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Abstract

We study pointed graded self-dual Hopf algebras with a help of the dual Gabriel theorem for

pointed Hopf algebras [15]. Quivers of such Hopf algebras are said to be self-dual. An explicit

classification of self-dual Hopf quivers is obtained. We also prove that finite dimensional corad-

ically graded pointed self-dual Hopf algebras are generated by group-like and skew-primitive

elements as associative algebras. This partially justifies a conjecture of Andruskiewitsch and

Schneider [3] and may help to classify finite dimensional self-dual pointed Hopf algebras.
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1. Introduction

One can start with quivers to construct path algebras and their quotient algebras. This pro-

duces finite dimensional elementary algebras in an exhaustive way, due to a well-known theorem

of Gabriel. See Auslander, Reiten, Smalø [1] and Ringel [16]. There is a dual analogue for

coalgebras given by Chin and Montgomery [6], which is remarkable for removing the restric-

tion of finite dimensionality. Namely, any pointed coalgebra is a large subcoalgebra of the path

coalgebra of some unique quiver.

A Hopf algebra is simultaneously an algebra and a coalgebra in a compatible way. We say that

a Hopf algebra is pointed if its underlying coalgebra is pointed, i.e., its irreducible comodules

are 1-dimensional. By Chin and Montgomery’s theorem, for a pointed Hopf algebra H, the

underlying coalgebra can be presented as a large subcoalgebra of a path coalgebra kQ for some

unique quiver Q. In [15], Oystaeyen and Zhang proved that such a quiver is a Hopf quiver in

the sense of Cibils and Rosso [10], and moreover, the associated graded Hopf algebra grH of

H (arising from the coradical filtration) is a Hopf subalgebra of some graded Hopf structure on

kQ. This motivates a quiver approach to construct and classify pointed Hopf algebras.

In this paper we study graded pointed self-dual Hopf algebras with a help of the dual Gabriel’s

theorem. For a positively graded Hopf algebra H = ⊕n≥0H
n (may be infinite dimensional) with

finite dimensional homogeneous spaces, the graded dual H gr = ⊕n≥0H
n∗ is also a positively

graded Hopf algebra. We say that H is self-dual if there exists a graded Hopf isomorphism

H ∼= Hgr. We remark that self-dual Hopf algebras generated in degrees 0 and 1 were studied by

Green and Marcos in [11], where descriptions of such Hopf algebras via the so-called self-dual

Hopf bimodules were obtained.

We study the quivers of graded pointed self-dual Hopf algebras, which we name self-dual

Hopf quivers. An explicit classification of such quivers is obtained. We also prove that self-dual

graded pointed Hopf algebras are generated by group-like and skew-primitive elements. In the

finite dimensional case, this partially justifies a well-known conjecture of Andruskiewitsch and

Schneider [3]. This result may help to give a classification of graded pointed self-dual Hopf

algebras via the self-dual Hopf quivers.

For simplicity of exposition, we assume throughout that k is an algebraically closed field of

characteristic 0. All algebras and coalgebras are over k. For a finite dimensional vector space V,

we denote its k-linear dual by V ∗. The unendowed tensor product ⊗ is ⊗k.

2



2. Hopf Quivers and Dual Gabriel’s Theorem

We begin by recalling general facts, due to Cibils and Rosso [10] and van Oystaeyen and

Zhang [15], about constructing graded Hopf structures from path coalgebras and the dual

Gabriel’s theorem for pointed Hopf algebras.

2.1. Let Q be a quiver and kQ the k-space with as a basis all the paths of Q. Then kQ has

a natural length gradation kQ =
⊕

n>0 kQn, where kQn is spanned by all the paths of length

n. Note that Q0 is the set of vertices and Q1 is the set of arrows. For each nontrivial path

p = an · · · a2a1 ∈ Qn (i.e., n ≥ 1) we define its starting vertex s(p) as the tail of arrow a1 and

terminating vertex t(p) as the head of arrow an.

Given a quiver Q, the graded space kQ has a natural graded path coalgebra structure as

follows

∆(g) = g ⊗ g, ε(g) = 1 for each g ∈ Q0,

∆(p) = t(p) ⊗ p + an ⊗ an−1 · · · a1 + · · · + an · · · a2 ⊗ a1 + p ⊗ s(p), ε(p) = 0

for each nontrivial path p = an · · · a1.

It is obvious that kQ is pointed with set of group-like elements G(kQ) = Q0, and has the

following coradical filtration

kQ0 ⊆ kQ0 ⊕ kQ1 ⊆ kQ0 ⊕ kQ1 ⊕ kQ2 ⊆ · · ·

Hence kQ is coradically graded in the sense of Chin and Musson [7]. We remark that the path

coalgebra kQ has another presentation as the so-called cotensor coalgebra and hence enjoy a

universal property [14] (see also [15]).

