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Abstract

The purpose of this paper is to prove the Leray-Hirsch theorem for the Lichnerowicz coho-

mology with respect to basic and vertical closed 1-forms. This is a generalization of the Künneth

theorem to fiber bundles.
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1 Introduction

The Lichnerowicz cohomology, H∗
ω(M) (i.e. cohomology of the complex of differential forms on

a smooth manifold with the de Rham differential operator deformed by a closed 1-form ω) was

initiated by A. Lichnerowicz [7] . Since its introduction, Lichnerowicz cohomology has attracted

a lot of interest, see for instance [1, 2, 3, 8, 10]. Its importance comes from the fact that Lich-

nerowicz cohomology is well adapted to locally conformal symplectic (lcs) geometry. Recall that

a lcs manifold consists of manifold M , together with a non-degenerate 2-form Ω on M and a

closed 1-form ω such that dΩ = −ω ∧ Ω. See for example [1, 2, 4]. It was observed in [1] that

H∗
ω(M) is an invariant of the lcs structure. This cohomology is very different from the de Rham

cohomology (see proposition 2.2, theorem 2.2).

In this note, we show that many properties of the de Rham cohomology still have their

analogues within the Lichnerowicz cohomology.

In the second section, we first recall the definitions and some basic properties: Poincaré

duality and Künneth formula hold for the Lichnerowicz cohomology.

In the last section, we consider a generalization of Künneth formula; namely the Leray-Hirsch

Theorem for basic and vertical forms.

2 Preliminaries

In this section, we define the Lichnerowicz cohomology and give some basic theorems.

Let M be a differentiable manifold and ω a closed 1-form on M .

The Lichnerowicz cohomology is the cohomology of differential forms on M with the differ-

ential operator dω (see [7]) defined by

dω = d + e(ω),

d being the usual exterior differential and e(ω) the operator given by

e(ω)α = ω ∧ α for all α ∈ Ω∗(M).

Obviously we have dω ◦dω = 0. Denote by H∗
ω(M) the cohomology of the complex (Ω∗(M), dω).

Similarly we define the Lichnerowicz cohomology with compact support H ∗
ω(M)c.

We consider 0 as a 1-form and define H∗
0 (M) to be the de Rham cohomology of M .
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For two closed 1-forms ω1, ω2 and α ∈ Ωp(M), β ∈ Ωq(M) an easy calculation shows that

dω1+ω2(α ∧ β) = dω1α ∧ β + (−1)pα ∧ dω2β.

Hence the wedge product induces a bilinear mapping

∧ : Hp
ω1

(M) × Hq
ω2

(M) −→ Hp+q
ω1+ω2

(M)

([α], [β]) 7−→ [α ∧ β].

Proposition 2.1 (see [8])

Let M be a differentiable manifold and ω a closed 1-form on M .

(a) If ω is exact then H∗
ω(M) ∼= H∗

dR(M);

(b) Suppose [ω′] = [ω] ∈ H1(M): there exists a smooth positive function f such that ω ′ =

ω + d(lnf). Then the following application

ϕ : H∗
ω′(M) −→ H∗

ω(M)

[α] 7−→ [fα]

is an isomorphism.

The spaces Hp
ω(M) can also be obtained as the cohomology of M with coefficients in a sheaf. In

fact, let us denote by Fω(M) the sheaf of germs of differentiable functions f : M −→ IR which

are dω-closed, i.e.

dωf = df + fω = 0.

Using the fact that dω satisfies a Poincaré lemma and that

0 −→ Fω(M) −→ A0 −→ A1 −→ ...

is a fine resolution of Fω(M), where Ap is the sheaf of germs of differentiable p-forms on M ,

one can prove

Proposition 2.2 [14]

For every manifold M and a closed 1-form ω on M , one has an isomorphism

Hp(M,Fω(M) ≈ Hp
ω(M).

Let us recall another interpretation of the Lichnerowicz cohomology given by Banyaga in [1].

Let π : M̃ −→ M be the minimum regular cover over which the 1-form ω is pulled back to an

exact 1-form and let λ : M̃ −→ IR be a positive function on M̃ such that

π∗ω = dλ.

