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Abstract. Cancer is one of the leading causes of death, and the brain is one of the body’s cancer-
prone organs.  The early detection of brain tumors can reduce cancer risk, which is practically 
assisted and conducted using scanners such as computed tomography (CT) and magnetic resonance 
imaging (MRI). However, those modalities are high-cost and large-sized, and they have a side effect 
risk to health. Alternatively, microwave imaging offers a novel cancer scanning method for early 
detection with low cost, small size and low health risk. Consequently, this research designs and 
creates a framework with a novel microwave image reconstruction algorithm inside. The 
framework is a component of the controller and image reconstructor for a portable microwave-
based brain tumor detector that is open source and multi-platform. For the novel algorithm, this 
research proposes a CS-based imaging algorithm by exploiting the data‘s sparse and low-rank 
properties. The experiment shows that the proposed algorithm can give better qualitative and 
quantitative reconstruction results compared to a full-sampling-based as well as CS-based 
algorithm. 
  
Keywords: Compressive sensing; Framework; Image reconstruction; Low-rank; Microwave 

imaging; Sparse 

 
1. Introduction 

In Cancer is the second-leading cause of death globally. According to the WHO, the 
death rate due to cancer reached 9.6 million in 2018 (WHO, 2018). The brain is one of the 
organs susceptible to cancer. The early detection of brain tumors is essential to mitigate the 
risk of cancer. There are many examples of tumor detection using imaging technologies 
such as X-ray, computed tomography (CT), magnetic resonance imaging (MRI) and positron 
emission tomography (PET) (Gao and Jiang, 2013). However, these modalities still have 
disadvantages such as radiation level, device complexity, operational costs and size 
(Chandra et al., 2015). Therefore, researchers develop a new modality by utilizing 
microwaves (Dilman et al., 2017; Shtoda et al., 2017).  

Microwave imaging has used various algorithms to reconstruct the scan results, such   
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as time-domain inversion (Ali and Moghaddam, 2010), ultra-wideband magnitude 
combined tomography (UPC), algebraic reconstruction technique (ART) (Elevani et al., 
2016, Elevani et al.,2017), simultaneous algebraic reconstruction technique (Aprilliyani et 
al., 2017), filtered back projection (FBP) (Ramadhan et al., 2017; Ramdani et al., 2018) and 
the algorithm based on compressive sensing (CS) (Basari and Ramdani, 2019).  However, 
UPC, ART and FBP algorithms have disadvantages because they require much data to get 
decent results. Meanwhile, the compressive sensing approach reduces the amount of data 
needed for reconstruction because it uses sampled data. The data also tend to be sparse in 
a frequency domain, that is having many elements containing zero value among the total 
data set (Donoho et al., 2016; Basari and Ramdani, 2019). Previous research proposed CS 
with total variation (TV) regularization solved by the alternating direct method of 
multipliers (ADMM) (Razzak et al., 2019). The method shows a smoother reconstructed 
image and lower mean square error (MSE) than SART and sparse CS.  

The research contribution lies in the proposed image reconstruction algorithm for the 
software aspect and the proposed framework for the portable hardware aspect. The 
proposed algorithm improves image reconstruction results by using the low-rank property 
of the data. It combines sparse and low-rank properties of the data based on the 
compressive sensing approach. The idea is that the microwave measurement data are not 
only sparse but also low rank. The low-rank property is represented by imposing a nuclear 
norm (the sum of a matrix's singular value). It has been utilized for facial recognition (Luo 
et al., 2014), feature extraction (Yang et al., 2017), hyperspectral unmixing (Giampouras et 
al., 2016), CT image reconstruction (Yang et al., 2017) and MRI reconstruction (Ulas et al., 
2016) due to its robustness. The data are said to be low rank because data matrices tend to 
be highly correlated. In an implementation, the nuclear norm is imposed on the CS 
optimization problem to consider low ranking. 

Researchers have developed simple, low-cost and portable medical devices (Hugeng 
and Kurniawan, 2016).  This research introduces the design of a framework that is 
universal, open-source and multi-platform concerning the hardware aspect. The 
framework is for a controller and for packaging the developed image reconstruction 
algorithm. It can run on a card-sized computer, such as the Raspberry Pi, to be used as a 
portable brain tumor detector component. The framework can be operated as if a user 
operates a portable brain tumor detector. 

The rest of this paper is organised as follows. Section 2 describes the details of the 
proposed method in this paper. Section 3 shows parameter settings, results and our 
respective analyses. Finally, Section 4 concludes this study. 
 
