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Abstract

In this paper a proposal is made of an adaptive coupling function for achieving synchroniza-

tion between two lasers subject to optical feedback. Such a control scheme requires knowledge

of the systems’ parameters. For the first time we demonstate that when these parameters are

not available on-line parameter estimation can be applied. Generalization of the approach to

the multi-feedback systems is also presented.
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1. INTRODUCTION

The seminal papers by Pecora and Carroll [1] and Ott, C.Grebogi and J.A.Yorke [2] on chaos

synchronization have stimulated a wide range of research activity: a recent comprehensive re-

view of such work is found in the focussed issues on chaos control [3] and references therein.

Application of chaos control theory can be found in secure communications, optimization of non-

linear system performance and modeling brain activity and pattern recognition phenomena [3].

A particular focus of the work being the development of secure optical communications systems

based on control and synchronization of laser chaos [4-7]. It has been shown [8] that security

cannot be guaranteed in a communications format using simple chaotic systems - i.e. those with

a single positive Lyapunov exponent. It is thus appreciated that to obtain reliable communi-

cations systems attention should be directed at hyperchaotic systems - i.e. those with two or

more positive Lyapunov exponents. It has been claimed previously that the number of driving

variables needed for synchronization in case of hyperchaotic systems should be equal to the

number of positive Lyapunov exponents [3]. However, such a requirement is highly undesirable

in communication applications, as most communication schemes use just one signal for trans-

mission [3]. More recently it was argued [9-10], that hyperchaos control is possible using fewer

driving variables than the number of positive Lyapunov exponents [9], and indeed even with

zero- driving variables using the method of parameter change advocated in [10]. Moreover, it

has recently been shown that hyperchaos control is possible with a single variable even in the

case of time delay systems, when the number of positive Lyapunov exponents, in principle, can

be infinite [11]. This result is of particular importance for the use of external cavity laser diodes

for chaotic optical communications [7]. In addition to applications in communications the impli-

cations of the study of synchronization phenomenon in time-delayed systems can be considered

as a special case of spatio-temporal chaos control. Time-delay systems are infinite-dimensional

and more interestingly by changing the time-delay one can obtain different numbers of the pos-

itive Lyapunov exponents [11].

In [11] and [12] use is made of both uni-directional and bi-directional couplings between the

master and slave time-delay systems. Then an estimate is made of the coupling strength, for

the given coupling function, needed for the synchronization between the drive and response

time-delay systems. Usually two dynamical systems are termed synchronized if the difference

between their states converges to zero for t → ∞ [1-2]. Recently [13-14], a generalization of

this concept was proposed, where two systems are termed as being synchronized if a functional

relation exists between the states of both systems.

In this paper we propose a general adaptive coupling (linking) function needed for synchroniza-

tion between two time-delay systems. The approach does not require the imposition of threshold

restrictions on the coupling strength.

Laser systems with optical feedback are prominent representatives of time-delay systems [6-7,
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15-16]. We thus also apply the proposed approach to the case of synchronization between two

lasers subject to optical feedback(s). Our results show that one can use a time delay coupling

function to accomplish synchronization between the laser systems. This synchronization method

is different from that of [15, 17]. We argue that such a diversity allows for more flexibility in

practical control problems.

Usually, in the context of nonlinear dynamical systems, the method of adaptive control applies

a feedback loop in order to drive the system parameter (or parameters) to the values required

so as to achieve a target state. This is achieved by adding the evolution of the parameter(s) to

the evolution dynamics of the dynamical systems [18-20]. Such a scheme is adaptive, because

the parameters which determine the nature of the dynamics self-adjust or adapt themselves to

yield the desired dynamics.

In this paper we use the term ’adaptive’ in a slightly different sense. The proposed method of

chaos synchronization between two chaotic systems can also be interpreted as follows: we apply

a control law to the process model to reach the reference model (desired or target state), which

in principle can be entirely different from the process model not only due to parameter(s) mis-

matches, but also by structure and/or dynamics; in other words, the task is to design a control

force and apply it to the process model to reach an entirely different targeted state. Such a

scheme is also adaptive, as in the above procedure the linkage function depending on the nature

of the systems’ dynamics, and structure adapts itself to yield the desired dynamics [21]. By

definition, the adaptive principle is remarkably robust and efficient in generic nonlinear systems

and may therefore be of immense utility in a large variety of practical control problems.