It is well known that the group of automorphisms A of the covering M̃ , is isomorphic to the

group of periods of ω [6].

3



Lemma 2.1

For any τ ∈ A, the function
(λ ◦ τ)

λ

is a constant, we denote cτ , independent of the choice of λ.

The set F∗
cA(M) of all differential forms α on M̃ such that τ ∗α = cτα for all τ ∈ A, is a

subcomplex of the de Rham complex of M̃ . We denote its cohomology by H∗
cA(M). The

following theorem is proved in [2]

Theorem 2.1

H∗
cA(M) is isomorphic with H∗

ω(M).

Example 2.1

Let M = S1 and ω be a generator of its first de Rham cohomology. We claim that H 0
ω(S1) = 0.

So let f ∈ Ω0(S1) such that df = 0 and τ ∗f = cτf . The condition df = 0 means that f = k is

a constant. Then, the second condition k = foτ = cτk translates to (1 − cτ )k = 0, but if ω is

non-exact, cτ 6= 1, hence k = 0. So H0
ω(S1) = 0 and by Poincaré duality H1

ω(S1) = 0.

The following lemma proves the homotopy invariance of the Lichnerowicz cohomology. For

a smooth g : M −→ N we have an induced mapping g∗ : H∗
ω(N) −→ H∗

g∗ω(M).

Lemma 2.2 (Homotopy invariance)

Let ω be a closed 1-form on differentiable manifold N and let g : M × I −→ N be a smooth

homotopy. Define f ∈ C∞(M × I, IR) by ft := exp(
∫ t
0 φ∗

siT g∗ωds) where

φs : M −→ M × I;x 7−→ (x, s) and iT is the contraction by the vector field T = ∂
∂t

.

Then f1g
∗
1 = f0g

∗
0 : H∗

ω(N) −→ H∗
g∗
0
ω(M).

If g is proper the same holds with compact supports.

For the proof, see [8].

2.1 Hodge Theory

Suppose that M is a compact differentiable manifold of dimension n, that ω is a closed 1-

form on M and that g is a Riemannian metric. Consider the vector field T on M given by

ω(X) = g(X,T ), for all X ∈ X (M). Denote by δ the codifferential operator and by iT the

contraction by the vector field T (see for example [16]). Then one can define the operator

δω : Ωp(M) −→ Ωp−1(M) by

δω = δ + iT .

Now, one can consider the standard scalar product on the space Ω∗(M) given by

〈α, β〉 =
∫

α∧ ∗β, for all α, β ∈ Ωp(M) [13]. Since M is compact and the operator δω is elliptic,
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the Hodge decomposition into orthogonal parts holds:

Ωp(M) = Hp
ω(M) ⊕ dω(Ωp−1(M)) ⊕ δω(Ωp+1(M)),

where Hp
ω(M) = {α ∈ Ωp(M)/dω(α = 0, δω(α) = 0}. Hence,

Hp
ω(M) ∼= Hp

ω(M).

Using the Hodge theory, we get:

Theorem 2.2 (Guédira and Lichnerowicz)[7].

Let M a n-dimensional manifold and ω a closed 1-form not dω-exact on M . All n-forms on M

are dω-exact i.e. Hn
ω(M) = {0}.

Remark 2.1

It is shown in [10] that if ω is everywhere non zero and parallel with respect to some Riemannian

metric on M , then H∗
ω(M) is trivial.

2.2 Poincaré duality

Let M be an oriented n-dimensional manifold and ω a closed 1-form on M . For any integer

p ≤ n, we may define a pairing

〈., .〉ω : Hp
−ω(X) × Hn−p

ω (M)c
∧

−→ Hn
c (M)

∫
M−→ IIR

by

〈[σ], [τ ]〉ω =

∫
M

[σ] ∧ [τ ] =

∫
M

[σ ∧ τ ],

which can also be expressed in the guise of the linear maps;

Dp
ω : Hp

−ω(M) −→ (Hn−p
ω (M)c)

∗

[σ] −→ Dp
ω([σ])([τ ]) := 〈[σ], [τ ]〉ω

Theorem 2.3 (Poincaré Duality)

For any n-dimensional oriented differentiable manifold M and any integer p ≤ n, the linear map

Dp
ω : Hp

−ω(M) −→ (Hn−p
ω (M)c)

∗

is an isomorphism.

