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Numerous advances in cardiovascular imaging technology paralleled by 

the simultaneous growth in wearable technology, mobile health devices, 

and electronic medical record integration have encouraged increasingly 

complex and large multi-dimensional data acquisition.1 The influx of 

data with each scan is exponentially rising in all cardiovascular imaging 

modalities and will exceed the capabilities of current statistical software.2

Artificial intelligence (AI) has sparked remarkable progress in various 

aspects of technology from speech recognition to automated driving.3,4 

Machine learning (ML), a subset of AI, can harvest information from 

this vast data matrix to improve disease prognostications and survival 

prediction.2,5 The current model of image acquisition and interpretation 

has led to a number of issues in timing, efficiency, and inaccurate 

diagnosis.6 ML can help transcend the gap between the rapid growth 

of cardiac imaging and clinical care by improving image acquisition, 

interpretation, subsequent decision-making, and reducing costs.6 

Furthermore, ML facilitates a number of opportunities for data-driven 

discoveries and innovation not typically seen with conventional statistical 

approaches.7 In this article, we review several contributions that ML can 

make in cardiac imaging. 

Types of Machine Learning
ML algorithms strive to learn and find natural patterns in data to support 

decisions, automation, and risk mitigation to enable generalizability.1,7 It 

generally results in better performance if the algorithm learns from large 

heterogeneous datasets for prediction from an unlearnt dataset, such 

as one that has not been subjected to ML. It aspires to learn the data in 

multiple different ways that can be broadly subdivided into supervised, 

unsupervised, semi-supervised, and reinforcement learning (Table 1 and 

Figure 1). Recent investigations have shown the ability to use supervised 

and unsupervised ML for cardiac imaging.8,9 

Supervised and unsupervised learning are the commonly used 

approaches.10 Supervised learning works with datasets with labeled 

variables or classified outcomes, where it is trained to build a model 

from a select feature derived from any imaging data sample and clinical 

variables along with the outcome of interest.11 It reacts to the feedback 

based on corresponding labels from modalities, such as ECG, CCT, and 

cardiac MRI (CMR). This subsequently contributes to prediction and 

risk stratification of cardiovascular diseases. In contrast to supervised 

learning, an unsupervised learning algorithm must decipher the data 

without labels or interventions.11 Semi-supervised learning is a type of 

learning process that has a mixture of labeled and unlabeled classes 

within the dataset.2 It has a role in speech and image recognition. 

Reinforcement learning uses reward criteria, like human psychology, 

learning through trial and error. Although reinforcement learning has had 

limited development in cardiology, there is a growing interest in these 

techniques in clinical and research settings.2

Physicians must remain constantly aware of their data to prevent bias 

creeping into the models.10 For example, sampling bias can creep in if 

the training data do not accurately represent the heterogeneity in the 

cardiovascular diseases. Prejudicial bias may occur if the sample is 

affected by cultural, ethnic, or gender factors. Measurement bias can also 

occur. It can occur if the model is trained on incorrect and noisy image 

data or inaccurate measurements from various modalities.
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Deep learning is a subset of ML and has sparked much interest in the health 

sector.10 Deep learning uses several layers similar to neuronal architecture 

in the human brain that enables reasoning and interpretation. Information 

is progressively processed through this neuronal-like hierarchy to analyze 

and interpret information. It learns through a series of iterations where 

it extrapolates predictive properties which are superior to conventional 

ML algorithms.10 Unlike other ML algorithms, the performance of deep 

learning improves with larger datasets.5 Deep learning is becoming 

increasingly popular due to paralleled growth in cloud infrastructures 

and improving computer performance.3 It is frequently used in image 

segmentation, and uses associations based on previous experience 

to increase the chances of correct classification by the ML algorithm. 

