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Abstract

In this paper we propose a general framework to characterize and solve the optimization
problems underlying a large class of sparsity based regularization algorithms. More precisely,
we study the minimization of learning functionals that are sums of a differentiable data
term and a convex non differentiable penalty. These latter penalties have recently become
popular in machine learning since they allow to enforce various kinds of sparsity properties
in the solution. Leveraging on the theory of Fenchel duality and subdifferential calculus,
we derive explicit optimality conditions for the regularized solution and propose a general
iterative projection algorithm whose convergence to the optimal solution can be proved.
The generality of the framework is illustrated, considering several examples of regularization
schemes, including `1 regularization (and several variants), multiple kernel learning and
multi-task learning. Finally, some features of the proposed framework are empirically studied.

1 Introduction

In this paper we use convex analysis tools to propose a general framework for solving convex
non differentiable minimization problems underlying many regularized learning algorithms.

In learning from examples one tries to infer some quantity of interest from a training set
which is randomly sampled and corrupted by noise. Learning schemes which are simply tailored
to minimize a data fit objective term, often lead to unstable solutions that fail to generalize to
new data. An effective way to restore stability and find meaningful solutions is to resort to reg-
ularization techniques [39, 21, 37, 11]. This class of methods typically involves the minimization
of an objective function which is the sum of two terms: the first one is a data fit term, whereas
the second one is a penalty that favors “simple” models. Approaches based on Tikhonov regu-
larization, including Support Vector Machines or Regularized Least Squares, are probably the
most popular examples in this class of methods and are based on convex differentiable penalties.
Recently, methods such as the lasso [38] – based on `1 regularization – received considerable
attention for their property of providing sparse solutions. Sparsity has become a popular way to
deal with small samples of high dimensional data and, in a broad sense, refers to the possibility
of writing the solution in terms of a few building blocks. The success of `1 regularization moti-
vated exploring different kinds of sparsity properties for linear models as well as kernel methods
[45, 43, 44, 3, 35, 1, 28, 36].

A common feature of the latter class of algorithms is that they are based on convex non
differentiable penalties, which are often suitable sums of euclidean (or Hilbertian) norms. In
this paper we refer to this general class of methods as structured sparsity regularization algo-
rithms and we study the problem of computing the regularized solution. The presence of a non
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differentiable penalty makes the solution of the minimization problem non trivial and recently
there has been a considerable amount of work devoted to this problem, largely focused on, and
motivated by, `1 regularization. In this context, an extensive list of references and an overview
of many approaches can be found in [42]. Among the proposed optimization schemes it is worth
mentioning, for example, interior point methods [27], coordinate descent [41], iterative soft-
thresholding [12] and homotopy methods [17]. In particular the LARS algorithm [19] which is
popular in machine learning belongs to the latter class of methods. As we mentioned above, be-
sides `1 regularization, in machine learning several techniques have been proposed based on non
differentiable penalties. Interestingly, for given algorithms, ad hoc optimization procedures have
been proposed, including, in some cases, greedy procedures with no convergence guarantees.

In this work we recognize a common structure among many different regularization algo-
rithms and discuss the application of a general optimization strategy to solve the corresponding
variational problem. Indeed, a large class of algorithms corresponds to minimize a functional
which is the sum of a differential data term and a convex penalty which is one homogeneous (for
example a sum of suitable norms). This observation allows to propose a unifying framework and
derive a powerful iterative procedure to compute the regularized solution. Using the theory of
Fenchel duality we decouple the contributions due to the data fit term, and the penalty term:
at each iteration the gradient of the data term is projected on a set which is defined by the
considered penalty. The explicit form of the projection can often be written in closed form
and iteratively computed, otherwise. The obtained procedure is typically easy to implement
and its convergence to the optimal solution is proved when the functional is strictly convex.
Proving convergence (and convergence rates) when the functional is simply convex is a more
challenging problem. On the other hand the assumptions we need to ensure convergence can
always be enforced by considering a suitable perturbation of the original functional obtained
adding a strictly convex term. As we discuss in details, interestingly, such a term induces a
preconditioning of the problem and can be shown to often reduce substantially the number of
required computations without affecting the sparsity and prediction properties of the obtained
solution. This is a crucial point that we discuss both theoretically and experimentally.

Our work can be seen as the application to a large class of learning algorithms of an approach
that has recently received a lot of attention in the context of signal processing and inverse
problems [6, 10, 12, 23, 13, 24, 42, 22, 32, 40]. In particular, the procedure we consider to
compute the projection can be seen as a generalization of the algorithm proposed in [8] to solve
total variation regularization. From a mathematical point of view there exist very general and
abstract results on these kind of algorithms and among them we mention forward-backward
splitting methods [31, 18, 9], iterative projection algorithms [4, 5]. To the best of our knowledge
this is the first attempt to apply this class of iterative projection methods to a large class
of learning schemes including multiple task and multiple kernel learning. The mathematical
context we consider trade-offs simplicity and generality and allows to give simplified proofs in a
unifying framework.

The paper is organized as follows. In Section 2, we begin by setting the notation and recalling
some basic mathematical properties necessary to introduce the iterative algorithm and state its
main properties. We state all the mathematical and algorithmic results first, and postpone the
proofs to the Appendix A. In Section 4, in order to show the wide applicability of our work,
we apply the results to several learning schemes. In Section 5 we describe some experimental
results. Finally, Section 6 concludes the paper and contains a brief discussion of future work.
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2 Iterative Projection Algorithm

Here, after describing the general class of regularized learning algorithms under study, we proceed
discussing the iterative procedure to compute the regularized solution and provide a detailed
analysis. The latter consists in three main steps. First we show that the regularized solution
satisfies a suitable fixed point equation involving a projection on a convex set, so that we can
consider the iteration corresponding to the associated successive approximation scheme. Second,
we use the fixed point-theorem to prove convergence of the proposed procedure. Finally, we show
how to compute the projection by generalizing previous results for total variation regularization.

2.1 Setting

Given a a Hilbert space H and a fixed positive number τ , we consider the problem of computing:

f∗ = argmin
f∈H

Eτ (f) = argmin
f∈H

{F (f) + 2τJ(f)}, (1)

where F : H → R, J :→ R∪{+∞} can be interpreted as the data and penalty terms, respectively.
In the following, F is assumed to be differentiable and strictly convex, while J is required to be
lower semicontinuous, convex, coercive (see Ch. 1 and Ch.2 of [20]) and one-homogeneous,

J(λf) = λJ(f),

for all f ∈ H and λ ∈ R+. Note that our analysis still holds if one assume the coerciveness of
F + 2τJ , and not specifically of J . Before presenting our results we discuss several examples for
F and J .
Loss term. In the supervised learning, given a training set {(xi, yi)}ni=1 ⊂ R × Y , with Y =
[−M,M ], M > 0, the most common choice for the data term F is the empirical risk associated
to some cost function ` : R× Y → R+, i.e.

