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Abstract

In this paper we consider the following Yamabe type family of problem (Pε) : −∆uε =

u
n+2
n−2
ε , uε > 0 in Aε, uε = 0 on ∂Aε, where Aε is an annulus-shaped domain of Rn, n ≥ 3, which

becomes thinner when ε→ 0. We show that for every solution uε, the energy
∫

Aε
|∇uε|

2, as well

as the Morse index tends to infinity as ε → 0. Such a result is proved through a fine blow-up

analysis of some appropriate scalings of solutions whose limiting profiles are regular as well as

singular solutions of some elliptic problem on Rn, a half space or an infinite strip. Our argument

involves also a Liouville-type theorem for regular solutions on the infinite strip.
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1 Introduction and Main Results

In this paper we consider the following Yamabe type family of problem:

(Pε)











−∆uε = u
n+2
n−2
ε in Aε

uε > 0 in Aε

uε = 0 on ∂Aε,

where Aε is an annulus-shaped open domain of Rn, n ≥ 3 and ε is a small positive parameter.

The domain Aε becomes thinner as ε→ 0 (see the precise definition of Aε below).

We define on H1
0 (Aε) the functional

Jε(u) =
1

2

∫

Aε

|∇u|2 −
n− 2

2n

∫

Aε

|u|
2n

n−2 (1.1)

whose positive critical points are solutions of (Pε).

We denote by m(uε) the Morse index of uε as a critical point of the functional Jε, that is the

number of negative eigenvalues of the linearized operator −∆ − n+2
n−2u

4
n−2
ε in H1

0 (Aε) ∩H
2(Aε).

We are mainly concerned with what happens to the energy and the Morse index of uε when

ε tends to zero. Our main motivation for investigating such a behavior of the solutions comes

from the fact that information about the energy and or spectral properties is closely related to

the existence and multiplicity of solutions of nonlinear equations having variational structure. It

is also related to the geometric properties of the solutions in PDE problems. For details please

see works of Bahri [2], Bahri-Lions [4], De Figueiredo-Yang [10], Lazer-Solimini [16], Pacella [18],

Ramos-Terracini-Troestler [19], Solimini [24] and Yang [26], [27].

In [5], Bahri and Lions have shown that given a sequence of solutions of some superlinear and

subcritical elliptic equations with Dirichlet boundary conditions in a fixed smooth and bounded

domain of Rn, m(uk) → +∞ if and only if ||uk||L∞ → +∞, provided that the nonlinearity has a

prescribed behavior at infinity. Later Harrabi-Rebhi-Selmi [14], Yang [27], and Aubin-Bahri [1]

extended this result to more general subcritical nonlinearities.

In the critical case, Bénichou and Pomet [8] proved that for radial solutions on standard thin

annulus, the energy and the Morse index tend to infinity. Our goal in this paper is to prove that

this result holds true for all solutions, and also on nonstandard annuli.

To be more precise, we need to introduce some notations.

Let f be any smooth function

f : Rn−1 −→ [1, 2] , (θ1, ..., θn−1) 7→ f(θ1, ..., θn−1)

which is periodic of period π with respect to θ1, ..., θn−2 and of period 2π with respect to θn−1.

We set

S1(f) = {x ∈ Rn/r = f(θ1, ..., θn−1)} ,

where (r, θ1, ..., θn−1) are the polar coordinates of x.

For ε positive small enough, we introduce the following map

gε : S1(f) −→ gε(S1(f)) = S2(f), x 7−→ gε(x) = x+ εnx,
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where nx is the outward normal to S1(f) at x. We denote by (Aε)ε>0 the family of annulus

shaped open sets in Rn such that ∂Aε = S1(f) ∪ S2(f).

Our main result is the following.

Theorem 1.1 Let uε be any solution of (Pε). We then have

(i)

∫

Aε

|∇uε|
2 → +∞, when ε→ 0

(ii) m(uε) → +∞, when ε→ 0,

where m(uε) is the Morse index of uε as a critical point of the functional Jε defined by (1.1).

Remark 1.2 Statement (i) of Theorem 1.1 has been already proved in [6] and [7], using different

arguments. However our argument, which is drastically different from theirs, proves at the

same time the two statements displaying a deep connection between the energy and the spectral

properties of the solutions.

During the process to prove Theorem 1.1 we perform some blow up and find limit equations

on Rn or a half space or an infinite strip, and it turns out that the following Liouville-type

theorem that we prove in Section 4 is useful.

Theorem 1.3 Let u ∈ C2(Ω) be a positive bounded solution of

(I)







−∆u = u
n+2
n−2 in Ω

u = 0 on ∂Ω
m(u) < ∞,

where m(u) is the number of negative eigenvalues of −∆− n+2
n−2u

4
n−2 in H1

0 (Ω)∩H2(Ω) and where

Ω is the strip defined by

Ω = {(x′, xn) ∈ Rn−1 × R/a < xn < b}, a, b ∈ R.

Then u ≡ 0 in Ω.

Our proof, which is by contradiction, relies on a careful analysis of successive scalings of the

solutions. Such scalings give rise to singular solutions of limiting equations as well as regular

ones. The analysis of the regular solutions is based on the above Liouville type Theorem, while

the analysis of the singular case uses in a crucial way the blow up analysis introduced by R.

Schoen, and studied extensively by Y.Y. Li. In particular, the isolated simple properties of the

blow up points in the Yamabe equation on locally conformally flat manifolds, is a cornerstone

in our analysis as well as the extensive use of Pohozaev identity. However, our analysis bears

new features which are not present in the above mentioned works. A drastic difference is the

fact that, unlike them our domain changes, and a big source of worry is that it may become

degenerate during the blowing up process. Therefore our first aim is to scale in such a way that

the limit domain does not degenerate.
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Another main ingredient of the proof of Theorem 1.1 is to show that if the Morse index of

the solutions is a positive integer m then also the number of blow up points of the solutions

remains bounded by m. This is similar to what happens in other asymptotical critical problems

described by El Mehdi-Pacella [11].