2.2. Let G be a group and C the set of its conjugacy classes. A ramification datum of the group

G is a formal sum R =
∑

C∈C RCC with non-negative integer coefficients. Recall that for each

ramification datum R of G, the corresponding Hopf quiver Q = Q(G,R) is defined as follows:

the set of vertices Q0 is G, and for each x ∈ G and c ∈ C, there are RC arrows from x to cx.

A vector space M is said to be a kG-Hopf bimodule if it is simultaneously a kG-bimodule and

a kG-bicomodule such that the comodule structure maps are homomorphisms of kG-bimodules.

Hopf bimodules over kG were classified in [9], Proposition 3.3. We briefly recall this result

for later application. For each C ∈ C, fix an element u(C) ∈ C, and let ZC be the centralizer of

u(C). There is an equivalence of categories

V : b(kG) −→ ΠC∈C mod(kZC),

where b(kG) is the category of kG-Hopf bimodules and mod(kZC) the category of left kZC -

modules. Given M ∈ b(kG), then V (M) = (u(C)M1)C∈C , where the left module structure
3



on u(C)M1 is defined by the conjugate action: g · m = g.m.g−1. On the contrary, for any

(MC)C∈C ∈ ΠC∈C mod(kZC), the corresponding kG-Hopf bimodule is ⊕C∈CkG ⊗kZC
MC ⊗ kG.

Given a kG-Hopf bimodule M with bicomodule maps δL and δR, we define the Hopf quiver

Q = Q(G,M) of M as follows: the set of vertices Q0 is G, and for any g, h ∈ G, there are

dimk
hMg arrows from g to h. Here by hMg we mean the (h, g)-isotypic component

{m ∈ M | δL(m) = h ⊗ m, δR(m) = m ⊗ g}.

The following lemma shows that the Hopf quivers arising from ramification data coincide

with those from Hopf bimodules over a group, hence we may identify them by just saying Hopf

quivers.

Lemma 2.1. For any quiver Q = Q(M,G), there exists a ramification datum R of G such that

Q = Q(G,R), and vice versa.

Proof. Let M be a kG-Hopf bimodule with comodule structure maps δL and δR and Q =

Q(G,M). For any f, g, h ∈ G and m ∈ hMg, by the definition of kG-Hopf bimodules we have

δL(f.m) = fh ⊗ f.m, δL(m.f) = hf ⊗ m.f

and

δR(f.m) = f.m ⊗ fg, δR(m.f) = m.f ⊗ gf.

It follows that

f.hMg ⊆ fhMfg, hMg.f ⊆ hfMgf .

Note that f is invertible, hence actually we have

f.hMg = fhMfg, hMg.f = hfMgf .

It follows that for x, g, c ∈ G,

g−1cgxMx = g−1cgM1.x = g−1.cM1.g.x .

Since the actions of group elements are invertible, it is clear that

dimk
g−1cgxMx = dimk

cM1 .

In other words, for any x ∈ G and any c′ ∈ C, where C is the conjugacy class containing c, there

are dimk
cM1 arrows from x to c′x in Q. Let C be the set of the conjugacy classes of G. For each

C ∈ C, fix an element c ∈ C. Take a ramification data of G as

R =
∑

C∈C

RCC

with RC = dimk
cM1. It is clear that Q = Q(G,R).

On the contrary, let Q = Q(G,R) for some R =
∑

C∈C RCC. Take (MC)C∈C ∈ ΠC∈C mod(kZC)

such that dimk MC = RC . This is always possible. For example, take MC as trivial kZC -module.
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Let M be the associated kG-Hopf bimodule. By direct calculation of the isotypic components

of M, we have that Q = Q(G,M). �

2.3. Suppose that kQ can be endowed with a graded Hopf algebra structure with length gra-

dation. Then kQ is pointed and kQ0 is the coradical. Hence kQ0
∼= kG for some finite group G

and we now identify Q0 and G. The graded Hopf algebra structure induces naturally on kQ1 a

kG-Hopf bimodule structure and Q is of course the Hopf quiver of it. By Lemma 2.1, the quiver

Q is the Hopf quiver Q(G,R) of some ramification data R.

Given a Hopf quiver Q = Q(G,R) for some group G and some ramification data R, then

kQ1 admits kQ0-Hopf bimodule structures. Fix a kQ0-Hopf bimodule (kQ1, mL, mR, δL, δR).