There is great potential for deep learning to have significant impact on 

cardiovascular imaging in the future.1 

There are algorithms within deep learning. Convolutional neural network 

(CNN) algorithms are the most frequently used.12 CNN algorithms consist 

of a convolutional part and a fully connected part. The convolutional 

part enables feature extraction to occur and the fully connected part 

allows classification or regression.12 The convolutional part allows 

the generation of feature maps based on the parameters used in the 

analysis. The commonly used Googlenet and ResNet are based on CNN-

like architectures.12

Machine Learning in Echocardiography
Echocardiography frequently serves as the first line of diagnostic imaging 

and is an integral part of cardiology practice.1 There are numerous 

echocardiographic variables, and this, along with the development of 

vector flow mapping and speckle tracking have overwhelmed a clinician’s 

ability to properly evaluate results.13 ML can use the vast amount of 

information present in echocardiography to uncover valuable information 

and has seen exponential growth in the use of various algorithms in 

different modalities in cardiac imaging research (Figure 2).7 

Most studies have emphasized the use of a supervised ML framework 

for developing diagnostic predictions. For example, Zhang et al. used a 

CNN for automatic interpretation of ECG in 14,035 ECGs over a span of 

10 years.14 The authors showed that the ML measurements were superior 

to manual measurements across numerous standards, such as the 

correlation of left atrial and ventricular volumes. Some aspects of this 

study must be interpreted with caution and require further validation. 

The algorithm may have correlated well with manual measurements, but 

there were wider limits.15 This emphasizes the variability of ECG findings 

in daily practice, and the lack of gold standard metrics, such as CMR, 

cannot be used for comparison.

Supervised ML has also been used for predicting future adverse cardiac 

events using echocardiography data. Samad et al. used the random 

forest ML algorithm to predict survival after ECG in a population of 

171,510 patients.16 The model was compared with the logistic regression 

model using three different inputs involving a variety of ECG and clinical 

parameters by mean area under the curve (AUC). The random forest 

algorithm achieved superior prediction accuracy (all AUC >0.82) against 

common clinical risk scores (AUC 0.69–0.79). Additionally, it outclassed 

logistic regression models (p<0.001 and all survival durations). However, 

a unique feature demonstrated by Samad et al. was pursuing a broad 

initial hypothesis, rather than contemporary hypothesis-driven research.17 

This can help overcome gaps in knowledge by revising initial inquiry or by 

leading to new questions.18 

Similarly, Madani et al. applied a CNN algorithm to 267 transthoracic 

ECGs with 15 standard views to showcase real-life variation.19 The overall 

test accuracy was 97.8% for the ML model across 12 views. Among 

low-resolution images, there was a 91.7% accuracy for the ML algorithm 

in relation to 70.2–84.0% for board certified echocardiographers. In 

another report by Madani et al., they used deep learning classifiers for 

automatic interpretation of ECGs.19 Madani et al. obtained an accuracy 

of 94.4% for 15 echocardiographic view classifications of still images 

and 91.2% accuracy for binary left ventricular (LV) hypertrophy view 

classification. Afterwards, the researchers used a semi-supervised 

generative adversarial network model that showed 80% accuracy in view 

classification and 92.3% accuracy for LV hypertrophy.19 

Machine Learning in Nuclear Cardiology
The potential of ML in nuclear cardiology is vast and can greatly shape 

decision-making for cardiologists.5 Arsanjani et al. investigated the 

accuracy of myocardial perfusion imaging (MPI) for coronary artery 

disease (CAD) prediction by using a supervised learning algorithm in 957 

studies using perfusion and functional variables.20 The outcomes of the 

ML algorithm were compared with automatic quantification software 

and two experienced readers. The sensitivity and specificity of ML were 

superior (p<0.005) to the quantification software and two experienced 

readers. The receiver operating curve (ROC) area under the curve for 

the ML algorithm (0.92) was statistically superior to both readers (0.87 

and 0.88, p<0.03). Arsanjani et al. conducted another study to predict 

CAD by incorporating clinical and imaging data in 1,181 patients with ML 

algorithms to improve single-photon emission computed tomography 

(SPECT) accuracy.21 A supervised ML algorithm or LogitBoost was used. 

The ROC curve for the ML architecture (0.94 ± 0.01) was statistically 

superior to the total perfusion deficit and used two readers (p<0.001). 