F (f) =
1
n

n∑
i=1

`(f(xi), yi). (2)

Examples of loss functions generating convex and differentiable functionals F via (2) are the
exponential loss `(f(x), y) = e−yf(x), the logistic loss log(1 + e−yf(x)), and the square loss
(y−f(x))2. In general, the corresponding empirical risk will be only convex, and strict convexity
can be ensured under further assumptions on the data. An alternative way to enforce strict
convexity is to add the strictly convex term µ ‖f‖2H for some small positive parameter µ. As
we discuss in the following, this can be seen as a preconditioning of the problem, and, if µ is
small enough, one can see that the solution does not change (see Section 2.3 for a more detailed
discussion of this point). Another possible expression for the data term is

F (f) = ‖Af − y‖2Y , (3)

where A : H → Y is a bounded linear operator between Hilbert spaces H, Y, that might depend
on the data, and y ∈ Y is a measurement function from which we aim at reconstructing f . In
practical situations H and Y are typically finite dimensional euclidean spaces and A is a matrix.
This latter choice is general enough to deal more general setting such as multi-task learning.
Penalty term. The assumptions on the penalty – lower semicontinuity, coerciveness, convexity
and one-homogeneity – are satisfied by a general class of penalties that are sum of norms in
distinct Hilbert spaces (Gk, ‖·‖k):

J(f) =
p∑

k=1

||Jk(f)||k, (4)
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where, for all k, Jk : H → Gk is a bounded linear operator 1. This is the class of penalties
we consider. For example, if the estimator is assumed to be described by a generalized linear
model f(x) =

∑p
j=1 ψj(x)βj , the `1 norm of the coefficients J(β) =

∑p
j=1 |βj | is a special case

of the above penalty. If the coefficients are divided into “blocks”, a penalty of the form (4), has
been proposed in the so called group lasso and composite absolute penalties algorithms. Similar
penalties have been used for multiple task learning and sparse principal component analysis.
In particular another example is multiple kernel learning where the estimator is assumed to be
f = f1 + · · ·+ fp and every fj belongs to a specific RKHS Hj with kernel Kj and norm ‖·‖j . In
this case, the penalty term takes the form

∑p
j=1 ‖fj‖j .

We remark that the examples above are just a few examples of learning methods to which
the proposed approach can be applied. In the next section we show how the corresponding
optimization problems can be solved using the same simple procedure.

2.2 Algorithm

In this section we describe the iterative procedure for computing the solution f∗ of the convex
minimization problem (1).

Towards this end we recall some basic facts in convex analysis and introduce some definitions
(see [20]). If (H, 〈·, ·〉H) is a Hilbert space, the subdifferential at f ∈ H of a convex functional
Q : H → R ∪ {+∞} is denoted with ∂Q(f) and is defined as the set

∂Q(f) := {h ∈ H : Q(g)−Q(f) ≥ 〈h, g − f〉H, ∀g ∈ H}.

If Q is not only convex but also differentiable, then the subdifferential reduces to a unique
element which is precisely the gradient ∇Q(f) of Q at f . Given the above definition we let

K := ∂J(0),

and denote with πλK : H → H the projection on λK ⊂ H, λ ∈ R+ (which is well defined since
the subdifferential is always a convex, closed set, and it is nonempty because J(0) = 0).

Given the above definitions, the optimization scheme we derive is given by Algorithm 1. The
parameter σ can be seen as a step-size, which choice is crucial to ensure convergence and is
discussed in the following. As we mentioned before, our approach decouples the contributions

Algorithm 1 General Algorithm
Require: σ, τ > 0
Initialize: f0 = 0
while convergence not reached do
p := p+ 1

fp =
(
I − π τ

σ
K

)(
fp−1 − 1

2σ
∇F (fp−1)

)
(5)

end while

return fp

of the two functionals J and F . At each iteration, the projection πλK– which is entirely char-
acterized by J – is applied to a term that depends only on F . Fenchel duality [20] is the key
tool that, combined with one-homogeneity, allows us to characterize the contribution of J . In
the following we state and prove the key results toward deriving Algorithm 1.

1We also need the technical assumption ∩kkernel(Jk) = {0} to ensure coerciveness of J
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2.3 Fixed Point Equation

We start showing that the optimal solution of problem (1) is the unique fixed point of a family
of functionals parameterized by the step-size σ.

Theorem 1 Given τ > 0, F : H → R strictly convex and differentiable and J : H → R∪{+∞}
lower semicontinuous, coercive, convex and one-homogeneous, the minimizer f∗ of Eτ is the
unique fixed point of the map Tσ : H → H defined by

Tσ(f) =
(
I − π τ

σ
K

)(
f − 1

2σ
∇F (f)

)
.

We postpone the proof to Appendix A, but it is worth remarking that strict convexity of F is
assumed only to ensure uniqueness of the minimizer of Eτ , and that the fixed point equation is
indeed satisfied by each minimizer of Eτ in the case F is only convex.

We note that Algorithm 1 is simply the successive approximation scheme associated to the
above fixed point equation. If the map Tσ is a contraction convergence of the iteration is ensured
by Banach fixed point theorem and convergence rates can be easily obtained. Recall that we
say that a map Tσ is a contraction if

|Tσ(f)− Tσ(g)| ≤ Lσ‖f − g‖, ∀f, g ∈ H

and Lσ < 1. In fact, in our setting Tσ depends on σ, and we can choose the latter so that
Lσ < 1. In this case the following inequality relates the solution fp at p− th iteration step and
the solution f∗ of the minimization problem,

‖f∗ − fp‖ ≤ Lpσ
1− Lσ

‖f1 − f0‖.

The constant Lσ depends only on the data fit term as can be seen by the following result.

Proposition 1 Assume the penalty term to satisfy the assumptions in Theorem 1 and F to
be twice differentiable with continuous second derivative ∇2F : H → L(H,H). Moreover let
a(f) ≥ b(f) denote the largest and smallest eigenvalues of ∇2F (f) and assume that there exist
a ≥ b > 0 such that a ≥ a(f) ≥ b(f) ≥ b for all f ∈ H. Then the map Tσ is a contraction if we
choose σ such that

max
{∣∣∣1− a

2σ

∣∣∣ , ∣∣∣∣1− b

2σ

∣∣∣∣} < 1. (6)

The optimal a priori choice for the step-size is given by

σ =
a+ b

4

and in this case we can choose Lσ = a−b
a+b .

Again, we postpone the proof to Appendix A and explicitly compute Lσ in several cases in
Section 3.1. In the above theorem ∇2F : H → L(H,H) denotes the second derivative of F .
To write it in this form, with an abuse of notation, we implicitly identified the linear operator
∇F (f) ∈ L(H,R) with an element ∇F (f) ∈ H, and then we computed the second derivative
(see [30] for more details).

The above result shows that in general, for a strictly convex F , if the smallest eigenvalue
of the second derivative is not uniformly bounded from below by a strictly positive constant, it
might not be possible to choose σ so that Lσ < 1. The next corollary shows that this can always
be done if F is perturbed by adding the term µ ‖·‖2H, with µ > 0.
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Corollary 1 Assume the penalty term to satisfy the assumptions in Theorem 1 and F to be
convex and twice differentiable with continuous second derivative ∇2F . Moreover let a(f) ≥
b(f) ≥ 0 denote the largest and smallest eigenvalues of ∇2F (f) and suppose that a(f) ≤ a.
Consider the perturbed function Fµ = F +µ ‖·‖2H, with µ > 0 and set b = inff∈H b(f). Then the
map Tσ induced by Fµ is a contraction if we choose σ such that

max
{∣∣∣1− µ

σ
− a

2σ

∣∣∣ , ∣∣∣∣1− µ

σ
− b

2σ

∣∣∣∣} < 1.

The optimal a priori choice for the step-size is given by

σ =
a+ b

4
+ µ,

and in this case we can choose Lσ = a−b
a+b+4µ .

The above corollary highlights the role of the µ-term, µ ‖·‖2H, as a natural preconditioning of
the algorithm. One can also argue that, if µ is chosen small enough, the solution is expected
not to change and in fact converges to a precise minimizer of F + τJ . Indeed, the quadratic
term performs a further regularization that allows to select, as µ approaches 0, the minimizer
of F + τJ having minimal norm (see for instance [16]). Another possibility to drop the strong
convexity assumption and select a specific minimizer of F +τJ is to consider a sequence λp → 1,
and slightly change Algorithm 1 multiplying the p− th iteration by λp. Using the results in [4]
it is possible to get strong convergence of the modified iterative sequence to a chosen minimizer.
Moreover we expect that the refined results about convergence rate obtained for `1 regularization
in [25] could be extended to Algorithm 1, without requiring strict convexity, if J is assumed to be
as in (4). Other improvements of the proposed procedure are worth to be investigated: among
them we mention the possibility of allowing errors in the evaluation of the projection operator
and of ∇F , and obviously the study of iteration-dependent parameters choice (see [10, 24] for
results in this direction in the case of `1 regularization).

