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1 Introduction

The p-adic numbers were first introduced by the German mathematician K. Hensel. For about a cen-

tury after the discovery of p-adic numbers, they were mainly considered objects of pure mathematics.

However, numerous applications of these numbers to theoretical physics have been proposed in papers

[1],[4],[6],[7],[13],[18]. It is known [7] that number of p-adic models in physics cannot be described us-

ing ordinary probability theory based on the Kolmogorov axioms [12]. New probability models - p-adic

probability models were investigated in [7],[8]. This is non-Kolmogorovean model, since probabilities

take values in fields of p-adic numbers.

In [9],[10] the theory of stochastic processes with values in p-adic and more general non-Archimedean

fields having probability distributions with non-Archimedean values, has been developed. The non-

Archimedean analog of the Kolmogorov theorem that gives the possibility to construct wide classes of

stochastic processes by using finite dimensional probability distributions, was proved.

It is known that the theory of statistical mechanics lies in the base of is the theory of probability and

stochastic processes. Since the theory of probabilities and stochastic processes in a non-Archimedean

setting has been introduced, it is natural to begin the study and initiate further the development of the

problems of statistical mechanics in the context of the p-adic theory of probability.

One of the central problems in the theory of Gibbs measures is to describe infinite-volume Gibbs

measures corresponding to a given Hamiltonian. However, a complete analysis of the set of Gibbs

measures for a specific Hamiltonian is often a difficult problem. If for a given Hamiltonian there are at

least two Gibbs measures then it is said that a phase transition occurs for the model.

The existence of a phase transition for the Ising model (real case) on the Cayley tree of order k ≥

2 was established by Katsura and Takisawa [5]. The analysis of the Cayley tree Ising model can be

extended in several directions (see [14],[15],[3]).

In this paper we develop the p-adic probability theory approaches to study of some statistical me-

chanics models on a Cayley tree in the field of p-adic numbers. In [2] we have proved the existence

of the phase transition for the homogeneous p-adic Potts model with q ≥ 2 spin variables on the set of

integers Z. The present paper deals with a nonhomogeneous p-adic λ-model on the Cayley tree of order

k, k ≥ 1. The aim of this paper is to show the uniqueness of Gibbs measures for the considered model.

2 Definitions and preliminary results

2.1 p-adic numbers and measures

Let Q be the field of rational numbers. Every rational number x 6= 0 can be represented in the form

x = pr n

m
, where r, n ∈ Z, m is a positive integer, (p, n) = 1, (p,m) = 1 and p is a fixed prime number.

The p-adic norm of x is given by

|x|p =

{

p−r for x 6= 0
0 for x = 0.

It satisfies the following properties:
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1) |xy|p = |x|p|y|p,

2) the strong triangle inequality

|x + y|p ≤ max{|x|p, |y|p},

this is a non-Archimedean norm.

The completion of Q with respect to p-adic norm is called p-adic field which is denoted by Qp.

The well-known Ostrovsky’s theorem asserts that norms |x|∞ = |x| and |x|p, p = 2, 3, 5... exhaust

all nonequivalent norms on Q (see [11]). Any p-adic number x 6= 0 can be uniquely represented in the

canonical series:

x = pγ(x)(x0 + x1p + x2p
2 + ...),

where γ = γ(x) ∈ Z and xj are integers, 0 ≤ xj ≤ p − 1, x0 > 0, j = 0, 1, 2, ... (for more details see

[11],[17]). In this case |x|p = p−γ(x).

Let B(a, r) = {x ∈ Qp : |x − a|p ≤ r}, where a ∈ Qp, r > 0. The p-adic logarithm is defined by

series

logp(x) = logp(1 + (x − 1)) =

∞
∑

n=1

(−1)n+1 (x − 1)n

n
,

which converges for x ∈ B(1, 1). And p-adic exponential is defined by

expp(x) =
∞
∑

n=1

xn

n!
,

which converges for x ∈ B(0, p−1/(p−1)).

Lemma 2.1.[11],[17] Let x ∈ B(0, p−1/(p−1)) then we have

| expp(x)|p = 1, | expp(x) − 1|p = |x|p < 1, | logp(1 + x)|p = |x|p < p−1/(p−1)

and

logp(expp(x)) = x, expp(logp(1 + x)) = 1 + x.

