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Abstract

The harmonic relativistic ion cyclotron instability driven by Mev α-particles in thermal

deuterium plasmas confined by non-uniform magnetic fields is studied with gyrokinetic theory.

An integral dispersion equation is derived and solved numerically. The results provide clear

evidence for the existence of the instability of α-particle cyclotron high harmonics in burning

plasmas of one fast and one slow ion species. The characteristics of the modes are found to

depend on magnetic non-uniformity parameter and α-particle density rather strongly.
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1 INTRODUCTION

The relativistic electron cyclotron instability in magnetized plasmas has been an active research

area for the last four decades. The mechanism is significantly appreciated and widely applied

in fusion research, space plasma, as well as in microwave generation technology. On the other

hand, the concept of relativistic ion cyclotron instability was suggested by Chen a few years

ago1−3 and studied more in detail recently.4 It was shown with particle in cell simulation and

with local gyrokinetic theory that relativistic ion cyclotron instability may occur in a variety

of plasma systems due to the difference of mass deficits between fast and slow ions. While the

studies on this subject provide an opportunity to explore novel mechanism for coherent wave

emission, the importance of the studies is to explore means for energy extraction from fusion

produced Mev α-particles through plasma wave excitation or amplification at the expense of

energetic α-particles. The latter is one of the major concerns in burning fusion plasmas and,

therefore, contracts considerable research attentions.5−7 Nevertheless, most of the past studies

were performed for plasmas in uniform magnetic field configurations. Therefore, the effect of

magnetic field non-uniformity is one of the major issues raised when the theory is applied to

realistic laboratory and space plasma systems where magnetic fields are truly non-uniform.

The harmonic relativistic ion cyclotron instability is studied with gyrokinetic theory in non-

uniform magnetic field configurations in this work. An integral dispersion equation is derived

and a computer code for solving the equation is developed. Preliminary numerical results are

obtained and provide the evidence for the existence of the instability in plasmas of one fast

and one slow ion species when magnetic fields are non-uniform. In Sec. 2, we introduce the

physical model employed and the basic eigenmode equation obtained in a non-uniform magnetic

geometry. Numerical results are presented in Sec. 3. Finally, conclusions of the present study

and discussion are given in Sec. 4.

2 PHYSICAL MODEL AND EIGENMODE EQUATION

In a non-uniform magnetic geometry, the equilibrium magnetic field is written as

B = B0[1 + b1(x)]z, (1)

with

LB = [
db1(x)

dx
]−1 � v⊥

Ω
, λ, (2)

where LB is the measure of the magnetic non-uniformity, v⊥ and Ω are the perpendicular velocity

component and the gyro-frequency for charged particles, respectively.

The particle orbit to the lowest order in L−1
B may be written as

x′ − x = −v⊥
ωc

[sin(θ − ωcτ) − sinθ], (3)
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y′ − y =
v⊥
ωc

[cos(θ − ωcτ) − cosθ] + udτ, (4)

and

z′ − z = v‖τ, (5)

where

ωc = ω0[1 + b1(xg)], ω0 =
qB0

mcγ
,

xg = x+
v⊥
ω0

sin θ, ud = − γv2
⊥

2ΩLB
,

γ =
1√

1 − v2

c2

=

√

1 +
p2

m2c2
, Ω =

qB

mc
.

All the symbols have their usual meaning such as m is the rest mass, q is the charge, c is the

speed of light in vacuum, p is momentum. xg is the position of the particle guiding center, that

is a constant of motion. ud is the magnetic gradient drift velocity with the relativistic effect

included.

Electrostatic perturbations are considered only with,

E = −5 φ̃, (6)

and

φ̃(r, t) = φ̃(x)e−i(ωt−ky−k‖z). (7)

From the linearized Vlasov’s Equation, it is easy to get the perturbation of distribution function

as

f̃1(r,p, t) = q

∫ t

−∞
5′φ̃(r′, t′) · 5pf0(p)dt′, (8)

where f0 is the equilibrium distribution function, r is the position in real space. Introducing

f̃1(r,p, t) = f̃1(x,p)e−iωt+ikyy+ik‖z. (9)

then

f̃1(x,p) = q

∫ t

−∞
[(ex

d

dx′
+ ikyey)φ̃(x′) · 5pf0]e

−iω(t′−t)+iky(y′−y)+ik‖(z′−z)dt′. (10)