In the next section we discuss how to compute the projection πK .

2.4 Computing the Projection

We discuss how to compute the projection πK when J is of the form

J(f) =
p∑

k=1

||Jk(f)||k, (7)

where, for all k = 1, . . . , p, Gk is a Hilbert space with norm ‖·‖k and Jk : H → Gk is a bounded
linear operator.

In the following proposition we characterize the set ∂J(0) and give a useful representation
of the projection on this set.

Proposition 2 Let J(f) as in (7) and

• G =
∏p
k=1 Gk, so that v = (v1, . . . , vp) ∈ G with

vk ∈ Gk and ‖v‖ =
∑
‖vk‖k;

• J : H → G such that J (f) = (J1(f), . . . ,Jp(f)) and KerJ = {0}.
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Then
∂J(0) = {J T v : v ∈ G, ‖vk‖k ≤ 1 ∀k},

where J T : G → H is the adjoint of J , and can be written as J T v =
∑p

k=1 J
T
k vk.

Moreover the projection of an element g ∈ H on the set λK := λ∂J(0) is given by λJ T v̄, where

v̄ ∈ argmin
v∈G, ‖vk‖k≤1

∥∥λJ T v − g∥∥2

H . (8)

We refer to Appendix A for the proof of the above result. Note that even though from the
definition v̄ may not be unique, if J has non trivial null space, the definition of the projection
πλK(g) is always unique.
As we will discuss in the following, in several specific cases the nonlinear projection πK can be
written in a closed form. Nonetheless, in general its computation is not straightforward. An
efficient solution to an analogue problem has been recently proposed in the context of total
variation image denoising [8]. We generalize this latter approach to derive an iterative scheme
for computing the solution of problem (8) induced by penalties J of the form (7). Towards this
end, we note that the Karush-Kuhn-Tucker conditions associated to (8) ensure the existence of
a set of Lagrange multipliers αk, such that for all k

Jk(λJ T v − g) + αkvk = 0,

with either ‖vk‖k = 1 and αk > 0, or ‖vk‖k < 1 and αk = 0. In both cases vk satisfies

Jk(λJ T v − g) +
∥∥Jk(λJ T v − g)

∥∥
k
vk = 0 ∀k. (9)

The above equation leads to a fixed point equation which solution can be computed by means
of the iteration given in the theorem below.

Theorem 2 Given J as in Proposition 2, let η ≤ (
∥∥JJ T∥∥)−1, v0 = 0 and for any q ≥ 0, set

vq+1
k =

vqk − ηJk
(
J T vq − g/λ

)
1 + η ‖Jk (J T vq − g/λ)‖k

. (10)

Then
∥∥λJ T vq − πλK(g)

∥∥
H converges to 0 as q →∞.

Again, the proof is given in Appendix A and the explicit form of the projection for several
different examples is discussed in Section 4. We remark that the convergence in the above result
refers to the projection rather than to the possibly not unique function v̄. Before dealing with
examples, we discuss convergence and step-size choice for Algorithm 1 in some more specific,
but still general, situations.

3 Some Relevant Algorithmic Issues

In this section we further discuss some issues related to the application of the general framework
described above. First, we instantiate the discussion in the previous section describing how
to choose the step size in several cases of interest. Second, we recall some data-driven step-
size choices which are often shown empirically to lead to convergence speed up. Finally, we
discuss a useful continuation strategy that can be used when solutions corresponding to various
regularization parameters have to be computed.
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3.1 Computing the a-priori step-size

We discuss the a-priori step-size choice given in Proposition 1, in two specific setting of interests.
First, we consider supervised learning problems where, given a training set {(xi, yi)}ni=1, with
x ∈ X ⊂ Rd and y ∈ Y = [−M,M ], we have to find an unknown functional relation f : X → Y .
We consider loss functions ` : R× Y → R+ that are convex and twice differentiable in the first
argument. Moreover we consider functions belonging to a RKHS [2]. In particular we make use
of the following well known facts. A function f in a RKHS H with kernel K, can be seen as a
hyperplane f(x) = 〈Φ(x), β〉F , where (F , 〈·, ·〉F ) is a Hilbert space - the feature space - β ∈ F
and Φ : X → F is called feature map [37] if

〈Φ(x),Φ(x′)〉F = K(x, x′).

In particular we make use of the following properties, ∀f ∈ H, ‖f‖H ≤ ‖β‖F and

sup
x∈X
|f(x)| ≤ κ ‖β‖F ,

where, for the latter inequality to hold true, we need to assume that supx∈X ‖Φ(x)‖F ≤ κ, (the
kernel is bounded). In the following we consider in particular two examples of feature maps. The
first is given by the reproducing kernel K by setting Φ(x) = K(x, ·) so that (F , 〈·, ·〉F ) is simply
(H, 〈·, ·〉H) and f = β, implying ‖f‖H = ‖β‖F . The second example corresponds to considering
a finite set of functions (a dictionary) (ψj)

p
j=1 and setting Φ(x) = (ψ1(x), . . . , ψp(x)) so that

F can be identified with Rp with the corresponding inner product. In this case ‖f‖H ≤ ‖β‖F
where the equality holds if the dictionary is an orthonormal basis.

Given the above premises, the specific data terms F we consider can be written as

F (β) =
n∑
i=1

`(〈Φ(xi), β〉F , yi) + µ ‖β‖2F . (11)

where µ ≥ 0. 2

The following result studies the property of the map Tσ induced by the above functional,
and in particular provides the optimal choice for the step-size σ using Proposition 1. We show
that the optimal σ is determined by the loss function and the covariance operator defined by

Cov : F → F
β 7→

∑n
i=1〈Φ(xi), β〉FΦ(xi).

It is well-known that Cov is selfadjoint, so that if a and b are respectively the largest and the
smallest eigenvalues of Cov, then it follows a ≥ b ≥ 0 [26].

Proposition 3 Assume the penalty term to satisfy the assumptions in Theorem 1 and F to
be given by (11). Moreover let a and b denote the largest and smallest eigenvalues of Cov and
0 ≤ Lmin ≤ `′′(w, y) ≤ Lmax, ∀w ∈ R, y ∈ Y , where `′′ denotes the second derivative of ` with
respect to w. Then the map Tσ is a contraction with constant Lσ, if we choose σ such that

max
{
|1− µ

σ
− Lmaxa

2σ
|, |1− µ

σ
− Lminb

2σ
|
}
< 1. (12)

2Clearly if we choose Φ(x) = K(x, ·) we have

F (β) = F (f) =

nX
i=1

`(f(xi), yi) + µ ‖f‖2H .

8



The optimal a priori choice for the step-size is given by

σ =
aLmax + bLmin

4
+ µ,

and in this case we can choose Lσ = aLmax−bLmin
aLmax+bLmin+4µ .

We give the proof of the above result in Appendix A. Note again that if we let µ be equal to
zero, then equation (12) may be never satisfied when either Lmin or b are zero. We add examples
for specific loss functions.

Example 1 (Square Loss) Consider the square loss `(w, y) = (w − y)2. Then `′′(w, y) =
Lmin = Lmax = 2 ∀w ∈ R, y ∈ Y and the optimal a priori choice for the step-size is given by
σ = a+b+2µ

2 .