Let (X,B) be a measurable space, where B is an algebra of subsets X . A function µ : B → Qp is

said to be a p-adic measure if for any A1, ..., An ⊂ B such that Ai ∩ Aj = ∅ (i 6= j) the equality holds

µ(

n
⋃

j=1

Aj) =

n
∑

j=1

µ(Aj).

A p-adic measure is called a probability measure if µ(X) = 1.

For more detailed information about p-adic measures please refer to [7],[8].
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2.2 The Cayley tree

The Cayley tree Γk of order k ≥ 1 is an infinite tree, i.e., a graph without cycles, such that each vertex of

which lies on k + 1 edges. Let Γk = (V,Λ), where V is the set of vertices of Γk, Λ is the set of edges of

Γk. The vertices x and y are called nearest neighbours, which is denoted by l =< x, y > if there exists

an edge connecting them. A collection of the pairs < x, x1 >, ..., < xd−1, y > is called path from the

point x to the point y. The distance d(x, y), x, y ∈ V , on the Cayley tree, is the length of the shortest

path from x to y.

We set

Wn = {x ∈ V |d(x, x0) = n},

Vn = ∪n
m=1Wm = {x ∈ V |d(x, x0) ≤ n},

Ln = {l =< x, y >∈ L|x, y ∈ Vn},

for an arbitrary point x0 ∈ V .

Denote

S(x) = {y ∈ Wn+1 : d(x, y) = 1} x ∈ Wn,

this set is called the set direct successors of x. Observe that any vertex x 6= x0 has k direct successors

and x0 has k + 1.

2.3 The p-adic λ-model

We consider the p-adic λ-model, where the spin takes values in the set Φ = {−1, 1} ⊂ Qp and is assigned

to the vertices of the tree. A configuration σ on V is then defined as a function x ∈ V → σ(x) ∈ Φ; in

a similar fashion one defines a configuration on Vn and Wn respectively. The set of all configurations on

V (resp. Vn) coincides with Ω = ΦV (resp. Ωn = ΦVn ). The Hamiltonian Hn : Ωn → Qp of the p-adic

inhomogeneous λ-model has the form:

Hn(σ) =
∑

<x,y>∈Ln

λx,y(σ(x), σ(y)), n ∈ N (2.1)

where the sum is taken over all pairs of neighbouring vertices < x, y >, σ ∈ Ω. Here and below

λ : Φ × Φ → Qp is some given function such that |λx,y(u, v)|p < p−1/(p−1) for all u, v ∈ Φ, x, y ∈ V

and p is a fixed prime number.

We say that (2.1) is homogeneous λ-model if λxy(u, v) = λ(u, v), ∀ < x, y >∈ L.

We note that λ-model of this type were firstly considered in [15].

3 Construction of Gibbs measures

In this subsection we give a construction of a special class of Gibbs measures for p-adic λ-model on the

Cayley tree.

To define Gibbs measure we have need in the following
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Lemma 3.1. Let hx, x ∈ V be a Qp-valued function such that hx ∈ B(0, p−1/(p−1)) for all x ∈ V

and |λx,y(u, v)|p < p−1/(p−1) for all u, v ∈ Φ. Then the relation

Hn(σ) +
∑

x∈Wn

hxσ(x) ∈ B(0, p−1/(p−1))

is valid for any n ∈ N.

The proof easily follows from the strong triangle inequality for the norm | · |p.

Let h : x ∈ V → hx ∈ Qp be a function of x ∈ V such that |hx|p < p−1/(p−1) for all x ∈ V . Given

n = 1, 2, ... consider a p-adic probability measure µ(n) on ΦVn defined by

µ(n)(σn) = Z−1
n expp{Hn(σn) +

∑

x∈Wn

hxσ(x)}, (3.1)

Here, as before, σn : x ∈ Vn → σn(x) and Zn is the corresponding partition function:

Zn =
∑

σ̃n∈ΩVn

expp{H(σ̃n) +
∑

x∈Wn

hxσ̃(x)}.

Note that according to Lemma 3.1 the measures µ(n) exist.

The compatibility conditions for µ(n)(σn), n ≥ 1 are given by the equality

∑

σ(n)

µ(n)(σn−1, σ
(n)) = µ(n−1)(σn−1), (3.2)

where σ(n) = {σ(x), x ∈ Wn}.

