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Abstract

This paper deals with the problem of global stabilization of a class of linear continuous

time-varying systems with bounded controls. Based on the controllability of the nominal sys-

tem, a sufficient condition for the global stabilizability is proposed without solving any Riccati

differential equation. Moreover, we give sufficient conditions for the robust stabilizability of

perturbation/uncertain linear time-varying systems with bounded controls.
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1 Introduction

The stabilizability problem of linear control systems has been studied by a number of authors for

many years (see, e.g. [5, 8, 10, 16] and references therein). In all these works, it was supposed

that the controls have not to satisfy any a priori bound. The situation is more interesting and

realistic in the case when the control is restrained in some given subset. This constraint can

arise for different reasons including physical considerations and technological limitations. There

are several papers devoted to the bounded stabilization of linear time-invariant control systems;

see, e.g. [2, 7, 13]. In the linear time-invariant control systems without bounded controls,

whenever the system is global null-controllable, the problem of global stabilization via dynamic

state feedback is standard.

For the infinite-dimensional systems, the bounded stabilization problem has been studied

in [13] for time-invariant control systems using either the semigroup theory or an extension of

the LaSalle’s invariance principle to a Hilbert space. Among other generations of the bounded

stabilization problem, the results obtained in [14, 15] are also worth mentioning. However, this

problem is still not trivial for the time-varying case, especially for the uncertain time-varying

systems.

In this paper, we consider the stabilizability problem via bounded control of linear time-

varying systems

ẋ(t) = A(t)x(t) + B(t)u(t), t ≥ 0, (1)

where x ∈ Rn is the state, u ∈ Rm is the control subjected to the constraint:

‖u(t)‖ ≤ r, t ≥ 0, (2)

for some fixed positive real number r. For time-invariant systems, where the constant matrix

A satisfies some appropriate spectral properties, the authors in [13] proposed the non-smooth

stabilizing feedback controller of the form

u =

{

−r BT x

‖BT x‖
, if ‖BT x‖ ≥ r

−BTx, if ‖BT x‖ ≤ r.

The authors in [2, 3] extended to the smooth feedback control

u(t) = −r
BTx(t)

1 + ‖BT x(t)‖ ,

and showed that this feedback controller globally stabilizes time-invariant system (1) provided

some appropriate assumptions on the contraction semigroup. A state feedback control design

is proposed in [1] for time-invariant systems in Hilbert spaces using a semigroup formulation,

where A has compact resolvent. It is worth noting that the approach in these works cannot be

readily applied to the time-varying systems. The main difficulty is that the investigation of the
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spectrum of the time-varying matrix/operator input A(t) or of its evolution matrix/operator

U(t, s) is still complicated and there are no appropriate properties available as in the time-

invariant case. Consequently, the problem of state feedback stabilization of linear time-varying

systems with bounded controls is of interest in its own right. Further, in stability theory, an

important investigation is to design a controller guaranteed the closed-loop system remaining

asymptotically stable for all perturbations/uncertainties. The problem of stabilization for linear

perturbation/uncertain systems has been the subject of research activity for many years; see,

e.g. [3, 4, 11, 12, 14]. By perturbation/uncertain systems we mean systems which contain

uncertain parameters. In this paper, we develop the result for the linear perturbed time-varying

system

ẋ(t) = [A(t) + ∆A(t)]x(t) + [B(t) + ∆B(t)]u(t), (3)

where the control u(t) is subject to the constrained (2) and ∆A(t),∆B(t) are perturbation/un-

certainties satisfying some norm-bounded constraint. New stabilizability conditions for the

uncertain system (3) are derived based on the global null-controllability characterization of the

nominal system.

This paper is organized as follows. Section 2 deals with the problem formulation and main

notations. The relationship between the global controllability and the existence of a bounded

solution of a Riccati differential equation (RDE) is also given in this section. Section 3 gives

bounded stabilization conditions for the linear control system (1). Finally, in section 4, we study

the problem of robust stabilization of the uncertain system (3). Illustrative examples and cited

references are given.

2 Preliminaries

The following notation will be used throughout the paper.