By the universal property of kQ, the bimodule structure can be extended to an associative

multiplication and kQ becomes a graded bialgebra. The existence of antipode is guaranteed by

Takeuchi [18]. Hence kQ admits a graded Hopf structure.

Cibils and Rosso’s results [10] can be summarized as follows.

Theorem 2.2. Let Q be a quiver. Then Q is a Hopf quiver if and only if the path coalgebra kQ

admits graded Hopf algebra structures. Moreover, if Q is a Hopf quiver, then the complete list of

graded Hopf structures on kQ is in one-to-one correspondence with that of kQ0-Hopf bimodule

structures on kQ1.

2.4. Let C be a pointed coalgebra with G = G(C), then the corresponding quiver Q(C) is

obtained in the following way. The set of vertices of Q(C) is G. For ∀ x, y ∈ G, the number

of arrows from x to y is dimk Px,y(C) − 1, where Px,y(C) = ∆−1(C ⊗ x + y ⊗ C). Chin and

Montgomery’s theorem says that C is a large subcoalgebra of the path coalgebra kQ(C). Here

“large” means that the subcoalgebra contains all the vertices and arrows of Q(C). Of course

in this case such a quiver is unique. We remark that, according to the definition, a pointed

coalgebra and its associated graded coalgebra (induced by the coradical filtration) enjoy the

same quiver.

Let H be a pointed Hopf algebra. The coradical filtration {Hn|n ≥ 0} is in fact a Hopf algebra

filtration and hence the associated graded space

grH =
⊕

n≥0

grHn =
⊕

n≥0

Hn/Hn−1

(with H−1 = 0) is a coradically graded Hopf algebra (see [12], Lemma 5.2.8). Consider the quiver

Q(H) of the underlying coalgebra of H. The following result can be regarded as the version of

the Gabriel’s theorem for Hopf algebras from the coalgebra aspect, see [15], Proposition 4.4 and

Theorem 4.6.
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Theorem 2.3. Suppose that H is a pointed Hopf algebra and that G = G(H). Then Q(H) is a

Hopf quiver and there exists a graded Hopf algebra embedding grH ↪→ kQ(H), where the Hopf

structure on kQ(H) is determined by the kG-Hopf bimodule structure on grH 1.

3. Self-Dual Hopf Quivers

In this section we consider the quivers of coradically graded pointed self-dual Hopf algebras,

which are called self-dual Hopf quivers. An explicit classification of such quivers is obtained.

3.1. Let H = ⊕n≥0H
n be a positively graded Hopf algebra with finite dimensional homogeneous

spaces. Recall that H is said to be self-dual if there exists a graded Hopf isomorphism H ∼= Hgr.

The self-duality is very natural and general in common: for any graded Hopf algebra H, the

tensor product H ⊗ Hgr is self-dual.

In this section we always assume that H is coradically graded with H 0 = kG (hence pointed)

for some finite group G. In this case, if H is self-dual, then the group G is abelian. In fact, let

f : H −→ Hgr be a graded isomorphism, then f0, the restriction of f to degree 0, induces a Hopf

isomorphism of kG and (kG)∗, hence G is abelian since (kG)∗ is commutative. Furthermore H1

has a so-called self-dual kG-Hopf bimodule structure, see [11]. The self-duality of H 1 comes

naturally from that of H. Namely, the isomorphism f0 induces a kG-Hopf bimodule structure

on the (kG)∗-Hopf bimodule H1∗; the restriction of f to degree 1 gives rise to an isomorphism

of kG-Hopf bimodules f1 : H(1) −→ H(1)∗.

3.2. The classification of self-dual Hopf bimodules over a finite abelian group algebra was given

in [11] using Cibils and Rosso’s results on Hopf bimodules. We recall it here for application later

on.

Let G be a finite abelian group. Write G = G1×G2×· · ·×Gt, where Gi =< αi > . The general

elements of G are written as αe = αe1

1 · αe2

2 · · ·αet
t . Let ω = {ω1, ω2, · · · , ωt} be a set of roots of

unity such that orderωi = orderαi. We define a map χω : kG −→ (kG)∗ as follows: for any

element αe ∈ G, let χω(αe) = χω
αe ∈ (kG)∗; for any αf ∈ G, let χω

αe(αf ) = ωe1f1

1 ωe2f2

2 · · ·ωetft

t .

It is well-known that such a map χω is a Hopf isomorphism and that {χω
g }g∈G is a complete set

of irreducible characters of G. Denote by Sg the irreducible module associated to the character

χω
g .

