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Abstract

Some results for the black-body radiation obtained in the context of the q-thermostatistics are

analyzed on both thermodynamical and statistical-mechanical levels. Since the thermodynamic

potentials can be expressed in terms of Wright’s special function a useful asymptotic expansion

can be obtained. This expansion allows to consider thermodynamic properties away from the

Boltzmann-Gibbs limit q = 1. The role of non-extensivity, q < 1, on the possible deviation

from the Stefan-Boltzmann T 4 behavior is considered. The application of some approximation

schemes widely used in the literature to analyze the cosmic radiation is discussed.
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I. INTRODUCTION

The nonextensive statistical mechanics (NSM) is based on the generalized entropy defined

by:

ST
q = −k

1 −
∑W

i=1 pq
i

1 − q
, (1)

where the index i labels the possible microstates of the system under consideration, {pi} is a set

of normalized probabilities, the real parameter q characterizes the degree of non-extensivity and

k is a positive constant. Notice that taking the limit q → 1 leads to the popular Boltzmann-

Gibbs statistics (BGS). For a recent review on the nonextensive thermostatistics and its current

status see Refs. [1, 2].

The thermodynamics in the context of the (NSM) is investigated by generalizing the Gibbs

canonical ensemble to the case q 6= 1. This is achieved by maximizing the entropy defined by

Eq. (1) under the constrains: (i) normalization of the probabilities, and (ii) knowledge of the

expectation value of the energy. The expectation values that lie in basis of the thermostatistical

considerations are usually computed using two different approaches. The first one is the so-called

‘unnormalized’ approach proposed in Ref. [3]. Within this approach, for a given observable O

with an eigenvalue Oi in the microstate i one has

〈O〉 =

W
∑

i=1

pq
iOi. (2)

This approach shows several difficulties in describing the thermodynamics (see e.g. [2]). It is

unable to preserve many of the thermodynamic properties. To overcome these inconveniences

the ‘normalized approach’ has been advanced in Ref. [4], where the expectation values are given

by

〈O〉 =

∑W
i=1 pq

i Oi
∑W

i=1 pq
i

. (3)

The normalized treatment seems to provide one with a natural bridge that connects the NSM

to the thermodynamics [2]. The normalized approach has been in turn improved by the so-

called ‘optimal Lagrange multipliers’ (OLM) approach [5]. Nowadays it is believed that both

approaches are the most appropriate choice for investigating the thermodynamics within the

framework of the NSM regarding the nature of the Lagrange multiplier associated with the tem-

perature. In these cases the non-extensivity is restricted just to the entropy, while the internal

energy remains extensive as in the case of the BGS. The Lagrange multipliers preserve their

traditional intensive character and can be identified with their thermodynamic counterparts.

An important consequence of the success of both approaches is the unification of the Tsallis and

Rényi variational formalism under a common context. This success originates from the fact that

the Rényi’s entropy is extensive[2]. Let us mention that the extensivity of the internal energy
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is true as long as we consider a system with a large number of particles or the thermodynamic

limit under the condition q < 1 [6].

In the last few years many papers have been published on the application of NSM to the

black-body radiation [7–15]. Our belief is that rigorous and exact results have an instructive role

in the field. The exact expression for the corresponding partition function has been obtained in

Refs. [9, 13, 14]. The studies presented in Refs. [7–12, 15] employ the unnormalized approach,

while those in Refs. [13, 14] used the normalized one.

Irrespective of the used approach one can see that in the case q 6= 1 the derivation of exact

results is a very complicated task. The final expressions one has at hand are too cumbersome

and obscures the underlying physics. In this situation an approximation that tries to make the

exact results more simple and transparent is preferable. However, the real benefit from the

exact treatment without a well defined range of validity of the used approximation seems to be

doubtful. Let us note that the more appropriate approximations are limited to simply computing

(1 − q) corrections (see Refs. [11] and [14] and references therein) since the Boltzmann-Gibbs

limit q → 1 leads to great simplifications. In this situation the possible strong deviations from

the usual Boltzmann-Gibbs case are of significant interest.

A well estimated approximation in this field would be useful, since there is criticism concern-

ing the physical validity of Tsallis statistics [16, 17]. The objections of Refs. [16, 17] in their

major parts are concentrated on applications of q-thermostatistics to the black-body radiation.

Recently this issue has been a matter of a debate in the literature [16–18].

