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We introduce an efficient technique for computing Casimir energies and forces between objects of
arbitrarily complex 3D geometries. In contrast to other recently developed methods, our technique
easily handles non-spheroidal, non-axisymmetric objects and objects with sharp corners. Using our
new technique, we obtain the first predictions of Casimir interactions in a number of experimentally
relevant geometries, including crossed cylinders and tetrahedral nanoparticles.
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Since the dawn of the modern era of precision Casimir-
force measurements some 10 years ago [1], Casimir forces
have been measured in an increasingly wide variety of ex-
perimental geometries, including plate-plate [2], sphere-
plate [3], sphere-comb [4], and cylinder-cylinder [5] con-
figurations. A recent experiment [6] finds evidence of
Casimir interactions in a commercially fabricated MEMS
device, and there is every reason to believe that accurate
modeling of Casimir forces in complex geometries will be
a critical ingredient in the design of future commercial
MEMS technologies [7–9].

Theoretical developments have largely failed to keep
pace with this rapidly advancing experimental reality.
Until recently, theoretical considerations were restricted
to simple models in highly idealized geometries [10], such
as infinite parallel plates or infinite parallel cylinders.
Techniques for predicting Casimir forces in more gen-
eral geometries are clearly needed if theory is to confront
the growing wealth of experimental Casimir data and the
design challenges of future MEMS devices.

Important recent progress on general methods has been
made by a number of authors [11–15]. Rodriguez et.
al. [11] applied standard techniques of computational
electromagnetics to develop a method capable of pre-
dicting Casimir forces between arbitrary two-dimensional
objects, i.e. infinitely extended objects of arbitrary 2D
cross section. Emig et. al. (EGJK) [12] demonstrated
an efficient algorithm for predicting Casimir energies of
interaction between compact 3D objects of spheroidal or
nearly-spheroidal shape. Both of these techniques have
since been applied to predictions of Casimir interactions
in new geometries [16–18]. To date, however, a practical
computational scheme for predicting Casimir forces be-
tween arbitrary non-spheroidal three-dimensional objects
has remained elusive.

∗Electronic address: homereid@mit.edu
†URL: http://www.mit.edu/~homereid

In this work, inspired by the ideas of Refs. 11 and 12,
we introduce a new technique for calculating Casimir
forces between objects of arbitrary 3D shapes, including
efficient handling of non-spheroidal, non-axisymmetric
objects and objects with sharp corners. As an immediate
application of our method, we present the first predic-
tions of Casimir interactions in a number of experimen-
tanlly relevant geometries, including crossed cylindrical
capsules [5] and tetrahedral nanoparticles [21, 22].

The method. The starting point of the EGJK method

FIG. 1: Surfaces of compact conducting objects are dis-
cretized [19] into planar triangles, which are used to construct
localized vector-valued basis functions describing the surface
current distribution. As shown in the inset, each basis func-
tion describes currents flowing from a vertex of one triangle
to the opposite vertex of an adjacent triangle, and vanishes
on all other triangles [20].
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is a path-integral expression [23] for the Casimir energy
of perfectly-conducting compact objects:
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where the functional integration extends over all possible
current distributions J(x) on the surfaces of the objects

and where Gκ =
[
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]
e−κ|x−x′|

4π|x−x′| is the dyadic
Green’s function at (Wick-rotated) frequency −iω = cκ.
Z∞ in (1) is Z computed with all objects removed to
infinite separation [32].

