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Abstract

In this paper we consider the following Yamabe type family of problem (P.) : —Au. =

n+2
—2
ug

, ue >0in A., u. = 0 on JA., where A, is an annulus-shaped domain of R"™, n > 3, which
becomes thinner when ¢ — 0. We show that for every solution u., the energy [ A |Vuc|?, as well
as the Morse index tends to infinity as € — 0. Such a result is proved through a fine blow-up
analysis of some appropriate scalings of solutions whose limiting profiles are regular as well as
singular solutions of some elliptic problem on R", a half space or an infinite strip. Our argument

involves also a Liouville-type theorem for regular solutions on the infinite strip.



1 Introduction and Main Results

In this paper we consider the following Yamabe type family of problem:

n+2

—Au, = ul? in A

() Ue > 0 in A,
Ug = 0 on 0A.,

where A, is an annulus-shaped open domain of R™, n > 3 and ¢ is a small positive parameter.
The domain A, becomes thinner as ¢ — 0 (see the precise definition of A, below).
We define on Hg(A:) the functional

1 n—2 2n_
L) =5 [V = 2 [ (11)

whose positive critical points are solutions of (P;).

We denote by m(u.) the Morse index of u. as a critical point of the functional J., that is the
4

number of negative eigenvalues of the linearized operator —A — Z—J_rgu"’2 in HY}(A:) N H?(A.).

We are mainly concerned with what happens to the energy and the Morse index of u. when
€ tends to zero. Our main motivation for investigating such a behavior of the solutions comes
from the fact that information about the energy and or spectral properties is closely related to
the existence and multiplicity of solutions of nonlinear equations having variational structure. It
is also related to the geometric properties of the solutions in PDE problems. For details please
see works of Bahri [2], Bahri-Lions [4], De Figueiredo-Yang [10], Lazer-Solimini [16], Pacella [18],
Ramos-Terracini-Troestler [19], Solimini [24] and Yang [26], [27].

In [5], Bahri and Lions have shown that given a sequence of solutions of some superlinear and
subcritical elliptic equations with Dirichlet boundary conditions in a fixed smooth and bounded
domain of R™, m(ug) — +oc if and only if ||ug ||~ — 400, provided that the nonlinearity has a
prescribed behavior at infinity. Later Harrabi-Rebhi-Selmi [14], Yang [27], and Aubin-Bahri [1]
extended this result to more general subcritical nonlinearities.

In the critical case, Bénichou and Pomet [8] proved that for radial solutions on standard thin
annulus, the energy and the Morse index tend to infinity. Our goal in this paper is to prove that
this result holds true for all solutions, and also on nonstandard annuli.

To be more precise, we need to introduce some notations.

Let f be any smooth function
f : Rn_l I [172] 3 (917 "'79n—1) — f(elv "'7971—1)

which is periodic of period 7w with respect to 04, ...,0,,_s and of period 27 with respect to 8,,_1.
We set

Si(f)={zeR"/r=f(b1,....,0n-1)},
where (7,61, ...,0,_1) are the polar coordinates of x.

For e positive small enough, we introduce the following map

ge : S1(f) — 9=(S1(f)) = Sa(f), o+ ge(x) = x + eng,



where n, is the outward normal to S1(f) at x. We denote by (A:)s>o the family of annulus
shaped open sets in R™ such that 0A. = Si(f) U Sa(f).

Our main result is the following.

Theorem 1.1 Let u. be any solution of (P:). We then have

(1) / |Vue|? — 400, when e—0

€

(17) m(us) — +oo, when e— 0,
where m(ug) is the Morse index of u. as a critical point of the functional J. defined by (1.1).

Remark 1.2 Statement (i) of Theorem 1.1 has been already proved in [6] and [7], using different
arguments. However our argument, which is drastically different from theirs, proves at the
same time the two statements displaying a deep connection between the energy and the spectral

properties of the solutions.

During the process to prove Theorem 1.1 we perform some blow up and find limit equations
on R™ or a half space or an infinite strip, and it turns out that the following Liouville-type

theorem that we prove in Section 4 is useful.

Theorem 1.3 Let u € C%(Q) be a positive bounded solution of

n+2 .
—Auy = wur—2 n)

(1) u = 0 ondQ
m(u) < oo,

where m(u) is the number of negative eigenvalues of —A — ”—fguﬁ in HY(Q)NH2() and where

Q is the strip defined by
Q={( 2,) eER"' xR/a <z, <b}, a,bcR.
Then u =0 in €.