The aim of the present study is to illustrate another possibility the for simplification of basic

expressions in both approaches not related to the small value of (1 − q). It is based on the fact

that in both cases the intricate sums that appear in the theory may be presented [19] in terms

of the Wright function with well studied analytical properties [20]. This is justified since we are

considering a tremendous system. We hope this possibility will shed some light on the existing

debate [16–18].

This paper is organized as follows: In Section II we discuss the thermodynamic derivation of

the popular Stefan-Boltzmann law in terms of the Tsallis statistics. In Section III we introduce

the mathematical background we need in our analysis. This is presented in Section IV. Section

V is devoted to the discussion of our results.

II. SOME THERMODYNAMIC RELATIONS

First we shall introduce some basic notions. The radiation field in a large cavity can be

considered to consist of a denumerably infinite set of electromagnetic oscillators corresponding

to the various quantum states k in a d-dimensional box. The oscillator frequencies, ωi = cki,

are related to the total energy E by E = Σini,ε~ωi, where ni,ε is the number of oscillator quanta

with frequency ωi and polarization ε, c is the light speed, ~ is the Planck constant and ki = |ki|.
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The Boltzmann-Gibbs partition function Z1, for a large volume V , can be written as

Z1(Ad) = exp(Ad), (4)

where

Ad =
Γ(d)ζ(d + 1)2τd

(4π)d/2Γ(d/2)

(

kBT

~c

)d

V. (5)

In (5), τd = d − 1 is the number of linear-independent polarizations, kB-Boltzmann constant,

T -temperature, and Γ(x) and ζ(x) are Gamma and Zeta functions, respectively.

The main obstacles related to the applicability of the q-thermostatistics to the black-body ra-

diation may be considered in the context of the famous Stefan-Boltzmann law. In the Boltzmann-

Gibbs thermodynamics the Stefan-Boltzmann law follows from the equation
(

∂U

∂V

)

T

= T

(

∂p

∂T

)

V

− p (6)

and the relation

p(T ) =
u(T )

d
, (7)

where p ≡ p(T ) is the pressure and u(T ) = U(T, V )/V - the internal energy per unit volume.

Here the dependence on the temperature alone is crucial. As a result Eq. (6) reduces to an

ordinary differential equation for u(T ) and its solution is u(T ) = σT d+1, where σ is a constant

that cannot be obtained on the macroscopic level.

Let us now consider the corresponding generalization of the Stefan-Boltzmann law to the NSM

context. In the q-thermodynamics the following expressions for the internal energy Uq(T, V ) and

the pressure pq(T, V ) hold [9]:

Uq(T, V ) = kT 2 ∂

∂T

[Zq]
1−q − 1

(1 − q)
(8)

and

pq(T, V ) = kT
∂

∂V

[Zq]
1−q − 1

(1 − q)
, (9)

where Zq is the q-generalized partition function. Now, we shall give some thermodynamic

relations for the black-body radiation using as input the definitions (8) and (9). Because of the

simple dimensional arguments it is evident that Zq ≡ Zq(Ad). If we introduce the convenient

notation lnq x = xq−1
−1

1−q the internal energy Uq(T, V ) may be expressed through Zq(Ad) and

Uq(T, V ) = dkTAd
d

dAd
lnq Zq(Ad). (10)

Correspondingly for the pressure pq(T, V ) we get

pq(T, V )V = kTAd
d

dAd
lnq Zq(Ad). (11)
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The q-generalization of the relation (7) immediately follows from Eqs. (10) and (11)

pq(T, V )V =
Uq(T, V )

d
. (12)

Relation (12), between the pressure and internal energy, is q-independent. As it should be. The

violation of the relation between the pressure and the internal energy would compromise the

theory since this can be established from pure electrodynamic reasoning. Eq. (12) was verified

in Refs. [9] and [14] on the basis of the explicit expression of the partition function.

A necessary and sufficient condition for the internal energy Uq(T, V ) to be proportional to

the volume V and to obey Eq. (10) is that Zq(Ad) must have the general form

Zq(Ad) = eC1(q)Ad
q (13)

where ex
q = [1 + (1 − q)x]1/(1−q) is the inverse function of lnq(x) and C1(q) is an unknown,

regular at q = 1, function. Indeed the relation (13) cannot be exact. It can be obtained only

as an approximation and C1(q) depend upon the used approximation scheme. For example,

within the framework of the factorization approximation used in Ref. [15], we have C1(q) =

[(4− 3q)(3− 2q)(2− q)]−1. Now, though q 6= 1 the Stefan-Boltzmann law temperature behavior

in its usual form is preserved. The constant σ = σ(q) must be q-dependent (see e.g. Refs.