3 Künneth formula

In this section, we will prove the Leray-Hirsch Theorem which is the generalization of the

Künneth formula.

The purpose of Künneth formula is the computation of the cohomology of the Cartesian product
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when the cohomologies of the factors are known.

Suppose we have two differentiable manifolds M , N and two closed 1-forms ω1 and ω2 on M

and N respectively. Then ω = pr∗1ω1 + pr∗2ω2 is a closed 1-form in M × N where pr1 and pr2

are the canonical projections.

Let α be a p-form on M and β a q-form on N . We write α∧̄β =: pr∗1α∧ pr∗2β ∈ Ω(p+q)(M ×N).

It is obvious that

dω(α∧̄β) = dω1α∧̄β + (−1)pα∧̄dω2β

and hence we have an induced mapping in cohomology given by

∪ : Hp
ω1

(M) ⊗ Hq
ω2

(N) −→ Hp+q
ω (M × N)

([α], [β]) 7−→ [α ∧ β] =: α ∪ β.

Definition 3.1 [5]

A covering U of manifold M is called good if for all m ∈ IN and U1, ..., Um ∈ U the intersection

U1 ∩ ... ∩ Um is either empty or contractible.

Remark 3.1

Every Riemannian manifold admits a good covering and these coverings are cofinal in the set of

all coverings [15].

Theorem 3.1 (Künneth formula)

Suppose that M and N have good covers and let ω1 respectively ω2 be a closed 1-form on M

respectively N , then the map

∪ : H∗
ω1

(M) ⊗ H∗
ω2

(N) −→ H∗
ω(M × N)

is an isomorphism.

Example 3.1

Let (M,ω1) be a smooth manifold equipped with the closed 1-form ω1 and consider ζ the

generator of the first de Rham cohomology of S1. Denote ω = pr∗1ω1 + pr∗2ζ. The Künneth

formula shows that

Hr
ω(M × S1) = ⊕p+q=rH

p
ω1

(M) ⊗ Hq
ζ (S

1).

Example 2.1 shows that H0
ζ (S

1) = 0 and hence H1
ζ (S

1) = 0.

Thus Hr
ω(M × S1) = 0.

We generalize the above example as follows.

Example 3.2

Let G be a Lie group with Lie algebra G, E −→ M a principal G-bundle on M , and ω a

connection 1-form on E. Thus ω ∈ Ω1(E,G), and its curvature is given by

Ω = dω +
1

2
[ω, ω] ∈ Ω2(E,G).
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A connection ω with Ω = 0 is a flat connection and a bundle with a flat connection is said to

be flat.

If E is an S1-flat bundle, then [ω, ω] = 0 and therefore Ω = dω = 0. So ω is an ordinary closed

1-form.

Suppose that M has a good cover U and let U ∈ U . Take df an exact 1-form on U , then;

H∗
pr∗

2
df+ω|U×S1

(U × S1) ∼= H∗
df (U) ⊗ H∗

ω|
S1

(S1)

∼= H∗(U) ⊗ H∗
ω|

S1
(S1)

∼= 0

since H∗
ω|

S1
(S1) = 0.

Similarly, for V ∈ U , we get

H∗
pr∗

2
df+ω|V ×S1

(V × S1) ∼= H∗
df (V ) ⊗ H∗

ω|
S1

(S1)

∼= H∗(V ) ⊗ H∗
ω|

S1
(S1)

∼= 0

and

H∗
pr∗

2
df+ω|U∩V ×S1

(U ∩ V × S1) ∼= 0.

Using the Mayer-Vietoris sequence inductively, we immediately obtain

H∗
ω(E) ∼= 0.

This is a particular case of the Leray-Hirsch theorem for vertical one form (see theorem 3.3).

