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Abstract 
 

The moment method in the statistical dynamics is used to study the thermodynamic properties 

of metals taking into account the anharmonicity effects of the lattice vibrations. The effective 

pair potentials work well for the calculations of metals. For obtaining better agreement of the 

thermodynamic quantities of metals like Nb, the many body potentials derived from the 

microscopic electronic theory are used. The theoretical calculations of the thermodynamic 

properties are in good agreement with the corresponding experimental results. 
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1. Introduction 

The calculations of thermodynamic quantities of metals are important for fundamental 

understanding as well as for technological applications. 

In order to calculate the thermodynamic quantities of materials, it is highly desirable to 

establish an analytical method which enables us to evaluate the free energy of the system 

taking into account both the anharmonicity and quantum mechanical effect of the lattice 

vibration. So far, the numerical calculation methods, such as the molecular dynamics and 

Monte Carlo simulation techniques have been presented. However, it is generally difficult to 

get simple algebraic formula between the thermodynamic quantities and physical insight of 

the phenomena, within the non - analytical numerical simulation studies. In order to 

investigate the thermodynamic quantities of metals, we use the moment method in the 

statistical dynamic [4, 5, 6] to derive the Helmholtz free energy of metallic systems, going 

beyond the quasi - harmonic approximation of the thermal lattice vibration. The 

themodynamic quantities, e.g., the thermal lattice expansion, specific heats and elastic moduli 

are determined from the explicit expressions of the Helmholtz free energies. In particular, the 

thermodynamic properties of face - centered cubic (f.c.c) and body centered cubic (b.c.c) 

metals are investigated within the fourth order moment approximation of the atomic 

displacement. In metals, the conduction electrons travel from one atom to another and the 

interaction may be represented by many - body potentials instead of a pairwise potential [1]. 

The many body potential scheme is similar to the so-called embedded atom method [2], [3]. 

The numerical calculations are performed for f.c.c Cu, Ag, Au and b.c.c Ta, Nb metals, using 

the effective pair potentials between the atoms and embedded atom method (EAM) potentials. 

We will show that the theoretical calculations on the thermodynamic properties are in good 

agreement with the corresponding experimental results. 

In Sec.2, we will make a general derivation of the Helmholtz free energy of the metallic 

system based on the fundamental principles of quantum statistical mechanics. Some of the 

numerical examples will be given in Sec.3.  

 

2. Method of calculations 

Let us consider a quantum system with the Hamiltonian 

 �� � ��� � , (1) 
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in which α is a parameter and V  is an operator. In [4] the statistical average of an operator V  

was found to be  
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where <…>α expresses the averaging over the equilibrium ensemble with the Hamiltonian H  

and ψ denotes the free energy of system. Eq.(2)  gives us the general formula 
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in which  0ψ   is the free energy of a system corresponding to the Hamiltonian 0H . For many 

cases, �
�

 may be given by the moments and thus we may determine it with the aid of the 

moment formula [4]. Therefore, using (3) the free energy ψ  of the system can be determined. 

If the Hamiltonian H  has a complex form, one can divide it into two more simple parts 

 � � �� � ��� �� . (4) 

At first, we find the free energy 1ψ  of the "partial" system corresponding to the Hamiltonian 

1101 VHH α−= , supposing 0ψ  is known. In this way, one can determine �� , �� ,… and so on 

corresponding to Hamiltonian � � � �� � ��� � , � � � �� � ��� � ,…. Hence the free energy 

� of the entire system may be determined completely.  

Following this procedure, we derive the free energy of f.c.c and b.c.c metals. In the fourth 

order approximation, the potential energy of system can be written as 
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Using Eq.(5), the averaging potential energy of the f.c.c and b.c.c crystals is given by 

 
�� � �

� � ��
�

�
� � � 
 
 
� �

	 

�� � � � 
� 
�� �
, 

where,                                                  
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In deriving Eq.(6) we have assumed the symmetry property for the atomic displacements in 

the cubic lattice : 
� � � � �
 
 
 
 
� � � �� � � � .  

