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Abstract

We discuss the pair production of scalar quarks in e+ e− annihilation within the

MSSM with complex parameters. We calculate the SUSY -QCD corrections to the cross

section e+e− → q̃iq̃j (i, j = 1, 2) and show that the effect of the CP phases of these

complex parameters on the cross section can be quite strong in a large region of the

MSSM parameter space. This could have important implications for squarks searches

and the MSSM parameter determination in future collider experiments.

I Introduction

Supersymmetry is the currently best motivated extension of the Standard Model (SM)

of particle physics which allows to stabilize the gauge hierarchy without getting into

conflict with electroweak precision data. Among all possible supersymmetric theories,

the Minimal Supersymmetric Standard Model (MSSM) occupies a special position. It

is not only the simplest, i.e. most economical, potentially realistic supersymmetric field

theory, but it also has just the right particle content to allow for the unification of all

gauge interactions. The MSSM predicts the existence of scalar partners to all known

quarks and leptons. Each fermions has two spin zero partners called sfermions f̃L and

f̃R, one for each chirality eigenstate: the mixing between f̃L and f̃R is proportional to

the corresponding fermion mass, and so negligible except for the third generation. In

particular, this model gives the possibility for one of the scalar partners of the top quark

(t̃1) to be lighter than other scalar quarks and also than the top quark [1].
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So far most phenomenological studies on supersymmetric (SUSY ) particle searches

have been performed in the MSSM with real SUSY parameters. Studies of the 3rd

generation sfermions are particularly interesting because of the effects of the large

Yukawa couplings. The lighter sfermion mass eigenstates maybe relatively light and

they could be thoroughly studied at an e−e+ linear collider [2]. An analysis of the

QCD corrections to scalar quark pair production in e+e− annihilation in the MSSM

with real parameters was performed in refs. [3, 4].

The assumption that all SUSY parameters are real, however, may be too restric-

tive. The higgsino mass parameter µ, the gaugino masses M̃i and the trilinear scalar

coupling parameters Af of the sfermions f̃ may be complex. In the MSSM the complex

parameters provide the CP violating phases. Recently, a phenomenological study of τ -

sleptons τ̃1,2 and τ -sneutrinos ν̃τ has been presented [5], and the effect of the CP phases

on the t̃1,2 and b̃1,2 decays has been found [6] in the MSSM with complex parameters.

Next, in ref. [7] the one loop vertex correction to the decay width of squark decays

into W and Z bosons within the MSSM with complex parameters has been calculated

and the numerical results are also performed.

In this article we study the effects of the phases of the complex parameters Aq

on the cross sections of the process: e+e− → q̃iq̃j. We point out that these effects

can be quite strong in a large region of the MSSM parameter space. This could have

an important impact on the search for squarks and the determination of the MSSM

parameters at future colliders. Our present study is an extension of the corresponding

one in the MSSM with real parameters in ref. [3, 4].

II Diagonalization of Mass Matrices

We neglect generation mixing. As pointed out in refs. [8, 9] only three terms in

the supersymmetric Lagrangian can give rise to CP-violating phases which cannot be

rotated away: The superpotential contains a complex coefficient µ in the term bilinear

in the Higgs superfields. The soft supersymmetry breaking operators introduce two

further complex terms, the gaugino masses M̃i and the left- and right-handed squark

mixing term Aq. In the MSSM one has two types of scalar quarks (squarks), q̃L and

q̃R, corresponding to the left and right helicity states of a quark. The mass matrix in

the basis (q̃L, q̃R) is given by [1].

M2
q̃ =

(
m2

q̃L
aqmq

aqmq m2
q̃R

)
=
(
Rq̃
)+
(

m2
q̃1

0

0 m2
q̃2

)
Rq̃, (1)

with

m2
q̃L

= M2
Q̃

+ m2
Z cos 2β(Iq

3L − eqs
2
W ) + m2

q , (2)

m2
q̃R

= M2
{ũ, D̃} + eqm

2
Z cos 2β s2

W + m2
q , (3)

aq = Aq − µ{cot β, tan β} , (4)

for {up, down} type squarks, respectively. eq and Iq
3 are the electric charge and the third

component of the weak isospin of the squark q̃, and mq is the mass of the partner quark.