Theorem 3.2

Let (E,M,F, π) be a fiber bundle over M . Suppose that M has a finite good cover. If there are

global cohomology classes (e1, e2, ..., er) on E which when restricted to each fiber freely generate

the cohomology of the fiber, then H∗
π∗ω(E) is a free module over H∗

ω(M) with basis (e1, e2, ..., er),

i.e.

H∗
π∗ω(E) ∼= H∗

ω(M) ⊗ IR{e1, ..., er} ∼= H∗
ω(M) ⊗ H∗(F ).

Proof

The assumption that M has a finite good cover is necessary for the induction argument.

Remark also that the assumption that there are global cohomology classes (e1, e2, ..., er) on E

which when restricted to each fiber, freely generate the cohomology of the fiber, is necessary

because all fibers have the same cohomology but their generators may be different. For exam-

ple take x, y in M and put Ex = π−1(x) and Ey = π−1(y). Denote by (u1, u2, ..., ur) resp.
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(v1, v2, ..., vr) the generators of de Rham cohomology of Ex resp. Ey. We have H∗(Ex) ∼=

H∗(Ey), but (ui) may have no relation with (vj). The assumption means that the generators of

the cohomology of the fibers over intersection agree since they are restrictions of ei.

Let U and V be open contractible sets in M .

Since U is contractible, there exists a smooth function f nowhere vanish such that ω |U = df and

then H∗
ω(U) ∼= H∗

DR(U).

Using this and the classical Leray-Hirsch theorem [5] we show that

H∗
π∗ω(E|U ) ∼= H∗(E|U ) ∼= H∗(U) ⊗ IR{e1|U , ..., er|U}

∼= H∗(U) ⊗ H∗(F )

∼= H∗
ω(U) ⊗ H∗(F ).

Similarly, we get

H∗
π∗ω(E|V ) ∼= H∗

ω(V ) ⊗ IR{e1|V , ..., er|V } ∼= H∗
ω(V ) ⊗ H∗(F )

and

H∗
π∗ω(E|U∩V ) ∼= H∗

ω(U ∩ V ) ⊗ IR{e1|U∩V , ..., er |U∩V } ∼= H∗
ω(U ∩ V ) ⊗ H∗(F ).

So the Leray-Hirsch theorem holds for U , V and U ∩ V .

Suppose M is the union of two open subsets U , V and define

r : Ωp(M) −→ Ωp(U) ⊕ Ωp(V ),

θ 7−→ (θ|U , θ|V );

s : Ωp(U) ⊕ Ωp(V ) −→ Ωp(U ∩ V )

(α, β) 7−→ α|U∩V − β|U∩V .

Then the following is a short exact sequence of cochain complexes

0 −→ Ωp(M)
r

−→ Ωp(U) ⊕ Ωp(V )
s

−→ Ωp(U ∩ V ),−→ 0.

So we obtain the following Mayer-Vietoris sequence;

...−→ Hp
ω(U ∪ V ) −→ Hp

ω|U
(U) ⊕ Hp

ω|V
(V ) −→ Hp

ω|U∩V
(U ∩ V ) −→ Hp+1

ω (U ∪ V ) −→...

and then, we get an exact sequence by tensoring with Hn−p(F )

...−→ Hp
ω(U ∪ V ) ⊗ Hn−p(F ) −→ (Hp

ω|U
(U) ⊗ Hn−p(F )) ⊕ (Hp

ω|V
(V ) ⊗ Hn−p(F )) −→

−→ Hp
ω|U∩V

(U ∩ V ) ⊗ Hn−p(F ) −→ Hp+1
ω (U ∪ V ) ⊗ Hn−p(F ) −→...

since tensoring with a vector space preserve exactness.