Our proof, which is by contradiction, relies on a careful analysis of successive scalings of the
solutions. Such scalings give rise to singular solutions of limiting equations as well as regular
ones. The analysis of the regular solutions is based on the above Liouville type Theorem, while
the analysis of the singular case uses in a crucial way the blow up analysis introduced by R.
Schoen, and studied extensively by Y.Y. Li. In particular, the isolated simple properties of the
blow up points in the Yamabe equation on locally conformally flat manifolds, is a cornerstone
in our analysis as well as the extensive use of Pohozaev identity. However, our analysis bears
new features which are not present in the above mentioned works. A drastic difference is the
fact that, unlike them our domain changes, and a big source of worry is that it may become
degenerate during the blowing up process. Therefore our first aim is to scale in such a way that

the limit domain does not degenerate.



Another main ingredient of the proof of Theorem 1.1 is to show that if the Morse index of
the solutions is a positive integer m then also the number of blow up points of the solutions
remains bounded by m. This is similar to what happens in other asymptotical critical problems
described by El Mehdi-Pacella [11].

The organization of the remainder of the present paper is outlined as follows. In Section 2
we start our blowing up scheme, blowing up first at the global maximum of u., then finding
another point which escapes the first one under appropriate scaling, and conclude that each of
them contribute to the total energy by at least a fixed amount. Section 3, devoted to the proof
of Theorem 1.1, shows that the process started in section 2 does not stop after finitely many
steps, and that each point contributes by at least one to the total index of u., proving that
both the energy and the Morse index must be infinite. In section 4 we prove Theorem 1.3, while
in the Appendix we recall some well known facts about the blow up analysis of Yamabe type

equations.

2 The Blowing up process

To prove Theorem 1.1, we argue by contradiction, that is, we suppose that (P;) has a solution

ue which satisfies

(H)) / Va2 <O or (Hs)  miug) < Cs,

13

where C7 and C5 are given positive constants independent of e.

We first recall the following result
Lemma 2.1 [6] The following holds true

1. / |Vue|? /= 0, when e — 0.
Ae

2. My — +00, when ¢ — 0, where My = ||uel|poo(a,)-
2
3. de¢ > 0 such that for € small enough, we have le’:f >c.

2
Now let Ay, = Ml’jE_Q (A — a1), where a1 € A. such that M; . = u.(a; ), and we denote by
ve the function defined on A, by

=2
0e(X) = My tuc(ar e + M7 X). (2.1)
It is easy to see that v, satisfies

n42
—Ave = vr?, 0<wv. <1 in A, (2.2)
e (0) ve =0 on 0A; ..

I
\_I—‘

Due to Liouville type Theorems and Pohozaev identity on the limit domain, we have the following

lemma:



Lemma 2.2 There holds
2
er,l;2 d(al,maAa) — 400, when € — 0,

where d(a1,0A;) denotes the distance of aj . to the boundary of A..

Proof. Let ! = lim. g M127/E("_2)d(a1,5, 0A.). According to the proof of Lemma 2.3 of [6], we
have that [ > 0. Arguing by contradiction, we suppose that [ < co. Then it follows from (2.2)
and standard elliptic theories that there exists some positive function v, such that (after passing

to a subsequence), v. — v in C}

1o (£2), where € is a half space or a strip of R", and v satisfies

{—Av:vz_g, O<v < 1 in Q
v(0) = 1, v = 0 on 00.
But if € is a half space, by [12], then v must vanish identically and thus we derive a contradiction.
If Q is a strip of R™ and condition (H;) is satisfied, by Pohozaev Identity (see e.g. Theorem
II1.1.3 [24]), then v = 0 and thus we also obtain a contradiction in this case. Lastly, if Q is a
strip of R™ and condition (Hs) is satisfied, by Theorem 1.3, we also find a contradiction. Thus

our lemma follows. O

From Lemma 2.2, we derive that there exists some positive function v, such that (after

passing to a subsequence), v. — v in C}_(R™), and v satisfies

—Av = vz_tg, v>0 in R”
(2.3)
v(0) = 1, Vou0) = 0.
It follows from [9], that
U(X) = 5(0704”)(X)7
where a,, = (n(n — 2))~%/2 and where, for a € R” and \ > 0, d(a,») denotes the function
AT ) n—2
dan () = co —, with ¢g = (n(n—2)) % . (2.4)
(1+ Xz —al?) 2z
We recall that ¢, ) are the only minimizers for the Sobolev inequality
S = inf{|| V| 2o e [l 2%, 5t |Vl € L2, u € L7 u # 0} (2.5)
T L )
We note that, by the above arguments, we have for any R > 0
2n 2n_
/ ul ™ (z)dr — / 5(’6*; )(:E)d$ as € — 0, (2.6)
Blar.e,55) B(O,R) "
where A\; . = Mi{:_(”—?).
To proceed further, we introduce the following function
n—2 -
Ue(X) =dy 2 uc(are + droX), X €A :=d (A —a1.), (2.7)

5



where di . = d(ay¢,0A,).