We note that an analog of the Kolmogorov extension theorem for distributions can be proved for

p-adic distributions given by (3.1) (see [10]). Then according to the Kolmogorov theorem there exists a

unique p-adic measure µh on Ω = ΦV such that for every n = 1, 2, ... and σn ∈ ΦVn the equality holds

µ

(

{σ|Vn = σn}

)

= µ(n)(σn),

which will be called p-adic Gibbs measure for the considered λ-model. It is clear that the measure µh

depends on function hx, so if the Gibbs measure for a given Hamiltonian non unique then we say that

for this model there is a phase transition.

The following statement describes conditions on hx guaranteeing the compatibility condition of mea-

sures µ(n)(σn).

Theorem 3.2. The measures µ(n)(σn), n = 1, 2, ... satisfy the compatibility condition (3.2) if and

only if for any x ∈ V the following equation holds:

hx =
∑

y∈S(x)

Fx,y(hy ;λ) (3.3)

where S(x) is the set of all direct successors of x ∈ V and

Fx,y(h, λ) =
1

2
logp

(

expp(λx,y(1, 1)) expp(2h) + expp(λx,y(1,−1))

expp(λx,y(−1, 1)) expp(2h) + expp(λx,y(−1,−1))

)

.
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Proof. Necessity. According to the compatibility condition (3.2) we have

Z−1
n

∑

σ(n)

expp

[

∑

<x,y>∈Ln

λx,y(σ(x), σ(y)) +
∑

x∈Wn

hxσ(x)

]

=

Z−1
n−1 expp

[

∑

<x,y>∈Ln−1

λx,y(σ(x), σ(y)) +
∑

x∈Wn−1

hxσ(x)

]

. (3.4)

It yields

Zn−1

Zn

∑

σ(n)

expp

[

∑

x∈Wn−1

∑

y∈S(x)

λx,y(σ(x), σ(y)) +
∑

x∈Wn−1

∑

y∈S(x)

hyσ(y)

]

=
∏

x∈Wn−1

expp

(

hxσ(x)

)

.

(3.5)

From this equality we find

Zn−1

Zn

∏

x∈Wn−1

∏

y∈S(x)

∑

σ(y)∈Φ

expp

(

λx,y(σ(x), σ(y)) + hyσ(y)

)

=
∏

x∈Wn−1

expp

(

hxσ(x)

)

. (3.6)

Now fix x ∈ Wn−1 and dividing the equalities (3.6) with σ(x) = 1 and σ(x) = −1 we obtain

∏

y∈S(x)

∑

σ(y)∈Φ expp

(

λx,y(1, σ(y)) + hyσ(y)

)

∑

σ(y)∈Φ expp

(

λx,y(−1, σ(y)) + hyσ(y)

) = expp(2hx), (3.7)

hence we get

∏

y∈S(x)

expp(λx,y(1, 1)) expp(2hy) + expp(λx,y(1,−1))

expp(λx,y(−1, 1)) expp(2hy) + expp(λx,y(−1,−1))
= expp(2hx), (3.8)

which implies (3.3).

Sufficiency. Now assume that (3.3) is valid, then it implies (3.8), and hence (3.7). From (3.7) we

obtain the following equality

a(x) expp

(

hxσ

)

=
∏

y∈S(x)

∑

σ(y)∈Φ

expp

(

λx,y(σ, σ(y)) + hyσ(y)

)

, σ ∈ {−1, 1},

this equality implies

∏

x∈Wn−1

a(x) expp

(

hxσ(x)

)

=
∏

x∈Wn−1

∏

y∈S(x)

∑

σ(y)∈Φ

expp

(

λx,y(σ(x), σ(y)) + hyσ(y)

)

, (3.9)

where

σ(z) =

{

σ, z = x

σ(z), z 6= z
σ ∈ {−1, 1}.

Denoting An(x) =
∏

x∈Wn
a(x) from (3.9) and (3.2) we find

Zn−1An−1µ
(n−1)(σn−1) = Zn

∑

σ(n)

µ(n)(σn−1, σ
(n)).
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Since each µ(n), n ≥ 1 measure is a p-adic probability measure, so we should have

∑

σn−1

∑

σ(n)

µ(n)(σn−1, σ
(n)) = 1,

∑

σn−1

µ(n−1)(σn−1) = 1.

Therefore, from these equalities we find Zn−1An−1 = Zn which means that (3.2) is valid.

