of these squares, is adopted. Each of the generalized inverses satisfies the Moore-Penrose inverse properties. Thereafter, a square is considered most preferable among others if it has the maximum number of minimum variance of simple treatment contrasts as well as the minimum number of distinct pairwise treatment variances. Above all, a mini-league table for the three squares is ascertained.

MIRAMARE - TRIESTE

August 2004

[^0]
1 Introduction

A semi-Latin square for sixteen treatments in blocks of size four is an arrangement of sixteen treatments in a (4×4) array in such a way that each row-column intersection contains four treatments while no treatment occurs more than once in each row and each column; this is simply a $(4 \times 4) / 4$ semi-Latin square: see, for example, Bailey (1992) and Bailey and Chigbu (1997). The statistical uses and methods of analyzing semi-Latin squares are well-documented in the literature: see, for example, Preece and Freeman (1983) and Bailey (1992). Indeed, they are analyzed as the well-known incomplete-block designs where each row-column intersection is a block. The typical semi-Latin squares we are discriminating in this work are Γ_{1}, Γ_{2} and Γ_{3}, given in Figures 1, 2 and 3, respectively. The quotient block design of each square is connected and so all simple contrasts are estimable. However, their inherent information matrices are not of full rank.

t_{1}	t_{2}	t_{5}	t_{6}	t_{9}	t_{10}	t_{13}	t_{14}
t_{3}	t_{4}	t_{7}	t_{8}	t_{11}	t_{12}	t_{15}	t_{16}
t_{5}	t_{10}	t_{1}	t_{14}	t_{13}	t_{2}	t_{9}	t_{6}
t_{15}	t_{8}	t_{11}	t_{4}	t_{7}	t_{16}	t_{3}	t_{12}
t_{9}	t_{14}	t_{13}	t_{10}	t_{1}	t_{6}	t_{5}	t_{2}
t_{7}	t_{16}	t_{3}	t_{12}	t_{15}	t_{8}	t_{11}	t_{4}
t_{13}	t_{6}	t_{9}	t_{2}	t_{5}	t_{14}	t_{1}	t_{10}
t_{11}	t_{12}	t_{15}	t_{16}	t_{3}	t_{4}	t_{7}	t_{8}

Figure 1: Γ_{1}

t_{1}	t_{2}	t_{5}	t_{6}	t_{9}	t_{10}	t_{13}	t_{14}
t_{3}	t_{4}	t_{7}	t_{8}	t_{11}	t_{12}	t_{15}	t_{16}
t_{5}	t_{6}	t_{1}	t_{2}	t_{13}	t_{14}	t_{9}	t_{10}
t_{11}	t_{16}	t_{15}	t_{12}	t_{3}	t_{8}	t_{7}	t_{4}
t_{9}	t_{10}	t_{13}	t_{14}	t_{1}	t_{2}	t_{5}	t_{6}
t_{15}	t_{8}	t_{11}	t_{4}	t_{7}	t_{16}	t_{3}	t_{12}
t_{13}	t_{14}	t_{9}	t_{10}	t_{5}	t_{6}	t_{1}	t_{2}
t_{7}	t_{12}	t_{3}	t_{16}	t_{15}	t_{4}	t_{11}	t_{8}

Figure 2: Γ_{2}

The squares of Figures 1 and 2 were originally found by Bailey (1992) while Chigbu (1995, 1999) established their A-, D- and E-optimality as well as that of Figure 3. They have the same A-, D- and E-optimal values. Thus, in discriminating these equally optimal squares, we note that each of them is equireplicate with constant block size and surely the number of blocks containing any pair of treatments depends on the associate class to which the pair belongs. Each of the three squares is partially balanced with respect to a given association scheme. Their

t_{1}	t_{2}	t_{5}	t_{6}	t_{9}	t_{10}	t_{13}	t_{14}
t_{3}	t_{4}	t_{7}	t_{8}	t_{11}	t_{12}	t_{15}	t_{16}
t_{5}	t_{10}	t_{1}	t_{14}	t_{13}	t_{2}	t_{9}	t_{6}
t_{15}	t_{8}	t_{11}	t_{4}	t_{7}	t_{16}	t_{3}	t_{12}
t_{9}	t_{14}	t_{13}	t_{10}	t_{1}	t_{6}	t_{5}	t_{2}
t_{7}	t_{16}	t_{3}	t_{12}	t_{15}	t_{4}	t_{11}	t_{8}
t_{13}	t_{6}	t_{9}	t_{2}	t_{5}	t_{14}	t_{1}	t_{10}
t_{11}	t_{12}	t_{15}	t_{16}	t_{3}	t_{8}	t_{7}	t_{4}

Figure 3: Γ_{3}
associate classes, which seem to give some impression of differences in them, are adaptable from their concurrences given in Bailey (1992) and Chigbu (1995, 1999).