Example 2 (Exponential Loss) If we consider the exponential loss `(w, y) = e−wy, then
`′′(w, y) = y2e−wy. Since Y = [−M,M ] we can assume without loss of generality that f(x) ∈
[−M,M ] ∀x, so that 0 ≤ `′′(w, y) ≤ M2eM

2
. The optimal a priori choice for the step-size is

then given by σ = aM2eM
2

4 + µ.

Next we consider a data term of the form (3). More precisely, given two Hilbert spaces H,Y,
and a bounded operator A : H → Y , we consider

F = ‖Af − y‖2Y + µ ‖f‖2H (13)

which is strictly convex if µ > 0 or A is injective. In particular, when A = I the equation
f = Tσ(f) admits an explicit solution f∗, which is unique even when µ = 0. In fact, since
1
2∇F (f) = (1 + µ)f + y, by setting σ = 1 + µ, we obtain

f∗ =
y

1 + µ
− π τ

1+µ
K

(
y

1 + µ

)
=

1
1 + µ

(y − πτK(y)) .

For a general operator A, the solution of f = Tσ(f) does not admit a closed form, but we can
compute it using Algorithm 1, provided that the map Tσ is a contraction.

Proposition 4 Assume the penalty term to satisfy the assumptions in Theorem 1 and F to be
given by (13). Let a and b be the smallest and largest eigenvalues of ATA, where AT denotes
the adjoint of A. Then the map Tσ is a contraction if we choose σ such that

max
{∣∣∣∣1− a+ µ

σ

∣∣∣∣ , ∣∣∣∣1− b+ µ

σ

∣∣∣∣} < 1.

The optimal a priori choice for the step-size is given by σ = a+b+2µ
2 , and in this case we can

choose Lσ = a−b
a+b+2µ .

3.2 Adaptive Step-Size Choice

In the previous sections we proposed a general scheme as well as a parameter set-up ensuring
convergence of the proposed procedure. Here, we discuss some heuristics that were observed to
consistently speed up the convergence of the iterative procedure. In particular, we mention the
Barzilai-Borwein methods – see for example [40, 32, 33] for references. The rationale behind
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these methods is that one can compute a step-size that mimics the behavior of the Hessian of
the data-fit term F at the most recent iteration. More precisely in the following we will consider

σt =
〈st, rt〉
‖st‖2

where st = f t − f t−1 and rt = ∇F (f t)−∇F (f t−1). Alternatively, one can consider

σt =
‖rt‖2

〈st, rt〉
.

More sophisticated step-size strategy can be designed alternating these two choices (see [32, 33]).
Here we just recall that, though the above choices lack a theoretical justification, they were
empirically shown to yield improved convergence in several studies (see [32, 33] and references
therein).

3.3 Continuation Strategies and Regularization Path

Finally, we recall the continuation strategy proposed in [25] to compute efficiently the solutions
corresponding to different regularization parameter values, often called regularization path. In
this case, one should run the iterative procedure (up-to convergence) for each regularization
parameter value. The general idea of the approach proposed in [25] is that one can try to reduce
the number of iterations needed to compute the solutions corresponding to each parameter
value by choosing suitable initializations. More precisely, one can fix an ordered sequence of
regularization parameter values τ1 > τ2 > · · · > τp and start considering the larger value. The
corresponding solution can be usually computed in a fast way since it is very sparse, though
possibly under-fitting the data. Then, one proceeds considering the next parameter value τ2
and use the previously computed solution as the starting point of the corresponding procedure.
It can be observed that with this initialization much fewer iterations are typically required to
achieve convergence. The same warm starting strategy is then repeated to compute the solutions
corresponding to the following parameter values.

4 Examples

In this section we discuss several examples of the general Algorithm 1, specializing our analysis
to a number of well known regularization schemes.

4.1 Lasso and elastic net regularization

We start considering the following functional

E(`1`2)
τ (β) = ‖Ψβ − y‖2 + µ

M∑
j=1

β2
j + 2τ

M∑
j=1

wj |βj |, (14)

where Ψ is a n ×M matrix, β, y are the vectors of coefficients and measurements respectively,
and (wj)Mj=1 are positive weights. The matrix Ψ is given by the features ψj in the dictionary
evaluated at some points x1, . . . , xn.
Minimization of the above functional corresponds to the so called elastic net regularization, or
`1-`2 regularization, proposed in [45], and reduces to the lasso algorithm [38] if we set µ = 0.
Using the notation introduced in the previous sections, we set F (β) = ‖Ψβ − y‖2 + µ

∑M
j=1 β

2
j

10



and J(β) =
∑M

j=1wj |βj |. Moreover we denote by Sτ/σ the soft-thresholding operator defined
component-wise by

[Sτ/σ(β)]j = sign(βj)(|βj | − λwj)+.

The minimizer of (14) can be computed by Algorithm 2. It is easy to check that the argument of

Algorithm 2 Iterative Soft Thresholding
Require: σ, τ, µ > 0
Initialize: β0 = 0
while convergence not reached do
p := p+ 1

βp = S τ
σ

(
(1− µ

σ
)βp−1 +

1
σ

ΨT (y −Ψβp−1)
)

(15)

end while

return βp

Sτ/σ is obtained simply computing the derivative of F (β) and the main point while passing from
equation (5) to equation (15) is the computation of the projection πλK . Applying Proposition
2 to J(β) =

∑M
j=1wj |βj |, with Gj = R and Jj(β) = wjβj ∀j = 1, . . . ,M , allows to solve (8)

component-wise as

v̄j = argmin
|vj |≤1

(λwjvj − βj)2 = min
{

1,
|βj |
λwj

}
sign(βj),

where we used the fact that J Tj v = wjvj .
The operator Sτ/σ introduced above corresponds to the non linear operation (I − πλK), which
acts on each component as:

[(I − π(λK))(β)]j = βj −min{|βj |, λwj}sign(βj) = sign(βj)(|βj | − λwj)+.

From the above equation it follows that the iteration (15) with µ = 0 leads to the iterated
soft-thresholding studied in [12] (see also [42] and references therein). When µ > 0, the iteration
(15) becomes the damped iterated soft-thresholding proposed in [14]. In the former case, the
operator Tσ in (15) is not contractive but only non-expansive, convergence in this case is proved
in [12].

4.2 Group lasso

We consider a variation of the above algorithms where the features are assumed to be disposed in
blocks. This latter assumption is used in [43] to define the so called group lasso, which amounts
to minimizing

E(grLasso)
τ (β) = ‖Ψβ − y‖2 + µ ‖β‖2 + 2τ

M∑
k=1

wk

√∑
j∈Ik

β2
j (16)

for µ = 0, where (ψj)j∈Ik for k = 1, . . . ,M is a block partition of the feature set (ψj)j∈I . As
in the previous case the main step towards specializing Algorithm 1 to this particular example

11



is the computation of πλK . Note that when applying Proposition 2 to Jk(β) =
√
wkβIk with

Gk = R|Ik|, equation (8) can be decomposed component-wise as

v̄k = argmin
v∈R|Ik|, ‖v‖k≤1

‖λwkv − βk‖2k

= min

{
1,
||β(k)||
λwk

}
β(k)

||β(k)||

where v̄ = (v̄1, . . . , v̄M ) with v̄k ∈ R|Ik|, and β(k) ∈ R|Ik| is the vector built with the components
of β ∈ R|I| corresponding to the elements (ψj)j∈Ik .
The nonlinear operation (I − πλK) – denoted by S̃τ/σ – acts on each block as

[(I − π(λK))(β)](k) = β(k) −min
{
λwk, ||β(k)||

} β(k)

||β(k)||

=
β(k)

||β(k)||
(||β(k)|| − λwk)+

The minimizer of (16) can hence be computed through Algorithm 3.