The organization of the remainder of the present paper is outlined as follows. In Section 2

we start our blowing up scheme, blowing up first at the global maximum of uε, then finding

another point which escapes the first one under appropriate scaling, and conclude that each of

them contribute to the total energy by at least a fixed amount. Section 3, devoted to the proof

of Theorem 1.1, shows that the process started in section 2 does not stop after finitely many

steps, and that each point contributes by at least one to the total index of uε, proving that

both the energy and the Morse index must be infinite. In section 4 we prove Theorem 1.3, while

in the Appendix we recall some well known facts about the blow up analysis of Yamabe type

equations.

2 The Blowing up process

To prove Theorem 1.1, we argue by contradiction, that is, we suppose that (Pε) has a solution

uε which satisfies

(H1)

∫

Aε

|∇uε|
2 ≤ C1 or (H2) m(uε) ≤ C2,

where C1 and C2 are given positive constants independent of ε.

We first recall the following result

Lemma 2.1 [6] The following holds true

1.

∫

Aε

|∇uε|
2 6−→ 0, when ε −→ 0.

2. M1,ε −→ +∞, when ε −→ 0, where M1,ε = ||uε||L∞(Aε).

3. ∃ c > 0 such that for ε small enough, we have εM
2

n−2

1,ε ≥ c.

Now let A1,ε = M
2

n−2

1,ε (Aε − a1,ε), where a1,ε ∈ Aε such that M1,ε = uε(a1,ε), and we denote by

vε the function defined on A1,ε by

vε(X) = M−1
1,ε uε(a1,ε +M

−2
n−2

1,ε X). (2.1)

It is easy to see that vε satisfies

{

−∆vε = v
n+2
n−2
ε , 0 < vε ≤ 1 in A1,ε

vε(0) = 1, vε = 0 on ∂A1.ε.
(2.2)

Due to Liouville type Theorems and Pohozaev identity on the limit domain, we have the following

lemma:
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Lemma 2.2 There holds

M
2

n−2

1,ε d(a1,ε, ∂Aε) → +∞, when ε→ 0,

where d(a1,ε, ∂Aε) denotes the distance of a1,ε to the boundary of Aε.

Proof. Let l = limε→0M
2/(n−2)
1,ε d(a1,ε, ∂Aε). According to the proof of Lemma 2.3 of [6], we

have that l > 0. Arguing by contradiction, we suppose that l < ∞. Then it follows from (2.2)

and standard elliptic theories that there exists some positive function v, such that (after passing

to a subsequence), vε → v in C1
loc(Ω), where Ω is a half space or a strip of Rn, and v satisfies

{

−∆v = v
n+2
n−2 , 0 < v ≤ 1 in Ω

v(0) = 1, v = 0 on ∂Ω .

But if Ω is a half space, by [12], then v must vanish identically and thus we derive a contradiction.

If Ω is a strip of Rn and condition (H1) is satisfied, by Pohozaev Identity (see e.g. Theorem

III.1.3 [24]), then v ≡ 0 and thus we also obtain a contradiction in this case. Lastly, if Ω is a

strip of Rn and condition (H2) is satisfied, by Theorem 1.3, we also find a contradiction. Thus

our lemma follows. 2

From Lemma 2.2, we derive that there exists some positive function v, such that (after

passing to a subsequence), vε −→ v in C1
loc(R

n), and v satisfies

{

−∆v = v
n+2
n−2 , v > 0 in Rn

v(0) = 1, ∇v(0) = 0 .
(2.3)

It follows from [9], that

v(X) = δ(0,αn)(X),

where αn = (n(n− 2))−1/2 and where, for a ∈ Rn and λ > 0, δ(a,λ) denotes the function

δ(a,λ)(x) = c0
λ

n−2
2

(1 + λ2|x− a|2)
n−2

2

, with c0 = (n(n− 2))
n−2

4 . (2.4)

We recall that δ(a,λ) are the only minimizers for the Sobolev inequality

S = inf{||∇u||2L2(Rn)||u||
−2

L
2n

n−2 (Rn)
, s.t. |∇u| ∈ L2, u ∈ L

2n
n−2 , u 6= 0}. (2.5)

We note that, by the above arguments, we have for any R > 0

∫

B(a1,ε , R
λ1,ε

)
u

2n
n−2
ε (x)dx→

∫

B(0,R)
δ

2n
n−2

(0,αn)(x)dx as ε→ 0, (2.6)

where λ1,ε = M
2/(n−2)
1,ε .

To proceed further, we introduce the following function

ũε(X) = d
n−2

2
1,ε uε(a1,ε + d1,εX), X ∈ Ãε := d−1

1,ε(Aε − a1,ε), (2.7)
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where d1,ε = d(a1,ε, ∂Aε).

Notice that from Lemma 2.2, we know that:

ũε(0) = d
n−2

2
1,ε uε(a1,ε) → +∞, as ε→ 0.

We observe that the limit domain of Ãε is a strip or a half space of Rn, we denote it by Π in

both cases.

As a first step of our blowing up process, we prove the following proposition.

Proposition 2.3 We have that

hε := max
x∈Aε

(

|x− a1,ε|
n−2

2 uε(x)
)

→ +∞, as ε→ 0.

Proof. Arguing by contradiction, we suppose that

hε ≤ C, with C is a positive constant independent of ε.

Thus, we have

|X|(n−2)/2ũε(X) ≤ C, ∀X ∈ Ãε.

In particular, we have
{

ũε(X) ≤ C|X|(2−n)/2, ∀X ∈ B(0, 1/2)�{0}

ũε(0) → +∞ .

Therefore 0 is an isolated blow up point of ũε (see the Appendix for definition). Then it

follows from Proposition 5.6 that 0 is an isolated simple blow up (see Appendix for definition)

in B(0, 1/2). Applying now Proposition 5.5 of the Appendix we derive that there exist positive

constants c1 and c2 such that

c1ũε(0)
−1|y|2−n ≤ ũε(y) ≤ c2ũε(0)

−1|y|2−n, for |y| ≤ (1/4).

Considering now the linear equation

∆u+ V u = 0, with V = ũ4/(n−2)
ε ,

we deduce from Lemma 5.3 and Harnack inequality(see [13]) that

ũε(y) ≤ c2ũε(0)
−1|y|2−n, ∀y ∈ K, (2.8)

where K is any compact set of Ãε which does not contain 0.