Observe that according to this Theorem the problem of describing of p-adic Gibbs measures is re-

duced to the description of solutions of functional equation (3.3).

4 The uniqueness of Gibbs measure for the p-adic λ-model

In this section we will show that the phase transition does not occur for the p-adic λ-model.

Put

Ξ = {h = (hx, x ∈ V ) : hx satisfies the eqation (3.3)}.

According to Theorem 3.2 the description of Gibbs measures is reduced to the description of elements

of the set Ξ.

4.1 Nonhomogeneous case

In this subsection we will consider nonhomogeneous λ-model. We claim that the function λx,y satisfies

the following condition: for all nearest-neighbor vertices x, y ∈ V the equality

expp(λx,y(1, 1)) + expp(λx,y(1,−1)) = expp(λx,y(−1, 1)) + expp(λx,y(−1,−1)) (4.1)

is valid.

This condition implies that the function hx = 0,∀x ∈ V is a solution of (3.3).

Let S(x) = {x1, ..., xk}, here as before S(x) is the set of direct successors of x. Then the equation

(3.3) can be rewritten as follows

zx =

k
∏

i=1

αx,i, (4.2)

where zx = expp(hx), zxi
= expp(hxi

),

αx,i =
ax,xi

zxi
+ bx,xi

cx,xi
zxi

+ dx,xi

,

ax,xi
= expp(λx,xi

(1, 1)), bx,xi
= expp(λx,xi

(1,−1)),

cx,xi
= expp(λx,xi

(−1, 1)), dx,xi
= expp(λx,xi

(−1,−1))

}

(4.3)

for every i = 1, ..., k, here as before |hx|p ≤
1

p
for all x ∈ V .

Lemma 4.2. If |ai − 1|p ≤ M and |ai|p = 1, i = 1, ..., n, then

∣

∣

∣

∣

n
∏

i=1

ai − 1

∣

∣

∣

∣

p

≤ M. (4.4)
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Proof. We prove by induction on n. The case n = 1 is the condition of lemma. Suppose that (4.4) is

valid at n = m. Now let n = m + 1. Then we have
∣

∣

∣

∣

m+1
∏

i=1

ai − 1

∣

∣

∣

∣

p

=

∣

∣

∣

∣

m+1
∏

i=1

ai −
m
∏

i=1

ai +
m
∏

i=1

ai − 1

∣

∣

∣

∣

p

≤

≤ max

{
∣

∣

∣

∣

n
∏

i=1

ai(an+1 − 1)

∣

∣

∣

∣

p

,

∣

∣

∣

∣

n
∏

i=1

ai − 1

∣

∣

∣

∣

p

}

≤ M

This completes the proof.

Lemma 4.3. For every x ∈ V the following inequality holds

|hx|p ≤
1

p
max
1≤i≤k

{|hxi
|p}.

Proof. For every m ∈ {1, 2, ..., k} we have

|αx,m − 1|p =

∣

∣

∣

∣

(ax,xm − cx,xm)(zxm − 1)

cx,xmzxm + dx,xm

∣

∣

∣

∣

p

≤
1

p
|hxm |p.

Here we have used (4.1) and the following relations: for p ≥ 3

|ax,xm − cx,xm |p ≤
1

p
, |cx,xmzxm + dx,xm |p = 1,

for p = 2

|ax,xm − cx,xm |p ≤
1

22
, |cx,xmzxm + dx,xm |p =

1

2
,

which follow from (4.3) and the equality | expp(x) − 1|p = |x|p (see Lemma 2.1). Then according to

Lemma 4.2 and (4.2) we obtain

|hx|p = |zx − 1|p =
1

p
max
1≤i≤k

{|hxi
|p}.

Lemma is proved.

Theorem 4.4. Let k ≥ 1, |λx,y(u, v)|p ≤
1

p
for all < x, y >∈ L, u, v ∈ Φ and (4.1) be satisfied.

Then for the p-adic nonhomogeneous λ-model (2.1) on the Cayley tree of order k there is no phase

transition for any prime p.