Following EGJK, to obtain a tractable expression for
Z for a given collection of No objects we now proceed
to expand the current distribution in a discrete set of
basis functions, J(x) =

∑
Jimfim(x), where i = 1 · · ·No

ranges over the objects in the geometry and m = 1 · · ·Ni
runs over a set of Ni expansion functions defined for the
ith object. With this expansion we have
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and (1) becomes
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where we have evaluated the multiple Gaussian integral
in (3) using standard path-integration techniques [24].
Here the elements of the matrix M(κ) are the interac-
tions between the basis functions, Mαβ(κ) =

∫∫
fα ·Gκ ·

fβ dx dx′, and J in (3) is the (constant) Jacobian of the
transformation DJ→

∏
dJim, which cancels in the ratio

(5).
EGJK took the expansion functions fim to be

proportional to the spherical multipole moments
{QiE,lm, QiM,lm} of the ith object. Although this
choice leads to rapidly convergent and even analytically
tractable series for spherical objects, it is not of practical
use for general geometries, as the spherical multipole ex-
pansion must be carried to high orders to represent source
distributions on highly non-spherical objects. Ref. 25,
for example, demonstrated poor convergence rates for
spherical-harmonic representations of elongated objects
and objects with corners or cusps.

A more general strategy is to discretize the surfaces of
the objects into planar triangles, as depicted in Figure
1, and to introduce localized basis functions in the spirit
of finite-element and boundary-element methods. Fol-
lowing standard practice in computational electromag-
netics [20], we choose basis functions defined on pairs of
adjacent triangles. As indicated in the inset of Figure 1,

to the mth internal edge in the surface discretization of
object i we associate a localized basis function fim, which
describes currents flowing on the two triangles that share
that edge and vanishes on all other triangles. The matrix
elements Mαβ reduce to finite surface integrals over plane
triangles, the evaluation of which is greatly facilitated by
the elegant methods of Ref. 26, and the overall accuracy
of the computation may be systematically improved, at
greater computational expense, by reducing the size of
the triangles in the surface mesh. A further virtue of this
choice of basis functions is that it eliminates the unwieldy
distinction between interior and exterior fields in [12].

Casimir Energy. To compute the energy of interaction
of our objects we write

log
det M

det M∞
=

N∑
n=1

{
log λn − log λ∞n

}
(6)

where {λn}, {λ∞n } are the eigenvalues of M,M∞.
Casimir Force. The z-directed force on the ith object

in our geometry is obtained by differentiating (5) with
respect to displacement of that object:

Fz,i = − ~c
2π
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The integrand may be conveniently evaluated using the
identity [27]

∂

∂zi
ln det M = Tr

{
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∂zi

}
=
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αn

where {αn} are the eigenvalues of the generalized eigen-
value problem

∂M
∂zi
· v = αM · v. (8)

The κ integrals in (5) and (7) may be evaluated using
standard numerical quadrature techniques.

The dimension of the matrix M is the number of basis
functions in our expansion of the surface current distri-
bution, which in turn is proportional to the number of
triangles in our surface discretization (see Figure 1). For
matrices of moderate dimension, N . 5000, correspond-
ing to moderately fine mesh discretizations (sufficient for
accurate treatment of all geometries considered here), the
eigenvalues in (6) and (8) may be computed using direct
methods in O(N3) time. For finer meshes it may be
possible to use iterative eigenvalue solvers and matrix
sparsification techniques [28–30] to reduce the complex-
ity to O(N lnN); this will be discussed in a subsequent
publication.

Results. We now apply our technique to the prediction
of Casimir interactions in a number of 3D geometries.

Casimir energy of identical spheres, parallel capsules,
and crossed capsules. Figure 2 shows plots of Casimir
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FIG. 2: Casimir energy vs. separation distance for three pairs
of perfectly conducting objects: identical spheres (red curve),
identical capsules with parallel axes (blue curve), and iden-
tical capsules with perpendicular axes (green curve). The
hollow circles represent the sphere-sphere data of Ref. 12.