Now we set

ṽε(X) = ũε(0)ũε(X).

It is easy to check that ṽε satisfies
{

−∆ṽε = ũε(0)
−4

n−2 ṽ
n+2
n−2
ε , ṽε > 0 in Ãε

ṽε = 0, on ∂Ãε
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and

ṽε(0) → +∞, as ε→ 0

c1|y|
2−n ≤ ṽε(y) ≤ c2|y|

2−n ∀y ∈ K,

where K is any compact set of Ãε�{0}.

It follows from standard elliptic theories that

ṽε → αGΠ(0, .) in C2
loc(Π),

where GΠ(0, .) is the Green’s function of Laplacian operator with Dirichlet boundary condition

defined on the limit domain Π (half space or strip) and where α is a positive constant.

Such a Green’s function can be written as

GΠ(0, x) = |x|2−n −H(0, x),

where by the Maximum principle H(0, x) > 0.

We now observe that ũε satisfies

−∆ũε = ũ
n+2
n−2
ε in Br := B(0, r) for any r < 1/2.

Applying Pohozaev Identity, see for example Corollary 1.1 of [17], we derive that

−r
n− 2

2n

∫

∂Br

ũ
2n

n−2
ε =

∫

∂Br

B(r, x, ũε,∇ũε), (2.9)

where

B(r, x, ũε,∇ũε) =
n− 2

2
ũε
∂ũε

∂ν
−
r

2
|∇ũε|

2 + r(
∂ũε

∂ν
)2.

On one hand, using (2.8), we obtain

r
n− 2

2n

∫

∂Br

ũ
2n

n−2
ε ≤ c

ũε(0)
−2n
n−2

rn
.

Multiplying (2.9) by ũε(0)
2, we derive that

ũε(0)
2

∫

∂Br

B(r, x, ũε,∇ũε) = O

(

ũε(0)
−4

n−2

rn

)

.

Using the homogeneity of the operator B, we obtain

∫

∂Br

B(r, x, ṽε,∇ṽε) = O

(

ũε(0)
−4

n−2

rn

)

.

In particular, we conclude that

lim
ε→0

∫

∂Br

B(r, x, ṽε,∇ṽε) = 0, for 0 < r < 1/2. (2.10)
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On the other hand, we have

ṽε → αGΠ(0, .) in C2(∂Br), for 0 < r < 1/2

and for r small enough

GΠ(0, x) = |x|2−n −H(0, 0) + o(|x|), with |x| = r.

Thus we have

lim
ε→0,r→0

∫

∂Br

B(r, x, ṽε,∇ṽε) =
(n− 2)2

2
H(0, 0)α2|Sn−1| > 0

which contradicts (2.10) and then our proposition follows. 2

Let a2,ε ∈ Aε such that

hε = |a2,ε − a1,ε|
n−2

2 uε(a2,ε),

where hε is defined in Proposition 2.3. Now if we blow up at the point a2,ε, Proposition 2.3

implies that the image under the new scaling, of the first point a1,ε will escape to infinity, a fact

that we express loosely by saying that these points ignore themselves. However the domain may

become degenerate, that is its width becomes thinner and thinner along the blowing up process.

The following Lemma rules out such a situation.

Lemma 2.4 There exists δ > 0 such that for every ε, we have that:

λ2,εε ≥ δ,

where λ2,ε = uε(a2,ε)
2/(n−2).

Proof. For X ∈ B(0,
λ2,ε

2 |a1,ε − a2,ε|) ∩Dε, we set

wε(X) = λ
2−n

2
2,ε uε(a2,ε + λ−1

2,εX), with Dε = λ2,ε(Aε − a2,ε). (2.11)

Recall that, for any x ∈ Aε, we have

|x− a1,ε|
n−2

2 uε(x) ≤ |a2,ε − a1,ε|
n−2

2 uε(a2,ε) = |a2,ε − a1,ε|
n−2

2 λ
n−2

2
2,ε .

Thus, for any x ∈ Aε, we obtain

uε(x)

λ
n−2

2
2,ε

≤
|a2,ε − a1,ε|

n−2
2

|x− a1,ε|
n−2

2

.

But, for x ∈ B(a2,ε,
|a2,ε−a1,ε|

2 ), we have

|x− a1,ε| ≥
|a2,ε − a1,ε|

2
.
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Hence
uε(x)

λ
n−2

2
2,ε

≤ 2(n−2)/2, for any x ∈ B(a2,ε,
|a2,ε − a1,ε|

2
).

Thus we obtain

wε(X) ≤ 2
n−2

2 , ∀X ∈ B(0,
λ2,ε

2
|a1,ε − a2,ε|) ∩Dε.

Arguing by contradiction, we suppose that

λ2,εε→ 0 as ε→ 0.

Let ā2,ε ∈ ∂Dε such that |ā2,ε| = d(0, ∂Dε). We may assume without loss of generality that the

unit outward normal to ∂Dε at ā2,ε is en, where en is the nth element of the canonical basis of

Rn.

Let

B(ā′2,ε, 1) = {x′ ∈ Rn−1/|x′ − ā′2,ε| < 1},

where

ā2,ε = (ā′2,ε, ā
n
2,ε) ∈ Rn−1 × R and x = (x′, xn) ∈ Rn−1 × R.

Let

Tε =
(

B(ā′2,ε, 1) × [−1, 1]
)

∩Dε

and

∂T 1
ε = ∂(Tε) ∩ ∂Dε and ∂T 2

ε = ∂(Tε) ∩Dε.

We denote by GTε the Green’s function of Laplace operator with Dirichlet boundary condition

defined on Tε. Let X ∈ Tε such that X = βεen, with −1 ≤ βε ≤ 1.

By easy computations, one can check that
∫

Tε

GTε(X, y)dy ≤

∫

Tε

dy

|X − y|n−2
= O (λ2,εε) .