Proof. To obtain the proof it is enough to show that Ξ = {hx ≡ 0}. In order to do so it is enough to

show that for arbitrary ε > 0 and every x ∈ V the inequality ‖hx‖p < ε is valid. Let n0 ∈ N be such

that
1

pn0
< ε. According to Lemma 4.3 we have

|hx|p ≤
1

p
|hxi0

|p ≤
1

p2
|hxi0 ,i1

|p ≤ · · ·

≤
1

pn0−1
|hxi0,...,in0−2

|p ≤
1

pn0
< ε,

here xi0,...,in,j , j = 1, k are direct successors of xi0,...,in , where

|hxi0 ,...,im
|p = max

1≤j≤k
{|hxi0 ,...,im−1,j

|p}.

This completes the proof.
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4.2 Homogeneous case

In this subsection we will consider the homogeneous λ-model, i.e. λxy(u, v) = λ(u, v), ∀ < x, y >∈ L.

In this subsection at first we restrict ourselves to the description of translation - invariant (hx = h ∈

Qp,∀x ∈ V ) elements of Ξ.

Let hx = h for all x ∈ V . Then (3.3) implies

(

expp(λ(1, 1)) expp(2h) + expp(λ(1,−1))

expp(λ(−1, 1)) expp(2h) + expp(λ(−1,−1))

)k

= expp(2h). (4.5)

Denoting
z = expp(2h), a = expp(λ(1, 1)), b = expp(λ(1,−1)),

c = expp(λ(−1, 1)), d = expp(λ(−1,−1)),







(4.6)

from (4.5) we obtain
(

az + b

cz + d

)k

= z. (4.7)

Denote

f(x) =

(

ax + b

cx + d

)k

.

Let S1 = {x ∈ Qp : |x|p = 1}. Then it is clear that f(S1) ⊂ S1. Using this fact for every x ∈ S1

we find

|f(x) − 1|p =

∣

∣

∣

∣

(a − c)x + b − d

cx + d

∣

∣

∣

∣

p

∣

∣

∣

∣

∣

∑

m=0

k − 1

(

ax + b

cx + d

)m
∣

∣

∣

∣

∣

p

≤
1

p
, (4.8)

here we have used (4.6) and Lemma 2.1.

Let x, y ∈ S1, then

|f(x) − f(y)|p =

∣

∣

∣

∣

ax + b

cx + d
−

ay + b

cy + d

∣

∣

∣

∣

p

∣

∣

∣

∣

∣

k−1
∑

m=0

(

ay + b

cy + d

)m(

ax + b

cx + d

)k−m−1
∣

∣

∣

∣

∣

p

≤

≤
|ad − bc|p|x − y|p
|cx + d|p|cy + d|p

. (4.9)

Now consider two different cases with respect to p.

Let us assume that p ≥ 3. In this case we have

|ad − bc|p ≤
1

p
, |cx + d|p = 1, |cy + d|p = 1,

which are obtained from (4.6) and Lemma 2.1. Using these equalities from (4.9) it can be found

|f(x) − f(y)|p ≤
1

p
|x − y|p. (4.10)

Now suppose p = 2. Then

|ad − bc|p ≤
1

22
, |cx + d|p =

1

2
, |cy + d|p =

1

2
.
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We claim that |ad − bc|p ≤
1

23
is satisfied. It follows from (4.9) that

|f(x) − f(y)|2 ≤
1

2
|x − y|2. (4.11)

Thus the equalities (4.10) and (4.11) imply that f is a contraction of S1, hence f has a unique fixed

point ζ ∈ S1 such that |ζ − 1|p ≤ 1
p (see (4.8)). So we have proved the following

Proposition 4.5. (i) Let p ≥ 3 and |λ(u, v)|p ≤
1

p
for all < x, y >∈ L, u, v ∈ Φ. Then for the

p-adic homogeneous λ-model (2.1) on the Cayley tree of order k(k ≥ 1) the equation (4.5) has a unique

solution.

(ii) Let p = 2, |λ(u, v)|p ≤
1

p
for all < x, y >∈ L, u, v ∈ Φ and the following condition be satisfied

| expp(λ(1, 1)) expp(λ(−1,−1)) − expp(λ(−1, 1)) expp(λ(1,−1))|2 ≤
1

23
(4.12)

Then for the 2-adic homogeneous λ-model (2.1) on the Cayley tree of order k(k ≥ 1) the equation (4.5)

has a unique solution.

Theorem 4.6. Let the condition of the previous Proposition be satisfied. Then for the p-adic homo-

geneous λ-model (2.1) on the Cayley tree of order k there is no phase transition for any prime p.