FIG. 3: Magnitude of attractive Casimir force between
crossed capsules of radiusR as a function of capsule length, for
surface–surface separations Z = 2R and Z = 4R. The dashed
lines denote the asymptotic (L → ∞) limits of the force, as
roughly extrapolated from our finite-L data. The solid lines
are fits of the large-L data to the form a + b/L, although
our data are insufficient to establish the precise asymptotic
L-dependence of the force.

energy versus separation distance for three pairs of per-
fectly conducting objects: identical spheres of radius R,
identical capsules with parallel axes, and identical cap-
sules with perpendicular axes (“crossed capsules.”) (A
“capsule” is a cylinder of radius R with hemispherical
endcaps, of total length L = 6R in this case.) The en-
ergy curve for the crossed capsules interpolates between
the curve for the spheres at short distances and the curve
for the parallel capsules at large distances. We may un-
derstand this result as follows: At short distances, the

interaction is dominated by contributions from the por-
tions of the surfaces that lie in closest proximity to each
other. For the crossed capsules, this region of nearest
proximity is restricted to a length ∼ R around the cen-
ters of the capsules and hence exhibits the same scaling as
the region of nearest proximity for the two spheres in the
short-distance limit. In contrast, for parallel capsules,
the strongly-interacting region extends down the entire
length of the capsule and hence scales with an additional
factor of L at short distances. At large distances, the
interaction becomes pointlike and the energy of interac-
tion between identical capsules becomes independent of
the orientation.

Casimir Force vs. Length For Crossed Capsules. The
Casimir force between crossed cylinders, in the limit in
which the length L of the cylinders is much longer than
their surface–surface separation Z, is experimentally ac-
cessible [5] and interesting in its own right as a finite
interaction between effectively infinite objects. Figure
3 plots the magnitude of the attractive Casimir force
between crossed metallic capsules of radius R, at fixed
surface–surface separations of Z = 2R and Z = 4R, as
a function of the capsule length L. In the limit L → ∞
our capsules become infinite cylinders and the force ap-
proaches a Z-dependent constant (denoted by the dashed
lines in the figure.)

An interesting question is how rapidly the force ap-
proaches the infinite-cylinder limit as L→∞ at fixed Z.
A numerical determination of the precise asymptotic L-
dependence of the force requires an iterative fast-solver
version of our method that is capable of handling ma-
trices M of larger dimension; this extension will be dis-
cussed in a future publication.

Tetrahedral nanoparticles. Several groups have suc-
ceeded in producing tetrahedral nanoparticles of dimen-
sions ∼ 10–50 nm [21, 22], and Casimir forces may dom-
inate the interactions between electrostatically neutral
particles of this type. Our method allows the first predic-
tions of Casimir interactions between perfectly conduct-
ing tetrahedral particles. (In a real system with particles
of these sizes, the finite conductivity of the metals cannot
be neglected. We are currently implementing an exten-
sion of our method to treat materials of arbitrary elec-
trical properties, including imperfect metals, dielectrics,
and magnetic materials. Even for the idealization of per-
fectly conducting nanoparticles, however, it is interesting
to analyze the orientation dependence of the Casimir en-
ergy, as well as to demonstrate the practical ability of our
method to treat geometries with sharp corners and non-
axisymmetric shapes.) Figure 4 depicts a contour plot of
Casimir energy vs. orientation angles for two perfectly
conducting tetrahedra originally separated by a distance
D = 2L in the y direction, where L is the tetrahedron
edge length. To one of the tetrahedra we apply a rotation
through an angle ϕ about the z axis followed by a rota-
tion through an angle θ about the y axis; the fixed origin
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FIG. 4: Contour plot of Casimir energy vs. orientation angles for tetrahedral nanoparticles separated by a distance D = 2L.

of these rotations, depicted as the origin of the coordi-
nate axes in Figure 4, is the point lying a distance H/2
below the apex of the tetrahedron, where H =

√
3L/2 is

the height of the tetrahedron. The contour plot reveals
a clear minimum at (θ, φ)=(0,60◦), corresponding to the
closest approach of a vertex of the base of the rotated
tetrahedron to the unrotated tetrahedron, as might be
expected for an attractive interaction.

Conclusion. In conclusion, we have developed a
general method for computing Casimir energies and
forces between objects of arbitrary three-dimensional
shapes, enabling efficient treatment of non-spheroidal,
non-axisymmetric objects and objects with sharp cor-
ners. Using our method, we have predicted Casimir inter-
actions in a variety of experimentally relevant geometries
that would be challenging to handle by previous meth-
ods.
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