Notice that from Lemma 2.2, we know that:
U:(0) = dy 2 ue(are) — +o0, as ¢ — 0.

We observe that the limit domain of A, is a strip or a half space of R, we denote it by II in
both cases.

As a first step of our blowing up process, we prove the following proposition.

Proposition 2.3 We have that

he := max (\x - alg\nT_zuE(a:)) — +00, as € — 0.
T€AL ’

Proof. Arguing by contradiction, we suppose that
he < C, with Cis a positive constant independent of .

Thus, we have

|X|("=2/24,(X) < C, VX € A..
In particular, we have

(X)) < C|X|2=/2 vX e B(0,1/2)\{0}
U (0) — 400.

Therefore 0 is an isolated blow up point of . (see the Appendix for definition). Then it
follows from Proposition 5.6 that 0 is an isolated simple blow up (see Appendix for definition)
in B(0,1/2). Applying now Proposition 5.5 of the Appendix we derive that there exist positive

constants ¢; and ¢y such that
c1:(0)HyP " < e(y) < 2t (0) Ty for Jyl < (1/4).
Considering now the linear equation
Au+Vu =0, with V = a‘g/(”‘”,
we deduce from Lemma 5.3 and Harnack inequality(see [13]) that
i (y) < e2u(0) "y, Vy e K, (2.8)

where K is any compact set of A. which does not contain 0.

Now we set

It is easy to check that v, satisfies

AV aa(o)”__iﬁsn_Q, Ve >0 in /le
Ve = 0, on O0A,



and

0:(0) — 400, ase—0

alyl ™" < 0(y) < eyt Wy EK,

where K is any compact set of A.\{0}.

It follows from standard elliptic theories that
ve — aGp(0,.) in CE.(I0),

where G1(0,.) is the Green’s function of Laplacian operator with Dirichlet boundary condition
defined on the limit domain IT (half space or strip) and where « is a positive constant.

Such a Green’s function can be written as
Gn(0,z) = ]a:|2_” — H(0,x),

where by the Maximum principle H(0,z) > 0.
We now observe that a,. satisfies
n+2

—At. =ul"? in B,:= B(0,r) for any r <1/2.

Applying Pohozaev Identity, see for example Corollary 1.1 of [17], we derive that

n—2 2 3 i
—Tr u;;‘n - B(T7«T7U5,VUE), (2‘9)
2n 9B, 9B,
where
i Vi) = "2y % TG o
B, Vi) = —5 ey = 5|Vl 4 7(50)°

On one hand, using (2.8), we obtain

n—29 20 i-(0) 2
r ut? < 675( ) )
2n Jap, rh

Multiplying (2.9) by @.(0)?, we derive that

i1 (0)? /aB B(r,z, ., Vi) = O <M> .

Using the homogeneity of the operator B, we obtain

- —4
/ B(r,z,5., V) = O (%) .
OB, r

In particular, we conclude that

lim B(r,xz,0.,V7e) =0, for 0 <r < 1/2. (2.10)
e—0 8BT



On the other hand, we have
7. — aGp(0,.)  in C*(0B,), for 0 <r < 1/2
and for r small enough
Gr(0,z) = |z[*™™ — H(0,0) + o(|z|), with |z| =r.

Thus we have

: ~ ~ (n — 2)2 21 gn—1
lim B(r,x,v.,Vv.) = ————H(0,0)a*|S" | >0
e—0,r—0 9B, 2

which contradicts (2.10) and then our proposition follows. )

Let as . € A. such that

n—2
2

ha = ‘a2,5 - a1,£| ua(a2,5)a

where h. is defined in Proposition 2.3. Now if we blow up at the point ag ., Proposition 2.3
implies that the image under the new scaling, of the first point a; . will escape to infinity, a fact
that we express loosely by saying that these points ignore themselves. However the domain may
become degenerate, that is its width becomes thinner and thinner along the blowing up process.

The following Lemma rules out such a situation.

Lemma 2.4 There exists & > 0 such that for every €, we have that:
A2 € >0,

where Ay . = ug(a2y5)2/(”_2).

%MLE —age|) N De, we set

Proof. For X € B(0,
2-n
we(X) = A2 ue(age + A3 LX),  with D = Ay e(Ac — agp). (2.11)
Recall that, for any = € A, we have
n—2 n—2 n—z n=2
[z — a1 2 ue(z) <lage —are| 2 us(age) =lage —a1e| 2 A2 .

Thus, for any x € A., we obtain

—2
ue () lag,e — al,s‘nT
<

n—2 — n—2
A2 | —a1el 2

But, for z € B(ag, W), we have

‘a2,5 - a1,£|

|«77 - CL1,5| 2 2



Hence

IS

s(iﬂz) < on-2)/2,
A2

,E

|a2,€ - a’l,€| )

for any 2 € B(agg, 5

Thus we obtain
n—2

A
w.(X)<2%, VX eB(©, %\am — as|) N D..
Arguing by contradiction, we suppose that
Agce — 0 as ¢ — 0.

