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Abstract

A semi-Latin square for sixteen treatments in blocks of size four is like a 4 × 4 Latin square

except that there exist four treatments in each cell and each of the sixteen treatments occurs

once in each row and once in each column. In the literature, three of this class of squares has

been found to be A-, D- and E-optimal while an analytic approach has been adopted to further

distinguish these optimal ones with the view of identifying the best for experimentation. With

this analytic approach the ’best’ square was identified; however, it neither provided a common

basis for the discrimination of the three squares nor the further classification of the other two

good squares. In this paper, therefore, a numerical approach, which basically involves the

computation of the generalized inverses of the information matrices of these squares, is adopted.

Each of the generalized inverses satisfies the Moore-Penrose inverse properties. Thereafter, a

square is considered most preferable among others if it has the maximum number of minimum

variance of simple treatment contrasts as well as the minimum number of distinct pairwise

treatment variances. Above all, a mini-league table for the three squares is ascertained.
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1 Introduction

A semi-Latin square for sixteen treatments in blocks of size four is an arrangement of sixteen

treatments in a (4 × 4) array in such a way that each row-column intersection contains four

treatments while no treatment occurs more than once in each row and each column; this is

simply a (4 × 4)/4 semi-Latin square: see, for example, Bailey (1992) and Bailey and Chigbu

(1997). The statistical uses and methods of analyzing semi-Latin squares are well-documented

in the literature: see, for example, Preece and Freeman (1983) and Bailey (1992). Indeed, they

are analyzed as the well-known incomplete-block designs where each row-column intersection is

a block. The typical semi-Latin squares we are discriminating in this work are Γ1, Γ2 and Γ3,

given in Figures 1, 2 and 3, respectively. The quotient block design of each square is connected

and so all simple contrasts are estimable. However, their inherent information matrices are not

of full rank.

t1 t2 t5 t6 t9 t10 t13 t14
t3 t4 t7 t8 t11 t12 t15 t16
t5 t10 t1 t14 t13 t2 t9 t6
t15 t8 t11 t4 t7 t16 t3 t12
t9 t14 t13 t10 t1 t6 t5 t2
t7 t16 t3 t12 t15 t8 t11 t4
t13 t6 t9 t2 t5 t14 t1 t10
t11 t12 t15 t16 t3 t4 t7 t8

Figure 1: Γ1

t1 t2 t5 t6 t9 t10 t13 t14
t3 t4 t7 t8 t11 t12 t15 t16
t5 t6 t1 t2 t13 t14 t9 t10
t11 t16 t15 t12 t3 t8 t7 t4
t9 t10 t13 t14 t1 t2 t5 t6
t15 t8 t11 t4 t7 t16 t3 t12
t13 t14 t9 t10 t5 t6 t1 t2
t7 t12 t3 t16 t15 t4 t11 t8

Figure 2: Γ2

The squares of Figures 1 and 2 were originally found by Bailey (1992) while Chigbu (1995,

1999) established their A-, D- and E-optimality as well as that of Figure 3. They have the

same A-, D- and E-optimal values. Thus, in discriminating these equally optimal squares, we

note that each of them is equireplicate with constant block size and surely the number of blocks

containing any pair of treatments depends on the associate class to which the pair belongs.

Each of the three squares is partially balanced with respect to a given association scheme. Their
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t1 t2 t5 t6 t9 t10 t13 t14
t3 t4 t7 t8 t11 t12 t15 t16
t5 t10 t1 t14 t13 t2 t9 t6
t15 t8 t11 t4 t7 t16 t3 t12
t9 t14 t13 t10 t1 t6 t5 t2
t7 t16 t3 t12 t15 t4 t11 t8
t13 t6 t9 t2 t5 t14 t1 t10
t11 t12 t15 t16 t3 t8 t7 t4

Figure 3: Γ3

associate classes, which seem to give some impression of differences in them, are adaptable from

their concurrences given in Bailey (1992) and Chigbu (1995, 1999).