To find the free energy of a system, one must further evaluate the integrals 
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Using moment formulae, one can find the low order moments like the fourth order one �
  

as [4] 
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Using Eqs. (3) and (8), it is straightforward to find the Helmholtz free energy of the fcc and 

bcc lattice as: 
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with    
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Applying the Gibbs - Helmholtz relation and using Eq.(10) one can find the free energy of the 

f.c.c and b.c.c crystals. So the specific heat at constant volume CV has the form 
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Let us now consider the compressibility of the f.c.c and b.c.c lattice. According to the 

definition of the isothermal compressibility, one has the following relation 
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Since the pressure P is given by 
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the isothermal compressibility is obtained in the form 
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On the other hand, the linear thermal expansion coefficient is derived as 
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The specific heat CP at constant pressure and the adiabatic compressibility χS and χT are 

determined from the well established thermodynamic relations 
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If the compressibility χS and χT are known, one can determine straight forwardly the related 

quantities, i.e., the isothermal and adiabatic bulk moduli �� and ��  
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3. Results of numerical calculations 

We first calculate the thermodynamic quantities of metallic systems with f.c.c and b.c.c 

structures using the effective pair potentials between the atoms [7]. The effective pair 

potentials between the atoms is chosen by the power law form (similar to Lennard - Jones 

potentials):  
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where, D and r0 are determined to fit the experimental data (e.g., cohesive energy and elastic 

mudulus) and m ≈10 and n ≈ 5. For the f.c.c metals like Au, Ag and Cu and b.c.c metals like 

Ta, Nb, the potential parameters D, r0, m and n are taken from ref.[7 ]. 

For f.c.c and b.c.c metals, we take into account both the first and second nearest - 

neighbor interactions. The thermodynamic quantities at zero pressure (P = 0) and finite 

temperature T are obtained. The numerical results of the specific heats CV and CP, the thermal 

expansion coefficient α, the isothermal compressibility χT , … are presented in Table (2). The 

calculation of the thermodynamic quantities of metals by the present statistical moment 

method is of great significance in the sense that the thermodynamic quantities are directly 

determined from the closed analytic expressions and it does not use certain (artificial) 

averaging procedures, as done in the usual computer simulation studies based on the 

molecular dynamics and Monte Carlo method. 

One may ask here whether the phenomenological pair potentials are adequate to describe 

the change in physical properties like specific heats, permittivity etc in the metals. However, it 

is to be noted that atomic displacements, due to thermal vibration, are relatively small and 

many body interaction effects do not play a dominant role in determining the change in total 

electronic energies of the system due to the atomic displacements. In order to check this point, 

we have also used the more sophisticated many body potentials derived from the electronic 

theory [1]. 

The many body potential scheme is similar to the so-called embedded atom method [8]. In 

the EAM, each atom in a solid is viewed as an atom embedded in a host comprising of all the 

other atoms. A simple approximation to embedding function F is the so-called local 

approximation, whereby the embedded atom experiences a locally uniform electron density. 

This can be viewed as the lowest - order term of an expansion involving the successive 

gradients of the density. The functional F is then approximated to yield 
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where, ijφ is a pair potential representing the electrostatic interaction, ijr is the distance 

between atom i and j and iF denotes the embedding energy of atom into electron density iρ . 

The total energies of metals are given by a sum over all individual contributions 
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Table 1. Parameters for Nb metal [1] 

A1 43.8714013508282476 

A2 1.21346376862356462 

C1 3.15264023140411085 

C2 0.88086659918361343 

D 29.8475444853668736 

 

where, the host density hiρ  at atom i is closely approximated by a sum of the atomic densities 

jρ of the all other constituent atoms.  The embedding function F is given by    

 �� �
 � ��� � � � ��

�

� � !�� � � �� �� , (22) 

and the functional forms are assumed     

 �
� � ��� � ����� ��� �� � �� ��� "� � � �� � � � , (23) 