Let as . € 0D, such that |as .| = d(0,0D,). We may assume without loss of generality that the

unit outward normal to 0D, at as. is e,, where e, is the nth element of the canonical basis of
R™.

Let
B(ah,,1) = {a' e R" ' /|2' —ay | < 1},
where
age = (ah,a5.) €R"' xR and z=(2,2") e R"" xR
Let
T, = (B(ay,, 1) x [-1,1]) N D,
and

OT! = 9(T.)NdD. and 912 =9(1.)N D..

We denote by G, the Green’s function of Laplace operator with Dirichlet boundary condition
defined on T;. Let X € T such that X = (.e,, with —1 < 3. < 1.

By easy computations, one can check that

Gr (X, y)dy < / dy O (Macc) .

T 1. | X —yn2

Now we observe that

2 oG
we(X) = e ( G (X, w2 dy — / 9. x, y>w€<y>dy)
T or. OV

n+

= Cp ( GTE (X7 y)w5n72 dy — / B & (X7 y)wa (y)dy> )
T. ar2 oV

where ¢, is a positive constant.

But, since X = (.e,, we have

OGT.
ov

Since w, < 2(”_2)/2, we derive that

(X,y) <e¢, Vye 8TE2.

ntp oG
Gr.(X.pui Hdy =0 0ee) and [ SE(X )y = O (o).
TE

T:

9



Thus we obtain
we(X) = 0 (Aac€),

and in particular w.(0) = 1 < cAg.e. Thus we derive a contradiction and therefore our lemma

follows. O
Now, since Ay e / 0 as ¢ — 0, we can prove, as in Lemma 2.2, that
Ao cd(age, 0A;) = +00 as € —0

and therefore there exist b € R™ and p > 0 such that the function w, defined by (2.11) converges
in Cj OC(]R") to 5(1,’ - Thus we have found a second blow up point as . of u. with the concentration

A2 defined by

_ b 5
a2, = G2 + ) , and >\2,€ = ,U)\Ze'
£
Observe that 5\275 € = A€ /+ 0 as € — 0, and therefore as above we have that
5\2,5d(&275, 0A;) —» +o0 as e —0.

Summarizing, we have built two points a1 ., a2 . with concentrations A . and 5\275 such that

Med(are, 0A:) — +00, Aged(Gze, 0A:) — +o00, as & — 0, (2.12)
2n
VR >0 / x)dr — / 5(’65 x)dr as € — 0, (2.13)
Blat,e,x;— ) B(O,R) n)
VR>O/ da:—>/ 5"2 Ydz as & — 0, (2.14)
B(as E,XR ) B(b, R
|a1,€ — 6_1/275|>\1’5 — 400, |a1,€ — 6_1/275|>\2’5 — 400, as &€ — 0. (2.15)

In this section , we have started a blowing up process, producing blow up points which ¢gnore
each other, and therefore contribute to the total energy by at least a fixed amount. Our goal
now is to prove that such a process does not stop after finitely many steps. Such a fact is a key
argument in the proof of Theorem 1.1. See Proposition 3.1, in the next section for a quantitative

statement of this fact.

3 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. To this aim we first prove that the process

started in section 2 does not stop after finitely many steps, actually we have:
Proposition 3.1 Let S = {z{,--- , 2}, p > 2, be such that

al(x?,(‘)AE)nT_2 ug(z5) 00 ase —0 for1 <i<p (3.1)

)

\xf—x?\nT_zug(xi)ﬂoo ase — 0 fori#j,1<i,5<p. (3.2)

Then

max d(z,S) 22u5(a:) — 00, ase — 0.
TEA:

10



Proof. Arguing by contradiction, we assume that:
There exists C' > 0, such that d(x,S)nT_QuE(a:) <C VzeA..
Without loss of generality, we may assume that:
d(x,, 0A:) = mini<i<p d(z5,0A;) .

We set

n—2 Tt —x

d;:d(w;,aAg); wg(X) :d§7 2 ug(d;X—i-JJ;); X; — st P
/4

Observe that X7 = 0. We distinguish two cases:

o 1st case: mini<i<p—1|X7| < miniy; | X7 — X5| .

In this case we prove the following lemma:

Lemma 3.2 There exists 6 > 0 such that

|Xf|267 forie{l,---,p—l}.