[7, 8, 10, 15]).

The same relation as Eq. (6) between pq(T, V ) and Uq(T, V ) exists in the general case of the

q-thermodynamics [21]. Here however instead of Eq. (7) the more general relation (12) takes

place and it is necessary to consider the following partial differential equation for Uq(T, V )

V

(

∂Uq

∂V

)

T

=
T

d

(

∂Uq

∂T

)

V

−
1

d
Uq. (14)

This equation has a solution of the type

Uq(T, V ) = σq(T
dV )V C(q,d)/dT 1+C(q,d), (15)

where the constant C(q, d) (independent of T and V ) and the unknown function σq(x) can be

obtained only at the microscopic level. This is the generalization of the Stefan-Boltzmann law

that can be obtained without using the explicit expression for the partition function.

The result (15) means that in the considered case we loose the ‘famous’ T d+1 behavior of

the internal energy as a function of the temperature. This is a strict consequence of the fact

that Uq(T, V ) does not depend linearly on the volume V . This is in agreement with the findings

of Ref. [16]. However a consideration on a pure thermodynamic level does not exclude a q-

dependence of the proportionality coefficient of the T 4 law.

Without loss of generality let us consider a system in a cube with V = Ld. If we introduce

the mean thermal wavelength of the black-body photons l = l(T ) ≡ ~c/kT , Eq. (15) may be

transformed into the following scaling forms

Uq(T,L) =
κ

l
gq

(

L

l

)

, (16)
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where κ is a dimensionless constant and gq(x) is a function, of which the explicit form depends on

the way of writing the energy constraint (see Ref. [4]) i.e. its expression may be quite different

as a function of the ratio L/l (see e.g. Eqs.(22) and (26)) depending on the used approach:

unnormalized or normalized.

III. THE WRIGHT FUNCTION

In Section I we have advanced that for the investigation of the black-body radiation in

the context of NSM different approaches have been used in the literature. Earlier, using the

normalized approach the exact q counterpart of (4) is found to be [9]

Zq(Ad) = Γ

(

2 − q

1 − q

) ∞
∑

m=0

Am
d

(1 − q)dmm!

1

Γ[(2 − q)/(1 − q) + dm]
. (17)

Later, another expression for the partition function was obtained within the framework of the

OLM and the normalized approaches. It is given [14] by the relation

Z̄q(Uq, Ad) = Γ

(

2 − q

1 − q

) ∞
∑

m=0

Am
d

(1 − q)dmm!

[1 + (1 − q)kTUq]
dm+1/(1−q)

Γ[(2 − q)/(1 − q) + dm]
. (18)

obtained under the cut-off-like condition 1 + (1 − q)(kT )−1Uq > 0, otherwise we have

Z̄q(Uq, Ad) = 0.

In spite of the fact that in the last case all the thermodynamic quantities, e.g. the internal

energy, can be expressed exactly a complication arises. The corresponding expressions are self-

referential [13, 14] in the sense that the thermodynamic functions are not expressed in a closed

form. This fact leads to mathematical difficulties that make the problem for the most part only

numerically tractable. Notice that Eqs. (17) and (18) are valid only for q < 1.

If one tries to apply the above results to the experimental data of the cosmic back-ground

radiation the condition Ad � 1 is always satisfied since ~c/(kT ) is of the order of 1/10 cm and

V is of cosmological dimensions [16]. This physical fact will lead to a great simplification in the

mathematical expressions given in Eqs. (17) and (18). Having this in mind, we take advantage

of the fact that the series in the r.h.s of Eqs. (17) and (18) can be presented in terms of the

entire function

φ(ρ, α; z) =
∞
∑

m=0

zm

m!Γ(ρm + α)
, ρ > 0, α ∈ C, (19)

introduced in 1933 by E.M. Wright in the asymptotic theory of partitions. For analytical prop-

erties, some generalizations and applications of this function the interested reader may consult

Ref. [20]. We note here a useful mathematical result concerning the behavior of Wright’s function

φ(ρ, α; z). If ρ > 0, for a large real z, we have the asymptotic expansion [20]:
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φ(ρ, α; z) = (ρz)
(1−2α)
(2+2ρ)

√

2π

ρ + 1
exp[(1 + ρ−1)(ρz)

1
(1+ρ) ]