2. Methods 

2.1.  Subject  
 This research consists of two works. The first is designing and implementing a 
framework for the controller and image reconstruction of a portable microwave-based 
brain tumor detector. The second work is developing a microwave-imaging algorithm using 
sparse and low-rank compressive sensing (SLR-CS). 

2.1.  Design and Implementation of Framework 

2.1.1. Hardware configuration  
 Microwave system imaging (MSI) hardware generally consists of a microwave signal 
transmitter and receivers such as a vector network analyzer (VNA), antenna arrays, radio 
frequency switches for switching between antennas (Chandra et al., 2015) and computers 



986  Design of Microwave-based Brain Tumor Detection Framework with the Development of 
Sparse and Low-Rank Compressive Sensing Image Reconstruction 

for controlling the hardware (VNA, switch, and antenna), data acquisition and image 
reconstruction.  
 Hugeng and Kurniawan (2016) configured their hardware consisting of Arduino Uno 
to detect and acquire a signal and PC for signal analysis and classification using an expert 
system. In this research, the framework is designed to run on a hardware platform, as 
shown in Figure 1a. The computer used is the Raspberry Pi 3B + with a five-inch display 
touchscreen. The connection with devices uses the USB port and GPIO port. Raspberry Pi 
was chosen for two reasons. The first is the purchase price. The second is that it can fulfill 
the functions needed as a controller and image reconstruction component of a portable 
microwave-based brain tumor detector. The Raspberry Pi is a card-sized computer. It has 
the required features to run the framework, such as mathematical computing with Python, 
GPIO and an interface. The interface is used to give commands to microwave transmitting 
and receiving devices such as VNA via a USB port using a serial module or LabView 
(Raspberry Pi Foundation, 2020; Copper Mountain Technologies, 2020; Ranson, 2015). 

2.1.2. Framework configuration  
 The framework is designed so that after the user puts the antenna sensor to the 
patient’s head, the user only clicks a “Run” button. The framework system will 
automatically do the measurement, data acquisition and image reconstruction, as well as 
display an image. Figure 1b shows the design of modules forming the framework. The 
modules consist of three parts, namely: 
1. GUI. That is, a module for managing the display, for example operating buttons, 

displaying reconstruction results and displaying the system's work processes. 

2. Controller. That is, a module for controlling the process and device (LCD, VNA and 

Switch). This module consists of the following sub-modules: 

a) Process Controller. That is, as a controller for the stages of the detection process, 

starting from data acquisition to displaying the image reconstruction results. 

b) Measurement Controller. That is, to manage the measurement and data 

acquisition process by controlling the VNA and switch. 

c) Reconstructor. That is, a module that contains an image reconstruction algorithm. 

d) Hardware Interface. That is, a module as an interface between the three modules 

above and the hardware (VNA and Switch). 

 A GUI to operate the portable microwave-based brain tumor detector is shown in 
Figure 4(b). The GUI on the framework has four buttons and a text box to display the system 
activity log. The button consists of “Run” to run the image detection and reconstruction 
process, “Settings” to set system parameters, “Clear” to clear the activity log and “Quit” to 
exit the application. When the “Run” button is pressed, the framework performs the devices’ 
(Switch, VNA) initialization, measurement and data acquisition, and image reconstruction, 
and displays the image reconstruction results. 
 We simulated giving orders and taking measurement results using the Arduino Uno to 
carry out the data acquisition process. We use the serial communication feature on the 
Arduino so the framework can simulate giving data acquisition commands to VNA and 
Switch devices. Subsequently, the device responds by sending measurement data. 
Therefore, in this research, we program the Arduino by writing the command code and 
measurement data to be sent. 

2.1.3. Framework implementation and evaluation 
 The framework is written in Python. Python was chosen due to its features, for example 
support OOP. It is easy to develop, open-source and multi-platform, and it has many 
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libraries for scientific computation and device control. In this research, the code was 
divided into four files: the GUI file for the display; the algorithm file for an image 
reconstruction algorithm, the development of which is explained in Section 2.2; the main 
file as a hardware controller and workflow controller; and the interface file as a liaison 
between the framework and hardware (VNA, Switch). 
 It conducts two types of testing: framework functionality and image reconstruction. 
Functionality testing checks how the framework operates based on the determined 
specifications. Meanwhile, reconstruction testing is explained in Section 2.2.2. 