Now we observe that

wε(X) = cn

(
∫

Tε

GTε(X, y)w
n+2
n−2
ε dy −

∫

∂Tε

∂GTε

∂ν
(X, y)wε(y)dy

)

= cn

(

∫

Tε

GTε(X, y)w
n+2
n−2
ε dy −

∫

∂T 2
ε

∂GTε

∂ν
(X, y)wε(y)dy

)

,

where cn is a positive constant.

But, since X = βεen, we have

∂GTε

∂ν
(X, y) ≤ c, ∀y ∈ ∂T 2

ε .

Since wε ≤ 2(n−2)/2, we derive that
∫

Tε

GTε(X, y)w
n+2
n−2
ε dy = O (λ2,εε) and

∫

∂T 2
ε

∂GTε

∂ν
(X, y)wε(y)dy = O (λ2,εε) .

9



Thus we obtain

wε(X) = O (λ2,εε) ,

and in particular wε(0) = 1 ≤ cλ2,εε. Thus we derive a contradiction and therefore our lemma

follows. 2

Now, since λ2,εε 6→ 0 as ε→ 0, we can prove, as in Lemma 2.2, that

λ2,εd(a2,ε, ∂Aε) → +∞ as ε→ 0

and therefore there exist b ∈ Rn and µ > 0 such that the function wε defined by (2.11) converges

in C1
loc(R

n) to δ(b,µ). Thus we have found a second blow up point ā2,ε of uε with the concentration

λ̄2,ε defined by

ā2,ε = a2,ε +
b

λ2,ε
, and λ̄2,ε = µλ2,ε.

Observe that λ̄2,ε ε = µλ2,εε 6→ 0 as ε→ 0, and therefore as above we have that

λ̄2,εd(ā2,ε, ∂Aε) → +∞ as ε→ 0.

Summarizing, we have built two points a1,ε, ā2,ε with concentrations λ1,ε and λ̄2,ε such that

λ1,εd(a1,ε, ∂Aε) → +∞, λ̄2,εd(ā2,ε, ∂Aε) → +∞, as ε→ 0, (2.12)

∀R > 0

∫

B(a1,ε , R
λ1,ε

)
u

2n
n−2
ε (x)dx→

∫

B(0,R)
δ

2n
n−2

(0,αn)(x)dx as ε→ 0, (2.13)

∀R > 0

∫

B(ā2,ε , R
λ̄2,ε

)
u

2n
n−2
ε (x)dx→

∫

B(b, R
µ

)
δ

2n
n−2

(b,µ)(x)dx as ε→ 0, (2.14)

|a1,ε − ā2,ε|λ1,ε → +∞, |a1,ε − ā2,ε|λ̄2,ε → +∞, as ε→ 0. (2.15)

In this section , we have started a blowing up process, producing blow up points which ignore

each other, and therefore contribute to the total energy by at least a fixed amount. Our goal

now is to prove that such a process does not stop after finitely many steps. Such a fact is a key

argument in the proof of Theorem 1.1. See Proposition 3.1, in the next section for a quantitative

statement of this fact.

3 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. To this aim we first prove that the process

started in section 2 does not stop after finitely many steps, actually we have:

Proposition 3.1 Let S = {xε
1, · · · , x

ε
p}, p ≥ 2, be such that

d(xε
i , ∂Aε)

n−2
2 uε(x

ε
i ) → ∞ as ε→ 0 for 1 ≤ i ≤ p (3.1)

|xε
i − xε

j |
n−2

2 uε(x
ε
j) → ∞ as ε→ 0 for i 6= j, 1 ≤ i, j ≤ p. (3.2)

Then

max
x∈Aε

d(x,S)
n−2

2 uε(x) → ∞, as ε→ 0.
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Proof. Arguing by contradiction, we assume that:

There exists C > 0, such that d(x,S)
n−2

2 uε(x) < C ∀ x ∈ Aε.

Without loss of generality, we may assume that:

d(xε
p, ∂Aε) = min1≤i≤p d(x

ε
i , ∂Aε) .

We set

dε
p = d(xε

p, ∂Aε); wε(X) = dε
p

n−2
2 uε(d

ε
pX + xε

p); X
ε
j =

xε
j − xε

p

dε
p

.

Observe that Xε
p = 0. We distinguish two cases:

• 1st case: min1≤i≤p−1|X
ε
i | ≤ mini6=j |X

ε
i −Xε

j | .

In this case we prove the following lemma:

Lemma 3.2 There exists δ > 0 such that

|Xε
i | ≥ δ, for i ∈ {1, · · · , p− 1}.

Proof. Without loss of generality we may assume that |X ε
1 | = min1≤i≤p−1 |X

ε
i |. Arguing

by contradiction, we assume that τ := |X ε
1 | → 0. Consider:

w̃ε(X̃) := τ
n−2

2 wε(τX̃),where X̃ =
X

τ
, so that |X̃ε

1 | = 1.

Observe that

d(X,S1)
n−2

2 wε(X) ≤ C, where S1 = {0, Xε
1 , · · · , X

ε
p−1}

implies that:

{

|y|
n−2

2 wε(y) ≤ C for all |y| ≤ 1
2τ,

|y −Xε
1 |

n−2
2 wε(y) ≤ C for all |y −Xε

1 | ≤
1
2τ.

It follows that:

{

|y|
n−2

2 w̃ε(y) ≤ C for all |y| ≤ 1
2 ,

|y − X̃ε
1 |

n−2
2 w̃ε(y) ≤ C for all |y − X̃ε

1 | ≤
1
2 .

Notice that:

w̃ε(0) = τ
n−2

2 wε(0) = |xε
1 − xε

p|
n−2

2 uε(x
ε
p) → ∞

w̃ε(X̃
ε
1) = |xε

1 − xε
p|

n−2
2 uε(x

ε
1) → ∞.

It follows that 0 and X̃1 := limε→0 X̃ε
1 are isolated simple blow up, see the Appendix. Now

it follows from standard elliptic theories and properties of isolated simple blow up, that
{

limε→0 w̃ε(0)w̃ε(y) = h(y) in C0
loc(Π \ S̃2)

h(y) > 0, y ∈ Π \ S̃2 ,
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where Π is the limit domain after blowing up, h is harmonic outside its singular set S̃2 ⊂ S2,

and S2 = {0, X̃1, ..., X̃p−1}, with X̃i = limε→0 X̃
ε
i for 1 ≤ i ≤ p− 1.