R+ denotes the set of all non-negative real numbers;

Rn denotes a n finite-dimensional space, with the scalar product 〈., .〉;

Rn×m denotes the set of all (n × m)− matrices;

AT denotes the transpose of the matrix A, matrix A is symmetric if A = AT ;

L2([t, s], R
m) denotes the set of all measurable L2−integrable and Rm−valued functions on [t, s];

Matrix Q ∈ Rn×n is semipositive definite (Q ≥ 0) if 〈Qx, x〉 ≥ 0, for all x ∈ Rn. If 〈Qx, x〉 > 0

for all x 6= 0, then Q is positive definite (Q > 0).

M([0,∞), Rn
+) denotes the set of all symmetric semipositive definite matrix functions, which

are continuous on [0,∞).
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Definition 2.1. The system (1) is globally stabilizable if there is a feedback control u(t) =

k(x(t)) satisfying the constraint (2) such that the resulting closed-loop system of (1):

ẋ(t) = A(t)x(t) + B(t)k(x(t)), t ∈ R+,

is globally asymptotically stable in the Lyapunov sense.

Next, we consider the linear perturbed (uncertain) time-varying system (3), where the matri-

ces ∆A(t),∆A1(t) are real-valued functions representing time-varying parameter uncertainties.

There are many different types of uncertain systems to be used depending on the type of uncer-

tainty expected. In many cases, it is useful to consider a time-varying real parameter uncertainty

in an uncertain system, which is typically a quantity unknown but bounded in magnitude in

some way. That is, we do not know the value of the uncertainty but we know how big it can be

(see, e.g. [2, 8, 12]). In this paper we assume that the perturbations/uncertainties ∆A(t),∆A1(t)

are real-valued functions and satisfy the following norm-bounded condition

{

∆A(t) = H1F (t)E1, ∆B(t) = H2F (t)E2,

‖F (t)‖ ≤ 1, ∀t ∈ R+,
(4)

where Hi, Ei, i = 1, 2 are given constant matrices of appropriate dimensions. The uncertainties

satisfying this condition will be called admissible.

Definition 2.2. Linear uncertain system (3) is robustly stabilizable if there is a feedback control

u(t) = k(x(t)) satisfying the constraint (2) such that the resulting closed-loop system of (3) is

globally asymptotically stable for all admissible uncertainties satisfying the condition (4).

The objective of this paper is to give stabilizability conditions for the systems (1) and (3).

It is well known that the main concepts of controllability was introduced by Kalman [6] and

then developed by Ikeda et al. [5] in relation to the Riccati differential equations. Consider the

linear unconstrained control system [A(t), B(t)] :

ẋ(t) = A(t)x(t) + B(t)u(t), x(0) = x0, t ∈ R+,

where x(t) ∈ Rn, u(t) ∈ Rm. We recall that the system [A(t), B(t)] is globally controllable

(GC) in finite time if there is a number N > 0 such that for every x0 ∈ Rn there is a control

u(t) ∈ L2([0, N ], Rm) satisfying

U(N, 0)x0 +

∫

N

0
U(N, s)B(s)u(s)ds = 0,

where U(t, s) denotes the transition matrix of the linear time-varying system ẋ(t) = A(t)x(t)

defined by
∂U(t, s)

∂t
= A(t)U(t, s), t, s ≥ 0, U(t, t) = I.
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Definition 2.3. [5] System [A(t), B(t)] is uniformly globally controllable (UGC) in finite time if

there are numbers N > 0, c1, c2, c3, c4 > 0 such that the following conditions hold for all t ∈ R+ :

(i) c1I ≤ W (t, t + N) ≤ c2I.

(ii) c3I ≤ U(t + N, t)W (t, t + N)UT (t + N, t) ≤ c4I.

where

W (t, t + N) =

∫

t+N

t

U(N, s)B(s)BT (s)UT (N, s)ds.

It is obvious that if the system is UGC, then it is GC. Associated with the system [A(t), B(t)]

we consider the following RDE:

Ṗ (t) + AT (t)P (t) + P (t)A(t)P (t)B(t)BT (t)P (t) + Q(t) = 0. (5)

Proposition 2.1. [5] If the system [A(t), B(t)] is UGC in finite time, then the following asser-

tions hold.

(i) There is a number c5 > 0 such that ∀t2 > t1 ≥ 0 :
∫

t2

t1

UT (s, t1)U(s, t1)ds ≤ c5(t2 − t1)I.

