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Abstract

In these notes we focus on the concept of Shannon entropy in an attempt to provide a systematic
way of assessing the discrimination properties of the neural response, and quantifying the role
played by the number of layers and the number of templates.

1 Introduction

In a recent effort [1], we defined a distance function on a space of images which reflects how humans
see the images. In this case, the distance between two images corresponds to how similar they appear
to an observer. We proposed in particular a natural image representation, the neural response,
motivated by the neuroscience of the visual cortex. The “derived kernel” is the inner product
defined by the neural response and can be used as a similarity measure. A crucial question is that
of the trade-off between invariance and discrimination properties of the neural response. In [1], we
suggested that Shannon entropy is a useful concept towards understanding this question.

Here we substantiate the use of Shannon entropy [2] to study discrimination properties of the
neural response as proposed in [1]. The approach sheds light on natural questions that arise in
an analysis of the neural response: How should one choose the patch sizes? How many layers are
appropriate for a given task? How many templates should be sampled? How do architectural choices
induce invariance and discrimination properties? These are important and involved questions of
broad significance. In this note, we suggest a promising means of clarifying the picture in simplified
situations that can be potentially extended to more general settings and ultimately provide answers
to the questions posed above.

This note is organized as follows. In Section 2 we begin by briefly recalling the definitions
of the neural response, derived kernel, and Shannon entropy of the neural response. The reader
is encouraged to consult [1] for a detailed treatment. In Section 3 we then study discrimination
properties in terms of information-theoretic quantities in the case of two and three layer architectures
defined on strings. Finally, we provide in Section 4 remarks which derive intuition from the preceding
development and provide additional insight into the outstanding questions above.

2 Background

We first briefly recall the definition of the neural response following the development in [1], where
a background discussion on Shannon entropy is also provided. The definition of neural response
and the derived kernel is based on a recursion which defines a hierarchy of local kernels, and can be
interpreted as a multi-layer architecture.
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2.1 Neural Response

Consider an n layer architecture given by sub-patches v1 ⊂ v2 ⊂ · · · ⊂ vn = Sq. We use the notation
Kn = Kvn

and similarly Hn = Hvn
, Tn = Tvn

. Given a kernel K, we define a normalized kernel
via K̂(x, y) = K(x, y)/

√
K(x, x)K(y, y). The following definition of the derived kernel and neural

response is given in [1], and we refer the reader to this source for more details.

Definition 2.1. Given a normalized, non-negative valued initial reproducing kernel K̂1, the m layer
derived kernel K̂m, for m = 2, . . . , n, is obtained by normalizing

Km(f, g) = 〈Nm(f), Nm(g)〉L2(Tm−1)

where
Nm(f)(t) = max

h∈H
K̂m−1(f ◦ h, t), t ∈ Tm−1

with H = Hm−1.

From the above definition we see that, the neural response is a map

f ∈ Im(Sq)︸ ︷︷ ︸
input

7−→ N̂Sq(f) ∈ L2(T ) = R|T |︸ ︷︷ ︸
output

,

with T = Tm−1 and we let N̂m denote the normalized neural response given by N̂m = Nm/‖Nm‖L2(T ).
We can now define a thresholded variant of the neural response, along with the induced pushforward
measure on the space of orthants. In the discussion that follows, we will study the entropy of this
pushforward measure as well as that of the natural measure on the space of images.

2.2 Thresholded Neural Response

Denote byO the set of orthants in L2(Tm−1) = R|Tm−1| identified by sequences of the form o = (εi)
|T |
i=1

with εi ∈ {0, 1} for all i. If we assume that E[N̂m(f)(t)] = 0, then the map N̂∗m : Im(vm) → O can
be defined by

N̂∗m(f) :=
(

Θ(N̂m(f)(t))
)
t∈Tm−1

where Θ(x) = 1 when x > 1 and is 0 otherwise. From this point on, we assume normalization and
drop hats in the notation. Finally, we denote by N∗∗ρ the push-forward measure induced by N∗,
that is

N∗∗ρ(A) = ρ
({
f ∈ Im(Sq) | Nv(f) ∈ A

})
,

for any measurable set A ⊂ L2(Tm−1).