×

[

1 +
M
∑

m=1

(−1)mam(ρ, α)

(ρz)
m

(1+ρ)

+ O((ρz)
−

M+1
(1+ρ) )

]

, (20)

i.e. the asymptotic behavior of the Wright function is presented in terms of elementary func-

tions. This result permits to obtain the different thermodynamic functions of the black-body

radiation in a more simple form in some particular cases. The constants am(ρ, α) can be exactly

evaluated [20]. For our analysis below we need

a1(ρ, α) =
1

ρ + 1

[

α

2
(α − ρ − 1) +

1

24
(2 + ρ)(1 + 2ρ)

]

and

a2(ρ, α) =
1

(1 + ρ)2

[ α

48
(α − ρ − 1)[6α2 + α(2 − 14ρ) + ρ(6ρ − 7) − 2]

+
7

1152
(2 + ρ)2[103 + 4ρ(7 + ρ)]

]

.

IV. THE STEFAN-BOLTZMANN LAW

In order to define the unknown function and constants in the thermodynamic relations dis-

cussed in Section II and to obtain the q-generalization of the Stefan-Boltzmann law one must

use the concrete expression for the partition functions: (17) for Zq(Ad), obtained using the un-

normalized approach, or (18) for Z̄q(Uq, Ad), which is a result of the normalized approach. This

motivates us to consider below both approaches separately.

A. Unnormalized approach

Within this approach the thermodynamic quantities are computed using the so-called un-

normalized expectation values introduced in Eq. (2). In this case the generalization of the

Stefan-Boltzmann law in terms of the Wright function is given by the following expression for

the internal energy

Uq(T, V ) =
dkTAd

(1 − q)d

[

Γ

(

2 − q

1 − q

)]1−q φ
(

d, 2−q
1−q + d; Ad

(1−q)d

)

[

φ
(

d, 2−q
1−q ; Ad

(1−q)d

)]q . (21)

Now, let us consider the physically interesting case d = 3. In the limit q → 1 the asymptotic

expansion (20) fails. Then if (1− q) is fixed, for A3 � 1, using Eq. (20) (up to the zeroth order

in small values of z−1) we get

Uq(T, V ) =
kT

(8π)(1−q)/2

[

Γ

(

2 − q

1 − q

)]1−q [

3A3

(1 − q)3

]

−(1−q)/8

exp

{

4

3
[3A3(1 − q)]1/4

}

. (22)
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FIG. 1: Behavior of q-dependence of Uq(T, V )/3kT from Eqs. (21) (solid line) and (22) (dashed line) for
(A) A3 = 500, (B) A3 = 5000. Notice that we used the logarithmic scale along the vertical axis.

The last equation is in full consistency with relation (15) if for the constant C(q, 3) we take the

value − 3
8(1 − q) and the function σq(T

3V ) is equal to the exponential function in the r.h.s. of

Eq. (22) with the corresponding factor.

In FIG. 1 we present the comparison of the behaviors of Uq(T, V ) from Eqs. (21) and (22)

at large A3. It shows that for large A3, the expression (22) for the internal energy is a good

approximation of the exact one given by (21). To our knowledge such kind of approximations

is presented for the first time for the black-body radiation problem, while expansions around

q = 1 investigating deviations from the BGS are known [11].

As a conclusion we find that our result (22) shows that in the case of the unnormalized

approach the Stefan-Boltzmann law is not preserved. Remark that in this case the internal

energy is not proportional to the volume. This is in agreement with the discussion of Section II.
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B. Normalized approach

Within this framework the expectation values are computed using Eq. (3). This approach

has the advantage of reproducing the traditional thermodynamic relations. The internal energy

Uq ≡ Uq(T, V ) is found to obey a nonlinear equation that can be expressed in terms of the

Wright function. It has the form:

Uq = kT
dAd[1 + (1 − q)(kT )−1Uq]

d+1

(1 − q)d+1

φ
(

d, 2−q
1−q + d;

Ad[1+(1−q)(kT )−1Uq ]d

(1−q)d

)

φ
(

d, 1
1−q ;

Ad[1+(1−q)(kT )−1Uq ]d

(1−q)d

) . (23)

For fixed (1 − q) and

Ad[1 + (1 − q)(kT )−1Uq]
d

(1 − q)d
� 1, (24)

using Eq. (20) (up to the first order in small values of z−1) after some algebra Eq. (23) reads

(1 − q)(kT )−1Uq = [1 + (1 − q)(kT )−1Uq]

×

[

1 −
1

1 − q

(

dAd

(1 − q)d

[

1 + (1 − q)(kT )−1Uq

]d
)

−
1

1+d

]

. (25)

The solution of this equation is surprisingly simple. The result is

Uq = σV T d+1 −
1

1 − q
kT, (26)

where

σ =
Γ(d)ζ(d + 1)2d(d − 1)

(4π)d/2Γ(d/2)

kd+1

(~c)d

is the usual Stefan-Boltzmann constant. Since it is not possible to take the limit q → 1 in Eq.