Recently, an analytic approach, which basically involved deriving the inverse, K, of some algebraic expression of the information matrix, L, of each of the squares given by $K=\frac{8}{3}\left\{L^{2}-\right.$ $\left.\frac{9}{4} L+\frac{13}{8} I\right\}$, where I is a conformable identity matrix; and then comparing the variances of the simple contrasts calculated therefrom was adopted to identify Γ_{2} as the 'best'. Other results obtained showed different lowest variances of simple contrasts for Γ_{1} and Γ_{3} and this did not make it quite convenient to further classify and/or discuss their sameness: see Chigbu (2003). Indeed, the analytic approach did not induce a proper ordering among the squares and of course among their corresponding information matrices. Here, we set out to further discriminate these squares with the view of not only identifying the most preferable one for experimentation but also ascertaining the sameness or otherwise of the squares using a common basis. Here, the 'common basis' refers to the condition that the squares under consideration have the same minimum and maximum values of variances of simple treatment contrasts.

2 Methods

Generally, given a matrix, A, of order $(m \times n)$ in some algebraic space of matrices, the MoorePenrose generalized matrix inverse of A is a unique matrix, A^{+}, of order $(n \times m)$ which satisfies the following properties:

1. $A A^{+} A=A$;
2. $A^{+} A A^{+}=A^{+}$;
3. $\left(A A^{+}\right)^{\prime}=A A^{+}$;
4. $\left(A^{+} A\right)^{\prime}=A^{+} A$:
see, for example, Penrose (1955), Rao and Mitra (1971) and Ben-Israel and Greville (1977) as well as for other important theories of Moore-Penrose inverses.

Usually, in analyzing an incomplete-block design, each and every treatment contrast, is of possible interest and needs to be estimated and/or compared. The main interest is usually on the variance of the estimator of the contrasts.

Let $\tau^{\prime}=\left(\tau_{i}, \tau_{j}\right), t^{\prime}=\left(t_{i}, t_{j}\right), c^{\prime}=(1,-1), c^{\prime} \tau$ and $c^{\prime} t=\left(t_{i}-t_{j}\right) \forall i<j$, be a vector of the $i^{\text {th }}$ and $j^{\text {th }}$ treatments, a vector of the estimates of the $i^{t h}$ and $j^{\text {th }}$ treatments, the vector of coefficients of a simple contrast which sums to zero, a simple treatment contrast and the estimate of a simple treatment contrast, respectively, for a given connected incomplete-block design whose information matrix is not of full rank, then the variance of the estimate of the simple contrast, $\operatorname{Var}\left(c^{\prime} t\right)$, is $\sigma^{2} c^{\prime} L^{+} c$, where L^{+}is the conformable generalized inverse of the information matrix, L, of the design. Ignoring the constant, σ^{2}, the variance of the estimate of a given contrast involving the $i^{\text {th }}$ and $j^{\text {th }}$ treatments, say, is given by $\left(L_{i i}{ }^{+}-L_{i j}{ }^{+}-L_{j i}{ }^{+}+L_{j j}{ }^{+}\right)$, where $L_{i j}{ }^{+}$is the $(i j)^{t h}$ entry of L^{+}, as also given in Chigbu (2003). However, it can easily be shown that when a non-zero multiple of the all-one matrix is added to the information matrix of a connected design, the result is a non-singular matrix. Its inverse is a generalized inverse of the information matrix.

In this work, each generalized inverse, L^{+}, obtainable by firstly adding an all-one matrix, J, to the information matrix, L, of each of the squares under consideration and then calculating the inverse of the sum of L and J satisfies the above Moore-Penrose inverse properties with respect to the L 's and even the $(L+J)$'s matrices. In some algebraic sense, the all-one matrix, in conjunction with an identity matrix of the same size, span some subspace of the real vector space associated with each design. Though, we shall not dwell on this in this work, the all-one matrix is indeed analogous to the sum of all the zero-one matrices of order sixteen that make up the association scheme on the set of sixteen treatments of each of the semi-Latin squares: see, for example, Cameron et al (2003).

The inverse of the information matrices could simply be found using any statistical computing package.