2. ADAPTIVE COUPLING FOR CHAOS SYNCHRONIZATION

Following [11-12,21] we write the time-delay system under consideration in the form:

dx

dt
= f(x, xτ ),

dy

dt
= g(y, yτ ) + W (x, y), (1)

where f and g are arbitrary time delay functions such that the corresponding dynamics exhibit

chaotic behavior; xτ := x(t − τ), yτ := y(t − τ); where τ is the time-delay; the term W (x, y) in

equation (1) is responsible for coupling (linkage) between the master (driving) (first equation in

(1)) and slave (response) (second equation in (1)) systems. The relaxation terms proportional

to x and y, usually written separately in the right-hand sides of the system (1), are incorporated

into the f and g. In addition, one must keep in mind that in general the dynamical variables

and f, g and W can be high dimensional vectors.

Let us choose the adaptive coupling function (or control input) W (x, y) in the system (1) as:

W (x, y) = f(x, xτ ) − g(y, yτ ) − Q(x, y), (2)
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with Q(x, y) such that error dynamics of x− y = e will be stable. For Q(x, y) = B(x− y) = Be

with negative B we obtain:
de

dt
= Be, (3)

whose solution decays exponentially. Generalization to the case of different delay functions with

different time delays τ1 and τ2 is straightforward. In this case one can choose the coupling

function

W (x, y) = f(x, xτ1) − g(y, yτ2) − Q(x, y). (4)

The idea behind the way of choosing the adaptive coupling (or control input) to achieve syn-

chronization is to cancel the nonlinear terms of the system. We want to linearize the system

to make it more tractable and to use linear control theory. Sometimes this approach is called

feedback linearization, for more details and pitfalls, see e.g. [22] and references therein.

As indicated above many laser communication systems are prominent representatives of time-

delay systems. In this work we apply the proposed approach to the case of synchronization

between two semiconductor lasers subject to optical feedback. There can be different types of

couplings between the slave and master systems. For example in [15] the light that is injected

into the slave system is included in the equations in a way similar to the light coming from

the external resonator. This approach is widely used to describe the effects of coherent light

injection into semiconductor lasers. In this paper we propose a new type of coupling between

master and slave systems to achieve synchronization between these systems. A general form

for synchronization condition is obtained from a consideration of the following systems of the

Lang-Kobayashi equations [15,17] for the real electric field amplitude E(t), slowly varying phase

Φ(t) and the carrier number n(t) for the: master (with subscript M),

dEM

dt
=

1

2
GnMEM + kMEM (t − τ) cos(ω0τ + ΦM(t) − ΦM (t − τ)),

dΦM

dt
=

1

2
αGnM − kM

EM (t − τ)

EM (t)
sin(ω0τ + ΦM(t) − ΦM (t − τ)),

dnM

dt
= (p − 1)Jth − γnM (t) − (Γ + GnM )E2

M , (5)

and slave lasers (with subscript S),

dES

dt
=

1

2
GnSES + kSES(t − τ) cos(ω0τ + ΦS(t) − ΦS(t − τ)) + W,

dΦS

dt
=

1

2
αGnS − kS

ES(t − τ)

ES(t)
sin(ω0τ + ΦS(t) − ΦS(t − τ)),

dnS

dt
= (p − 1)Jth − γnS(t) − (Γ + GnS)E2

S , (6)

coupled by the linkage function

W = KW (EM − ES) +
1

2
G(nMEM − nSES) + kMEM (t − τ) cos(ω0τ + ΦM (t)

− ΦM (t − τ)) − kSES(t − τ) cos(ω0τ + ΦS(t) − ΦS(t − τ)), (7)
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where G is the differential optical gain; τ is the master laser’s external cavity round-trip time;

α-the linewidth enhancement factor; γ- the carrier density rate; Γ-the cavity decay rate; p-

the pump current relative to the threshold value Jth of the solitary laser; ω0 is the angular

frequency of the solitary laser; k is the feedback rate; KW is the coefficient determining the

speed of achieving synchronization between the master and slave lasers.

One can easily see that for the type of coupling with positive KW that the difference signal

eE = EM −ES approaches zero, as the error dynamics in this case obey the following equation:

deE

dt
= −KW eE . (8)

(Throughout this paper we introduce the relaxation or damping term to overcome the necessity

for identical initial conditions in the coupled master and slave laser systems.)