(ii) The RDE (5), where Q(t) = I, has a solution P (t) ∈ M([0,∞), Rn
+), which is bounded from

above and below. Moreover, we have

‖P (t)‖ ≤
[ 1

c1
+ nc5(1 +

nc2

c1
)2

]

, ∀t ∈ R+,

where the positive numbers c1, c2 are defined by Definition 2.3.

Proposition 2.2. If the system [A(t), B(t)] is UGC in finite time, then the RDE (5), where

Q = ηI, has a solution P (t) ∈ M([0,∞), Rn
+), satisfying the condition

‖P (t)‖ ≤
[ 1

ηc1
+ nc5(1 +

nc2

c1
)2

]

η, ∀t ∈ R+.

Proof. Let the system [A(t), B(t)] be UGC, then it is GC and, by Proposition 3.4 in [9], taking

Q(t) = ηI the Riccati equation

Ṗ (t) + AT (t)P (t) + P (t)A(t) − P (t)B(t)BT (t)P (t) + ηI = 0,

has a solution P (t) ∈ M([0,∞), Rn
+). This implies that the Riccati equation

˙̄P (t) + AT (t)P̄ (t) + P̄ (t)A(t) − P̄ (t)B̄(t)B̄T (t)P̄ (t) + I = 0, (6)

where

P̄ (t) =
1

η
P (t), B̄(t) =

√
ηB(t),

has a solution P̄ (t). On the other hand, it is obvious that the system [A(t), B̄(t)] is also UGC,

and hence, by Proposition 2.1, any solution of the RDE (6) satisfies the condition

‖P̄ (t)‖ ≤
[ 1

ηc1
+ nc5(1 +

nc2

c1
)2

]

, ∀t ∈ R+.
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Therefore

‖P (t)‖ ≤
[ 1

ηc1
+ nc5(1 +

nc2

c1
)2

]

η, ∀t ∈ R+,

as desired.

We conclude this section with the following technical propositions needed for the proofs of

the main results of this paper.

Proposition 2.3 [4] Let X,Y, F be real matrices of appropriate dimensions and ‖F‖ ≤ 1. Then

2XFY ≤ αXT X +
1

α
Y T Y,

for all α > 0.

Proposition 2.4. Let B(t), P (t) be bounded matrix functions. Then the function f : R+×Rn →
Rn defined by

f(t, x) = −r
B(t)BT (t)P (t)x

1 + ‖BT (t)P (t)x‖ , t ∈ R+,

is global Lipschitz, i.e.,

∃L > 0 : |f(t, x1) − f(t, x2)| ≤ L‖x1 − x2‖, ∀x1, x2 ∈ Rn, t ∈ R+.

Proof. Let x1, x2 ∈ Rn and

y1(t) = BT (t)P (t)x1, y2(t) = BT (t)P (t)x2.

The proof is similar along to the proof of Lemma 1 in [3] using the boundedness of B(t) and

P (t) and the following obvious inequalities

‖ y1(t)

1 + ‖y1(t)‖
− y2(t)

1 + ‖y2(t)‖
‖ ≤ 3‖y1(t) − y2(t)‖,

for all y1(t), y2(t), t ∈ R+.

3 Global stabilization

Consider the linear time-varying system (1). Denote

α =
1

c1
, β = nc5(1 +

nc2

c1
)2,

γ =
1

2b2
, b = sup

t∈R+

‖B(t)‖,

where c1, c2, c5 are defined by Proposition 2.1. In the sequel, we need the following assumptions.

A.1. The system [A(t), B(t)] is UGC in finite time

A.2. γ ≥ 4αβ.

6



Let η > 0 be any solution of the inequation

β2η2 + (2αβ − γ)η + α2 < 0, (7)

and consider the following RDE:

Ṗ (t) + AT (t)P (t) + P (t)A(t) − P (t)B(t)BT (t)P (t) + ηI = 0. (8)

Theorem 3.1. Suppose that assumptions A.1, A.2 hold. Then the system (1) is globally stabi-

lizable and the stabilizing control is

u(t) = − rBT (t)P (t)x(t)

1 + ‖BT (t)P (t)x(t)‖ , (9)

where P (t) is the solution of the RDE (8).