 
(a)       (b) 

Figure 1 (a) Component diagram of the system; and (b) The framework’s modules diagram 
   
2.2.  Development of Microwave Image Reconstruction Using Low-Rank Compressive Sensing. 

2.2.1. Input signal 
The input signal came from two kinds of measurement, measurement simulated with 

software and real measurement. 

 

Figure 2 The mechanism of measurement and the matrix as the measurement result 

 
The object being measured is a phantom, which represents a brain tumor. Phantoms 

are made in two-layer blocks where the outer layer represents brain tissue, and the inner 
layer represents tumor tissue with higher permittivity than brain tissue. The phantom and 
the simulation measurement were created and performed using CST software (for 
electromagnetic field simulation). Three GHz microwaves are passed into the phantom. 
Subsequently, the signal is captured and measured to be reconstructed as an image.  

The measurement mechanism is shown in Figure 3. Data acquisition uses two dipole 
antennas opposite the object in the middle of them. Then, various translations and rotations 
of the two-dipole antennas were conducted to obtain a collection of measurement signal 
values to be reconstructed into an image. 
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 Previous research (Razzak et al., 2019) has shown that a combination of forty 
translations and three rotations gives the best reconstruction results of measurement data 
from software simulation. Therefore, we use these data to test qualitatively and 
quantitatively. Furthermore, we compare them with previous research results. Whereas for 
real measurement, the data are only to be compared to previous research results, whether 
it can improve reconstruction results or not. Hence, data from a combination of twenty 
translations and three rotations are used. 

2.2.2. Sparse and low-rank compressive sensing algorithm (SLR−CS) solved with ADMM 
Compressive sensing is a reconstruction approach that measures fewer data samples, 

typically sparse in a particular domain, but containing the maximum amount of 
information. The advantage of compressive sensing is that it is an efficient algorithm 
concerning data usage (Qaisar et al., 2013). The compressive sensing algorithm can be 
represented as the following linear equation: 

𝑌 =  Φ𝑋 + 𝐸       (1) 
where Y ∈ ℝ𝐿 × 1 is the measurement matrix and the captured signal after passing through 
the phantom. 𝛷 ∈ ℝ𝐿 × 𝑚 is a projection matrix that maps the matrix X into the matrix Y, X ∈. 
ℝ𝑚 × 1 is the signal to be reconstructed. E ∈ ℝ𝐿 × 1 is the error factor. This error factor can be 
influenced by noise or scanning errors. L is the number of measured microwave signal data, 
and m is the number of image pixels resulting from the reconstruction. 

The X must be sparse. Accordingly, to ensure this, X can be represented as: 
𝑋 =  ΨW       (2) 

where 𝛹 ∈ ℝ𝑚 × 𝑚 is a sparse dictionary − a matrix used as a domain to represent a signal 
that has been reconstructed to be sparse, so x can be ascertained sparse. Wavelet transform 
(WT), Fast Fourier Transform (FFT) and Discrete Cosine Transform (DCT) are used for the 
processing, projection and decomposition of the signal (Nusantara et al., 2016; Muntasa, 
2017; Basari and Kurniawan, 2019). In this research, DCT is selected as the sparse 
dictionary. W ∈ ℝ𝑚 × 1 is a matrix to be found as a reconstruction of CS in the sparse domain. 
Equation 2 substitutes for Equation 1 to become the following equation: 

𝑌 =  ΦΨ𝑊 + 𝐸            (3) 
𝛷 𝛹 is constant, and it can be substituted as F. Therefore, Equation 3 can be simplified as: 

𝑌 =  F𝑊 + 𝐸           (4) 
where F is a reconstruction matrix. 

Equation 4 is then formulated as an optimization problem to minimize the number of 
non-zero elements using the 𝑊 matrix’s l1 norm to consider the sparse data. A constraint is 
that the error should be less than the error tolerance E. The optimization problem equation 
in the constrained problem is as follows: 

 min
𝑊

‖𝑊‖1 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖𝐹𝑊 − 𝑌‖2  ≤ 𝐸         (5) 

Equation 5 is nonconvex and hard to solve. Correspondingly, to make it convex, it is formed 
as an unconstrained problem, and the equation becomes as follows:  

min
𝑊

1

2
‖𝐹𝑊 − 𝑌‖2

2 +  𝜆‖𝑊‖1              (6)  

Equation 6 minimizes the number of data terms. The first term aims to minimize the 
difference between the FW reconstruction and the measurement data 𝑌 to obtain the most 
accurate reconstruction results. The second term aims to minimize the number of non-zero 
W matrix elements to guarantee the W matrix’s sparse properties, where the sparse 
properties are computationally close to the l1 norm. 