Proof. Without loss of generality we may assume that | X{| = mini<j<p—1 |X7|. Arguing

by contradiction, we assume that 7 := | X§| — 0. Consider:

W (X): =7 2 w(rX),where X = %’ so that |X§| = 1.
Observe that

d(X,51)"7 we(X) < C, where & = {0,X5,---, X5_1}

implies that:

Y|z we(y) < C forall [y| < §r,
ly — X5|"2" w.(y) < C forall |y— X5| <1
It follows that:

y|*7 i (y) < C for all Jy| < 1,
LN 2 )
ly — X" we(y) <Cforall |y— Xi| < 1.

Notice that:

£

) — 00

6(0) = 777 we(0) = a5 — 257 uc(x
o (X5) = |of — 25 "F ue(af) — oo
It follows that 0 and X; := lim._ Xf are isolated simple blow up, see the Appendix. Now
it follows from standard elliptic theories and properties of isolated simple blow up, that

lim. o @e(0)de(y) = h(y) in C, I\ S2)
h(y) >0, yell\S,,

11



where II is the limit domain after blowing up, h is harmonic outside its singular set Sy C Sa,
and Sy = {0, X1, ..., X, 1}, with X; = lim._o X§ for 1 <i <p— 1.

Observing that (0, X1) € S, we then deduce from Bécher’s Theorem (see e.g. [15]) and
the maximum principle that there exist some nonnegative function b(y) and some positive

constants My, Ms such that:

b(y) >0,  yell\{S\{0,X:1}}
Aby)=0  yel\{S\{0,X1}}
h(y) = My |y|* " + My |y — X1[> " +bly) y eI\ {S\ {0, X;}}.

Therefore for some constant A > 0, there holds:
h(y) = My |[y|> ™ + A+ O(y|) for y close to 0.

As usual we derive a contradiction like in the proof of Proposition 2.3. The proof of Lemma

3.2 is thereby completed. a
2nd case: mini<i<p—1|X7| > mingz; [ X7 — X5 .

Lemma 3.3 There exists 6 >0,  such that

minix| X; — X5| > 6 fori,j € {1,---,p—1}.
Proof. Without loss of generality, we may assume that
| XT = X5| = miny; | X7 — X5
Suppose by contradiction that:
oe = |X]—X5|—=0

and set
n—-2

ve(y) =0 2 we(oy+ X7).

It follows that v, satisfies:
n+2

—Av. =087 in Jy| < o%

ve > 0in |y|§ai8
Setting Y5 such that X§ = o0.Yy + X7, it is easy to see that:

{ve<y>sc|y|—”7‘2, forall [y| <3, 0.(0) — o.
<

ve(y) < Cly — Y25|_n772, for all |y — Y5| %, ve(Ys) — oo.

It follows that 0 and Y3 := lim._,¢ Y5 are isolated simple blow up, therefore arguing as in

the first case, we derive a contradiction. O

12



Coming back to the proof of Proposition 3.1, we see that, from Lemmas 3.2 and 3.3, there

exists & > 0, which does not depend on &, such that:

|X|HT_21U5(X) < C for every X € B(0, g)
‘X—Xﬂ%2 we(X) <C forevery X € B(Xig)

n—2

we(0) = (d)" 2 uc(xy) — oo.

We distinguish two cases:

| X{| = o0as € —0.

In this case 0 is the only isolated blow up point of w. and thus, arguing as in the proof of

Proposition 2.3, we derive a contradiction.

e There exists a constant C' > 0 such that | X{| < C.

In this case we argue as in the proof of Lemma 3.2 or Lemma 3.3 to derive a contradiction.

The proof of Proposition 3.1 is thereby completed. a

In the next proposition, we prove that at each blow up point constructed by our blowing up
scheme, the projection on H&(AE) of the bubble concentrating there, contributes at least by one

to the total Morse index of wu,.
Proposition 3.4 Let {x{, -+, 23}, p > 2, be such that:
al(x‘f,(‘)AE)n%2 ug(z5) 00 ase —0 for1 <i<p (3.3)
\xf—x?\nT_zug(xi)ﬂoo ase — 0 fori#j,1<i,5<p. (3.4)
Then m(uz) > p.

Proof. We begin by introducing some notation.

4
We denote by g the quadratic form associated to the linearized operator —A — Z—J_rgug”” defined
on H}(A:) N H?(A.). Thus, for v € H}(A:) N H?(A:), we have

n+2 4
— v 2_ n—2 2'
o) = [ vt -2

For a € A; and A > 0, we denote by P.d(, ) the projection on H}(A,) of the function d(a,n)
defined in (2.4), that is

APECS(a,)\):A(S(a,)\) in Aa and Peé(a)\):o on 8145

In order to prove our proposition, it is sufficient to prove the following, for € small,

p
q (Z aipaé(zf,)\f)> <0 Vea; €R, (3.5)
=1

13



where A6 = (ug(2))¥ "2
To simplify our notation we will write, in the sequel, P.§; and J; instead of Peé(ng X9) and 5(:62;7 X9)
respectively.