Table 1: Types of Machine Learning Algorithms2,3

Supervised 
learning

Data are labeled with 
classes and outcomes. This 
helps the algorithm to infer 
prediction

This type of learning comprises 
of logistic regression, ridge 
regression, elastic net 
regression, least absolute 
shrinkage and selection 
operator regression, Bayesian 
networks, random forests, and 
artificial neural networks

Unsupervised 
learning

The data are not labeled, it 
can be considered agnostic. 
The algorithm recognizes 
vital relationships within 
datasets

It encompasses hierarchical 
clustering, k-means clustering, 
and principal component 
analysis

Semi-supervised 
learning

A type of learning process 
that works with data 
containing labeled and 
unlabeled fields

This includes both labeled 
and unlabeled outcomes and 
classes. Primarily used in image 
and speech recognition

Reinforcement 
learning

A type of process similar 
to human psychology, uses 
rewards criteria

It is more commonly seen in 
medical imaging, analytics 
disease screening, and 
prescription selection
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Haro Alonso et al. developed an ML algorithm to predict the risk of 

cardiac death derived from a combination of adenosine myocardial 

perfusion using myocardial perfusion SPECT (MPS) and clinical data in 

8,321 patients and 551 cases of cardiac death.22 This was compared with 

logistic regression. Remarkably, the logistic regression was outperformed 

by all ML approaches (AUC 0.76; 14 features). The support vector machine 

demonstrated greatest accuracy (AUC 0.83; p <0.0001; 49 features). 

The ML algorithm was superior to logistic regression by providing the 

best AUC for showing the risk of cardiac death. The authors clearly 

demonstrated the superiority of ML models to improve prognostic value 

from multi-dimensional MPS and clinical variables while simultaneously 

increasing interpretability. However, this should not underscore our 

preference towards ML models over conventional statistical models, 

rather it changes our previous beliefs regarding the inability to integrate 

high-dimensional data and identify unique properties which may 

otherwise affect our perception of parameters.4 Nonetheless, the study 

was retrospective and did not occur in real time.4

Machine Learning in Cardiac CT
Motwani et al. investigated the use of an ML algorithm to predict 5-year 

mortality in CT scans in reference to conventional cardiac metrics in 

10,030 patients with possible CAD.23 The ML algorithm demonstrated a 

statistically significant (p<0.001) higher AUC (0.79) than fractional flow 

reserve (0.61) or CT severity scores (segmental stenosis score 0.64, 

segment involvement score 0.64, Duke index 0.62) for predicting 5-year 

all-cause mortality. Although the study offers exciting opportunities, there 

are a number of hurdles to overcome to successfully implement these 

approaches in clinical practice, and institutions will require dedicated 

IT teams to manage the data that need to be anonymized.24 There are 

significant costs associated with management and regulation. Clinical 

trials may be required to determine the effectiveness of these various 

ML processes. 

Rosandael et al. explored the use of an ML algorithm in 8,844 patients to 

predict major cardiovascular events using only CT variables in evaluation 

to CT severity scores for patients with suspected CAD.25 Remarkably, the 

AUC for the ML algorithm (0.77) was far better than CT severity scores 

(0.69–0.70) with a statistical significance (p<0.001) for prediction of major 

cardiovascular events. 

Zreik et al. used a CNN algorithm to automatically calculate fractional 

flow reserve from coronary CT angiography in 166 patients who 

underwent invasive coronary angiography.26 The area under the ROC was 

0.74 (±0.02). When sensitivity levels measured 0.60, 0.70, and 0.80, the 

equivalent specificity was 0.77, 0.71, and 0.59.

Figure 1: Types of Machine Learning with Examples of Respective Use
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Machine Learning in Cardiac MRI
The application of ML learning in CMR is quite limited and there is 

significant opportunity for growth. However, there has been some notable 

works that demonstrate the viability of ML in CMR. For example, Winther et 

al. used a deep learning ML algorithm for automatic segmentation of the 

right ventricular (RV) and LV endocardium and epicardium for assessing 

cardiac mass and function parameters from a variety of datasets.27 They 

found that learning architecture accomplished a comparable outcome in 

relation to human experts. Nevertheless, the findings must be taken with 

a degree of caution due to small sample sizes. 