Observing that (0, X̃1) ∈ S̃2, we then deduce from Böcher’s Theorem (see e.g. [15]) and

the maximum principle that there exist some nonnegative function b(y) and some positive

constants M1,M2 such that:











b(y) ≥ 0, y ∈ Π \ {S̃2 \ {0, X̃1}}

∆ b(y) = 0 y ∈ Π \ {S̃2 \ {0, X̃1}}

h(y) = M1 |y|
2−n + M2 |y − X̃1|

2−n + b(y) y ∈ Π \ {S̃2 \ {0, X̃1}}.

Therefore for some constant A > 0, there holds:

h(y) = M1 |y|
2−n +A+O(|y|) for y close to 0.

As usual we derive a contradiction like in the proof of Proposition 2.3. The proof of Lemma

3.2 is thereby completed. 2

• 2nd case: min1≤i≤p−1|X
ε
i | > mini6=j |X

ε
i −Xε

j | .

Lemma 3.3 There exists δ > 0, such that

mini6=j|X
ε
i −Xε

j | ≥ δ for i , j ∈ {1, · · · , p− 1}.

Proof. Without loss of generality, we may assume that

|Xε
1 −Xε

2 | = mini6=j |X
ε
i −Xε

j |.

Suppose by contradiction that:

σε := |Xε
1 −Xε

2 | → 0

and set

vε(y) = σ
n−2

2 wε(σεy +Xε
1).

It follows that vε satisfies:

{

−∆vε = v
n+2
n−2
ε in |y| ≤ 1

σε

vε > 0 in |y| ≤ 1
σε
.

Setting Y ε
2 such that Xε

2 = σε Y
ε
2 +Xε

1 , it is easy to see that:

{

vε(y) ≤ C |y|−
n−2

2 , for all |y| ≤ 1
2 , vε(0) → ∞.

vε(y) ≤ C |y − Y ε
2 |

−n−2
2 , for all |y − Y ε

2 | ≤
1
2 , vε(Y

ε
2 ) → ∞.

It follows that 0 and Y2 := limε→0 Y
ε
2 are isolated simple blow up, therefore arguing as in

the first case, we derive a contradiction. 2
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Coming back to the proof of Proposition 3.1, we see that, from Lemmas 3.2 and 3.3, there

exists δ > 0, which does not depend on ε, such that:











|X|
n−2

2 wε(X) ≤ C for every X ∈ B(0, δ
2)

|X −Xε
1 |

n−2
2 wε(X) ≤ C for every X ∈ B(Xε

1 ,
δ
2)

wε(0) = (dε
p)

n−2
2 uε(x

ε
p) → ∞.

We distinguish two cases:

•

|Xε
1 | → ∞ as ε→ 0.

In this case 0 is the only isolated blow up point of wε and thus, arguing as in the proof of

Proposition 2.3, we derive a contradiction.

• There exists a constant C > 0 such that |X ε
1 | ≤ C.

In this case we argue as in the proof of Lemma 3.2 or Lemma 3.3 to derive a contradiction.

The proof of Proposition 3.1 is thereby completed. 2

In the next proposition, we prove that at each blow up point constructed by our blowing up

scheme, the projection on H1
0 (Aε) of the bubble concentrating there, contributes at least by one

to the total Morse index of uε.

Proposition 3.4 Let {xε
1, · · · , x

ε
p}, p ≥ 2, be such that:

d(xε
i , ∂Aε)

n−2
2 uε(x

ε
i ) → ∞ as ε→ 0 for 1 ≤ i ≤ p (3.3)

|xε
i − xε

j |
n−2

2 uε(x
ε
j) → ∞ as ε→ 0 for i 6= j, 1 ≤ i, j ≤ p. (3.4)

Then m(uε) ≥ p.

Proof. We begin by introducing some notation.

We denote by q the quadratic form associated to the linearized operator −∆− n+2
n−2u

4
n−2
ε defined

on H1
0 (Aε) ∩H

2(Aε). Thus, for v ∈ H1
0 (Aε) ∩H

2(Aε), we have

q(v) =

∫

Aε

|∇v|2 −
n+ 2

n− 2

∫

Aε

u
4

n−2
ε v2.

For a ∈ Aε and λ > 0, we denote by Pεδ(a,λ) the projection on H1
0 (Aε) of the function δ(a,λ)

defined in (2.4), that is

∆Pεδ(a,λ) = ∆δ(a,λ) in Aε and Pεδ(a,λ) = 0 on ∂Aε.

In order to prove our proposition, it is sufficient to prove the following, for ε small,

q

(

p
∑

i=1

αiPεδ(xε
i ,λε

i )

)

< 0 ∀αi ∈ R, (3.5)
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where λε
i = (uε(x

ε
i ))

2/(n−2).

To simplify our notation we will write, in the sequel, Pεδi and δi instead of Pεδ(xε
i ,λε

i )
and δ(xε

i ,λε
i )

respectively.

Now, we observe that

q

(

p
∑

i=1

αiPεδi

)

=

p
∑

i=1

α2
i

∫

Aε

|∇Pεδi|
2 +

∑

i6=j

αiαj

∫

Aε

∇Pεδi∇Pεδj

−
n+ 2

n− 2

∫

Aε

u
4

n−2
ε





p
∑

i=1

α2
iPεδ

2
i +

∑

i6=j

αiαjPεδiPεδj





=

p
∑

i=1

α2
i q(Pεδi) +

∑

i6=j

αiαj

∫

Aε

∇Pεδi∇Pεδj

−
n+ 2

n− 2

∑

i6=j

αiαj

∫

Aε

u
4

n−2
ε PεδiPεδj

≤

p
∑

i=1

α2
i q(Pεδi) +

∑

i6=j

αiαj

∫

Aε

∇Pεδi∇Pεδj . (3.6)

But, on one hand, one can check that (see [3])

∫

Aε

∇Pεδi∇Pεδj = O





(

λε
i

λε
j

+
λε

j

λε
i

+ λε
iλ

ε
j|x

ε
i − xε

j|
2

)
−(n−2)