Recently, an analytic approach, which basically involved deriving the inverse, K, of some

algebraic expression of the information matrix, L, of each of the squares given by K = 8

3
{L2 −

9

4
L + 13

8
I}, where I is a conformable identity matrix; and then comparing the variances of the

simple contrasts calculated therefrom was adopted to identify Γ2 as the ‘best’. Other results

obtained showed different lowest variances of simple contrasts for Γ1 and Γ3 and this did not

make it quite convenient to further classify and/or discuss their sameness: see Chigbu (2003).

Indeed, the analytic approach did not induce a proper ordering among the squares and of course

among their corresponding information matrices. Here, we set out to further discriminate these

squares with the view of not only identifying the most preferable one for experimentation but also

ascertaining the sameness or otherwise of the squares using a common basis. Here, the ‘common

basis’ refers to the condition that the squares under consideration have the same minimum and

maximum values of variances of simple treatment contrasts.

2 Methods

Generally, given a matrix, A, of order (m × n) in some algebraic space of matrices, the Moore-

Penrose generalized matrix inverse of A is a unique matrix, A+, of order (n×m) which satisfies

the following properties:

1. AA+A = A;

2. A+AA+ = A+;

3. (AA+)′ = AA+;

4. (A+A)′ = A+A:

see, for example, Penrose (1955), Rao and Mitra (1971) and Ben-Israel and Greville (1977) as

well as for other important theories of Moore-Penrose inverses.
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Usually, in analyzing an incomplete-block design, each and every treatment contrast, is of

possible interest and needs to be estimated and/or compared. The main interest is usually on

the variance of the estimator of the contrasts.

Let τ ′ = (τi, τj), t′ = (ti, tj), c′ = (1,−1), c′τ and c′t = (ti − tj) ∀ i < j, be a vector of

the ith and jth treatments, a vector of the estimates of the ith and jth treatments, the vector

of coefficients of a simple contrast which sums to zero, a simple treatment contrast and the

estimate of a simple treatment contrast, respectively, for a given connected incomplete-block

design whose information matrix is not of full rank, then the variance of the estimate of the

simple contrast, V ar(c′t), is σ2c′L+c, where L+ is the conformable generalized inverse of the

information matrix, L, of the design. Ignoring the constant, σ2, the variance of the estimate of a

given contrast involving the ith and jth treatments, say, is given by (Lii
+ −Lij

+ −Lji
+ +Ljj

+),

where Lij
+ is the (ij)th entry of L+, as also given in Chigbu (2003). However, it can easily be

shown that when a non-zero multiple of the all-one matrix is added to the information matrix

of a connected design, the result is a non-singular matrix. Its inverse is a generalized inverse of

the information matrix.

In this work, each generalized inverse, L+, obtainable by firstly adding an all-one matrix, J ,

to the information matrix, L, of each of the squares under consideration and then calculating

the inverse of the sum of L and J satisfies the above Moore-Penrose inverse properties with

respect to the L’s and even the (L + J)’s matrices. In some algebraic sense, the all-one matrix,

in conjunction with an identity matrix of the same size, span some subspace of the real vector

space associated with each design. Though, we shall not dwell on this in this work, the all-one

matrix is indeed analogous to the sum of all the zero-one matrices of order sixteen that make up

the association scheme on the set of sixteen treatments of each of the semi-Latin squares: see,

for example, Cameron et al (2003).

The inverse of the information matrices could simply be found using any statistical computing

package.

3 Results and Discussion

On the whole, 120 variances of simple treatment contrasts for each semi-Latin square were

calculated, compared and used for this discrimination. The maximum and minimum values

of variances, corrected to four places of decimal, for Γ1, Γ2 and Γ3 are 0.7500 and 0.5000,

respectively. This result is unlike the analytic approach where it was found that the minimum

value of variance for Γ1 is equal to 0.6042 while that of Γ2 and Γ3 is 0.5000. The mean of all

the 120 values of variance for each of Γ1, Γ2 and Γ3 is 0.6667, which is equal to 2

3
. In other

words, the average of the variances of all simple contrasts, known as the efficiency of a design or

the E′-optimality, which is equal to 0.6667, is the same for all the squares. Further results on

the computed variance values are given below and in Figure 4 as frequency distribution tables.
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These tables of frequency distribution of the 120 values of variances for each of the squares would

make it easy for an experimenter to appreciate the criteria for discriminating the squares.

