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Abstract

The purpose of this paper is to prove the Leray-Hirsch theorem for the Lichnerowicz coho-
mology with respect to basic and vertical closed 1-forms. This is a generalization of the Kiinneth

theorem to fiber bundles.
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1 Introduction

The Lichnerowicz cohomology, H’ (M) (i.e. cohomology of the complex of differential forms on
a smooth manifold with the de Rham differential operator deformed by a closed 1-form w) was
initiated by A. Lichnerowicz [7] . Since its introduction, Lichnerowicz cohomology has attracted
a lot of interest, see for instance [1, 2, 3, 8, 10]. Its importance comes from the fact that Lich-
nerowicz cohomology is well adapted to locally conformal symplectic (Ics) geometry. Recall that
a lcs manifold consists of manifold M, together with a non-degenerate 2-form €2 on M and a
closed 1-form w such that dQ = —w A Q. See for example [1, 2, 4]. It was observed in [1] that
H} (M) is an invariant of the lcs structure. This cohomology is very different from the de Rham

cohomology (see proposition 2.2, theorem 2.2).

In this note, we show that many properties of the de Rham cohomology still have their

analogues within the Lichnerowicz cohomology.

In the second section, we first recall the definitions and some basic properties: Poincaré

duality and Kiinneth formula hold for the Lichnerowicz cohomology.

In the last section, we consider a generalization of Kiinneth formula; namely the Leray-Hirsch

Theorem for basic and vertical forms.

2 Preliminaries

In this section, we define the Lichnerowicz cohomology and give some basic theorems.

Let M be a differentiable manifold and w a closed 1-form on M.

The Lichnerowicz cohomology is the cohomology of differential forms on M with the differ-

ential operator d* (see [7]) defined by
d¥ =d+e(w),

d being the usual exterior differential and e(w) the operator given by

e(w)a =w A a for all a € Q*(M).

Obviously we have d“ od” = 0. Denote by H} (M) the cohomology of the complex (2*(M),d,,).
Similarly we define the Lichnerowicz cohomology with compact support H(M)..

We consider 0 as a 1-form and define Hj(M) to be the de Rham cohomology of M.



For two closed 1-forms wy, we and « € QP(M), 5 € Q4(M) an easy calculation shows that
A2 (a A B) =d a A B+ (—1)Pa A d?p.
Hence the wedge product induces a bilinear mapping

. +
A HP (M) x HL (M) — HPHS (M)

wi1tw2

([a],[6) +— laAg]

Proposition 2.1 (see [8])

Let M be a differentiable manifold and w a closed 1-form on M.

(a) If w is exact then H(M) = Hjp(M);

(b) Suppose [w'] = [w] € HY(M): there ewists a smooth positive function f such that w' =
w+d(Inf). Then the following application

p:Hy(M) — Hj

w w

(M)

[a] — [fa]
s an isomorphism.

The spaces HP (M) can also be obtained as the cohomology of M with coefficients in a sheaf. In
fact, let us denote by F, (M) the sheaf of germs of differentiable functions f : M — IR which
are d“-closed, i.e.

d°f =df + fw=0.

Using the fact that d“ satisfies a Poincaré lemma and that
0— Fo,(M) — A — A" — ..

is a fine resolution of F,, (M), where AP is the sheaf of germs of differentiable p-forms on M,

one can prove

Proposition 2.2 [14]

For every manifold M and a closed 1-form w on M, one has an isomorphism
HP(M,F, (M) ~ HE(M).

Let us recall another interpretation of the Lichnerowicz cohomology given by Banyaga in [1].
Let 7 : M — M be the minimum regular cover over which the 1-form w is pulled back to an

exact 1-form and let A : M — IR be a positive function on M such that
T w = d\.

It is well known that the group of automorphisms A of the covering M, is isomorphic to the

group of periods of w [6].



Lemma 2.1

For any T € A, the function
(AoT)

A

1 a constant, we denote c;, independent of the choice of .