The perturbation of density in real space as a function of x is

ñ1(x) =

∫
f̃1(x,p)dp. (11)

Performing Fourier transform for both φ̃(x) and ñ1(x),

g̃(x) =
1√
2π

∫ ∞

−∞
ĝ(k)eikxdk, (12)
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where g represents φ or n1, then the density perturbation in k-space is obtained as

n̂1(k) =
2πq

m

∑

l

1√
2π

∫ +∞

−∞
dk′

1√
2π

∫ +∞

−∞
dxei(k

′−k)xφ̂(k′)×

∫
p⊥dp⊥dp‖f0{

k⊥k
′
⊥

2Ωωre
[Jl−1(α)Jl−1(α

′) − Jl+1(α)Jl+1(α
′)]+

1

(γωre)2
Jl(α)Jl(α

′)[γk2
‖ −

γlky
LB

− 1

γc2
(
k‖p‖
m

+ lΩ)2 − kyud
c2

(
k‖p‖
m

+ lΩ)]}eil(ψ′−ψ), (13)

where

α =
p⊥k⊥
mΩ

, k2
⊥ = k2 + k2

y ,

α′ =
p⊥k

′
⊥

mΩ
, k′2⊥ = k′2 + k2

y,

ωre = ω −
k‖p‖
γm

− lΩ

γ
− kyud,

sinψ =
ky
k
, sinψ′ =

ky
k′
,

Jn is Bessel function of order n with n = l−1, l, l+1. The terms with the factor (k‖p‖/m+ lΩ)

represent the contributions from relativistic effects.

Poisson’s Equation

52φ(r) = −4π
∑

β

qβñβ(r), (14)

is converted into the k-space as

(k2
y + k2 + k2

‖)φ̂(k) = 4π
∑

β

qβn̂β(k). (15)

Substituting Eq. (13) into Eq. (15), we get the integral dispersion equation

(k2
y + k2 + k2

‖)φ̂(k) =

∫ ∞

−∞

dk′√
2π
K(k, k′)φ̂(k′), (16)

where

K(k, k′) = 2π
∑

β

ω2
pβ√
2π

∫ +∞

−∞
dxei(k

′−k)x×

∑

l

eil(ψ−ψ
′)

∫
p⊥dp⊥dp‖f0{

k⊥k
′
⊥

2Ωωre
[Jl−1(α)Jl−1(α

′) − Jl+1(α)Jl+1(α
′)]+

1

(γωre)2
Jl(α)Jl(α

′)[γk2
‖ −

γlky
LB

− 1

γc2
(
k‖p‖
m

+ lΩ)2 − kyud
c2

(
k‖p‖
m

+ lΩ)]},

ωpβ is the plasma frequency of species β.

The dispersion equation, Eq. (16) may be simplified with a few limits. In the limit of ky = 0,

we have ψ = ψ′ = 0, k2
⊥ = k2 and k′2⊥ = k′2. In addition, the magnetic gradient drift effects
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disappear. The equation may be further simplified with the assumption of k‖ = 0, and therefore

ωre = ω − lΩ/γ. In this case, the integral equation becomes

k2φ̂(k) =

∫ ∞

−∞

dk′√
2π
K(k, k′)φ̂(k′) (17)

where

K(k, k′) =
∑

β

Kβ(k, k
′) = 2π

∑

β

ω2
pβ

1√
2π

∫ +∞

−∞
dxei(k

′−k)x
∑

l

∫
p⊥dp⊥dp‖f0×

{ k⊥k
′
⊥

2Ωωre
[Jl−1(α)Jl−1(α

′) − Jl+1(α)Jl+1(α
′)] − (lΩ)2

γ3(ωrec)2
Jl(α)Jl(α

′)}. (18)

The species subscript β is omitted in part of the above equations.

Now, we calculate the contributions from each species.

For electrons, α = α′ ' 0 and

Jl(0) =

{
1 if l = 0
0 otherwise

The integration over velocity space gives 1/2π, then, the terms left are

kk′

2Ωe

[
1

ω − Ωe

− 1

ω + Ωe

] =
kk′

ω2 − Ω2
e

' −kk
′

Ω2
e

, (19)

since Ωe � ω.