Bai et al. applied a fully convolutional network for automated analysis of 

CMR images from a large database consisting of 93,500 images in 5,000 

patients for measuring left and RV mass and volumes.28 On the short axis 

image test of 600 patients, the Dice metric measured 0.94 for LV cavity, 

0.88 for LV myocardium, and 0.90 for RV cavity. In addition, the average 

Dice metric measured 0.93 for the left atrial cavity in two chamber view, 

0.95 for left atrial cavity in four chamber view, and 0.96 in right atrial 

cavity in two chamber view. Bai et al. demonstrated ML automated 

methods had values comparable with human experts.28

Tan et al. assessed the function of a convolutional network, a supervised 

learning approach for automatic segmentation of the left ventricle in all 

short axis slices.29 It was applied to a number of publicly available datasets 

which included the LV segmentation challenge dataset consisting of 200 

CMR imaging sets with unique cardiac pathology. They obtained a Jaccard 

index of 0.77 in the LV segmentation challenge dataset. Furthermore, they 

obtained a continuous ranked probability score of 0.0124 with the Kaggle 

Second Annual Data Science Bowl. Findings from Tan et al. showed the 

potential of the ML algorithm in automatic LV segmentation in CMR.29

Machine Learning for Identifying Cardiac 
Phenotypes
The exponential rise in data size and complexity will make it difficult 

for physicians to analyze data in a clinically meaningful manner. In DNA 

analysis, phenomapping is used to comprehend vast quantities of data 

by subdividing subjects into various categories. Recently, ML algorithms 

have expanded the role of phenomapping in cardiac imaging. 

Tabassian et al. explored the role of ML in assessing the timing and 

amplitude of the LV long-axis myocardial motion and deformation at stress 

and rest in 100 prospectively recruited patients by using unsupervised 

and supervised learning.30 This was compared with conventional 

measurements in patients with heart failure with preserved ejection 

fraction (HFpEF), healthy, breathless, and hypertensive people. The learnt 

strain rate parameters showed the highest accuracy for categorizing 

subjects into four groups (overall 57%; HFpEF patients 81%) and into two 

classes (asymptomatic versus symptomatic; AUC 0.89; accuracy 85%; 

sensitivity 86%, specificity 82%). When comparing ML with conventional 

measurement for strain, it demonstrated the highest improvement in 

accuracy for the two-class task (+23%, p<0.001), comparison with +11% 

(p<0.001) using velocity and +4% (p<0.05) using strain. 

Tabassian et al. encountered an issue with their data, which consisted 

of 36 segmental curves for each patient with 208 and 123 time points 

at rest and exercise, respectively.30 They used unsupervised learning 

to break down the complexity of the data into reduced dimensions. 

It is an approach to represent data with fewer features, potentially to 

reduce noise and multicollinearity, from high-dimensional data obtained 

from imaging modalities and clinical data. Subsequently, they used a 

supervised classification algorithm to categorize patients into one of four 

Figure 2: Use of Machine Learning Techniques in Cardiac Imaging Publications
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groups. Though it may appear unique, this can affect the model’s efficacy 

and relatability to the real world, since a small sample size may not show 

the heterogeneous nature of HFpEF.11 Data imputation may introduce 

errors and it may not reflect the patient population. 

Similarly, the potential of ML in HFpEF for phenotyping patients with 

diastolic dysfunction has been explored. Lancaster et al. used a 

clustering algorithm to assess LV dysfunction by exploring a number of 

key echocardiographic variables in 866 patients.31 Cluster and standard 

classifications were used to compare major adverse cardiovascular 

events and complications. It identified diastolic dysfunction in 559 of 

866 patients and recognized two unique groups. There was moderate 

agreement with conventional classification (kappa 0.41, p<0.0001). 

Subsequently, additional cluster analysis was done in 387 patients to 

classify the severity of diastolic dysfunction. Similarly, it showed good 

agreement with the traditional classification (kappa 0.619, p<0.001). 

Recently we used a patient–patient similarity network using multiple 

features of LV structure and function in patient with aortic stenosis (AS).32 

This was done through the application of a novel data analytic method 

known as topological data analysis. It clusters patients and visualizes a 

similarity network to obtain insights regarding pathological mechanisms. 

Casaclang-Verzosa et al. used a topological data analysis from cross-

sectional echocardiographic data in 246 AS patients, and it was compared 

with a mouse model of 155 animals with AS at various time points.32 A 

loop was created by the topological map which significantly separated 

the mild and severe AS on right and left sides, respectively (p<0.001; 

Figure 3). These two regions were connected from the top and the 

bottom by moderate AS. The region of severe AS showed greatly elevated 

risk of balloon valvuloplasty and transcatheter aortic valve replacement. 