MQ̃, Mũ, and MD̃ are soft SUSY breaking masses, and Aq are trilinear couplings.

2



According to eq. (1) M2
q̃ is diagonalized by a unitary matrix Rq̃. The weak eigen-

states q̃L and q̃R are thus related to their mass eigenstates q̃1 and q̃2 by

(
q̃1

q̃2

)
= Rq̃

(
q̃L

q̃R

)
, (5)

Rq̃ =

(
e

i
2
ϕq cos θq̃ e−

i
2
ϕq sin θq̃

−e
i
2
ϕq sin θq̃ e−

i
2
ϕq cos θq̃

)
, (6)

with θq̃ is the squark mixing angle and ϕq = arg(Aq). The mass eigenvalues are given

by

m2
q̃1,2

=
1

2

(
m2

q̃L
+ m2

q̃R
∓
√

(m2
q̃L
−m2

q̃R
) + 4a2

q m2
q

)
. (7)

By convention, we choose q̃1 to be the lighter mass eigenstate. For the mixing angle

θq̃ we require 0 ≤ θq̃ ≤ π. We thus have

cos θq̃ =
−|aq|mq√

(m2
q̃L
−m2

q̃1
)2 + a2

qm
2
q

, sin θq̃ =
m2

q̃L
−m2

q̃1√
(m2

q̃L
−m2

q̃1
)2 + a2

qm
2
q

. (8)

III The q̃q̃γ and q̃q̃z couplings

From the matrix we can find the interaction of a neutral gauge boson V = γ, Z with

squarks in the general forms

Lq̃q̃γ = ieeqAµ(q̃
∗
L

←→
∂ µq̃L + q̃∗R

←→
∂ µq̃R)

= ieeqAµ(Rq̃
i1R

q̃
j1 +Rq̃

i2R
q̃
j2)q̃

∗
j

←→
∂ µq̃i

≡ ieeqδij q̃
∗
j

←→
∂ µq̃i , (9)

where

δ =

(
cos ϕq + i sinϕq cos 2θq̃ −i sinϕq sin 2θq̃

−i sinϕq sin 2θq̃ cosϕq − i sinϕq cos 2θq̃

)
, (10)

and

Lq̃q̃Z =
ig

cw
Zµ (cqLq̃∗L

←→
∂ µq̃L + cqRq̃∗R

←→
∂ µq̃R)

≡ ig

cw

Zµ Cij q̃
∗
j

←→
∂ µq̃i, (11)

where

C =




(Iq
3L cos2 θq̃ − eqs

2
W ) cos ϕq −1

2
Iq
3L sin 2θq̃ cos ϕq

+i(Iq
3L cos2 θq̃ − eqs

2
W cos 2θq̃) sinϕq +i

(
eqs

2
W − 1

2
Iq
3L

)
sin 2θq̃ sinϕq

−1
2
Iq
3L sin 2θq̃ cos ϕq (Iq

3L sin2 θq̃ − eqs
2
W ) cos ϕq

+i
(
eqs

2
W − 1

2
Iq
3L

)
sin 2θq̃ sinϕq +i(Iq

3L sin2 θq̃ + eqs
2
W cos 2θq̃) sin ϕq




.

(12)

3



We obtain the corresponding Feynman rules from

q̃∗j
←→
∂ µq̃i = i(ki + kj)

µ,

where ki and kj are the four-momenta of q̃i and q̃j in direction of the charge flow. The

coupling between a gauge boson V and two squarks q̃i and q̃j with i, j = 1, 2 is given

by (the directions of the momenta are shown in Fig. 1):

Γµ
q̃i q̃jγ = −ieeq(k̄ + k)µδij, (13)

Γµ
q̃i q̃j Z = − ig

cW
(k̄ + k)µcij . (14)

Figure 1

IV Tree level formulae

In this section we discuss the pair production of squarks in e+e− collisions. The

process e+e− → q̃i q̃j proceeds via γ and Z exchange, see Fig.2.