Algorithm 3 Group lasso Algorithm
Require: τ, σ > 0
Initialize: β0 = 0
while convergence not reached do
p := p+ 1

βp = S̃ τ
σ

(
(1− µ

σ
)βp−1 +

1
σ

ΨT (y −Ψβp−1)
)

end while

return βp

4.3 Composite Absolute Penalties

In [44], the authors propose a novel penalty, named Composite Absolute Penalty (CAP), based
on assuming possibly overlapping groups of features. Given γk ∈ R+, for k = 0, 1, . . . ,M , the
penalty is defined as:

J(β) =
M∑
k=1

(
∑
j∈Ik

βγkj )
γ0
γk ,

where (ψj)j∈Ik for k = 1, . . . ,M is not necessarily a block partition of the feature set (ψj)j∈I .
This formulation allows to incorporate in the model not only groupings, but also hierarchical
structures present within the features, for instance by setting Ik ⊂ Ik−1. The choice of γk
for k ≥ 1 corresponds to a priori information about the sparsity within a group, while the
choice of γ0 is on the other hand related to the sparsity among groups. For γ0 = 1, the
CAP penalty is one-homogeneous and the solution can be computed through Algorithm 1.
Furthermore, when γk = 2 for all k = 1, . . . ,M , it can be regarded as a particular case of (7),
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with ‖Jk(β)‖2 =
∑d

j=1 β
2
j 1Ik(j), with Jk : R|Ik| → Rmk and mk = |Ik|. Considering the least

square error, we study the minimization of the functional

E(CAP )
τ (β) = ‖Ψβ − y‖2 + µ ‖β‖2 + 2τ

M∑
k=1

wk

√∑
j∈Ik

β2
j , (17)

which is exactly a CAP functional when µ = 0. Note that, due to the overlapping structure of the
features groups, the minimizer of (17) cannot be computed blockwise as in Algorithm 3, because
the solution of the minimization problem (8) does not decouple on the blocks. However we can
approximate the projection using Theorem 2, through the iterative scheme (10), by identifying
Jk with the projection on the components corresponding to Ik, and J as (J T1 . . .J Tk )T . We can
then compute the minimizer of (17) through Algorithm 4.

Algorithm 4 CAP Algorithm
Require: τ, σ > 0
Initialize: β0 = 0
for p = 1, 2, . . . , MAX ITER EXT do

set v0 = 0, β̃ = (1− µ
σ )βp−1 + 1

σΨT (y −Ψβp−1)
for q = 1, 2, . . . , MAX ITER INT do

vq+1
k =

vqk − ηJk(J
T vq − σβ̃/τ)

1 + η||Jk(J T vq − σβ̃/τ)||
end for

βp = β̃ − τ

σ
J T vMAX ITER INT

end for

return βMAX ITER EXT

4.4 Multiple kernel learning

Multiple kernel learning (MKL) [3, 35] is the process of finding an optimal kernel from a pre-
scribed (convex) set K of basis kernels, for learning a real-valued function by regularization.
This approach has applications in kernel selection, and data fusion from heterogeneous data
sources, and nonlinear feature selection [29]. In the case where the set K is the convex hull of
a finite number of kernels k1, . . . , kM , and the loss function is the square loss, it is possible to
show [34] that the problem of multiple kernel learning corresponds to find f∗ belonging to

argmin
f∈H

{
1
n

n∑
i=1

(
M∑
j=1

fj(xi)− yi)2 + τg

(
(
M∑
j=1

‖fj‖Hj )
2

)}
, (18)

where H = H1⊗· · ·⊗HM so that f =
∑M

j=1 fj , fj ∈ Hj and g : R+ → R+ is a strictly increasing
function. Two popular choices for the function g are the identity and the square root, both
leading to a representation of f∗ w.r.t. the basis kernels. In the following we consider the
optimization problem

argmin
f∈H

{
1
n

n∑
i=1

(
M∑
j=1

fj(xi)− yi)2 + µ

M∑
j=1

‖fj‖2Hj + 2τ
M∑
j=1

‖fj‖Hj

}
,
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which recovers (18) for µ = 0, when g is twice the square root. Note that by choosing the square
root, our general hypotheses on the penalty term J are satisfied.

Though the space of functions is infinite dimensional the minimizer of the above func-
tional (18) can be shown to have a finite representation. In fact, one can generalize the represen-
ter theorem to show that the vector of optimal components for the solution of the optimization
problem (18) can be expressed as f∗j (·) =

∑n
i=1 αj,ik(xi, ·) for all j = 1, . . . ,M . Introducing the

following notation:

α = (α1, . . . , αM )T with αj = (αj,1, . . . , αj,n)T ,
kj(x) = (kj(x1, x), . . . , kj(xn, x)) ,
k(x) = (k1(x), . . . ,kM (x))T

K = diag (K1, . . . ,KM ) with [Kj ]ii′ = kj(xi, x′i),
y = (yT , . . . , yT︸ ︷︷ ︸

M times

)T

we can write the solution of (18) as f∗(x) = αT1 k1(x) + · · ·+ αTMkM (x)).
The search for the solution can then be restricted to a finite dimensional space spanned by
k1, . . . ,kM . Hence, the iteration on the vector of components can be written as

Tσ(f) =
(
I − πτ/σK

)((
(1− µ

σ
)α− 1

σn
(Kα− y)

)T
k

)
.

Defining J : H → H to be the identity operator and Jj(f) = fj , we apply Proposition 2,
obtaining that the projection is defined as πλK(g) = λv̄ with

v̄ = argmin
v∈H,‖Jjv‖Hj≤1

‖λv − g‖2H ,

which can be computed block-wise as

v̄j = min

{
1,
‖Jjg‖Hj

λ

}
Jjg
‖Jjg‖Hj

= min

1,

√
αTj Kjαj

λ

 αTj kj√
αTj Kjαj

,

with g = (α1·k1, . . . , αM ·kM ). The operation (I−πλK)(g), therefore acts on g componentwise
by changing the coefficients of the expansion i.e. we can write it as Ŝλ(K, α)Tk for j = 1, . . . ,M
where

Ŝλ(K, α)j =
αTj√
αTj Kjαj

(
√
αTj Kjαj − λ)+.

This peculiarity allows for computing the regularized solution using Algorithm 5, which involves
only the coefficients.

4.5 Multitask Learning

Learning multiple tasks simultaneously has been shown to improve performance relative to
learning each task independently, when the tasks are related in the sense that they all share a
small set of features (see for example [1, 28, 36] and references therein).
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Algorithm 5 MKL Algorithm
set α0 = 0
for p = 1, 2, . . . , MAX ITER do

αp = Ŝτ/σ

(
K,

(
(1− µ

σ
)αp−1 − 1

σn
(Kαp−1 − y)

))
end for

return
(
αMAX ITER

)T
k.

In particular, given T tasks modeled as

ft(x) =
d∑
j=1

βj,tψj(x)

for t = 1, . . . , T , according to [36], regularized multi-task learning amounts to the minimization
of the functional

E(MT )
τ (β) =

T∑
t=1

1
nt

nt∑
i=1

(ψ(xt,i)βt − yt,i)2 + µ
T∑
t=1

d∑
j=1

β2
t,j + 2τ

d∑
j=1

√√√√ T∑
t=1

β2
t,j . (19)

The last term combines the tasks and ensures that common features will be selected across them.
Again functional (19) is a particular case of (1), and, defining

β = (βT1 , . . . , β
T
T )T ,

Ψ = diag(Ψ1, . . . ,ΨT ), [Ψt]ij = ψj(xt,i),

y = (yT1 , . . . , y
T
T )T ,

N = diag(1/n1, . . . , 1/n1︸ ︷︷ ︸
n1times

, 1/n2, . . . , 1/n2︸ ︷︷ ︸
n2times

, . . . , 1/nT , . . . , 1/nT︸ ︷︷ ︸
nT times

).

its minimizer can be computed through Algorithm 6. Using Proposition 2 the projection corre-
sponds to a task-wise soft-thresholding S̃λ acting simultaneously on the regression coefficients
relative to the same variable in all the tasks.