Square Γ1:

There are two simple contrasts with minimum variance of 0.5000 and they are: (t1 − t4) and

(t5 − t8). On the other hand, there exist thirteen simple contrasts with maximum variance of

0.7500 which are :(t1 − t5), (t1 − t8), (t1 − t12), (t1 − t16), (t4 − t5), (t4 − t8), (t4 − t12), (t4 − t16),

(t5 − t12), (t5 − t16), (t8 − t12), (t8 − t16) and (t12 − t16).

X F

0.5000 2

0.5990 8

0.6042 4

0.6250 8

0.6406 16

0.6458 8

0.6614 32

0.6666 5

0.6876 8

0.7240 8

0.7292 8

0.7500 13

for Γ1;

X F

0.5000 4

0.6250 16

0.6562 64

0.6668 12

0.7500 24

for Γ2;

X F

0.5000 2

0.5990 8

0.6042 4

0.6250 8

0.6406 16

0.6458 8

0.6614 32

0.6666 5

0.6876 8

0.7240 8

0.7292 8

0.7500 13

for Γ3.

Figure 4: Frequency (F) Distribution of values (X) of the variance of the simple contrasts for
Γ1, Γ2 and Γ3

Square Γ2:

There are four simple contrasts with minimum variance of 0.5000 and they are: (t1−t2), (t5−t6),

(t9− t10) and (t13− t14); while the number of simple contrasts with maximum variance of 0.7500

is twenty four and they are: (t1 − t5), (t1 − t6), (t1 − t9), (t1 − t10), (t1 − t13), (t1 − t14), (t2 − t5),

(t2− t6), (t2− t9), (t2− t10), (t2− t13), (t2− t14), (t5− t9), (t5− t10), (t5− t13), (t5− t14), (t6− t9),

(t6 − t13), (t6 − t14), (t9 − t13), (t9 − t14), (t10 − t13) and (t10 − t14).

Square Γ3:

There exist two simple contrasts with minimum variance of 0.5000 just like Γ1. They are: (t1−t4)

and (t5 − t8). On the other hand, there exist thirteen simple contrasts with maximum variance

of 0.7500 and they are :(t1 − t5), (t1 − t8), (t1 − t12), (t1 − t16), (t4 − t5), (t4 − t8), (t4 − t12),

(t4 − t16), (t5 − t12), (t5 − t16), (t8 − t12), (t8 − t16) and (t12 − t16).

Thus, it can easily be seen from the foregoing results that square Γ2 has the greater number

of simple contrasts with minimum variance than squares Γ1 and Γ3; and therefore would be
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considered different and most preferable for experimentation. Moreover, Cameron et al (2003)

gave a criterion for the optimality of designs analyzed as the ones in this work which simply

states that a design is optimal if the number of its distinct pairwise treatment variances is

fewest when compared with those of the others in the same class with it. Now, as a further

step to ascertaining the statistical sameness of Γ1 and Γ3 different from the preference of Γ2

for experimentation, it can easily be seen from the frequency distribution tables of Figure 4,

that the number of distinct pairwise treatment variances for Γ2 is five while that of Γ1 and Γ3

are twelve each. The number of pairwise treatment variances for Γ2 is the fewest among them

all and therefore optimal among the three squares under consideration based on this optimality

criterion. It is noteworthy that the number of distinct pairwise treatment variances for the

ideal balanced incomplete-block design is just one. On the other hand, Γ1 and Γ3 are the same,

statistically.

4 Conclusion

In consistence with earlier results, among the three squares under consideration, Γ2 is the most

preferable for experimentation while Γ1 and Γ3 are the same in many respects and especially

with respect to the two discriminating criteria in this work.

Unlike the analytic procedure, the three squares now have a common basis for comparison

since each and every one of them have the same minimum and maximum values of variances of

simple treatment contrasts.

Furthermore, the sameness of Γ1 and Γ3 can now be easily seen in Figures 1 and 3 due to

the style of labeling their treatments with ti’s (i = 1, 2, . . . , 16) in which treatment 8 (t8) and

treatment 4 (t4) are swapped between columns three and four of rows three and four of one of

them to get the other; in Figure 4 as their frequency distributions are exactly the same; and as

their generalized inverses in this work are exactly the same.
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