Summing over p = 0, ..., n, yields the exact sequence;

...−→ ⊕n
0Hp

ω(U ∪ V ) ⊗ Hn−p(F ) −→ ⊕n
0 (Hp

ω|U
(U) ⊗ Hn−p(F )) ⊕ (Hp

ω|V
(V ) ⊗ Hn−p(F )) −→

−→ ⊕n
0Hp

ω|U∩V
(U ∩ V ) ⊗ Hn−p(F ) −→ ⊕n

0Hp+1
ω (U ∪ V ) ⊗ Hn−p(F ) −→...
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It was checked in [5] page 49-50, that the last square of the following diagram is commutative

for the de Rham cohomology. Since the Lichnerowicz cohomology and the de Rham cohomology

for contractible sets are isomorphic (see proposition 2.1(b)), the following diagram is commuta-

tive;

... //

	

⊕n
0Hp

ω(U ∪ V ) ⊗ Hn−p(F ) //

ψ

��

	

⊕n
0 (Hp

ω|U
(U) ⊗ Hn−p(F )) ⊕ (Hp

ω|V
(V ) ⊗ Hn−p(F )) //

ψ|U⊕ψ|V

��

	

... // Hn
π∗ω(E) // Hn

π∗ω(E|U ) ⊕ Hn
π∗ω(E|V ) //

//

	

⊕n
0Hp

ω|U∩V
(U ∩ V ) ⊗ Hn−p(F ) //

ψ|U∩V

��

	

...

// Hn
π∗ω(E|U∩V

) // ...

So if the Leray-Hirsch theorem holds for U , V and U ∩ V it also holds for U ∪ V by the

”five lemma”. Finally, one chooses a good covering U such that every U ∈ U does only intersect

finitely many other sets of U . Then we can write M = W1∪ ...∪Wn where every Wi is a disjoint

union of open balls in U . Since the Leray-Hirsch theorem holds for Wi, Wj and Wi ∩ Wj (the

latter is also an disjoint union of open balls) it holds also for Wi ∪ Wj . Proceeding inductively

we get the result �

In the next paragraph, we will prove the Leray-Hirsch theorem for vertical forms.

Theorem 3.3

Let (E,M,F, π) be a fiber bundle over M and ω a closed 1-form on E. Suppose that M has

a finite good cover. If there are global cohomology classes (e2, ..., er) on E such that ([ω] =

e1, e2, ..., er) restricted to each fiber freely generate the cohomology of the fiber, then

H∗
ω(E) ∼= H∗(M) ⊗ H∗

i∗ω(F )

where the application i : F −→ E is the natural induction.

Proof

Let U and V be open sets in M . The following diagram is commutative

U × F
pr2

//

φ
##HH

HH
HH

HH
H

F

i
~~||

||
||

||

E|U

where E|U = π−1(U) and φ : U × F −→ E|U is a smooth chart of the fiberation.

Let ω|U be the restriction of ω to E|U and ω1 = i∗ω|U .

Set ω̃ =: pr∗1df + pr∗2ω1 where f is a non zero function on U , then [ω̃] = [pr∗2ω1] .
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The diffeomorphism φ induces an isomorphism φ∗ : H∗
ω|U

(E|U ) ∼= H∗
φ∗ω|U

(U×F ). By the previous

commutative diagram, pr∗2i
∗(ω|U ) = φ∗(ω|U ). Therefore

H∗
φ∗ω|U

(U × F ) ∼= H∗
pr∗

2
i∗ω(U × F ),

then by proposition 2.1 (b)

H∗
pr∗

2
i∗ω(U × F ) ∼= H∗

pr∗
1
df+pr∗

2
i∗ω(U × F )

and hence by Künneth formula

H∗
pr∗

1
df+pr∗

2
i∗ω(U × F ) ∼= H∗

df (U) ⊗ H∗
i∗ω(F ) ∼= H∗(U) ⊗ H∗

i∗ω(F ).

So we have shown

H∗
ω|U

(E|U ) ∼= H∗(U) ⊗ H∗
ω1

(F )

for all open set in M .

Similarly, we get H∗
ω|V

(E|V ) ∼= H∗(V )⊗H∗
ω1

(F ) and H∗
ω|U∩V

(E|U∩V
) ∼= H∗(U ∩V )⊗H∗

ω1
(F ).

Using the Mayer-Vietoris sequences and the ”five lemma”, the result holds for U ∪V . Again,

one can choose a good covering and proceeding inductively we get the result �
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