Algorithm 6 Multi-Task Learning Algorithm
set β0 = 0
for p = 1, 2, . . . , MAX ITER do

βp = S̃ τ
σ

(
(1− µ

σ
)βp−1 +

1
σ

ΨTN(y −Ψβp−1)
)

end for

return βMAX ITER

Note that, when n1 = n2 = · · · = nT = n, dividing by the diagonal matrix N amounts to
multiplying by the factor 1/n.
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4.6 Total Variation–based Image Denoising

As a last example we consider total variation regularization for image denoising, which amounts
to the minimization of the following functional

E(TV )
τ (f) = ‖f − y‖2 + 2τ

n∑
i,j=1

‖[∇(f)]ij‖ (20)

where y is a noisy n× n image, from which we aim at extracting the true image f , and ∇ is a
linear discretization of the gradient operator. The minimization of ETVτ can be easily recast in
terms of (1). In fact, f = {fij}ni,j=1 so that H = Rn×n, the operator A is the identity, µ = 0 and
Jij(f) = (∇f)ij ∈ R2.

Since A = I, as pointed out in Section 2, the solution is simply f∗ = y−πτK(y), and the pro-
jection can be efficiently implemented through the iterative algorithm (10). If one approximates
the operator ∇ by means of finite differences of neighbors pixels,

[(∇f)i,j ]1 =

{
fi+1,j − fi,j if i < n

0 if i = n
[(∇f)i,j ]2 =

{
fi,j+1 − fi,j if j < n

0 if j = n.

With this choice the adjoint of J is given by

(∇T v)i,j =


[vi−1,j ]1 − [vi,j ]1 if 1 < i < n

−[vi,j ]1 if i = 1
[vi−1,j ]1 if i = n

+


[vi,j−1]2 − [vi,j ]2 if 1 < j < n

−[vi,j ]2 if j = 1
[vi,j−1]2 if j = n

= −(div v)i,j

and the minimizer of (20) can be computed through the iterative Algorithm 7. Through our
approach we recover the algorithm proposed in [8].

Algorithm 7 Total Variation Algorithm
set v0 = 0
for p = 0, 1, . . . , MAX ITER do

vq+1
i,j =

vqi,j + η(∇ (div vq + σy/τ))i,j
1 + η ‖(∇ (div vq + σy/τ))i,j‖R2

.

end for

return − τ
σdiv vMAX ITER

5 Experiments and Discussions

In this section we describe several experiments aimed at testing some features of the proposed
method. In particular, we investigate the effect of adding a (small) strictly convex perturbation
to the original functional, weighted by a positive parameter µ. One can see that such a pertur-
bation term simplifies the mathematical analysis of the proposed procedure, and here we argue
that it might actually bear benefits from the numerical point of view without affecting statistical
properties. In the following we are interested into understanding the role of the perturbation
term with respect to:
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- prediction: do different values of µ modify the prediction error of the obtained estimator?

- selection: does µ increase/decrease the sparsity level of the obtained estimator?

- running time: is there an actual computational improvement due to the use of µ > 0?

We discuss the above questions for the multi-task scheme proposed in [36]. and show results
which are consistent with those reported in [15] for the elastic-net estimator. These two methods
are only two special cases of our framework, but indeed we believe that all the other learning
algorithms considered in this paper share the same properties.

We note that a computational comparison of different optimization approaches is cumber-
some since we consider many different learning schemes and is beyond the scope of this paper.
Extensive analyses of different approaches to solve `1 regularization can be found in [25] and
[32], where the authors show that projected gradient methods compare favorably to state of
the art methods. We expect that similar results will hold for learning schemes other than `1
regularization.

5.1 Validation protocol and simulated data

In this section, we briefly present the set-up used in the experiments, by first describing the
data sets. Simulated data were considered to test the properties of the proposed method in a
controlled scenario. More precisely, we considered T regression tasks

y = x · β(t) + ε t = 1, . . . , T

where x is uniformly drawn from [0, 1]d, ε is drawn from the zero-mean Gaussian distribution
with σ = 0.1 and the regression vectors are

β†t = (β†t,1, ..., β
†
t,r︸ ︷︷ ︸

r

, 0, 0, ..., 0︸ ︷︷ ︸
d−r

).

with β†t,j uniformly drawn from [−1, 1]. In other words the only relevant variables are the first
r.

In order to obtain a fully data driven procedure we use cross validation to choose the reg-
ularization parameters τ, λ for the sparse regularization and RLS respectively. Indeed one can
see that the cross validation protocol yields relatively large values of τ and very small values of
λ. After re-training with the optimal regularization parameters, a test error is computed on an
independent set of data. Each validation protocol is replicated 20 times by resampling both the
input data and the regression coefficients, β†t , in order to assess the stability of the results.

Finally, following [7, 40], we consider a debiasing step after running the sparsity based
procedure. This last step is a post-processing and corresponds to training a regularized least
square (RLS) estimator3 on the selected components to avoid an undesired shrinkage of the
corresponding coefficients.

5.2 A preliminary result

The potential benefits of multi task learning compared to learning each task independently, has
already been demonstrated both on simulated and real data – see [1, 28, 36] and references
therein. Here we just confirm such results in our framework. Towards this end we compare

3A simple ordinary least square is often sufficient and here a little regularization is used to avoid possible
unstable behaviors especially in the presence of small samples.
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Figure 1: Comparison measure (γ) between a multiple task and independent task approach, for
different values of n. For these experiments we worked with d = 100, r = 10, T = 2, 4, 8, 16, and
n = 20, 50 and 100. The number of points for both validation and test is 1000.

single task learning using Algorithm 2 and multi-task learning using Algorithm 6. We apply
the experimental protocol described in the previous section (for µ = 0) and use the following
comparison measure

γ =
errS − errM

errS
,

where errM is the multi-task error and errS is the single task error. The results obtained varying
the number of training points and tasks are reported in Figure 1. This experiment confirms the
effectiveness of multitask learning: the relative difference between test error increases with the
number of tasks, i.e. the advantage of combining multiple tasks is larger when the number of
task is large. Furthermore, such effect is more evident with small training sets.

5.3 Role of the Strictly convex Penalty

Next, we investigate the impact of adding the perturbation µ > 0. We consider T = 2, r = 3,
d = 10, 100, 1000, and n = 8, 16, 32, 64, 128. For each data set, that is for fixed d and n, we
apply the validation protocol described in Subsection 5.1 for increasing values of µ. The number
of samples in the validation and test sets is again 1000. As in the previous set of experiments
we replicate each trial 20 times and report the mean results. Error bars are omitted in order to
increase the readability of the Figures.

We preliminary discuss an observation suggesting a useful way to vary µ. As a consequence
of Corollary 1, when µ = 0 and b = 0, the Lipschitz constant, Lσ, of the map Tσ in Theorem 1 is

1 so that Tσ is not a contraction. By choosing µ = ‖∇
2F‖
4 α with α > 0, the Lipschitz constant

becomes
Lσ = (1 + α)−1 < 1,
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and the map Tσ induced by Fµ is a contraction. In particular in multiple task learning with
linear features (see Section 4.5) X = Ψ, so that ∇2F = 2XTX/n and

∥∥∇2F
∥∥ = 2a/n, where

a is the largest eigenvalue of the simmetric matrix XTX. We therefore let µ = a
2nα and vary

the absolute parameter α as α = 0, 0.001, 0.01, 0.1. We then compare the results obtained for
different values of α.