Proof. Assume that system [A(t), B(t] is UGC in some time T > 0. By Assumption A.2,

inequation (7) has a solution η > 0. Consider RDE (8) and by Proposition 2.2, this Riccati

equation has a solution P (t) ∈ M([0,∞), Rn
+) such that

p = sup
t∈R+

‖P (t)‖ ≤
[α

η
+ β

]

η. (10)

Let us consider the bounded feedback control (9). By Proposition 2.4, the function

f(x) = −r
B(t)BT (t)P (t)x

1 + ‖BT (t)P (t)x‖

is global Lipschitz and hence the closed-loop system

ẋ(t) = A(t)x(t) + f(x(t)), x(0) = x0, (11)

has a unique solution x(t). Define the scalar function

V (t, x) = 〈P (t)x, x〉.

We shall show that the function V (t, x) is a Lyapunov function for the system (11). By Propo-

sition 2.2 the matrix function P (t) ∈ M([0,∞), Rn
+) is bounded from above and below, there

are positive numbers λ1, λ2 such that

λ1‖x‖2 ≤ V (t, x) ≤ λ2‖x‖2.

Furthermore, taking the derivative of V (.) along the solution x(t) of the system (11), we have

V̇ (t, x)) = 〈Ṗ (t)x, x〉 + 2〈P (t)ẋ, x〉

= −η‖x(t)‖2 + 2〈P (t)B(t)BT (t)P (t)x, x〉

− 2r

1 + ‖BT (t)P (t)x‖〈P (t)B(t)BT (t)P (t)x, x〉

≤ −η‖x‖2 + 2〈P (t)B(t)BT (t)P (t)x, x〉, (12)
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because of
2r

1 + ‖BT (t)P (t)x(t)‖ 〈P (t)B(t)BT (t)P (t)x, x〉 ≥ 0.

Therefore, from (12) it follows that

V̇ (t, x(t)) ≤ −(η − 2p2b2)‖x(t)‖2,

and the derivative of V (.) is negative if

η > 2p2b2. (13)

Using the condition (10), we have

p2 ≤ (α + βη)2,

and by the chosen number η, from the condition (7), we can verify that

(α + βη)2 <
η

2b2
,

such that the required condition (13) holds. This completes the proof of the theorem.

Remark 3.1. It should be noted that the global uniform controllability of the system [A(t), B(t)]

guarantees the existence of the bounded solution of RDE (8) and therefore, we can verify the

global stabilizability without solving any RDE. However, to contruct the stabilizing feedback

control, we need to solve RDE (8).

Example 3.1. Consider system (1) in R2, where the control constraint is

‖u(t)‖ ≤ r = 1,

and

A(t) =

(

sin2t 0
0 −1

)

, B(t) =

(

1
500e−cos

2
t 0

0 1
500e−t

)

.

We can verify that the transition matrix U(t, s) is given by

U(t, s) =

(

ecos2s−cos2t 0

0 e−(t−s)

)

.

Then for every x = (x1, x2) ∈ R2 and T > 0 we have

∫

t+T

t

‖BT (s)U∗(T, s)x‖2ds =
1

250.000
e−2cos

2
T x2

1

∫

t+T

t

ds

+
1

250.000
e−2T x2

2

∫

t+T

t

ds

=
1

250.000
[e−2cos

2
T Tx2

1 + Te−2T x2
2].
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Since

e−2cos2T ≥ e−2T , e−2cos2T ≤ 1, ∀T ≥ 1,

we obtain that for T ≥ 1 :

1

250.000
T‖x‖2 ≥

∫

t+T

t

‖BT (s)UT (T, s)x‖2dτ ≥ 1

250.000
Te−2T ‖x‖2.

On the other hand, we have for all s ≥ t1 ≥ 0 :

‖U(s, t1)‖2 = [e2cos
2
t1e−2cos

2
s + e−2(s−t1)]

≤ 250.000(e2 + 1),

hence, taking T = 1 the system is UGC with

c1 =
1

250.000
e−2, c2 =

1

250.000
,

c5 = 250.000(e2 + 1).