In the above scheme of synchronization the master and slave systems’ parameter, namely the

gain was the same for both systems. Generalization of the coupling function to the case of laser

systems with different parameters is straightforward; for example, with different gain parameters

the coupling function is:

W = KW (EM − ES) −
1

2
(GMnMEM − GSnSES)

− kMEM (t − τ) cos(ω0τ + ΦM (t) − ΦM (t − τ))

+ kSES(t − τ) cos(ω0τ + ΦS(t) − ΦS(t − τ)). (9)

As was pointed out in [23], in many representative cases, chaos synchronization can be under-

stood from the existence of a global Lyapunov function of the difference signals. In other words,

the global asymptotic stability can be investigated by the Lyapunov function approach [22]. For

error dynamics eE (8), one can use the Lyapunov function

L = e2

E . (10)

As
dL

dt
= −KW e2

E , (11)

can be made strictly negative for positive KW (except for eE = 0) we conclude that the asymp-

totic stability is global.

Thus based on our recent results we have several possibilities for achieving synchronization be-

tween chaotic laser diodes: according to [17] if the coupling between master and slave systems

is of the form

W = σEM (t − τc) cos(ω0τc + ΦS(t) − ΦM (t − τc)), (12)

(where σ is the coupling strength between the master and slave lasers; τc is the light propagation

time from the right facet of the master laser to the right facet of the slave laser) then the

synchronization condition is

kM = kS + σ. (13)
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In this paper we have proposed another type of linkage function (7) for synchronization purposes

without strict condition on the systems’ parameters.

Multi-feedback and multi-delay systems are ubiquitous in nature and technology. Prominent

examples can be found in biological and biomedical systems, laser physics, integrated commu-

nications [24]. In laser physics such a situation arises in lasers subject to two or more optical or

electro-optical feedback. Second optical feedback could be useful to stabilize laser intensity [25].

Chaotic behaviour of laser systems with two optical feedback mechanism is studied in recent

works [26]. To the best of our knowledge chaos synchronization between the multi-feedback

systems is yet to be investigated. Having in mind enormous application implications of chaos

synchronization e.g. in secure communication, investigation of synchronization in multi-feedback

systems is of immense importance. It is well known that laser arrays hold a great promise for

space communication applications, which require compact sources with high optical intensities.

The most efficient result can be achieved when the array elements are synchronized [27].

In this paper we only briefly consider the case of adaptive synchronization in semiconductor

lasers with double feedback. (More detailed results on synchronization regimes in the chaotic

nonlinear systems will be presented elsewhere.) In the case of double feedback in the semicon-

ductor lasers to the right-hand sides of the first equations (5) and (6) one has to add the terms

kM1EM (t− τ1) cos(ω0τ1 +ΦM(t)−ΦM(t− τ1)) and kS1ES(t− τ1) cos(ω0τ1 +ΦS(t)−ΦS(t− τ1)).

(Of course corresponding terms should be added to the phase equations in (5) and (6).) Here

kM1,S1 are the feedback rate from the second mirrors in the master and slave lasers, respec-

tively; τ1 is round trip time in the lasers’ second external cavity. With this the linkage function

to achieve adaptive synchronization between systems (5) and (6) will be written as follows:

W = KW (EM − ES) + 1

2
G(nMEM − nSES) + kMEM (t − τ) cos(ω0τ + ΦM(t) − ΦM (t − τ)) −

kSES(t − τ) cos(ω0τ + ΦS(t) − ΦS(t − τ)) + kM1EM (t − τ1) cos(ω0τ1 + ΦM (t) − ΦM (t − τ1)) −

kS1ES(t − τ1) cos(ω0τ1 + ΦS(t) − ΦS(t − τ1)).