Now, we observe that

P
q (Z aiP€5i> Z / |V P.6; |2 + Zaza] / VP.§;VP.§;
i=1

i#]

n+2 (&
— S /A8 Ug 2 Z OL?PECS? + Z aiajPE(Sin(Sj

i=1 i#]
—Za a(P-5;) —l—Zala]/ VP.§;V P.5;
]
2 4
n+ Zala] / 572 Pgéipgéj
Z#J
P
Z q(P-5;) +Zazaj/ VP.5;V P:5;. (3.6)
i=1 i#]
But, on one hand, one can check that (see [3])
—(n—2)
)‘6 )\6 EVE[.E €12 ’ . .
AVPE&VPEéj:O (AE—F;—F)\)\\%—%\) Vi # j

and therefore, using assumption (3.4), we derive that

VP.5,;VP.5; = o(1), Vi#j. (3.7)
Ae

On the other hand, we have

9 4 9 4
g(P.5) = / VRS2 - 2T / wr Rt -t / ul P62
A n—2 B(m;‘? @) n—2 AE\B<xf,A—R§)

2 _4_
g/ VRS2 - 2T / ul~? P62,
Ae n—2 B(mz"?,%)

2n_
where R is a large positive constant such that fR"\B(O R) 5% = o(1), here

0,an,
an = (n(n —2))~1/2.

Notice that

n+2 2n_ n+2
/ \VP.5i>= | 6/ 2P.6;= [ 62— [ 6'72(8— P.5;).
Ac Ae Ae Ae

For the second integral, we have

n+2 2—n
[ A G ) < b= P, S (N, 0A) 5 0, asz 0,

where we have used in the last inequality the assumption (3.3) and Proposition 1 of [20].

Thus we have

on
/ VRS2 = [ 577 +o(1).
Ae

€

14



We also have

/19(:1:5) R - /B(z? ﬂ) TR+ 0 /B(zs R

i AE
i

Thus, using the following

/B(rf,%) 5;%2]355? - [B(xg) 5;% * /B(m%) 5[%2 (0; — P-0;)?

7

/B<z¢ %)

AN
%

we derive that

/ uﬁpgagz/ 577 4 o(1) + 0 / e — 8;|7=2 P67
o) ) )

Therefore we obtain

Ae n—2

2n_ 2 2n_
q(P-0;) < 5{‘*2—n+ / 577 +0 / e — ;7262 | + o(1).
B(xe R) B(mf R)

iINE i PN
i

Now, letting AL = ¢ (A — 2%) and setting, for X € AL,
1

X
(X)) = —ue (2 + —),

we know that vf — 6¢,q, in Clloc

(R™). Thus (3.8) becomes

(3.8)

o)< [ 52 -t [ ahE w0 ([ e = dpanl T, ) + o)
ai ) n =2 o) " B(0,R) o

%
€

—4 / 2n_ 2n_ n-+ 2 2n_
- 577,—2 _/ (511—2 + —/ (511—2 +0(1)
n—2 R™ (O’a") R"\Ag (07a") n—2 R”\B(O,R) (0704”)
Since A2 — R™, we deduce that

—4
q(P:6;) < mgnﬂ +o(1),
where S is the Sobolev constant defined by (2.5).
Clearly, (3.6),...,(3.9) give (3.5) and therefore our result follows.

(3.9)

|

Proof of Theorem 1.1 Arguing by contradiction, we assume that either the energy is uni-

formly bounded (H}), or the Morse index is uniformly bounded (H3). Using the results of Section

2, we start a blowing up process, which enables us to gain at each step at least a fixed amount

15



of energy, and at least one in the Morse index. Namely at the k-th step, we have constructed k

points (a1, - ,ak) with concentrations (A1, -+, Ay ) satisfying
Vie{l,---,k}, Ned(aje,0A;) — 400, as e—0, (3.10)
2n
VR >0 / da:—>/ 5(’6; z)dr as € — 0, (3.11)
B(al ED v ) 0 R n
Vi#A1VR >0 / x)dxr — / (b (z)dz as € — 0, (3.12)
B(ai,.s,;,% ) 'u/h
Vit je{l, -k}, |aic —ajc|Nic = 400, as e —0. (3.13)

Therefore we derive that:

/ |Vu5\2 > kS2 and m(u.) > k.

13

Then using Propositions 3.1 and 3.4, we derive that such a process does not stop after finitely

many steps, contradicting our assumption (Hy), respectively (Hs). Our Theorem follows. O

4 A Liouville type Theorem

This section is devoted to prove the Liouville type Theorem, Theorem 1.3 stated in the intro-
duction.
The main idea is to use the spectral information to gain more integrability of the solution, and

this is the content of the next two lemmas.
Lemma 4.1 Let u be a positive bounded solution of (I). We then have
2n_
/ un=2(z)dr < +o0.
Q
Proof. Without loss of generality, we may translate the origin in such a way that
Q={(2',2,) ER"I xR/0 < z, <k}, (kis a fixed real).