The contribution from the electrons to the kernel K(k, k ′) is

Ke(k, k
′) = −k

ω2
pe

Ω2
e0

k′√
2π

∫ +∞

−∞
dxei(k

′−k)x 1

[1 + b1(x)]2
. (20)

For the slow ions with Maxwellian velocity distribution, we have

γs ' 1, ωres ' ω − lsΩs, (21)

and ∫ ∞

0
dxe−λxJl(2α

√
x)Jl(2α

′√x) =
1

λ
Il(

2αα′

λ
) exp(−α

2 + α′2

λ
), (22)

where Il is the modified Bessel function of order l. Therefore, the contribution from the slow

ions is

Ks(k, k
′) = ω2

ps

∫ +∞

−∞

dx√
2π
ei(k

′−k)x 2lsΩs

ωresv2
ts

(1 − lsΩs

2ωres

v2
ts

c2
)Ils(

kk′v2
ts

2Ω2
s

) exp(−v
2
ts(k

2 + k′2)

4Ω2
s

)

+
√

2πδ(k − k′)
ω2
ps

v2
ts

4

l2f (Zfms/mfZs)2 − 1
I1(

kk′v2
ts

2Ω2
s

) exp(− (k2 + k′2)v2
ts

4Ω2
s

). (23)
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The second part of Eq. (23) is the contribution from the first harmonic after neglecting the

second term in Eq. (18).

The integration over velocity space for the fast ions with isotropic velocity distribution

function f0 = δ(p− p0)/4πp
2
0 is performed analytically and results in,

2π

∫
p⊥dp⊥dp‖f0{

k⊥k
′
⊥

2Ωfωre
[Jlf−1(α)Jlf−1(α

′) − Jlf +1(α)Jlf +1(α
′)]

− (lfΩf )
2

(γfωre)2γfc2
Jlf (α)Jlf (α′)} =

1

2

∫ π

0
{ kk′

2Ωfωref
[Jlf−1(α0)Jlf−1(α

′
0)−

Jlf+1(α0)Jlf +1(α
′
0)] −

(lfΩf )
2

γ3
f (ωrefc)

2
Jlf (α0)Jlf (α′

0)} sin θdθ, (24)

where

α0 =
p0k

mfΩf

sin θ, α′
0 =

p0k
′

mfΩf

sin θ

are taken the values at x = 0 surface as an approximation.

Consequently, the contribution from the fast ions to the kernel is

Kf (k, k
′) =

ω2
pf

2
√

2π

∫ +∞

−∞
dxei(k

′−k)x
∑

lf

∫ π

0
{ kk′

2Ωfωref
[Jlf−1(α0)Jlf−1(α

′
0)−

Jlf+1(α0)Jlf +1(α
′
0)] −

(lfΩf )
2

γ3
f (ωrefc)

2
Jlf (α0)Jlf (α′

0)} sin θdθ, (25)

where ωref = ω − lfΩf/γf .

3 NUMERICAL RESULTS

The integral dispersion equation, Eq. (18), has to be solved numerically. The schemes developed

in the studies of drift instabilities are employed and the computer code HD7 is modified for the

purpose.8 The parameters used are the same as that in Ref. 3. The energetic α-particles have

energy of 3.5 Mev without a preferential direction in momentum space. The rest mass of an

α-particle is 7294.2me. The slow deuterium ions have temperature of 5 kev and rest mass of

3670.2me. The background magnetic field B0 = 5 T. The deuteron density is nD = 1013cm−3.

The high harmonic lf = 13 quadratic instability is considered only.

The magnetic field is assumed to be parabolic for simplicity,

B(x) = B0(1 + εbx
2), (26)

where the parameter εb is the measure of magnetic non-uniformity.

The typical eigenfunctions φ̂(k) (a) and φ(x) (b) in k-and x-spaces are shown in Fig. 1.