The set F (M) of all differential forms o on M such that 7*a = cra for all 7 € A, is a
subcomplex of the de Rham complex of M. We denote its cohomology by sa(M). The

following theorem is proved in [2]

Theorem 2.1
JA(M) is isomorphic with H(M).

Example 2.1

Let M = S* and w be a generator of its first de Rham cohomology. We claim that HJ(S1) = 0.
So let f € Q°(S') such that df = 0 and 7*f = ¢, f. The condition df = 0 means that f = k is
a constant. Then, the second condition k = for = ¢,k translates to (1 — ¢;)k = 0, but if w is
non-exact, ¢; # 1, hence k = 0. So H2(S') = 0 and by Poincaré duality H(S') = 0.

The following lemma proves the homotopy invariance of the Lichnerowicz cohomology. For

a smooth g : M — N we have an induced mapping g* : Hj(N) — H. ,(M).

Lemma 2.2 (Homotopy invariance)

Let w be a closed 1-form on differentiable manifold N and let g : M x I — N be a smooth
homotopy. Define f € C°(M x I,IR) by f; := exp(fot ¢rirg*wds) where

¢s: M — M x I;z—— (x,8) and iy is the contraction by the vector field T = %.

Then frgt = fogs : HG(N) — Hg, ,(M).

If g is proper the same holds with compact supports.

For the proof, see [8].

2.1 Hodge Theory

Suppose that M is a compact differentiable manifold of dimension n, that w is a closed 1-
form on M and that g is a Riemannian metric. Consider the vector field T' on M given by
w(X) = ¢g(X,T), for all X € X(M). Denote by ¢ the codifferential operator and by i the
contraction by the vector field T (see for example [16]). Then one can define the operator
5 QP(M) — QP~1(M) by

0¥ =0 +ir.

Now, one can consider the standard scalar product on the space 2*(M) given by

(a, B) = [aAxp, for all a, B € QP(M) [13]. Since M is compact and the operator d,, is elliptic,



the Hodge decomposition into orthogonal parts holds:
QP(M) = HE(M) & d (=1 (M)) & 5°(Q7 (M),
where HP (M) = {a € QP(M)/d“(a = 0,6“(a) = 0}. Hence,
HP(M) = HE(M).
Using the Hodge theory, we get:

Theorem 2.2 (Guédira and Lichnerowicz)[7].
Let M a n-dimensional manifold and w a closed 1-form not d*-exact on M. All n-forms on M
are d“-ezxact i.e. H'(M) = {0}.

Remark 2.1
It is shown in [10] that if w is everywhere non zero and parallel with respect to some Riemannian

metric on M, then H} (M) is trivial.

2.2 Poincaré duality

Let M be an oriented n-dimensional manifold and w a closed 1-form on M. For any integer

p < n, we may define a pairing

(,.), : HP J(X) x H'P(M). 5 HP (M) Ju, IR

C

by
(o) [rho = [ 1Al = [ o nr)

M
which can also be expressed in the guise of the linear maps;

Df: HE (M) — (H7P(M)e)”
o] — Di(o))(lr]) = (o], [T])w

Theorem 2.3 (Poincaré Duality)

For any n-dimensional oriented differentiable manifold M and any integer p < n, the linear map
Df - HY [(M) — (HjP(M)c)"

s an isomorphism.

3 Kinneth formula

In this section, we will prove the Leray-Hirsch Theorem which is the generalization of the
Kiinneth formula.

The purpose of Kiinneth formula is the computation of the cohomology of the Cartesian product



when the cohomologies of the factors are known.
Suppose we have two differentiable manifolds M, N and two closed 1-forms wq and wy on M
and N respectively. Then w = prijw; + priws is a closed 1-form in M x N where pr; and pro
are the canonical projections.
Let a be a p-form on M and 8 a ¢-form on N. We write aAB =: pria Apri3 € QP9 (M x N).
It is obvious that

d“(ahp) = d**alf + (—1)PaAd“?

and hence we have an induced mapping in cohomology given by

U: HP (M) ® H.(N) — HZT9(M x N)
([, [8]) — [aAB]=taUp.

Definition 3.1 /5]
A covering U of manifold M is called good if for all m € IN and Uy, ...,U,, € U the intersection
Ui N...NU,, is either empty or contractible.