We now analyze in the details the outcome of our results in terms of the three aspects raised
at the beginning of this section.

- prediction The test errors associated to different values of µ are essentially overlapping,
meaning that the perturbation term does not impact the prediction performance of the
algorithm when the τ parameter is accurately tuned. This result is consistent with the
theoretical results for the elastic net estimator – see [14].

- selection

In principle the presence of the perturbation term tends to reduce the sparsity of the
solution in the presence of very small samples. In practice one can see that such an effect
decreases when the number of input points n increases and is essentially negligible even
when n << d.

- running time From the computational point of view we expect larger values of µ (that is
α) to correspond to fewer iterations. This effect is clear in our experiments. Interestingly
when n << d small values of µ allow to substantially reduce the computational burden
while preserving sparsity and prediction properties of the algorithm (compare α = 0 and
α = 0.001 when d = 1000). Moreover, one can observe that the number of iterations
decreases as the number of points increases. This result might seems surprising, but can
be explained recalling that the condition number of the underlying problem is likely to
improve as n gets bigger.

Finally, we can see that adding the small strictly convex perturbation with µ > 0, has a
preconditioning effect on the iterative procedure and can substantially reduce the number of
required computations without affecting the sparsity and prediction properties of the obtained
solution.

5.4 Impact of choosing the step-size adaptively

In this section we assess the effectiveness of the adaptive approach proposed in section 3 to speed
up the convergence of the algorithm. Specifically, we show some results obtained by running the
iterative optimization with two different choices of the step-size, namely the one fixed a-priori –
as described in section 3.1 – and the adaptive alternative of section 3.2.
The experiments have been conducted by first drawing randomly the dateset and finding the
optimal solution using the complete validation scheme, and then running two further experiments
using, in both cases, the optimal regularization parameters but the two different strategies for
the step-size.
We compared the number of iterations necessary to compute the solution and looked at the ratio
between those required by the fixed and the adaptive strategies respectively. In Figure 3, it is
easy to note that such ratio is always greated than one, and actually it ranges from the order of
tens to the order of hundreds. Moreover, the effectiveness of using an adaptive strategy becomes
more and more evident as the number of input variables increases.
Consistently with the results showed in the previous section, for a fixed input dimension, the
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(a) Prediction

(b) Selection

(c) Running time

Figure 2: Results obtained in the experiments varying the size of the training set and the number
of input variables. The properties of the algorithms are evaluated in terms of the prediction
error, the ability of selecting the true relevant variables, and finally the number of iteration
required for the convergence of the algorithm.
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Figure 3: Comparison of the number of iterations required to compute the regression function
using the fixed and the adaptive step-size. The blue plot refers to the experiments using d = 10,
the red plot to d = 100, while the green plot to d = 500.

iterations required by the fixed step-size approach decreases when the number of training samples
increases. Indeed also in the case of the adaptive choice appoach the number of iterations
decreases but at a slightly faster rate. Therefore, the ratio tends to either remain approximately
constant or decrease slightly.

6 Conclusions

This paper shows that many algorithms based on regularization with convex non differentiable
penalties can be described within a common framework. This allows to derive a general opti-
mization procedure whose convergence is guaranteed. The proposed procedure highlights and
separates the roles played by the loss terms and the penalty terms, in fact, it corresponds to the
iterative projection of the gradient of the loss on a set defined by the penalty. The projection
has a simple characterization in the setting we consider: in many case it can be written in closed
form and corresponds to a soft-thresholding operator, in all the other cases it can be iteratively
calculated. The obtained procedure is simple and its convergence proof is relatively straightfor-
ward in the strictly convex case. One can always force such a condition considering a suitable
perturbation of the original functional. Interestingly if such a perturbation is small it will act
as a preconditioning of the problem and lead to the better computational performances without
changing the properties of the solution. A more general and abstract setting can be considered.
Steps in this direction are taken for example in [10]. The setting we consider here is general
enough to be of interest for many learning algorithms and allows to have simplified proofs.

In future work we will consider several natural developments of our study. In particular
one can study more carefully the properties the adaptive step-size choice and consider domain
decomposition techniques aimed at dealing with large scale problems which are common in
machine learning.
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A Proofs

In this section we collect the proofs of the results in the paper. We start by proving Theorem 1.
The proof requires a few basic concepts from convex analysis [20]. In particular we recall that
the Fenchel conjugate of a convex functional is defined as

J∗ : H → R ∪ {+∞}
g 7→ supf∈H〈f, g〉H − J(f),

and satisfies the well known Young-Fenchel equality:

g ∈ ∂J(f) ⇐⇒ f ∈ ∂J∗(g). (21)

The above equality is the key for the proof of Theorem 1 and leads to a dual formulation of the
minimization problem (1). Another important fact is that the conjugate of a one-homogeneous
functional J is the indicator function of the convex set K = ∂J(0) and this implies that the
solution of the dual problem reduces to the projection onto K. In the proof of Proposition 2,
we are also going to use some standard properties of the subdifferential, that can be found in
[20], Chapter 1. For the convenience of the reader we recall them here, without stating all the
needed assumptions that are systematically satisfied in our setting.

P1) Sum rule: if F and J are convex, then ∂(F + J)(f) = ∂F (f) + ∂J(f);

P2) Chain rule: let L be a linear operator and F a convex function, then

∂(F ◦ L)(f) = LT (∂F (L(f)))

P3) Subdifferential of the norm in a Hilbert space H:

(∂ ‖·‖) (0) = {v ∈ H : ‖v‖ ≤ 1} := B(H, 1).

We can now give the proof of Theorem 1.

Proof 1 (Theorem 1) Since Eτ is lower semicontinuous, strictly convex and coercive, it admits
a unique minimizer, which is characterized by the Euler equation

0 ∈ 2τ∂J(f) +∇F (f).

Using (21) this is equivalent to

f ∈ ∂J∗
(
− 1

2τ
∇F (f)

)
.

If we let g = (f − 1
2∇F (f)), and add g/τ to both sides of the above relation, then we obtain

0 ∈ 1
τ

(g − f)− g

τ
+

1
τ
∂J∗

(
1
τ

(g − f)
)
.
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It follows that w = 1
τ (g − f) is the minimizer of

1
2

∥∥∥w′ − g

τ

∥∥∥2

H
+

1
τ
J∗(w′).

Since the penalty is one-homogeneus its Fenchel conjugate J∗ is the indicator function of K,
and we obtain

w = argmin
w′∈K

∥∥∥w′ − g

τ

∥∥∥2

H
= πK

(g
τ

)
,

which immediately gives f = g − τπK
( g
τ

)
= g − πτK (g). We conclude noting that we can

multiply both F and τ by σ > 0, without modifying the minimizer of (1), which is therefore the
unique fixed point of the mapping Tσ : H → H

Tσ(f) = f − 1
2σ
∇F (f)− π τ

σ
K

(
f − 1

2σ
∇F (f)

)
,

and this ends the proof.

Next, we prove convergence and step-size choice in the general case.