The parameters for the magnetic gradient and α-particle density are εb = 0.132 × 10−2 and
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nf/ne = 0.4485×10−2, respectively. The heavy and light lines are the real and imaginary parts,

respectively. It is clearly shown that the modes are confined in limited regions in both the wave

vector and coordinate spaces. The maximum in k-space around k ' 13 is close to the local

results while the stable gaps there disappear here. 1,2

The normalized growth rate (a) and real frequency (b) as function of the magnetic non-

uniformity parameter εb are given in Fig. 2 for nf/ne = 0.998 × 10−3 (the light lines) and

0.4485×10−2 (the heavy lines), respectively. Here, ∆ω̂r = ωr/Ωf0− lf is shift of the normalized

frequency from the harmonic number. The numbers here are of the same order of magnitude

as what were obtained from local analysis. 1,2 However, the differences between the local and

non-local analyses are clear. There are no eigenmode structures and, therefore, no unstable

modes in the non-local analysis when the magnetic non-uniformity goes to zero while the results

obtained with the local theory clearly show the existence of the instability in uniform magnetic

fields. This is understandable since the eigenmode equation can only govern localized modes

while the local treatment is fairly suitable for uniform cases. On the other hand, The eigenmode

structures disappear and the modes become stable when the magnetic non-uniformity goes too

high due to the resonance characteristics of the cyclotron instability. It is also shown that

the mode growth rate increases when the fast ion density decreases for low and intermediate

magnetic non-uniformity (εb ≤ 0.0016) while the dependence seems rather weak for high non-

uniformity. In addition, it seems that there is an optimum non-uniformity parameter for each

value of density ratio nf/ne, at which the growth rate reaches a maximum. Here, the optimum

εb’s are 0.001 and 0.00176 for nf/ne = 0.998 × 10−3 and 0.4485×10−2, respectively.

The normalized growth rate (a) and real frequency (b) as function of the α-particle density

are given in Fig. 3 for εb = 1.075 × 10−03 (the light lines) and 1.32 × 10−03 (the heavy lines),

respectively. It is reported from the local theory that, for the sixteenth α-particle harmonic,

the mode maximum growth rate (with respect to kx) is proportional to the square root of α-

particle density while its corresponding wave number is not sensitive.3 Here, the mode growth

rate increases with α-particle density only in the parameter regime nf/ne ≤ 0.002. It saturates

and starts to decrease for further increasing of α-particle density. The maximum growth rates

occur at nf/ne ' 0.2198 × 10−2 and 0.2433 × 10−2 for εb = 1.075 × 10−2 and 1.32 × 10−2

,respectively. The decreasing of the growth rate for higher fast ion density is in agreement with

the local analysis which indicates that the cyclotron waves at certain wavelengths become stable

as the fast ion density goes higher.3 It is also shown that the growth rate for εb = 1.075 × 10−2

is higher than that for εb = 1.32 × 10−2 when nf/ne ≤ 0.15 × 10−2 and vice versa although the

difference is not significant.

7



4 Conclusions and discussion

The relativistic ion cyclotron instabilities at high harmonics driven by Mev α-particles are

studied with gyrokinetic theory in non-uniform parabolic magnetic fields of a slab geometry.

The existence of the modes in such configurations is demonstrated. It is clearly shown that the

modes with limited wave vector spectrums are confined in limited regions of the real space. In

addition, there seems to be an optimum non-uniformity parameter for each value of density ratio

nf/ne, at which the growth rate reaches a maximum. The growth rate decays rather rapidly

away from the optimum non-uniformity.

For fixed magnetic non-uniformity, the mode growth rate increases with α-particle density in

the parameter regime nf/ne ≤ 0.002. It saturates and starts to decrease for further increasing of

α-particle density. The maximum growth rates occur at nf/ne ' 0.2198×10−2 and 0.2433×10−2

for εb = 1.075 × 10−2 and 1.32 × 10−2, respectively.

Eigenfunction structures have not been found for negative εb and linear (B = B0(1 + εbx)

configurations although attempt has been made. One possibility for such failure is that eigen-

modes do not exist at all in such configurations due to physical reasons. The other is numerical

issues including appropriate guess eigenvales provided for the code. The linear configurations

are more relevant to tokamak devices and are worthwhile for further investigation. Such works

are in progress and results will be presented in the near future.
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functions of magnetic non-uniformity parameter εb for nf/ne = 0.998 × 10−3 (the light lines) and 0.445 × 10−2

(the heavy lines), respectively.
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