2.3 Shannon Entropy of the Neural Response

We introduce the Shannon entropies relative to the measures ρv and N∗∗v ρv. Consider the space of
images Im(v) = {f1, . . . , fd} to be finite. Then ρv reduces to {p1, . . . , pd} = {ρv(f1), . . . , ρv(fd)}. In
this case the entropy of the measure ρv is

S(ρv) =
∑
i

pi log
1
p i

and similarly,

S(N∗∗v ρv) =
∑
o∈O

qo log
1
q o
.

where qo = (N∗∗v ρv)(o) is explicitly given by

(N∗∗v ρv)(o) = ρv
({
f ∈ Im(v) |

(
Θ(Nv(f)(t))

)
t∈|T | = o

})
.
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If Im(v) is not finite we can define the entropy S(ρv) associated to ρv by considering a partition
π = {πi}i of Im(v) into measurable subsets. The entropy of ρv given the partition π is then given
by

Sπ(ρv) =
∑
i

ρv(πi) log
1

ρv(πi)
.

We can define Sπ(N∗∗v ρv) similarly. The key quantity, to assess the discriminative power of the
neural response Nv, is the discrepancy

∆S = S(ρv)− S(N∗∗v ρv).

It is easy to see that
S(ρv) ≥ S(N∗∗v ρv) (1)

so that ∆S ≥ 0. Furthermore, the discrepancy is zero if N∗ is one to one (see remark below).
We add two remarks.

Remark 2.1. Let X,Y be two random variables. We briefly recall the derivation of the in-
equality (1), which we write here as S(Y ) ≤ S(X). We use two facts: (a) S(X,Y ) = S(X)
if Y = f(X) with f deterministic, and (b) S(X,Y ) ≥ S(Y ) in general. To prove (a), write
P (Y = y,X = x) = p(Y = y|X = x)P (X = x) = δ(y, f(x))P (X = x), and we sum over all
y = x in the definition of the joint entropy S(X,Y ).

Remark 2.2. Consider, for example, the finite partition π = {πo}o∈O on the space of images
induced by N∗v , with

πo =
{
f ∈ Im(v) |

(
Θ(Nv(f)(t))

)
t∈|T | = o

}
.

We might also consider only the support of ρv, which could be much smaller than Im(v), and define
a similar partition of this subset as

πo =
{
f ∈ supp ρv |

(
Θ(Nv(f)(t))

)
t∈|T | = o

}
,

with π = {πo | πo 6= ∅}. One can then define a measure on this partition and corresponding notion
of entropy.

3 Shannon Entropy of the Neural Response: the String Case

Let A be an alphabet of k distinct letters so that |A| = k. Consider three layers u ⊂ v ⊂ w, where
Im(u) = A, Im(v) = Am and Im(w) = An, with 1 < m < n. The kernel Ku = K̂u on single
characters is simply, Ku(f, g) = 1, if f = g and 0 otherwise. The template sets are Tu = A and
Tv = Am.

3.1 Explicit Expressions for N and K

We specialize the definitions of the neural response and derived kernel in the case of strings.
The neural response at layer v is defined by

Nv(f)(t) = max
h∈Hu

{
K̂u(f ◦ h, t)

}
,

and is a map Nv : Am → {0, 1}k. The norm of the neural response is

‖N̂v(f)‖ =: a(f) = # distinct letters in f.

From the definition of the derived kernel we have that

Kv(f, g) =: a(f, g) = # distinct letters common to f and g.
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The normalized kernel can then be written as

K̂v(f, g) =
a(f, g)

(a(f)a(g))1/2
.

The neural response at layer w then satisfies

Nw(f)(t) =
e(f, t)
a(t)1/2

,

with

e(f, t) := max
h∈Hv

a(f ◦ h, t)
a(f ◦ h)1/2

.

This is the maximum fraction of distinct letters in m-substrings of f that are shared by t. Finally
the derived kernel at layer w satisfies

K̂w(f, g) =

∑
t∈Tv

e(f,t)e(g,t)
a(t)∑

t∈Tv

e(f,t)2

a(t)

∑
t∈Tv

e(q,t)2

a(t)

.

We are interested in knowing whether the neural response is injective up to reversal and checker-
board. If N∗v is injective, then inequality’ (1) holds with equality. We can consider N∗v as acting on
the set of equivalence classes of Im(v) defined by the strings and their reversals, and if n is odd, a
checkerboard when applicable (see [1] for a discussion concerning the checkerboard pattern). Here
injectivity of N∗v is with respect to the action on equivalence classes. The following result is easy to
prove.

Proposition 3.1. N∗v is injective if and only if Im(v) contains strings of length 2.

3.2 Orthant Occupancy

We consider a 2-layer architecture and let k = |A| > m. As before, Im(v) contains strings of length
m, and Im(u) contains single characters. The number of non-empty orthants is

m∑
`=1

(
k

`

)
.