Figure 2

Using the results just obtained we get the cross section at tree level for unpolarized

beams:

σ0 =

√
2πα2λ

3/2
ij

s

[
e2

q|δij|2 −
eqve

4c2
W s2

W

(cijδ
+
ij + c+

ijδij).DγZ +
v2

e + a2
e

16c4
W s4

W

|cij|2DZZ

]
, (15)

where s is the c.m. energy squared, λij =
[
(s−m2

i −m2
j)

2 − 4m2
i m

2
j

]
, eq is the charge

of the squarks (et = 2/3, eb = −1/3) in the units of e(=
√

4πα), ae = −1, ve = −1+4s2
w

(with sW ≡ sinθW , cW ≡ cos θW ), and

DγZ =
s(s−M2

Z)

(s−m2
Z)2 + m2

ZΓ2
Z

, (16)

DZZ =
s2

(s−m2
Z)2 + m2

ZΓ2
Z

. (17)
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V SUSY - QCD corrections

The SUSY QCD corrected cross section, corresponding to Fig. 3 can be written as

σ = σ0 + δσ. (18)

Figure 3. Feynman diagrams for the lowest order SUSY - QCD corrections to e+e− → q̃iq̃j

Here

δσ =
πα2λ

3/2
ij

s

αs

3π
Re{δA1 + δA2 + δA3 + δA4 + δA5}, (19)
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with

δA1 =
{
iδiiδjj2

[
B1(m

2
i , m2

g, m2
i ) + B0(m

2
i , m2

g, m2
i ) + B1(m

2
j , m2

g, m2
j)

+ B0(m
2
j , m2

g, m2
j)− (2s− 2m2

i − 2m2
j −m2

g)(C11 + C0)
]

+ 8δii

[
B1(m

2
i , m2

g, m2
i ) + 2B0(m

2
i , m2

g, m2
i )
]

− iδiiδii

[
A(m2

i ) −m2
gB0(m

2
i , m2

g, m2
i )
]

+ 4i

2∑

k=1

[(
A(m2

q)−m2
gB0(m

2
i , m2

g̃, m2
q)
)
δki

− (mg̃δki −mqmg̃Cki)B0(m
2
i , m2

g̃, m2
q) + 2SikSikA(m2

k)
]}+

.[
e2

q|δij|2 +
(v2

e + a2
e) |Cij|2

16C4
W S4

W

DZZ −
eqve[Cijδ

+
ij + C+

ij δij]

4C2
W S2

W

DγZ

]
, (20)

δA2 = 2
{
δij

[
(2m2

g̃ + m2
i + m2

j + m2
qα + m2

qβ ) (C ′
11 + C ′

0)−B0(m
2
i , m2

g̃, m2
qβ)

− B0(m
2
i , m2

g̃, m2
qα) + (m2

qα + m2
qβ + 0.5s + 0.5m2

i + 0.5m2
j + 2mqαmqβ ).C ′

11

]

− 2mg̃(mqβ + mqα).Eij(C
′
11 + C ′

0)
}+

(e2
qδij), (21)

δA3 = 2
{
−δijRL

[
(2m2

g̃ + m2
i + m2

j + m2
qα + m2

qβ)(C
′
11 + C ′

0)−B0(m
2
i , m2

g̃, m2
qβ )

− B0(m
2
i , m2

g̃, m2
qα) + (m2

qα + m2
qβ + 0.5s + 0.5m2

i + 0.5m2
j ).C

′
11

]

+ 2mg̃(mqβCijRL + mqαCijLR)(C ′
11 + C ′

0)− 2mqαmqβCijC
′
11

}
+

eqveδij

2C2
W S2

W

DγZ ,

(22)

δA4 = 2Eij

{
δij

[
(2m2

g̃ + m2
i + m2

j + m2
qα + m2

qβ)(C
′
11 + C ′

0)−B0(m
2
i , m2

g̃, m2
qβ)

− B0(m
2
i , m2

g̃, m2
qα) + (m2

qα + m2
qβ + 0.5s + 0.5m2

i + 0.5m2
j + 2mqαmqβ ).C ′

11

]

− 2mg̃(mqβ + mqα).Eij(C
′
11 + C ′

0)
}

+
eqveδij

2C2
W S2

W

DγZ , (23)

δA5 = 2Eij

{
δijRL

[
(2m2

g̃ + m2
i + m2

j + m2
qα + m2

qβ )(C ′
11 + C ′

0) −B0(m
2
i , m2

g̃, m2
qβ )

− B0(m
2
i , m2

g̃, m2
qα) + (m2

qα + m2
qβ + 0.5s + 0.5m2

i + 0.5m2
j ).C

′
11

]

+ 2mg̃(mqβCijRL + mqαCijLR)(C ′
11 + C ′

0)− 2mqαmqβCijC
′
11

}
+

v2
e + a2

e

16C4
W S4

W

DZZ .