We denote by ¢ the quadratic form associated to the linearized operator (—A — n+2un 2) defined
on H} () N H(Q).
For h € H}(Q) N H%(2), we have

2
/|Vh|2 nt2 /uﬁh?

Qr = {(2,z,) e R" ' x R/|2’| < R,0 < z,, < k}.

Let dg > 0, and for R > 2d, we set

16



Now we introduce the following function

0 if r<dy
% if do <r<2dy
Pdo,r(T) =41 if 2dy<r <R
2Bt if R<r<2R
(0 if 7>2R,

where r = |2].

We distinguish two cases:
Casei: VR>2dy Vae (0,1) q(pgyru'™)>0.

Case ii : 3Ry > 2dy Jay € (0,1) such that g(pg, r,u'™) < 0.
Now, we study the first case, that is

VR >2dy Vae (0,1) q(pgru'™)>0.

Expanding q(¢q,, ru!T) and letting o tend to zero, we obtain

n—+2 2n_
PR e Mt e R T (4.1
Qg n-= Qogr Qg

n42 . .
Now, multiplying the equation —Au = u»-2 by u”agofl()’ r and integrating by parts on {29 and

letting « tend to zero, we find that

2n_ 1
| ovapde- [ uda=g [ @A), (1.2
QQR QQR

Qogr

From (4.1) and (4.2), we derive that

4 2n_ 1
5 / un—2 @3071% < / U2 <§A( go,R) - A@d(),R'SOdQ,R) :
n Qar 2r

Since
A(SDZ(),R) = ZSOdO,RASDd(),R + 2|v@d0,R|27

we derive that
4

w2 < w2V 2
5 Pdo,R = Pdo,R| -
n Qor Qor

Thus

4 2n

= 2 2
5 Wi < | w Vil
n— 2dp<r<R Qor

We now observe that

890d0,R(33) Z;

for R<r <2R, we have —_— = for 1<i1<n-1

dx; IR
b .
for dy <r < 2dy, we have SOdoiﬂ(ﬂv):acz, for 1<i<n-1,
8332- ’I"do

17



and therefore

Thus
/ uns < i/ u® + ¢(dy)
Qr T R? Qor ’

where ¢(dp) is a positive constant depending only on dy and n.
Using Holder’s inequality, we find that

n—2

2n_ c 2n \ 7 _2(n-1)
/ un—? < — </ un—2> R 4 ¢(do).
Qr R Qopr

That is,

2n C 2n T
un—2 < —— / un—2> + ¢(dp). (4.3)
/QR R < QR

Since 0 < u < ¢ on 2, we deduce that
2n_ n—1
un—2 < cR" .
Qor

/ w2 < R + ¢(dp).
Qr

Therefore by (4.3), we have

We insert this bound in (4.3) and iterate this argument, we obtain that
2n
/ un—2 < cR* + ¢ (dp)
Qr

with ag =n — 3, app1 = "—_2ap - % and ¢/(dp) is a positive constant depending only on dy and

n
n.

It is easy to see that a), converges to —1 when p tends to co. Taking po be such that «,;,, <0,

2n_
un—2 < 0Q.
Q

we then derive

in the first case.

In the second case, we have
IRy >2dy Fa; € (0,1)  such that  q(@gyr,u' ™) < 0.

That is, the Morse index of u is at least 1.
Now we consider di > 2R;. Then either we have q(¢d173u1+a) > 0 for all R > 2d; and for all
o € (0,1) (as in the first case we prove that [, wn < oo ) or there exist Ry > 2d;, as € (0,1)

such that q(gpthZuHa?) < 0. Since dy > 2Ry, the supports of ¢4, r, and g4, gr, are disjoints

18



and therefore the Morse index of u is larger than or equal to 2. We iterate again this argument.

Since m(u) < oo, there exists d > 0 such that
q (god,RuHa) >0, Vae(0,1), VR>2d. (4.4)
Then, as in the first case, we prove (4.4) implies

2n_
un—2 < 0Q.
Q

Therefore our lemma follows. O

Lemma 4.2 Let u be a positive bounded solution of (I). We then have

/ |Vul|?dz < co.
Q
Proof. For e > 0 small let h = h. € C}(Q) be a cut-of function such that
0<h<1,h(z)=1ifxeQi, h(z) =0 inQ\ Q2 and|Vh| <2 inQ: \ Qu,
where, for [ > 0 €; is the set of € defined by
Q={(,z,) e R xR/|z/| <l and 0 < z, < k}.