Remark 3.1
Every Riemannian manifold admits a good covering and these coverings are cofinal in the set of

all coverings [15].

Theorem 3.1 (Kiinneth formula)
Suppose that M and N have good covers and let wy respectively ws be a closed 1-form on M

respectively N, then the map
U:H, (M)® H),(N) — H (M x N)
s an isomorphism.

Example 3.1
Let (M,w1) be a smooth manifold equipped with the closed 1-form w; and consider ¢ the
generator of the first de Rham cohomology of S!. Denote w = priw; + pri¢. The Kiinneth
formula shows that

HI(M x SY) = @pyomr HE, (M) @ HY(SY).

Example 2.1 shows that Hg(Sl) = 0 and hence Hcl(Sl) =0.
Thus H,(M x S1) = 0.

We generalize the above example as follows.
Example 3.2
Let G be a Lie group with Lie algebra G, E — M a principal G-bundle on M, and w a

connection 1-form on E. Thus w € QY(E,G), and its curvature is given by

Q=dw+ %[w,w] € Q*(E,G).



A connection w with Q2 = 0 is a flat connection and a bundle with a flat connection is said to
be flat.
If E is an S!-flat bundle, then [w,w] = 0 and therefore Q = dw = 0. So w is an ordinary closed
1-form.

Suppose that M has a good cover U and let U € U. Take df an exact 1-form on U, then;

Hprs i oy, 1 (U X CORE= ij(U)®Hj|Sl(Sl)
= H*(U)®Hy (S
= 0
since H (sH=o.
sl
Similarly, for V € U, we get
H;r;derwWXsl(V x Sh) = Hy (V) ® H:;\Sl (Sh
~ V)0 HY ()
= 0

and

H (UNV x8ShH==o.

.
r3df W Ay« st

Using the Mayer-Vietoris sequence inductively, we immediately obtain
H(E) =0.

This is a particular case of the Leray-Hirsch theorem for vertical one form (see theorem 3.3).

Theorem 3.2
Let (E, M, F,x) be a fiber bundle over M. Suppose that M has a finite good cover. If there are
global cohomology classes (e1,ea, ...,e,) on E which when restricted to each fiber freely generate
the cohomology of the fiber, then H*. (E) is a free module over H},(M) with basis (e, ea, ..., €,),
i.e.

H:.,(E)2 H (M)®IR{e1,..,e,} 2 H (M) ® H*(F).

Proof

The assumption that M has a finite good cover is necessary for the induction argument.
Remark also that the assumption that there are global cohomology classes (eq,eq,...,e,) on E
which when restricted to each fiber, freely generate the cohomology of the fiber, is necessary
because all fibers have the same cohomology but their generators may be different. For exam-

ple take x,y in M and put E, = 7 !(z) and E, = 7 '(y). Denote by (u1,us,...,u,) resp.



~

(vi,v2,...,v,) the generators of de Rham cohomology of E, resp. E,. We have H*(E,) =
H*(E,), but (u;) may have no relation with (v;). The assumption means that the generators of
the cohomology of the fibers over intersection agree since they are restrictions of e;.

Let U and V be open contractible sets in M.

Since U is contractible, there exists a smooth function f nowhere vanish such that w|;; = df and
then HX(U) = Hp(U).

Using this and the classical Leray-Hirsch theorem [5] we show that

HY.,(Ely) = H(Ely)

12

H*(U) ® IR{e1|u,....er|U}
H*(U) ® H*(F)
HA(U) © HY(F).