2



 ∀i 6= j

and therefore, using assumption (3.4), we derive that
∫

Aε

∇Pεδi∇Pεδj = o(1), ∀i 6= j. (3.7)

On the other hand, we have

q(Pεδi) =

∫

Aε

|∇Pεδi|
2 −

n+ 2

n− 2

∫

B

„

xε
i , R

λε
i

« u
4

n−2
ε Pεδ

2
i −

n+ 2

n− 2

∫

Aε�B

„

xε
i , R

λε
i

« u
4

n−2
ε Pεδ

2
i

≤

∫

Aε

|∇Pεδi|
2 −

n+ 2

n− 2

∫

B

„

xε
i , R

λε
i

« u
4

n−2
ε Pεδ

2
i ,

where R is a large positive constant such that
∫

Rn�B(0,R) δ
2n

n−2

0,αn
= o(1), here

αn = (n(n− 2))−1/2.

Notice that
∫

Aε

|∇Pεδi|
2 =

∫

Aε

δ
n+2
n−2

i Pεδi =

∫

Aε

δ
2n

n−2

i −

∫

Aε

δ
n+2
n−2

i (δi − Pεδi) .

For the second integral, we have
∫

Aε

δ
n+2
n−2

i (δi − Pεδi) ≤ c|δi − Pεδi|
L

2n
n−2 (Aε)

≤ c (λε
id(x

ε
i , ∂Aε))

2−n
2 → 0, as ε→ 0,

where we have used in the last inequality the assumption (3.3) and Proposition 1 of [20].

Thus we have
∫

Aε

|∇Pεδi|
2 =

∫

Aε

δ
2n

n−2

i + o(1).
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We also have

∫

B

„

xε
i , R

λε
i

« u
4

n−2
ε Pεδ

2
i =

∫

B

„

xε
i , R

λε
i

« δ
4

n−2

i Pεδ
2
i +O





∫

B

„

xε
i , R

λε
i

« |uε − δi|
4

n−2Pεδ
2
i



 .

Thus, using the following

∫

B

„

xε
i , R

λε
i

« δ
4

n−2

i Pεδ
2
i =

∫

B

„

xε
i , R

λε
i

« δ
2n

n−2

i +

∫

B

„

xε
i , R

λε
i

« δ
4

n−2

i (δi − Pεδi)
2

− 2

∫

B

„

xε
i , R

λε
i

« δ
n+2
n−2

i (δi − Pεδi),

∫

B

„

xε
i , R

λε
i

« δ
4

n−2

i (δi − Pεδi)
2 ≤ c|δi − Pεδi|

2

L
2n

n−2 (Aε)
= o(1),

we derive that

∫

B

„

xε
i , R

λε
i

« u
4

n−2
ε Pεδ

2
i =

∫

B

„

xε
i , R

λε
i

« δ
2n

n−2

i + o(1) +O





∫

B

„

xε
i , R

λε
i

« |uε − δi|
4

n−2Pεδ
2
i



 .

Therefore we obtain

q(Pεδi) ≤

∫

Aε

δ
2n

n−2

i −
n+ 2

n− 2

∫

B

„

xε
i , R

λε
i

« δ
2n

n−2

i +O





∫

B

„

xε
i , R

λε
i

« |uε − δi|
4

n−2 δ2i



+ o(1). (3.8)

Now, letting Ai
ε = λε

i (Aε − xε
i ) and setting, for X ∈ Ai

ε,

vε
i (X) =

1

(λε
i )

n−2
2

uε(x
ε
i +

X

λε
i

),

we know that vε
i → δ0,αn in C1

loc(R
n). Thus (3.8) becomes

q(Pεδi) ≤

∫

Ai
ε

δ
2n

n−2

(0,αn) −
n+ 2

n− 2

∫

B(0,R)
δ

2n
n−2

(0,αn) +O

(

∫

B(0,R)
|vε

i − δ(0,αn)|
4

n−2 δ2(0,αn)

)

+ o(1)

=
−4

n− 2

∫

Rn

δ
2n

n−2

(0,αn) −

∫

Rn�Ai
ε

δ
2n

n−2

(0,αn) +
n+ 2

n− 2

∫

Rn�B(0,R)
δ

2n
n−2

(0,αn) + o(1).

Since Ai
ε → Rn, we deduce that

q(Pεδi) ≤
−4

n− 2
Sn/2 + o(1), (3.9)

where S is the Sobolev constant defined by (2.5).

Clearly, (3.6),...,(3.9) give (3.5) and therefore our result follows. 2

Proof of Theorem 1.1 Arguing by contradiction, we assume that either the energy is uni-

formly bounded (H1), or the Morse index is uniformly bounded (H2). Using the results of Section

2, we start a blowing up process, which enables us to gain at each step at least a fixed amount

15



of energy, and at least one in the Morse index. Namely at the k-th step, we have constructed k

points (a1,ε, · · · , ak,ε) with concentrations (λ1,ε, · · · , λk,ε) satisfying

∀i ∈ {1, · · · , k}, λi,εd(ai,ε, ∂Aε) → +∞, as ε→ 0, (3.10)

∀R > 0

∫

B(a1,ε , R
λ1,ε

)
u

2n
n−2
ε (x)dx→

∫

B(0,R)
δ

2n
n−2

(0,αn)(x)dx as ε→ 0, (3.11)

∀i 6= 1 ∀R > 0

∫

B(ai,ε , R
λi,ε

)
u

2n
n−2
ε (x)dx→

∫

B(bi ,
R
µi

)
δ

2n
n−2

(bi,µi)
(x)dx as ε→ 0, (3.12)

∀i 6= j ∈ {1, · · · , k}, |ai,ε − aj,ε|λi,ε → +∞, as ε→ 0. (3.13)

Therefore we derive that:

∫

Aε

|∇uε|
2 ≥ kS

n
2 and m(uε) ≥ k.

Then using Propositions 3.1 and 3.4, we derive that such a process does not stop after finitely

many steps, contradicting our assumption (H1), respectively (H2). Our Theorem follows. 2

4 A Liouville type Theorem

This section is devoted to prove the Liouville type Theorem, Theorem 1.3 stated in the intro-

duction.