 �
� � ��� � ����� ��� �� � �� ��!� "� � � �� � � . (24) 

For f.c.c metals, )( ijrf and )( ijrφ  are smoothly truncated at 1cr  and 2cr  respectively such that, 

1cr  was chosen to be 1.65d and 2cr was chosen to be 1.95d where d is the nearest neighbor 

distance. Here )( ijrφ was cut off between the second and the third nearest neighbor for a 

perfect crystal. This means )( ijrf was cut off between the third and fourth nearest neighbor, d 

was normalized to be unity. For b.c.c metals )( ijrf  and )( ijrφ  are smoothly truncated at cr , 

where cr  was chosen to be 1.4d while )( ijrf  and )( ijrφ were cut off between the second and 

the third nearest neighbor for a perfect crystal. 

The potential functions described in Eqs.(22) - (24) contain five parameters A1, A2 , C1, C2 

and D. These are determined to reproduce the Born stability, cohesive energy, elastic 

constants, the formation energy of a vacancy and staking fault energy. The potential 

parameters determined for Nb are summarized in Table (1) [1]. 

We have also calculated the thermodynamic 

quantities of Nb metal using the many body 

potentials derived from the microscopie electronic 

theory. The calculated results are presented in 

Table (2), together with the corresponding 

experimental results [9]. In the present study, we 

have used effective pair potential and the many 

body potentials for metal atoms to demonstrate the utility of the present theoretical scheme 

based on the moment method in the statistical dynamics. 

In general, we have obtained good agreement between the theoretical calculations and 

experimental results in the thermodynamic quantities.   
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Table 2.  Thermodynamic properties of Nb metal  

T(K) 100 300 600 800 1200 1600 2000 

                                       *) 

a,  0A                                 

                                      **) 

2.7211 

 

2.7210 

2.7259 

 

2.7255 

2.7333 

 

2.7324 

2.7383 

 

2.7371 

2.7484 

 

2.7466 

2.7586 

 

2.7562 

2.7690 

 

2.7659 

                                       *) 

α . 10 - 5 . K  - 1       

                                                                                                     **) 

   α exp . 10 - 5 . K  - 1  [9] 

0.87 

 

0.82 

0.47 

0.90 

 

0.85 

0.71 

 

0.92 

 

0.86 

0.79 

0.93 

 

0.87 

0.83 

0.96 

 

0.89 

0.89 

0.99 

 

0.92 

0.99 

1.01 

 

0.95 

- 

                                           *) 

 Cv (cal/ mol . K ) 

                                                            **)  

3.563 

 

3.562 

5.604 

 

5.604 

5.859 

 

5.859 

5.898 

 

5.898 

5.925 

 

5.925 

5.935 

 

5.935 

5.939 

 

5.939 

                                                             *)                               

Cp (cal/ mol . K ) 

                                                   **) 

  Cp , exp (cal/ mol .K ) [9]  

3.61 

 

3.60 

- 

 

5.83 

 

5.81 

5.95 

6.31 

 

6.28 

6.24 

6.49 

 

6.45 

6.43 

6.79 

 

6.73 

6.81 

7.05 

 

6.97 

- 

7.25 

 

7.17 

7.58 

                                      *) 

χT . 10 - 13(cm/ dyn2 ) 

                                     **)             

 

5.330 

 

5.070 

3.619 

 

3.404 

3.700 

 

3.470 

3.856 

 

3.610 

4.269 

 

3.981 

4.798 

 

4.455 

5.457 

 

5.043 

                                       *) 

βT . 10 12(dyn2 /cm) 

                                     **)             

 

1.876 

 

1.972 

2.763 

 

2.937 

2.702 

 

2.881 

2.592 

 

2.769 

2.342 

 

2.511 

2.084 

 

2.244 

1.832 

 

1.983 

  * ) Results of numerical calculations correspond to using pair potential 
**) Results of numerical calculations correspond to using embedded atom potentials 

 