Proof 2 (Proposition 1) We first observe that the contraction Tσ can be decomposed as Tσ =
(I−π τ

σ
K) ◦Bσ, with Bσ(f) := f − 1

2σ∇F (f). Since (I−π τ
σ
K) has unitary Lipschitz constant as

an immediate consequence of the projection theorem, it is enough to prove that the inner mapping
Bσ is a contraction. According to a corollary of the Mean Value Theorem (see Corollary 4.3
of [30] for the infinite dimensional version), every Fréchet differentiable mapping B such that
supf∈F ‖B′(f)‖ < 1 is a contraction, therefore it is enough to prove that the norm of B′σ is
bounded by the unit. We have:

B′σ(f) = I − 1
2σ
∇2F (f),

therefore ∥∥B′σ∥∥ ≤ max
{∣∣∣∣1− 1

2σ
a

∣∣∣∣ , ∣∣∣∣1− 1
2σ
b

∣∣∣∣} .
Since a ≥ b > 0 the r.h.s is strictly less than 1 and the first part of the thesis follows. The
minimization of the function σ 7→ max{

∣∣1− 1
2σa
∣∣ , ∣∣1− 1

2σ b
∣∣} gives the best a priori choice of σ,

that is σ = a+b
4 .

Proof 3 (Corollary 1) It is enough to note that ∇2Fµ = ∇2F+2µI, implying that the smallest
eigenvalue of F + µ ‖·‖2H is uniformly bounded from below by 2µ. The rest of the thesis easily
follows applying Proposition 1 to Fµ.

Next we consider the results allowing to compute the projection. First we prove Proposition
2.

Proof 4 (Proposition 2) Using properties (P1) and (P2) stated at the beginning of the Sec-
tion, and setting K = ∂J(0), we have

K =
p∑

k=1

(∂ (f 7→ ‖Jkf‖k)) (0) =
p∑

k=1

J Tk (∂ ‖·‖k) (0)

where thanks to property (P3), (∂ ‖·‖k) (0) = {vk ∈ Gk : ‖vk‖k ≤ 1}. Then we can identify the
set K with

K = {J T v : v ∈ G, ‖vk‖k ≤ 1 ∀k}.
The projection on λK is then defined as πλK(g) = λJ T v̄, where v̄ is given by (8).
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Then we prove Theorem 2.

Proof 5 (Theorem 2) Equation (9) holds also if we multiply by −η with η > 0 and add vk to
both sides, hence obtaining

−η
(
Jk(λJ T v − g) +

∥∥Jk(λJ T v − g)
∥∥
k
vk
)

+ vk = vk,

so that vk satisfies the fixed point equation

vk =
vk − ηJk

(
J T v − g/λ

)
1 + η ‖Jk (J T v − g/λ)‖k

.

By induction it is easy to see that
∥∥vqk∥∥k ≤ 1, for all k, q. We then define κ =

∥∥JJ T∥∥, and
introduce hq = (hq1, . . . , h

q
p) and ρq = (ρq1, . . . , ρ

q
p) with hq, ρq ∈ G such that hqk = Jk(J T vq −

g/λ) ∈ Gk and ρqk =
∥∥hqk∥∥ vq+1

k ∈ Gk, so that vq+1
k = vqk − η(hqk + ρqk).∥∥J T vq+1− g

λ

∥∥2

H −
∥∥J T vq− g

λ

∥∥2

H =∥∥J T (vq − η(hq + ρq))− g
λ

∥∥2

H −
∥∥J T vq − g

λ

∥∥2

H =
−2η〈J T (hq + ρq),J T vq − g

λ〉H + η2
∥∥J T (hq + ρq)

∥∥2

H =
−2η〈hq + ρq, hq〉+ η2

∥∥J T (hq + ρq)
∥∥2

H =
−η ‖hq + ρq‖2 − η〈hq + ρq, hq − ρq〉+ η2

∥∥J T (hq + ρq)
∥∥2

H ≤
−η
[
(1− ηκ) ‖hq + ρq‖2 + (‖hq‖2 − ‖ρq‖2)

]
=

−η
∑p

k=1

[
(1− ηκ)

∥∥hqk + ρqk
∥∥2

k
+ (
∥∥hqk∥∥2

k
−
∥∥ρqk∥∥2

k
)
]
.

The r.h.s in the above equation is a sum of p nonegative terms:

(1− ηκ)
∥∥hqk + ρqk

∥∥2

k︸ ︷︷ ︸
(1) +

(
∥∥hqk∥∥2

k
−
∥∥ρqk∥∥2

k
)︸ ︷︷ ︸

(2)

In fact, (1) is clearly nonnegative for η ≤ 1/κ, whereas (2) ≥ 0 since
∥∥∥vq+1

k

∥∥∥
k
≤ 1 which

implies ‖ρk‖k ≤ ‖hk‖k We now examine the case where the
∥∥J T vq+1− g

λ

∥∥2

H−
∥∥J T vq− g

λ

∥∥2

H = 0.
This requires both (1) and (2) to be null for all k. When η < 1/κ, (1) = 0 only if

∥∥hqk + ρqk
∥∥
k

= 0
which implies both (2) = 0 and vq+1

k = vqk. When η = 1/κ, (1) is clearly null whereas (2) = 0
only if

∥∥hqk∥∥k =
∥∥ρqk∥∥k for all k which again implies vq+1

k = vqk. Hence if η ≤
∥∥JJ T∥∥−1, either∥∥J T vq − g/λ∥∥H is decreasing or vq+1 = vq.

Let m = limn→∞
∥∥J T vq − g/λ∥∥, and v̄ be the limit of a converging subsequence (vql) of (vq).

Clearly we have m =
∥∥J T v̄ − g/λ∥∥ =

∥∥J T v̄′ − g/λ∥∥, where v̄′ is the limit of (vql+1). From the
above calculations we see that since

∥∥J T v̄′ − g/λ∥∥ − ∥∥J T v̄ − g/λ∥∥ = 0, it must be v̄k = v̄′k ∀k.
Hence v̄ satisfies the Euler equation (9) and therefore solves (8). Since the projection is unique,
we deduce that all the sequence λJ T vq converges to πλK(g).

We next consider the step-size choice studied in Proposition 3.

Proof 6 (Proposition 3) In order to apply Proposition 1, it is enough to show that the con-
ditions on the eigenvalues of the second derivative of F are satisfied. Using the same notations
as in Proposition 1, and relying on the chain rule (see [30]) we are able to explicitly compute
∇F , that is

∇F (β) =
n∑
i=1

l′(〈Φ(xi), β〉F , yi)Φ(xi) + 2µβ.
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Reasoning as in the previous step, and again relying on the chain rule, we get

∇2F (β)(β′) =
n∑
i=1

l′′(〈Φ(xi), β〉, yi)〈Φ(xi), β′〉Φ(xi) + 2µI

Defining Aβ(β′) :=
∑n

i=1 l
′′(〈Φ(xi), β〉, yi)〈Φ(xi), β′〉Φ(xi), we note that Aβ is a self-adjoint

linear operator. In particular, using the fact that thanks to the convexity of ` Lmaxa, Lminb are
respectively an upper and a lower bound of the eigenvalues of Aβ, thanks to Corollary 1 we get
the desired inequality and the optimal step choice.

Finally we study the general least squares case. Although it can be viewed as a consequence
of Proposition 1, we prefer to derive the desired inequality directly from the definition of Tσ.

Proof 7 (Proposition 4)

‖Tσ(f)− Tσ(f ′)‖ =
= ||(I − π τ

σ
K)(f − 1

2σ∇F (f))− (I − π τ
σ
K)(f ′ − 1

2σ∇F (f ′))||
≤ ||f − 1

2σ∇F (f)− f ′ + 1
2σ∇F (f ′)||

= ||I − 1
σ (ATA+ µ)||2 ‖f − f ′‖

= max
{∣∣1− a+µ

σ

∣∣ , ∣∣∣1− b+µ
σ

∣∣∣} ‖f − f ′‖
=: Lσ ‖f − f ′‖ .

The optimal a priori choice for the step-size is given by the value of σ minimizing Lσ, that is

σ =
a+ b+ 2µ

2
,

and one can simply verify that Lσ = a−b
a+b+2µ .
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