(24)
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and

δijRL = CqRRq̃
i1R

q̃
j1 + CqLRq̃

i2R
q̃
j2,

CijLR = CqLRq̃
i1R

q̃
j2 + CqRRq̃

i2R
q̃
j1,

CijRL = CqRRq̃
i1R

q̃
j2 + CqLRq̃

i2R
q̃
j1,

Eij = Rq̃
i1R

q̃
j2 +Rq̃

i2R
q̃
j1,

Sij = Rq̃
i1R

q̃
j1 −R

q̃
i2R

q̃
j2,

C0 = C0(m
2
i , s,m

2
j ,m

2
g,m

2
i ,m

2
j),

C11 = C11(m
2
i , s,m

2
j ,m

2
g,m

2
i ,m

2
j),

C ′
0 = C ′

0(m
2
i , s,m

2
j ,m

2
g̃,m

2
qα,m2

qβ),

C ′
11 = C ′

11(m
2
i , s,m

2
j ,m

2
g̃,m

2
qα,m2

qβ ).

We now turn to the numerical analysis of the SUSY - QCD corrections.

Figure 4a

Figure 4b
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Figure 4c

Figure 4d

Figure 4. Cross sections and their corrections of (a) e+e− → t̃1t̃1, (b) e+e− → t̃2t̃2,

(c) e+e− → b̃1b̃1, and (d) e+e− → b̃2b̃2 as a functions of Φ, for cos θt = cos θb = 0.5;√
s = 1000 GeV, mt̃1 = mb̃1

= 400 GeV, mt̃2 = mg̃ = 600 GeV, mb̃2
= 450 GeV.

In Fig. 4 we show the φ ≡ ϕq dependence of the σ0
R/σ0

C , δσ0
R/δσ0

C and δσC/σ0
C ,

with R and C indices corresponding to the cases of real and complex parameters

respectively. The input parameters are:
√

s = 1000 GeV, mt̃1 = 400 GeV, mt̃2 = 600

GeV, mb̃1
= 400 GeV, mb̃2

= 450 GeV, mg̃ = 600 GeV, | cos θt̃| = | cos θb̃| = 0, 5.

Here we concentrate on the range of the complex phase ϕq of the Aq-parameter, it

must be less than of order 10−2 − 10−3 to avoid generating electric dipole moments for

the neutron, electron, and atom in conflict with observed data [11]. In the range of φ

shown, σ0
R/σ0

C varies from 100% to 99% in cases of t̃1t̃1 or t̃2t̃2 productions (Fig. 4a,

Fig. 4b) and is about from 100% to 99.5% and 100% for b̃1b̃1 and b̃2b̃2 productions

(Fig. 4c, Fig. 4d).

The corrections δσ0
C/σ0

C are from −28.4% to −25%, from −38.8% to −36.5%, and

from −45.5% to −42.5% for the t̃1t̃1, t̃2t̃2, b̃1b̃1 and b̃2b̃2 productions, respectively. We

have also computed δσ0
R/δσ0

C . It is about from 99.5% to 96.5%, from 99.5% to 93%,

from 100% to 99.5%, and from 100% to 93%, for the above - mentioned processes,

respectively.
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VI Conclusions

In this paper, we have calculated the QCD radiative corrections to the production of

squarks in e+e− collisions within the MSSM with complex parameters. In particular,

we focus on the CP phase dependence of the production cross sections for e+e− → q̃iq̃j .

From numerical results, we have found that the effects of the phases on the cross sec-

tions can be quite significant in a large region of the MSSM parameter space. This

could have important implications for t̃i and b̃i searches at future colliders and the

determination of the underlying MSSM parameters.
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