(26) we cannot recover the Stefan-Boltzamnn any more. Inserting now Eq. (26) into Eq. (24)

we obtain the condition

Ad(dAd)
d � 1, (27)

restricting the range of the validity of the obtained solution for Uq. In order to improve our result

we calculated the next term of the internal energy (26). To this end we used the expansion of r.h.s

of (23) to the second term i.e. in small values of z−2. The complicated ensuing equation could be

solved using an iteration method, which leads to the additional term [1−(1−q)d][2d(1−q)]−1kT

in the solution (26). Note here that in spite of taking into account the next order in our

calculations we see that our results are not improving in the sense that we cannot take the limit

q → 1.

Remark that the internal energy (26) is non-extensive for relatively small volumes of the

system. In the thermodynamic limit it becomes extensive, confirming the conclusions of Ref. [6].
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The entropy, S, follows from the thermodynamic relation (∂S/∂V )T = (∂p/∂T )V . It has been

demonstrated that in the case of the NSM the traditional thermodynamic relations remain valid

only if one uses the Rényi entropy, SR, instead of its Tsallis counterpart ST
q [22]. The first one

has the remarkable property of being extensive. In the thermodynamic limit we have in the case

under consideration

SR = V σ
d

d + 1
T d. (28)

The Tsallis entropy can be deduced through the relation [2]

ST
q =

k

1 − q
(exp

[

(1 − q)SR
]

− 1). (29)

This is a sign that the Stefan-Boltzmann law remains valid in the NSM context as well.

V. DISCUSSION

Let us discuss the most important case d = 3. In our consideration the crucial point is the

condition

A3 =
π2

45

(

~c

kT

)3

V � 1 (30)

that was used to truncate the asymptotic expansion (20) for obtaining the results given by

Eq. (22) and Eq. (26). From a physical point of view the condition (30) is always satisfied

when considering the cosmic background radiation since ~c/kT is of order of 0.1 cm and V is of

cosmological dimensions.

Our considerations shows that the application of the thermodynamical concepts of the NSM

may lead to the T 4 Stefan-Boltzmann law. However this takes place if the partition function

has the form (13). This form would be a result of some approximations (see e.g. [15]) and the

T 4 behavior is a strict consequence of a linear on V dependence of U(T, V ). What is important

to note is that the inequality (30) permits to use quite different approximation, e.g. based on

the used asymptotic expansion (20), and so prohibits the use of any approximation formula of

the type of Eq. (13) to the cosmic back-ground radiation.

In the context of NSM two different formalisms have been suggested to investigate the ther-

modynamics of physical systems: unnormalized and normalized. In the following we discuss in

more detail both approaches separately taking advantage of the validity of the condition (30).

In the case of the unnormalized approach our investigation results in the formula (22). If

the inequality (30) is fulfilled we loose the Stefan-Boltzmann’s T 4 behavior. Furthermore the

internal energy density, Eq. (22), does not depend linearly on the volume of the system, which

is unacceptable. These findings are in agreement with the conclusions of Ref. [16].

Free of such a defect would be a theory based on the normalized approach [4, 14, 18]. In this

case one can immediately see that the condition (27) is the relaxed version of (30). This means
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that if one tries to apply the normalized approach to the analysis of the cosmic back-ground

radiation the expression (26) has to be used. This result is consistent with the thermodynamic

relations (14) and (15). Indeed the first term in Eq. (26) is the usual Stefan-Boltzman law. The

question is: how to interpret the last one? The wisdom of the standard statistical mechanics is

that such terms are to be omitted since they are of the order of O(1/V ) and do not contribute

in the thermodynamic limit. On the other hand, this term diverges with q → 1− and may be

considered as a sign that in NSM the Boltzman-Gibbs limit q → 1 and the thermodynamic

limit do not commute with each other. This is in agreement with the results obtained in the

framework of a classical gas [23].
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