3. ADAPTIVE SYNCHRONIZATION WITH UNKNOWN PARAMETERS

The systems parameters from eqs.(5-6) are required for the adaptive synchronization coupling

function. In the case that these parameters are not available, one can apply the on-line parameter

estimation method. In principle the number of unavailable parameters can be equal to the total

number of systems’ parameters. First, in this paper we demonstrate the case of single parameter

estimation, namely to gain estimation. Next we apply the approach to the case of double

parameters estimation. So let us suppose that the gain’s estimated value G1 is different from

the gain value G required for synchronization. With the estimated value of gain the adaptive

coupling function would be of the form
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W = KW (EM − ES) +
1

2
G1(nMEM − nSES)

+ kMEM (t − τ) cos(ω0τ + ΦM(t) − ΦM (t − τ)

− kSES(t − τ) cos(ω0τ + ΦS(t) − ΦS(t − τ)), (14)

Under these conditions it is easy to verify that error dynamics will now satisfy the following

equation:
de

dt
= −KW e +

1

2
(nMEM − nSES)(G − G1), (15)

In other words, for G 6= G1 the error e will not approach zero, as required for synchronization

purposes. The situation can be rectified, if we add the following equation for the parameter

estimation error eG = G − G1 to the previous equation (15):

deG

dt
= −e

1

2
(nMEM − nSES). (16)

Now we shall demonstrate that the origin of the systems (15)-(16) is asymptotically stable, i.e.

that the synchronized state is asymptotically stable. Indeed, by choosing the following Lyapunov

function:

L =
1

2
(e2 + e2

G), (17)

it is trivial to check that

dL

dt
= −KW e2 +

1

2
(nMEM − nSES)eGe −

1

2
(nMEM − nSES)eGe = −KW e2 < 0. (18)

Thus we demonstrate that the stability of the adaptive control law with unknown parame-

ters is asymptotic. Next we suppose that apart from the gain, the master laser’s estimated

feedback rate value kMn is different from the value of kM required for synchronization. Then

with the estimated values of gain and feedback rate the adaptive coupling function would be:

W = KW (EM − ES) + 1

2
G1(nMEM − nSES) + kMnEM (t − τ) cos(ω0τ + ΦM(t) − ΦM(t − τ))

− kSES(t − τ) cos(ω0τ + ΦS(t) − ΦS(t − τ)). With this W the error dynamics is of the form:

de
dt

= −KW e+ 1

2
(nMEM −nSES)(G−G1)+(kM −kMn)EM (t−τ) cos(ω0τ +ΦM(t)−ΦM(t−τ)).

So for G 6= G1 and kM 6= kMn synchronization is not achieved as e with time is not approaching

zero. Synchronization will take place only if the parameters’ estimation errors eG = G − G1

and ek = kM − kMn obey the dynamics: deG

dt
= −e1

2
(nMEM − nSES) and deMn

dt
= −eEM (t −

τ) cos(ω0τ + ΦM (t) − ΦM(t − τ)). This time it can be shown by using the Lyapunov function

L = 1

2
(e2 + e2

G + e2

k). It is evident that this approach is also applicable in the case double

(multi-feedback) systems.

In this paper we have only presented the case of complete chaos synchronization. Expansion

of the approach to the lag and anticipating synchronizations is straightforward.

The practical implementation of the proposed scheme can be based on the approaches devel-

oped in [28-30]. In these papers it has been shown that a scheme of chaos control for external
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cavity laser diodes can be effected where a periodic state of the dynamics is selected from the

chaotic dynamics. The key to that approach is the utilisation of an error signal which defines the

difference between the chaotic state and the targeted state. As the target state is approached

the generated error signal reduces to zero. It was shown in those papers that optoelectronic

feedback provides a straightforward means for generating the requiste error signal [24-26]. It is

noted that the linkage function defined in the present work can be expressed as an error signal

between the dynamics of the master and slave external cavity lasers. As the linkage function

brings the dynamics of the two laser systems into synchronization the corresponding error signal

will diminish to zero. One approach to the practical implementation of the synchronization of

the present scheme would thus again be based on the use of the optoelectronic feedback.

In other words, for the practical realization of the synchronization scheme we essentially inject

the amplified difference signal between the master and slave lasers’ outputs to the slave laser.

Comparing our approach with other widely known methods we notice that, in general, the

present synchronization procedure is different from that of [15,17] and we argue that it offers

more flexibility in practical control problems.

4. CONCLUSION

In this paper we have showed how one can synchronize two chaotic time delay systems in

the general case by choosing an appropriate delay adaptive coupling function. We apply the

proposed approach to the case of synchronization between two semiconductor lasers subject to

optical feedback. For the first time we have also demonstrated that when the parameters of the

systems to be synchronized are not available, then on-line parameter estimation can be applied.

Generalization of the approach to the case of multi-feedback systems is also presented.
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