The main idea is to use the spectral information to gain more integrability of the solution, and

this is the content of the next two lemmas.

Lemma 4.1 Let u be a positive bounded solution of (I). We then have

∫

Ω
u

2n
n−2 (x)dx < +∞.

Proof. Without loss of generality, we may translate the origin in such a way that

Ω = {(x′, xn) ∈ Rn−1 × R/0 < xn < k}, (k is a fixed real).

We denote by q the quadratic form associated to the linearized operator (−∆− n+2
n−2u

4
n−2 ) defined

on H1
0 (Ω) ∩H2(Ω).

For h ∈ H1
0 (Ω) ∩H2(Ω), we have

q(h) =

∫

Ω
|∇h|2 −

n+ 2

n− 2

∫

Ω
u

4
n−2h2.

Let d0 > 0, and for R > 2d0, we set

ΩR = {(x′, xn) ∈ Rn−1 × R/|x′| < R, 0 < xn < k}.
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Now we introduce the following function

ϕd0 ,R(x) =































0 if r ≤ d0

r−d0
d0

if d0 ≤ r ≤ 2d0

1 if 2d0 ≤ r ≤ R
2R−r

R if R ≤ r ≤ 2R

0 if r ≥ 2R,

where r = |x′|.

We distinguish two cases:

Case i : ∀R > 2d0 ∀α ∈ (0, 1) q(ϕd0 ,Ru
1+α) ≥ 0.

Case ii : ∃R1 > 2d0 ∃α1 ∈ (0, 1) such that q(ϕd0 ,R1u
1+α1) < 0.

Now, we study the first case, that is

∀R > 2d0 ∀α ∈ (0, 1) q(ϕd0 ,Ru
1+α) ≥ 0.

Expanding q(ϕd0 ,Ru
1+α) and letting α tend to zero, we obtain

∫

Ω2R

|∇u|2ϕ2
d0,R −

n+ 2

n− 2

∫

Ω2R

u
2n

n−2ϕ2
d0 ,R ≥

∫

Ω2R

u2(∆ϕd0 ,R)ϕd0 ,R. (4.1)

Now, multiplying the equation −∆u = u
n+2
n−2 by u1+αϕ2

d0,R and integrating by parts on Ω2R and

letting α tend to zero, we find that

∫

Ω2R

|∇u|2ϕ2
d0,R −

∫

Ω2R

u
2n

n−2ϕ2
d0,R =

1

2

∫

Ω2R

u2∆(ϕ2
d0 ,R). (4.2)

From (4.1) and (4.2), we derive that

4

n− 2

∫

Ω2R

u
2n

n−2ϕ2
d0,R ≤

∫

Ω2R

u2

(

1

2
∆(ϕ2

d0 ,R) − ∆ϕd0,R.ϕd0,R

)

.

Since

∆(ϕ2
d0 ,R) = 2ϕd0 ,R∆ϕd0,R + 2|∇ϕd0 ,R|

2,

we derive that
4

n− 2

∫

Ω2R

u
2n

n−2ϕ2
d0,R ≤

∫

Ω2R

u2|∇ϕd0,R|
2.

Thus
4

n− 2

∫

2d0<r<R
u

2n
n−2 ≤

∫

Ω2R

u2|∇ϕd0,R|
2.

We now observe that

for R ≤ r ≤ 2R, we have
∂ϕd0 ,R(x)

∂xi
= −

xi

rR
, for 1 ≤ i ≤ n− 1

for d0 ≤ r ≤ 2d0, we have
∂ϕd0 ,R(x)

∂xi
=

xi

rd0
, for 1 ≤ i ≤ n− 1,
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and therefore

|∇ϕd0,R(x)|2 =
1

R2
for R ≤ r ≤ 2R

|∇ϕd0,R(x)|2 =
1

d2
0

for d0 ≤ r ≤ 2d0.

Thus
∫

ΩR

u
2n

n−2 ≤
1

R2

∫

Ω2R

u2 + c(d0),

where c(d0) is a positive constant depending only on d0 and n.

Using Hölder’s inequality, we find that

∫

ΩR

u
2n

n−2 ≤
c

R2

(∫

Ω2R

u
2n

n−2

)
n−2

n

R
2(n−1)

n + c(d0).

That is,

∫

ΩR

u
2n

n−2 ≤
c

R2/n

(
∫

Ω2R

u
2n

n−2

)
n−2

n

+ c(d0). (4.3)

Since 0 ≤ u ≤ c on Ω, we deduce that

∫

Ω2R

u
2n

n−2 ≤ cRn−1.

Therefore by (4.3), we have
∫

ΩR

u
2n

n−2 ≤ cRn−3 + c(d0).

We insert this bound in (4.3) and iterate this argument, we obtain that

∫

ΩR

u
2n

n−2 ≤ cRαp + c′(d0)

with α0 = n− 3, αp+1 = n−2
n αp −

2
n and c′(d0) is a positive constant depending only on d0 and

n.

It is easy to see that αp converges to −1 when p tends to ∞. Taking p0 be such that αp0 < 0,

we then derive
∫

Ω
u

2n
n−2 <∞.

in the first case.

In the second case, we have

∃R1 > 2d0 ∃α1 ∈ (0, 1) such that q(ϕd0,R1u
1+α1) < 0.

That is, the Morse index of u is at least 1.

Now we consider d1 > 2R1. Then either we have q(ϕd1,Ru
1+α) ≥ 0 for all R > 2d1 and for all

α ∈ (0, 1) (as in the first case we prove that
∫

Ω u
2n

n−2 <∞ ) or there exist R2 > 2d1, α2 ∈ (0, 1)

such that q(ϕd1,R2u
1+α2) < 0. Since d1 > 2R1, the supports of ϕd0 ,R1 and ϕd1 ,R2 are disjoints
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and therefore the Morse index of u is larger than or equal to 2. We iterate again this argument.