By Cibils and Rosso’s classification of Hopf bimodules, there is an equivalence of categories

V : b(kG) −→ Πg∈G mod(kG),

where b(kG) is the category of kG-Hopf bimodules and mod(kG) the category of left kG-

modules. Given M ∈ b(kG), then V (M) = (gM1)g∈G. Write gM1 = ⊕h∈Gmh(g)Sh as the

sum of irreducible modules. Then the isomorphic classes of objects in b(kG) are in one-to-one
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correspondence with the set of matrices

{(mh(g))g,h∈G|mh(g) is a nonnegative integer, ∀ g, h ∈ G}.

Identifying kG with (kG)∗ via χω, then M ∗ is a kG-Hopf bimodule. By [9], Proposition 5.1, if

M corresponds to the matrix (mh(g))g,h∈G, then M ∗ corresponds to the matrix (m∗
h(g))g,h∈G,

where m∗
h(g) = mg−1(h−1).

Now it is clear that a kG-Hopf bimodule M is self-dual if and only if there exists an ω

as in the previous argument such that the corresponding matrix (mh(g))g,h∈G of M satisfying

mh(g) = mg−1(h−1), for any g, h ∈ G.

3.3. We say that a Hopf quiver Q = Q(G,M) is self-dual if the kG-Hopf bimodule M is self-

dual. It is immediate that the quiver Q(H) of self-dual Hopf algebra H is self-dual. Precisely,

Q = Q(G,H1). By Theorem 2.3, H is a Hopf subalgebra of kQ. On the other hand, given a

self-dual Hopf quiver Q = Q(G,M), then self-dual Hopf algebra arises naturally. Let kG[M ] be

the Hopf subalgebra of kQ generated in degrees 0 and 1. This is the so-called bialgebra of type

one introduced by Nichols [14]. By [11], Theorem 2.4, kG[M ] is self-dual. We can summarize

the above arguments as follows

Proposition 3.1. If H is coradically graded pointed Hopf algebra, then Q(H) is a self-dual Hopf

quiver. Conversely if Q = Q(G,M) is a self-dual Hopf quiver, then kG[M ] is a self-dual Hopf

algebra.

3.4. Now we consider what self-dual Hopf quivers look like. The following theorem shows that

such quivers are very general, as corresponds exactly to the naturalness and generality of the

self-duality.

Theorem 3.2. Any quiver of form Q = Q(G,R) with G abelian and R a ramification data is

self-dual.

Proof. Let G be an abelian group and R =
∑

g∈G Rgg a ramification datum. Then by Lemma

2.1, Q = Q(G,M) for any Hopf bimodule M such that dimk
gM1 = Rg, ∀ g ∈ G. We need to

prove that there exists a self-dual Hopf bimodule satisfying such condition.

For this, we fix an ω as in subsection 3.2. Let M be the kG-Hopf bimodule corresponding to

matrix (mh(g))g,h∈G with entries mg−1(g) = Rg, ∀ g ∈ G and 0 otherwise. It is clear that such

an M is self-dual, and hence Q is self-dual. �

3.5. In this subsection we consider the case of kQ itself being self-dual. First of all kQ1 must

be a self-dual kQ0-Hopf bimodule.

Proposition 3.3. Let H be a slef-dual Hopf structure on kQ. Then H is generated by group-like

and skew-primitive elements as an associative algebra.
7



Proof. Denote by {Hn | n ≥ 0} the coradical filtration of H. On one hand, the underlying

coalgebra of H is the path coalgebra kQ, hence we have Hn = ⊕i≤nkQi. On the other hand, the

underlying algebra structure of H is ⊕n≥0kQ∗
n. The Hopf structure on ⊕n≥0kQ∗

n is also graded,

hence we have

∆(kQ∗
n) ⊆ ⊕i+j=nkQ∗

i ⊗ kQ∗
j .

Note that kQ∗
0 = (kG)∗, then it is semisimple and cosemisimple, and hence kQ∗

0 ⊆ H0. By com-

paring the dimensions, we get kQ∗
0 = H0. Using induction and comparing dimensions arguments,

we have Hn = ⊕i≤nkQ∗
i . In particular, H1 = kQ∗

0⊕kQ∗
1. Note that the algebra kQ∗ is generated

in degrees 0 and 1, hence H is generated by group-like and skew-primitive elements. �

Remark 3.4. If kQ itself is self-dual, then kQ = kG[M ], i.e., it is a bialgebra of type one.

4. Finite-Dimensional Self-Dual Hopf Algebras

The main purpose of this section is to prove that finite-dimensional coradically graded pointed

self-dual Hopf algebras are generated by group-like and skew-primitive elements.