SLR−CS is implemented by adding nuclear norm regularization to Equation 6, then 
solved by the alternating direct method of multipliers (ADMM) method. Therefore, it is 
formulated with the following equation: 
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min
𝑊

1

2
‖𝐹𝑊 − 𝑌‖𝐹

2 + 𝜆𝑙1‖𝑊‖1 +  𝜆𝑛𝑛‖𝑊‖∗     (7) 

where ‖𝑊‖∗ is a nuclear norm regularization. Moreover, 𝜆𝑙1  and 𝜆𝑛𝑛  are regularization 
parameters for the sparse (l1) and nuclear norm (nn). 
 Then, Equation 7 is rewritten into a formulation equivalent to a constraint. Next, it is 
processed into the alternating direction method of multipliers (ADMM) algorithm. We 
utilize the auxiliary matrix variables V1, V2 and V3. The formulation is as follows. 

min
𝑉1,𝑉2,𝑉3,𝑉4

{
1

2
‖𝑉1 − 𝑌‖𝐹

2  +  𝜆𝑙1‖𝑉2‖1  + 𝜆𝑛𝑛‖𝑉3‖∗}     (8) 

s.t  𝑉1 − 𝐹𝑊 = 0, 𝑉2 − 𝑊 = 0, 𝑉3 − 𝑊 = 0 

Let 

𝑉 =  [
𝑉1

𝑉2

𝑉3

] , 𝐺 =  [
𝐹
𝐼
𝐼

],  𝐵 =  [
−𝐼 0 0
0 −𝐼 0
0 0 −𝐼

], 

 
The augmented Lagrangian function is optimized concerning W, V and D, as follows: 

ℒ(𝑊, 𝑉, 𝐷) =  
1

2
‖𝑉1 − 𝑌‖𝐹

2  + 𝜆𝑙1‖𝑉2‖1  +  𝜆𝑛𝑛‖𝑉3‖∗ + 
𝜇

2
‖𝐺𝑊 +  𝐵𝑉 − 𝐷‖𝐹

2                     (9) 

where µ > 0 is a positive penalty parameter, 𝐷 =  [𝐷1
𝑇  𝐷2

𝑇  𝐷3
𝑇  ]𝑇  and 𝐷𝑖 =  

1

𝜇
𝑀𝑖, with i = 1,..,3 

and 𝑀𝑖 containing the scaled Lagrange multipliers.  
The ADMM proceeds by minimizing ℒ(𝑊, 𝑉, 𝐷) iteratively and sequentially. To 

elaborate on the ADMM steps, the optimization concerning W, V1, V2, V3 and D is shown in 
Figure 3. X results from image reconstruction. 

2.2.2. Implementation and evaluation 
We tuned the regularization parameters and iterations number to obtain the best 

reconstruction result. The image reconstruction result is analyzed qualitatively and 
quantitatively.  Quantitative analysis uses the mean square error (MSE) and structural 
similarity index (SSIM) parameters. The more similar and the smaller the error of the 
reconstructed image to the reference image/expected image, the better the reconstruction 
method. We compared the reconstruction results with other algorithms like SART, sparse 
CS and CS with total variation (TV) (Razzak et al., 2019). In qualitative analysis, the 
reconstructed images are compared based on visual appearance and brightness, contrasts 
and shape.  

 

Figure 3 The image reconstruction flow chart 
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3. Results and Discussion 

 The scope of this research is limited to developing a framework with a novel 
reconstruction algorithm inside. Hence, instead of system accuracy, performance 
evaluation is measured using framework functionality and algorithm performance. The 
system accuracy will be possible to ascertain once the framework functionality has been 
tested using Raspberry Pi connected with real VNA and switches. Furthermore, the system 
can be deployed and tested as a product of a portable brain tumor detector. 

3.1.  Framework Functionality 
 Figure 4a shows a prototype microwave-based brain tumor detection system 
consisting of a framework (controller and image reconstructor) running on the Raspberry 
Pi platform and hardware for data acquisition (VNA, Switch and Antenna), which are 
currently being simulated with Arduino. In Arduino, the microwave measurement value is 
stored, which is then accessed by the framework by giving commands for Arduino to send 
measurement data. 