Since m(u) <∞, there exists d > 0 such that

q
(

ϕd,Ru
1+α
)

≥ 0, ∀α ∈ (0, 1), ∀R > 2d. (4.4)

Then, as in the first case, we prove (4.4) implies

∫

Ω
u

2n
n−2 <∞.

Therefore our lemma follows. 2

Lemma 4.2 Let u be a positive bounded solution of (I). We then have

∫

Ω
|∇u|2dx <∞.

Proof. For ε > 0 small let h = hε ∈ C1
c (Ω) be a cut-of function such that

0 ≤ h ≤ 1, h(x) = 1 ifx ∈ Ω 1
ε
, h(x) = 0 inΩ \ Ω 2

ε
and |∇h| ≤ 2ε inΩ 2

ε
\ Ω 1

ε
,

where, for l > 0 Ωl is the set of Ω defined by

Ωl = {(x′, xn) ∈ Rn−1 × R/|x′| < l and 0 < xn < k}.

(We recall that after translation we may suppose that Ω = {(x′, xn) ∈ Rn−1 ×R/0 < xn < k} k

is a fixed real.)

We then test the equation

−∆u = u
n+2
n−2

with the function ϕ = ϕε = uh2 to obtain estimates for the function ψ = ψε = uh.

Observe that

∇ϕ = h2∇u+ 2uh∇h

∇u∇ϕ = h2|∇u|2 + 2uh∇h.∇u

|∇ψ|2 = h2|∇u|2 + 2uh∇u∇h+ u2|∇h|2

= ∇u∇ϕ+ u2|∇h|2.

Thus

∫

Ω
|∇ψ|2 =

∫

Ω
∇u∇ϕ+

∫

Ω
u2|∇h|2

=

∫

Ω
u

2n
n−2h2 +

∫

Ω
u2|∇h|2.

Using Lemma 4.1, Hölder’s inequality and the fact that

|∇h| ≤ 2ε in Ω 2
ε
\ Ω 1

ε
,
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we derive that
∫

Ω
|∇ψ|2 ≤

∫

Ω
u

2n
n−2h2 + c.

Letting ε tend to zero, we derive our lemma. 2

Proof of Theorem 1.3

Using Lemma 4.1 and Lemma 4.2 and Pohozaev identity, we derive that u vanishes identically

(see e.g Theorem 1.3, p 156 [25]). 2

5 Appendix : blow up analysis

In this appendix, we give the definitions, and recall basic properties of isolated and isolated

simple blow-up, which were first introduced by R. Schoen [21], [22], [23] and extensively studied

by Y.Y. Li [17].

Let Ω ⊆ Rn be a bounded smooth domain. Consider the family of equations

−∆ui = u
n+2
n−2

i , ui > 0 in Ω. (5.1)

The aim of the blow up analysis is to describe the behavior of ui when i tends to infinity. It

follows from standard elliptic regularity that if {ui}i remains bounded in L∞
loc(Ω), then for any

α ∈ (0, 1) ui → u in C2,α
loc (Ω) along some subsequence. Otherwise, we say that {ui}i blows up.

Let Br(x) = {y ∈ Rn : |y − x| < r}.

Definition 5.1 Suppose that {ui}i satisfy (5.1). A point y ∈ Ω is called a blow up point for

{ui}i if there exists yi → y, such that ui(yi) → +∞.

In the sequel, if y is a blow up point for {ui}i, writing yi → y we mean that, yi → y and

ui(yi) → +∞ as i→ +∞.

Definition 5.2 Assume that yi → y is a blow up point for {ui}i. The point y ∈ Ω is called an

isolated blow up point if there exist r ∈ (0, d(y, ∂Ω)) and C > 0 such that

ui(y) ≤ C |y − yi|
−n−2

2 , for all y ∈ Br(yi) ∩ Ω. (5.2)

Isolated blow up enjoys nice properties, such as a Harnack inequality around singular points:

Lemma 5.3 [17] Let ui satisfy (5.1) and yi → ȳ ∈ B3 be an isolated blow-up of {ui}i. Then for

any 0 < r < r̄, we have

max
B2r(yi)\Br/2(yi)

ui ≤ C3 min
B2r(yi)\Br/2(yi)

ui,

where C3 is some positive constant independent of i and r.

20



The property of being isolated prevents accumulation of blow up points, however it does

not prevent the superposition of bubbles over bubbles. For this we need the notion of isolated

simple blow up. Let yi → y be an isolated blow up point for {ui}i, we define ui(r) to be (here

|∂Br| is the n− 1-dimensional volume of ∂Br)

ui(r) =
1

|∂Br|

∫

∂Br(yi)
ui, r ∈ (0, d(yi, ∂Ω)), (5.3)

and

ûi(r) = r
n−2

2 ui(r), r ∈ (0, d(yi, ∂Ω)).

Definition 5.4 An isolated blow up point y ∈ Ω for {ui}i is called an isolated simple blow up

point if there exists some % ∈ (0, r), independent of i, such that ûi(r) has precisely one critical

point in (0, %) for large i.

The property of being isolated simple blow up means that in a ball of fixed radius around

the blow up point, the solution is upper bounded and lower bounded by a constant times the

bubble. In the following lemma, we give a quantitative statement of this fact.

Proposition 5.5 [17] Assume that {ui}i satisfies (5.1) with Ω = B2, and let yi → y ∈ Ω be an

isolated simple blow up point for {ui}i, which for some positive constant M satisfies

|y − yi|
n−2

2 ui(y) ≤M, ∀y ∈ B2. (5.4)

Then there exists some positive constant C = C(n,M, %) (% being given in the definition of

isolated simple blow up point) such that for 0 < |y − yi| ≤ 1

C−1ui(yi)
−1 |y − yi|

2−n ≤ ui(y) ≤ C ui(yi)
−1 |y − yi|

2−n. (5.5)

The main result of the blow up analysis of Yamabe type equation on locally conformally flat

manifold is that all isolated blow up are actually isolated simple blow up. This is what we recall

in the following proposition

Proposition 5.6 [17] Assume that {ui}i satisfies equation (5.1) on Ω = B2 ⊂ Rn(n ≥ 3) and

let y be an isolated blow up point for {ui}i. Then y is an isolated simple blow up point.
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