(We recall that after translation we may suppose that Q = {(2',z,) € R* ! xR/0 < z,, < k} k
is a fixed real.)

We then test the equation
n+2
—Auy =unr-2

with the function ¢ = ¢. = uh? to obtain estimates for the function ¢ = 1), = uh.

Observe that

Vo = h?Vu + 2uhVh
VuVy = h?|Vul* + 2uhVh.Vu
IVY|? = h?|Vu|? + 2uhVuVh 4 u%|Vh|?
= VuVy +u?|Vh[2

Thus

/|V¢|2:/VUV¢+/U2\V}1]2
Q Q Q
:/u%h2+/u2|Vh|2.
Q Q

Using Lemma 4.1, Holder’s inequality and the fact that
|Vh| § 2¢ in Qg \Ql,
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we derive that

/|w|2 g/uf"zhuc.
Q Q

Letting € tend to zero, we derive our lemma. O

Proof of Theorem 1.3
Using Lemma 4.1 and Lemma 4.2 and Pohozaev identity, we derive that u vanishes identically
(see e.g Theorem 1.3, p 156 [25]). O

5 Appendix : blow up analysis

In this appendix, we give the definitions, and recall basic properties of isolated and isolated
simple blow-up, which were first introduced by R. Schoen [21], [22], [23] and extensively studied
by Y.Y. Li [17].

Let 2 C R™ be a bounded smooth domain. Consider the family of equations

n+2

—Au;= u'?, u; >0 in Q. (5.1)

7 Y

The aim of the blow up analysis is to describe the behavior of u; when 4 tends to infinity. It

follows from standard elliptic regularity that if {u;}; remains bounded in L7° (), then for any

loc
a € (0,1) u; — uin Cfog‘(ﬂ) along some subsequence. Otherwise, we say that {u;}; blows up.

Let By (z) ={y e R" : |y —z| <r}.

Definition 5.1 Suppose that {u;}; satisfy (5.1). A point § € Q is called a blow up point for
{u;}; if there exists y; — Y, such that u;(y;) — +o0.

In the sequel, if 7 is a blow up point for {u;};, writing y; — 7 we mean that, y; — 7 and

u;i(y;) — +00 as i — 400.

Definition 5.2 Assume that y; — 7 is a blow up point for {u;};. The point § € Q is called an
isolated blow up point if there exist ¥ € (0,d(y,09Q)) and C > 0 such that

al _n=2
ui(y) < Cly—wil~ 2, forally € Br(y;) NQ. (5.2)
Isolated blow up enjoys nice properties, such as a Harnack inequality around singular points:

Lemma 5.3 [17] Let u; satisfy (5.1) and y; — §y € Bs be an isolated blow-up of {u;};. Then for
any 0 < r <7, we have

max u; < Cy min Uj,
Bar (yi)\Br/2(y:) Bar (yi)\Br/2(y:)

where C3 is some positive constant independent of i and r.

20



The property of being isolated prevents accumulation of blow up points, however it does
not prevent the superposition of bubbles over bubbles. For this we need the notion of isolated
simple blow up. Let y; — 7 be an isolated blow up point for {u;};, we define @;(r) to be (here

|0By| is the n — 1-dimensional volume of 0B;)

1

Ui(r) = ——=—
r) |0B:| JaB, ()

ui, 7 € (0,d(y;, 02)), (5.3)

and
wi(r) =72 u(r), r € (0,d(y;,00)).

Definition 5.4 An isolated blow up point §y € Q for {u;}; is called an isolated simple blow up
point if there exists some p € (0,7), independent of i, such that G;(r) has precisely one critical

point in (0, o) for large i.

The property of being isolated simple blow up means that in a ball of fixed radius around
the blow up point, the solution is upper bounded and lower bounded by a constant times the

bubble. In the following lemma, we give a quantitative statement of this fact.

Proposition 5.5 [17] Assume that {u;}; satisfies (5.1) with Q = B, and let y; — 7 €  be an

isolated simple blow up point for {u;};, which for some positive constant M satisfies
n—2
ly —yil 2 wi(y) <M, Vy¢€ Bo. (5.4)

Then there exists some positive constant C = C(n,M,p) (o being given in the definition of
isolated simple blow up point) such that for 0 < |y —y;| <1

C () Ny —wi " < wily) < Cug(ys) ™y — ™ (5.5)

The main result of the blow up analysis of Yamabe type equation on locally conformally flat
manifold is that all isolated blow up are actually isolated simple blow up. This is what we recall

in the following proposition

Proposition 5.6 [17] Assume that {u;}; satisfies equation (5.1) on = By C R"(n > 3) and

let g be an isolated blow up point for {u;};. Then y is an isolated simple blow up point.
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