Therefore, we can verify the assumption A.2, where

γ =
1

2b2
= 125.000 ≥ 4αβ = 8e2(e2 + 1)(1 + 2e2)2,

and the system is stabilizable. To find the stabilizing feedback controller, taking η = 1
2500 , we

solve the solution P (t) = (p1(t), p2(t)) of the following system of two Riccati equations

{

ṗ1(t) + 2p1(t)sin2t − 1
2500p2

1(t)e
−2cos2t + 1

500 = 0,

ṗ2(t) − 2p2(t) − 1
500p2

2(t)e
−2t + 1

2500 = 0.

and the feedback control is given by (9).

4 Robust stabilization

In robust stability theory, an important consideration is to design a feedback controller which

guarantees the asymptotical stability of the closed-loop system for all uncertainties. In this

section, we consider the linear perturbed system (3), where the perturbations ∆A(t),∆B(t)

satisfy the norm-bounded constraint (4). Denote

hi = ‖Hi‖, ei = ‖Ei‖, i = 1, 2,

ζ = 2b2 + h2
1 + r(h2

2 + e2b
2),

where b is defined in the previous section. Let η be any solution of the inequation

βζη2 − (2αβζ − 1)η + ζα2 + e2
1 < 0, (14)

where α, β are defined in the previous section, and consider the RDE (8).
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Remark 4.1. Note that inequation (14), in general, has a solution, e.g. if the uncertainties,

hi, ei, i = 1, 2 satisfy the condition

4βζ(α + e2
1β) ≤ 1. (15)

We have the following result.

Theorem 4.1. Assume that the condition (15) holds and system [A(t), B(t)] is UGC in finite

time. Then the uncertain system (3) is robustly stabilizable and the stabilizing control is

u(t) = − rBT (t)P (t)x(t)

1 + ‖BT (t)P (t)x(t)‖ ,

where P (t) is the solution of the RDE (8).

Proof. By the condition (15), the determinant of the equation

αη2 − η + e2
1 = 0

is non-negative, and hence inequation (14) has a solution. Let η > 0 be any solution of (14).

Due to the UGC of the system [A(t), B(t)], the RDE (8) with the chosen η > 0 has a bounded

solution P (t) ∈ M([0,∞), Rn
+) such that

p < (
α

η
+ β)η.

Taking the Lyapunov function

V (t, x) = 〈P (t)x, x〉,

in the same way as in the proof of Theorem 3.1, we have

V̇ (t, x) = −η‖x‖2 + 2〈PBBT Px, x〉

− 2r

1 + ‖BT Px‖〈PBBT Px, x〉 + 〈2PH1FE1x, x〉

− r

1 + ‖BT Px‖〈2PH2FE2B
TPx, x〉.

Using Proposition 2.3 we have

V̇ (t, x) ≤ −η‖x‖2 + 2〈PBBT Px, x〉

+〈(PH1H
T

1 P + E1E
T

1 )x, x〉 +
r

1 + ‖BT Px‖〈(PH2H
T

2 P + E2B
T PPBET

2 )x, x〉

≤ −[η − 2p2b2 − (p2h2
1 + e2

1)

−rp2(h2
2 + e2

2b
2)]‖x‖2.

Therefore, the derivative of V (t, x) is negative if η satisfies the inequality (14). The theorem is

proved.
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Example 4.1. Consider the uncertain system (3) in R2 where the control constraint is

‖u(t)‖ ≤ r = 1,

∆A(t) = H1F (t)E1, ∆B(t) = H2F (t)E2, A(t), B(t) are defined in Example 3.1 and

F (t) =

(

f(t) 0
0 f(t)

)

,

Ei =

(

ei 0
0 0.01

)

, Hi =

(

hi 0
0 0.02

)

, i = 1, 2,

|f(t)| ≤ 1

2
,

and e1 = 0.01, e2 = 0.1, h1 = 0.001, h2 = 0.0001. As before, we have

U(t, s) =

(

ecos2s−cos2t 0

0 e−(t−s)

)

.

and we can verify the condition (14) and the uncertain system (3) is robustly stabilizable.

5 Conclusions

The global stabilizability and robust stabilizability problem of a class of linear continuous time-

varying systems with bounded controls were studied. Based on the controllability approach,

simple global stabilizability conditions are proposed without solving any Riccati differential

equation. We also established some sufficient conditions for the robust stabilization of uncertain

linear time-varying systems with bounded controls. Illustrative examples of the results are given.
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