   
  (a)                           (b) 

Figure 4 (a) The controller and image reconstructor prototype; and (b) The framework’s GUI 
  
 The main view of the framework is shown in Figure 4b. A button "Setting" sets the 
image reconstruction parameters, a button "Run" performs measurement execution and 
image reconstruction, and a text box displays a log of running processes or error messages. 
Process logs range from serial communication access to measurement data acquisition, 
dictionary creation, reconstruction process and image display. 
 The evaluation of the framework is carried out using the software evaluation standard. 
The checkpoints are window display, setting saving, all button function, device 
communication, image reconstruction process, image display and error handling. The 
evaluation shows the framework can function as expected. 

3.2.  Microwave Image Reconstruction Performance 
 For the measurement data from CST, the qualitative result is shown in Figure 5. 
Compared with the previous reconstruction algorithm (CS with total variation), SLR−CS 
gives the same result of reconstructed image size and heat map color that distinguish 
tumors and tissues. The quantitative results are shown in Table 1. SLR−CS can increase 
similarity and decrease errors shown by the SSIM and MSE parameters, respectively. 
 The regularization parameter applied is determined by looking for the best 
combination of μ, λl1 and λnn to produce the maximum SSIM value and minimum MSE. The 
determination process is performed automatically in the code. The best results are obtained 
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at μ = 0.0001, λl1 = 0.05 and λnn = 0.005. The number of iterations to minimize matrix W was 
also determined by looking for the maximum SSIM and minimum MSE values. The 
experiment shows that 10× iterations produce the best value. 
 We evaluated the algorithm using available real measurement data. SLR−CS still gives 
the same image reconstruction result compared with CS added with TV regularization. The 
quantitative result in Table 2 shows that low-rank compressive sensing gives the same 
result with CS added with the TV algorithm. 

   
     (a)     (b) 

Figure 5 The reconstructed image by: (a) low-rank compressive sensing algorithm, written in 
Python; and (b) CS with total variation, written in MATLAB 

 

Table 1 Comparison of quantitative parameters on simulated measurement 

Algorithm  SSIM  MSE  

SART 0.4248 0.2019 
Sparse CS 0.2728 0.2344 

CS + TV 0.4427 0.1900 
SLR−CS 0.4550 0.1844 

 
Table 2 Comparison of quantitative parameters on real measurement 

Algorithm  SSIM  MSE  

CS + TV 0.00108 0.77 
SLR−CS 0.00107 0.76 

  
 The reconstruction result of this real phantom has a very high error because the input 
measurement signal is taken by a combination of twenty translations and three antenna 
rotations. Meanwhile, as mentioned in Section 2.2.1, the experimental results in previous 
research (Razzak et al., 2019) demonstrate the best results occur in a combination of forty 
translations and three antenna rotations.  

3.3.  Future Works 
 The CS was added with the TV method (Razzak et al., 2019), and the SLR−CS method 
was applied to the signal measurement shown in Figure 1. The microwaves are captured 
straight between a transmitter antenna and a receiver antenna after passing the object. 
Microwave measurement used array antennas with CS and the TV reconstruction algorithm 
applied (Guo et al., 2017), in which signals are passed through the object and scattered and 
reflected by it. Therefore, the SLR−CS method can also be applied to reconstruct an image 
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from signals captured by array antennas. However, it needs further investigation related to 
the projection matrix and sparse library.  
 The framework development can be continued by adding VNA and switches controls, 
and the Raspberry Pi is connected to the real switches and antennas. Furthermore, it can 
make and mass produce the finished product of a microwave-based portable brain tumor 
detector. 
 
4. Conclusions 

This research has successfully designed and implemented a framework for controller 
and image reconstructor components of a universal, open-source, multi-platform, portable 
microwave-based brain tumor detector. The framework has been implemented in the 
Python language using Python libraries that support scientific computing. It can run on 
Raspberry Pi, a card-sized computer platform. Frameworks can be operated in the 
simulation mode as appropriate for the user and can function according to predetermined 
specifications. 

Algorithm development shows that low rankness by nuclear norm can be applied as 
regularization in microwave image reconstruction under the compressive sensing (CS) 
approach. Compared to the CS method added with TV, which has given the best results 
compared to the SART and FBP methods, the proposed method can give the same results – 
and perhaps even better ones. 

Qualitatively, the proposed SLR−CS algorithm shows the same image reconstruction in 
color and size to differentiate tumor and tissue. Quantitatively, this method can provide a 
better similarity and error value to the reference image, measured by SSIM and MSE 
parameters. The SLR−CS method provides a 45% similarity rate (SSIM) and an 18% pixel 
error rate (MSE), which is a 1% increase from previous studies (CS added with TV). 
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