3 Results and Discussion

On the whole, 120 variances of simple treatment contrasts for each semi-Latin square were calculated, compared and used for this discrimination. The maximum and minimum values of variances, corrected to four places of decimal, for Γ_{1}, Γ_{2} and Γ_{3} are 0.7500 and 0.5000 , respectively. This result is unlike the analytic approach where it was found that the minimum value of variance for Γ_{1} is equal to 0.6042 while that of Γ_{2} and Γ_{3} is 0.5000 . The mean of all the 120 values of variance for each of Γ_{1}, Γ_{2} and Γ_{3} is 0.6667 , which is equal to $\frac{2}{3}$. In other words, the average of the variances of all simple contrasts, known as the efficiency of a design or the E^{\prime}-optimality, which is equal to 0.6667 , is the same for all the squares. Further results on the computed variance values are given below and in Figure 4 as frequency distribution tables.

These tables of frequency distribution of the 120 values of variances for each of the squares would make it easy for an experimenter to appreciate the criteria for discriminating the squares.

Square Γ_{1} :

There are two simple contrasts with minimum variance of 0.5000 and they are: $\left(t_{1}-t_{4}\right)$ and $\left(t_{5}-t_{8}\right)$. On the other hand, there exist thirteen simple contrasts with maximum variance of 0.7500 which are : $\left(t_{1}-t_{5}\right),\left(t_{1}-t_{8}\right),\left(t_{1}-t_{1} 2\right),\left(t_{1}-t_{16}\right),\left(t_{4}-t_{5}\right),\left(t_{4}-t_{8}\right),\left(t_{4}-t_{12}\right),\left(t_{4}-t_{16}\right)$, $\left(t_{5}-t_{12}\right),\left(t_{5}-t_{16}\right),\left(t_{8}-t_{12}\right),\left(t_{8}-t_{16}\right)$ and $\left(t_{12}-t_{16}\right)$.

X	F	for Γ_{1};			for Γ_{2};	X	F	for Γ_{3}.
0.5000	2					0.5000	2	
0.5990	8					0.5990	8	
0.6042	4		X	F		0.6042	4	
0.6250	8		$\frac{X}{0.5000}$	$\frac{7}{4}$		0.6250	8	
0.6406	16		0.5000	16		0.6406	16	
0.6458	8		0.6562	64		0.6458	8	
0.6614	32		0.6668	12		0.6614	32	
0.6666	5		0.6668	12		0.6666	5	
0.6876	8					0.6876	8	
0.7240	8					0.7240	8	
0.7292	8					0.7292	8	
0.7500	13					0.7500	13	

Figure 4: Frequency (F) Distribution of values (X) of the variance of the simple contrasts for Γ_{1}, Γ_{2} and Γ_{3}

Square Γ_{2} :

There are four simple contrasts with minimum variance of 0.5000 and they are: $\left(t_{1}-t_{2}\right),\left(t_{5}-t_{6}\right)$, $\left(t_{9}-t_{10}\right)$ and $\left(t_{13}-t_{14}\right)$; while the number of simple contrasts with maximum variance of 0.7500 is twenty four and they are: $\left(t_{1}-t_{5}\right),\left(t_{1}-t_{6}\right),\left(t_{1}-t_{9}\right),\left(t_{1}-t_{10}\right),\left(t_{1}-t_{13}\right),\left(t_{1}-t_{14}\right),\left(t_{2}-t_{5}\right)$, $\left(t_{2}-t_{6}\right),\left(t_{2}-t_{9}\right),\left(t_{2}-t_{10}\right),\left(t_{2}-t_{13}\right),\left(t_{2}-t_{14}\right),\left(t_{5}-t_{9}\right),\left(t_{5}-t_{10}\right),\left(t_{5}-t_{13}\right),\left(t_{5}-t_{14}\right),\left(t_{6}-t_{9}\right)$, $\left(t_{6}-t_{13}\right),\left(t_{6}-t_{14}\right),\left(t_{9}-t_{13}\right),\left(t_{9}-t_{14}\right),\left(t_{10}-t_{13}\right)$ and $\left(t_{10}-t_{14}\right)$.