I

1

Similarly, we get
H;*M(E|V) = H:J(V) & lR{el‘v, ceny er|V} = H:,(V) ® H*(F)

and
H*

™

*w(E’UﬂV) = H:J(U N V) ® 1R{61|UOV7 ...,eT\Um/} = H:)(U N V) ® H*(F)

So the Leray-Hirsch theorem holds for U, V and U N V.
Suppose M is the union of two open subsets U, V and define

r:QP(M) — QP(U) @ QP(V),
0 — (0lv,0lv);

s QMUY B QP(V) — QPUNV)

(a,8) — alunv = Bluav.
Then the following is a short exact sequence of cochain complexes
0 — QP(M) 5 QP(U) @ QP(V) = QP(UN V), — 0.
So we obtain the following Mayer-Vietoris sequence;

o HY(UUV) — HP, (U)@® HP, (V) — HP

wlunv

(UNV)— HFY U UV) —-

15 lv

and then, we get an exact sequence by tensoring with H" P(F')
w— HP(UUV)®@ H" P(F) — (Hg‘U (V)@ H"P(F)) —

(UNV)® H"P(F) — HPFY (U UV) @ HY P(F) —--

(U)o H"P(F)) & (H?,

wlv

— 5 HP
wlunv

since tensoring with a vector space preserve exactness.

Summing over p = 0, ..., n, yields the exact sequence;

w— @QHE(U UV) @ H'P(F) — @g(Hp) (U) @ H"P(F)) & (Hf, (V)@ H"P(F)) —

— @0H?, (UNV)® H"P(F) — @LHPTH (U UV) @ H" P(F) —--

wlunv



It was checked in [5] page 49-50, that the last square of the following diagram is commutative
for the de Rham cohomology. Since the Lichnerowicz cohomology and the de Rham cohomology
for contractible sets are isomorphic (see proposition 2.1(b)), the following diagram is commuta-
tive;

(U)o H"P(F)) @ (H?

- ——= QFHE(U UV) ® H"P(F) — & (H] (V)® H" P(F)) —~

wly wlv
O wi O lDUEBwvl O
HI.(E) H.(E) © Hy-,(Ely)
- @8H£|Umv(U NV)® H" P(F) —~ ...
¢) wUnvl ¢)

H;'L*U.}(E|Uﬁv)

So if the Leray-Hirsch theorem holds for U, V and U NV it also holds for U UV by the
”five lemma”. Finally, one chooses a good covering U such that every U € U does only intersect
finitely many other sets of /. Then we can write M = Wy U...UW,, where every W is a disjoint
union of open balls in ¢/. Since the Leray-Hirsch theorem holds for W;, W; and W; N W; (the
latter is also an disjoint union of open balls) it holds also for W; U W;. Proceeding inductively

we get the result [J

In the next paragraph, we will prove the Leray-Hirsch theorem for vertical forms.

Theorem 3.3
Let (E, M, F,m) be a fiber bundle over M and w a closed 1-form on E. Suppose that M has
a finite good cover. If there are global cohomology classes (ea,...,e;) on E such that ([w] =

€1, €2, ...,e.) restricted to each fiber freely generate the cohomology of the fiber, then
H (E)= H*(M)® H(F)
where the application 1 : F — FE is the natural induction.

Proof

Let U and V be open sets in M. The following diagram is commutative

pr2

UxF F

SN A

Ely

where E|, =7 1(U) and ¢ : U x F — E, is a smooth chart of the fiberation.
Let wy,, be the restriction of w to E, and wy = i*w‘U.

Set @ =: pridf + priw; where f is a non zero function on U, then [&] = [priwi] .



The diffeomorphism ¢ induces an isomorphism ¢* : H :)‘U (Ey,)=H p w (UxF). By the previous
U

commutative diagram, pr3i*(wy,) = ¢*(wy,,). Therefore

HS;*W‘U(U x F)=H (U X F),

prii*w
then by proposition 2.1 (b)

> (U X F) = H;ri‘df—i—pr;i*w(U X F)

prai*w
and hence by Kiinneth formula

H;rfdf-l-pr;i*w(U X F) = H:ikf(U) ® Hz**w(F) = H*(U) & Hz**w(F)

So we have shown
H, (Ey,) = HY(U) @ Hp, (F)

for all open set in M.
Similarly, we get H:)‘V (By,) = H*(V)® H, (F) and H:’\Umv (Blyny) EH(UNV) HE (F).
Using the Mayer-Vietoris sequences and the "five lemma”, the result holds for UUV. Again,

one can choose a good covering and proceeding inductively we get the result [
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