The “all zero” orthant is always empty (strings must use at least one letter in the alphabet). Let
Op denote the set of orthants corresponding to strings of p < m distinct letters, that is

Op =
{
o ∈ O |

k∑
i=1

εi = p
}
.

Let λo(p,m) denote the number of strings mapped into the orthant o ∈ Op. Then

λo(p,m) = kmqo.

If the measure ρv is uniform then λo(p,m) is the same for all o ∈ Op and we drop the subscript on
λ. In the uniform case we have the following recursive formula

λ(p,m) = pm −
p−1∑
j=1

(
p

j

)
λ(j,m),

with λ(1,m) = 1.
We now give an explicit expression for the discrepancy S(ρv)− S(N∗∗v ρv). If ρv is uniform

S(ρv) = m log k.
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With little work we have that

S(N∗∗v ρv) = −
m∑
j

(
k

j

)
λ(j,m)
km

log
λ(j,m)
km

= −
m∑
j

(
k

j

)
λ(j,m)
km

log λ(j,m) + log km︸ ︷︷ ︸
S(ρv)

m∑
j

(
k

j

)
λ(j,m)
km︸ ︷︷ ︸

=1

,

and we obtain the following explicit expression for the discrepancy

∆S = S(ρv)− S(N∗∗v ρv) =
m∑
j

(
k

j

)
λ(j,m)
km

log λ(j,m).

This quantity can be seen as a weighted average, writing ∆S =
∑m
j bj log λ(j,m) and noting that∑

j bj = 1.

3.2.1 Non-recursive Occupancy Formula (2-layer Case)

Alternatively, we can use multinomial coefficients to describe the number of m-strings mapped into
the

(
k
p

)
orthants with exactly p < m ones as follows:

λ(p,m) =
∑

r1,...,rp

(
m

r1, . . . , rp

)
= p!S(m, p)

=
p∑
t=1

(−1)p+t
(
p

t

)
tm

where the first summation is taken over all sequences of positive integer indices r1, . . . , rp such that∑p
i=1 ri = m. The number of terms in this summation is the number of p-part compositions of m1

and is given by
(
m−1
p−1

)
. The S(m, p) are Stirling numbers of the second kind 2, and the final equality

follows from direct application of Stirling’s Identity. Note that since S(m, 1) = 1, we can verify that
λ(1,m) = S(m, 1) = 1.

From the multinomial theorem, we also have that

∑
{ri≥0:r1+···+rp=m}

(
m

r1, . . . , rp

)
= (1 + · · ·+ 1)m = pm =

p∑
k=1

λ(k,m)

which checks with the previous recursive definition.

4 Final Remarks

We add some remarks concerning the application of the above ideas towards understanding the role
of the patch sizes and layers in inducing discrimination and invariance properties.

• In a 3-layer network, u ⊂ v ⊂ w, N∗w(f)(t) → 1 in probability as n → ∞, for all t ∈ Tv, with
Tv exhaustive and f ∼ ρw with ρw uniform. As the string f gets infinitely long, then the
probability we find a given template in that string goes to 1. Note that the rate is very slow:
for example, there are (k−1)n possible strings which do not include a given letter which would
appear in many templates.

1A p-part composition of m is a solution to m = r1 + · · ·+ rp consisting of positive integers.
2S(m, p) counts the number of ways one can partition sets of size m into p nonempty subsets.
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• The above also implies that the entropy S(N∗∗w ρw) → 0 as n → ∞ since all images f are
mapped to the orthant of all ones.

• Consider a 3 layer architecture: u = Str(1) ⊂ v = Str(m) ⊂ w = Str(n) with n fixed, all
translations, and exhaustive template sets.

Question: Which choice of m maximizes S(N∗∗w ρw)?

Intuition: For large m most of the probability will concentrate near the “sparse” orthants –
the orthants characterized by many zeros– because the probability of finding a long template
in f is low. For small m, most of the probability mass will fall in the orthants with many
ones – where a large number of templates match pieces of f . In both cases, the entropy is
low because the number of orthants with few 1’s or few 0’s is small. For some intermediate
choice of m, the entropy should be maximized as the probability mass becomes distributed
over the many orthants which are neither mostly zeros nor mostly ones. (consider the fact
that

(
a
a/2

)
�
(
a
1

)
or
(
a
a−1

)
).

In this note, we have shown the possibility of mathematically analyzing the discriminatory power
of the neural response in simple cases, via entropy. It is our hope that the methods suggested here
can be extended and ultimately leveraged to understand in concrete terms how parametric and
architectural choices influence discrimination and invariance properties.
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