Square Γ_{3} :

There exist two simple contrasts with minimum variance of 0.5000 just like Γ_{1}. They are: $\left(t_{1}-t_{4}\right)$ and $\left(t_{5}-t_{8}\right)$. On the other hand, there exist thirteen simple contrasts with maximum variance of 0.7500 and they are $:\left(t_{1}-t_{5}\right),\left(t_{1}-t_{8}\right),\left(t_{1}-t_{1} 2\right),\left(t_{1}-t_{16}\right),\left(t_{4}-t_{5}\right),\left(t_{4}-t_{8}\right),\left(t_{4}-t_{12}\right)$, $\left(t_{4}-t_{16}\right),\left(t_{5}-t_{12}\right),\left(t_{5}-t_{16}\right),\left(t_{8}-t_{12}\right),\left(t_{8}-t_{16}\right)$ and $\left(t_{12}-t_{16}\right)$.

Thus, it can easily be seen from the foregoing results that square Γ_{2} has the greater number of simple contrasts with minimum variance than squares Γ_{1} and Γ_{3}; and therefore would be
considered different and most preferable for experimentation. Moreover, Cameron et al (2003) gave a criterion for the optimality of designs analyzed as the ones in this work which simply states that a design is optimal if the number of its distinct pairwise treatment variances is fewest when compared with those of the others in the same class with it. Now, as a further step to ascertaining the statistical sameness of Γ_{1} and Γ_{3} different from the preference of Γ_{2} for experimentation, it can easily be seen from the frequency distribution tables of Figure 4, that the number of distinct pairwise treatment variances for Γ_{2} is five while that of Γ_{1} and Γ_{3} are twelve each. The number of pairwise treatment variances for Γ_{2} is the fewest among them all and therefore optimal among the three squares under consideration based on this optimality criterion. It is noteworthy that the number of distinct pairwise treatment variances for the ideal balanced incomplete-block design is just one. On the other hand, Γ_{1} and Γ_{3} are the same, statistically.

4 Conclusion

In consistence with earlier results, among the three squares under consideration, Γ_{2} is the most preferable for experimentation while Γ_{1} and Γ_{3} are the same in many respects and especially with respect to the two discriminating criteria in this work.

Unlike the analytic procedure, the three squares now have a common basis for comparison since each and every one of them have the same minimum and maximum values of variances of simple treatment contrasts.

Furthermore, the sameness of Γ_{1} and Γ_{3} can now be easily seen in Figures 1 and 3 due to the style of labeling their treatments with t_{i} 's $(i=1,2, \ldots, 16)$ in which treatment $8\left(t_{8}\right)$ and treatment $4\left(t_{4}\right)$ are swapped between columns three and four of rows three and four of one of them to get the other; in Figure 4 as their frequency distributions are exactly the same; and as their generalized inverses in this work are exactly the same.

Acknowledgements. My thanks go to the International Atomic Energy Agency and UNESCO for hospitality at the Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy. This work was done during the period of my visiting ICTP in 2003 as a Regular Associate and the financial support of the Swedish International Development Cooperation Agency (SIDA) is very much acknowledged.

References

[1] Bailey, R.A., Efficient semi-Latin squares, Statistica Sinica, 2, 1992, 413-437.
[2] Bailey, R.A. and Chigbu, P.E., Enumeration of semi-Latin squares, Discrete Maths., 167/168, 1997, 73-84.
[3] Ben-Israel, A. and Greville, T.N.E., Generalized inverses: theory and applications, Wiley, New York, 1977.
[4] Cameron, P., Dobcsányi, P., Morgan, J.P. and Soicher, L. (eds.), The external representation of block designs, Version 1.0rc1: http://localhost/ext-rep.html, 2003.
[5] Chigbu, P.E., Semi-Latin squares: methods for enumeration and comparison, Ph.D. Thesis, University of London, 1995.
[6] Chigbu, P.E., Optimal semi-Latin squares for sixteen treatments in blocks of size four, Journ. Nig. Stat. Assoc., 13, 1999, 11-25.
[7] Chigbu, P.E., The 'Best' of the three optimal $(4 \times 4) / 4$ semi-Latin squares, Sankhyā: The Indian Journal of Statistics, 65 (3), 2003, 641-648.
[8] Penrose, R., A generalized inverse for matrices, Proc. Cambridge Phil. Soc., 51, 1955, 406-413.
[9] Preece, D.A. and Freeman, G.H., Semi-Latin squares and related designs, J. Roy. Statist. Soc., Ser. B 45, 1983, 267-277.
[10] Rao, C.R. and Mitra, S.K., Generalized inverse of matrices and its applications, Wiley, New York, 1971.

[^0]: ${ }^{1}$ Regular Associate of the Abdus Salam ICTP. pechigbu@yahoo.com, pchigbu@ictp.trieste.it