4.1. In [2], Andruskiewitsch and Schneider proposed the so-called lifting method for classifying

finite dimensional pointed Hopf algebras. The reader is referred to an up-to-date survey [4]. In

the programme, a key step is to find the generators. Andruskiewitsch and Schneider conjectured

that all finite dimensional pointed Hopf algebras over an algebraically closed field of characteristic

0 are generated by group-like and skew-primitive elements (see [3], Conjecture 1.4). By [2],

Lemmas 2.2 and 2.3, it is enough to consider coradically graded Hopf algebras.

4.2. The following theorem shows that Andruskiewitsch and Schneider’s conjecture is true for

finite dimensional self-dual Hopf algebras.

Theorem 4.1. Let H = ⊕n≥0H
n be a coradically graded pointed Hopf algebra. If H is finite

dimensional and self-dual, then H is generated by group-like and skew-primitive elements.

Proof. We may assume that H0 = kG for some finite abelian group G. Let J = ⊕n≥1H
n. It is

clear that J is an nilpotent (Hopf) ideal of H. Note that H/J = H 0 = kG, which is isomorphic to

k|G| as an associative algebra. It follows that H is an elementary algebra and J is the Jacobson

radical. It is clear that J 2 ⊆ ⊕n≥2H
n, and hence H1 ⊆ J/J2.

On the other hand, by the duality of coradical filtration and Jacobson radical filtration (see

e.g. [12], 5.2.9), we have J 2(H) = C1(H
∗)⊥, where C1(H

∗) is the first term of the coradical

filtration of the dual Hopf algebra H∗. By the self-duality of H, C1(H
∗) = H1, which is exactly

H0 ⊕ H1 since H is coradically graded. This implies that dimk J2 = dimk H − dimk H1.
8



By comparing the dimensions, we have J 2 = ⊕n≥2H
n, and hence H1 = J/J2. It is well-known

that (see e.g. [1], Theorem 1.9, p.65), as an associative algebra, H is generated by H/J and

J/J2. Now the theorem follows. �

Remark 4.2. Let H = ⊕n≥0H
n be as in the theorem. By J we denote its Jacobson radical.

Then by a similar argument of comparing dimensions, via the duality of coradical filtration and

Jacobson radical filtration, we have Jm = ⊕n≥mHn, for any integer m ≥ 1.

4.3. The theorem above may help to classify completely finite dimensional graded pointed

self-dual Hopf algebras. The following is direct consequence of the theorem.

Corollary 4.3. Any finite dimensional coradically graded pointed self-dual Hopf algebra is of

the form kG[M ] for some finite abelian group G and some self-dual kG-Hopf bimodule M.

4.4. Finally, we remark that there is not known necessary and sufficient condition for general

self-dual kG-Hopf bimodule M such that kG[M ] is finite dimensional. However we work out the

simplest case with a help of results in [5].

Let G be a cyclic group of order n generated by g. Firstly let R = g be the simplest ramification

datum. Then the Hopf quiver Q = Q(G,R) is a basic cycle. Namely, Q has set of vertices

{gi|i = 0, 1, ..., n − 1} and set of arrows {ai : gi −→ gi+1|i = 0, 1, ..., n − 1}. Finite dimensional

pointed Hopf structures on such quiver are completely classified in [5], Theorem 3.6. As a

consequence we have

Proposition 4.4. Let H be a finite dimensional pointed Hopf algebra with Q(H) being a basic

cycle. Then H is self-dual if and only if H is the Taft algebra.

Proof. Recall that the Taft algebra T of dimension n2 is generated by two elements h and x

with relations

xn = 0, hn = 1, xh = qxh,

where q is an n-th primitive root of unity (see [17]). A concrete Hopf isomorphism map of T

and T ∗ was given in [8].

We include a proof of the self-duality via our settings. Firstly note that Q(T ) is a basic

cycle. Take ω = q as in subsection 3.2. Let M be a kG-Hopf bimodule corresponding to matrix

(mgj (gi)) with entries mg−1(g) = 1 and 0 otherwise. Then M is self-dual. It is not difficult to

see that T is the Hopf subalgebra kG[M ] of kQ(T ), and hence self-dual by Proposition 3.1.

On the contrary, all the finite dimensional Hopf structures on a basic cycle is isomorphic to

the Hopf algebra A(n, d, µ, q) presented by generators and relations as follows

hn = 1, xd = µ(1 − hd), xg = ugx,
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with u a root of unity of order d and µ = 0 or 1. By [5], Theorem 4.3, if A(n, d, µ, q) is self-dual,

then µ = 0, and d = n. That is, A(n, d, µ, q) must be exactly the Taft algebra. �
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