Proof. In the homogeneous model (4.2) is written as

zx =

k
∏

i=1

αx,i, (4.13)

here

αx,i =
azxi

+ b

czxi
+ d

,

where as before zx = expp(hx), zxi
= expp(hxi

), and the coefficients a, b, c, d are defined by (4.6).

Let ζ be a solution of (4.7). Then using (4.13) we have

|zx − ζ|p =

∣

∣

∣

∣

∣

k
∏

i=1

(

azxi
+ b

czxi
+ d

)

−

(

aζ + b

cζ + d

)k
∣

∣

∣

∣

∣

p

=

∣

∣

∣

∣

k
∏

i=1

(

azxi
+ b

czxi
+ d

)

−

(

azxk
+ b

czxk
+ d

)(

aζ + b

cζ + d

)k−1

+

+

(

azxk
+ b

czxk
+ d

)(

aζ + b

cζ + d

)k−1

−

(

aζ + b

cζ + d

)k∣
∣

∣

∣

p

≤

≤ max

{
∣

∣

∣

∣

azxk
+ b

czxk
+ d

∣

∣

∣

∣

p

∣

∣

∣

∣

∣

k−1
∏

i=1

(

azxi
+ b

czxi
+ d

)

−

(

aζ + b

cζ + d

)k−1
∣

∣

∣

∣

∣

p

,

∣

∣

∣

∣

aζ + b

cζ + d

∣

∣

∣

∣

k−1

p

∣

∣

∣

∣

azxk
+ b

czxk
+ d

−
aζ + b

cζ + d

∣

∣

∣

∣

p

}

=

= max

{
∣

∣

∣

∣

azxk
+ b

czxk
+ d

∣

∣

∣

∣

p

∣

∣

∣

∣

∣

k−1
∏

i=1

(

azxi
+ b

czxi
+ d

)

−

(

aζ + b

cζ + d

)k−1
∣

∣

∣

∣

∣

p

,
|zxk

− ζ|p|ad − bc|p
|czxk

+ d|p|cζ + d|p

}

≤ · · ·

10



≤ max

{

|zxk
− ζ|p|ad − bc|p

|czxk
+ d|p|cζ + d|p

}

≤

≤
1

p
max

1≤m≤k
{|zxm − ζ|p}.

Now repeating the argument of the proof of Theorem 4.4 we obtain zx = ζ for all x ∈ V . This

completes the proof.

5 Applications to p-adic Ising model

In this section we will show that the phase transition does not occur for the p-adic Ising model.

Recall the p-adic Ising model. This model is a particular case of λ-model, namely it corresponds to

the function:

λx,y(u, v) = Jx,yuv + η(u + v), (5.1)

here |Jx,y| ≤ p−1/(p−1), |η|p ≤ p−1/(p−1) and < x, y >∈ L, u, v ∈ {−1, 1}.

First consider the case η = 0, this corresponds to the inhomogeneous p-adic Ising model without

external field. For the considered model it is easy to see that the condition (4.1) is satisfied. So according

to Theorem 4.4 we infer that the following

Theorem 5.1. Let k ≥ 1, |Jx,y|p ≤ p−1/(p−1) for all < x, y >∈ L. Then for the p-adic inhomoge-

neous Ising model on the Cayley tree of order k there is no phase transition for any prime p.

Now consider a case Jx,y = J for all < x, y >∈ L and η 6= 0. This corresponds to the homogeneous

p-adic Ising model with an external field.

Let p = 2, then the condition (4.12) can be written as follows

| expp(J + 2η) expp(J − 2η) − expp(−J) expp(−J)|2 = | expp(4J) − 1|2 =

= |4J |2 ≤
1

24
,

here we have used Lemma 2.1. Hence (4.12) is satisfied. So we can formulate the following

Theorem 5.2. Let k ≥ 1, |η|p ≤ p−1/(p−1) and |J |p ≤ p−1/(p−1) for all < x, y >∈ L. Then for the

p-adic homogeneous Ising model on the Cayley tree of order k there is no phase transition for any prime

p.

Remark. It is known [5],[16] that for the Ising model on the Cayley tree of order k ≥ 2 over R on

some condition upon parameter Jx,y there is a phase transition. Theorems 5.1 and 5.2 show the differ-

ence between real the Ising model and the considered p-adic one.
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