After surgical intervention, many patients were in the regions of mild and 

moderate AS. The results were further validated in mouse models with 

similar results. The authors showed that ML has the potential to facilitate 

precise recognition of phenotypic patterns of the left ventricle during AS. 

The model was able to show the movement of the patients from severe 

to mild pre- and post-aortic valve replacement (Figure 4). Further studies 

and clinical trials will be required to validate these findings. 

Role of Deep Learning in Cardiac Imaging
Deep learning has unprecedented potential to revolutionize the field 

of cardiac imaging. Steady and progressive advances in computer 

processing capabilities and cloud infrastructure have propelled the 

growth of deep learning.3

Betancur et al. led a multicenter investigation assessing automatic 

prediction of CAD obstruction in 1,638 patients by MPI implemented 

through deep learning in relation to total perfusion deficit.33 These 

patients underwent stress Tc-Sestambi or tetrofosmin MPI, and invasive 

coronary artery angiography was done within 6 months. Only 1,018 

(62%) had obstructive CAD among the total population. Deep-learning 

ML showed a higher AUC than total perfusion deficit for CAD prediction 

(per patient: 0.80 versus 0.78; per vessel 0.76 versus 0.73: p<0.01). If the 

ML matched the total perfusion deficit specificity, per-patient sensitivity 

(79.8% to 82.3%, p<0.05) and per-vessel (64.4% to 69.8%, p<0.01) 

sensitivity increased. Although Betancur et al. performed a remarkable 

feat, there are still issues that need to be addressed.34 The sensitivity 

could be higher for the algorithm. The relationship between epicardial 

anatomy and cellular perfusion is not ideal. As a result, the study did not 

focus on a definite endpoint, such as MI or death. In reality, it is also very 

difficult to define who is an expert and who is not. 

Yang et al. explored the role of deep learning ML for left ventricle 

segmentation in publicly available datasets which included SATA-13 

and LV-09.35 Sometimes accurate segmentation of the left ventricle from 

CMR can be challenging due to significant variation in intensity levels, 

structural shape issues, and respiratory movement artefacts. The deep-

learning ML showed a 0.83 in averaged Dice metric on SATA-13 dataset 

and 0.95 averaged Dice metric for the LV-09 dataset. As a result, it 

compared satisfactorily with other automatic segmentation approaches. 

Issues to be Resolved Before Machine Learning is 
Widely Adopted
Although the promise and early fruits of ML in cardiology have been 

encouraging, it is far from straightforward. In parallel with the rapid 

growth of ML, many steps must be taken to facilitate the transition of ML 

into clinical practice so that patient care can benefit. 

A universal reference standard may need to be adopted by institutions 

to fully validate and assess the accuracy of ML learning approaches 

for each diagnostic modality.36 Depending on the standard chosen for 

evaluation, ML might show differing results. Furthermore, some form 

of a universal approach is mandatory for data standardization. There 

Figure 3: The Patient-similarity Network: Ejection Fraction
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are discrepancies between each institution. Each center has their 

own classification, protocol, and different acquisition protocols.4 If ML 

algorithms are universally accepted, there are subsequent difficulties 

in clinical implementation, and maintenance of data quality. Some form 

of homogenization of clinical data recording and imaging protocols may 

become necessary to serve as a common input for the use of ML.6 

In addition, information from electronic health records needs to be 

streamlined with imaging databases. 

Another prevailing issue in ML adoption is cost.6 For ML algorithms to 

thrive in any institution, significant investment is needed. A surrounding 

IT team and ecosystem may be needed to help institutions during 

ML training, and development. As ML technology continues to grow 

and evolve, more investments will be needed to keep up with trends 

and development. 

Large data are pivotal for ML training, and accuracy increases 

proportionately.2 For any single institution, it can be difficult to obtain 

data large enough to reach any meaningful conclusion with any 

ML algorithm. As a result, some form of data sharing needs to be 

established between centers to improve ML accuracy. For successful 

data sharing, certain issues need to be resolved: the datasets need 

to be completely anonymized, and multiple institutional review board 

approvals are needed to for the sharing of data among institutions 

and this can be laborious.5 If datasets are publicly available, this can 

significantly help the growth of ML.

Another important issue for the adoption of ML in academic centers 

is the ethics of AI. For discussion’s sake, AI has no moral compass.37 

Unintentionally, AI can make errors in judgement when confronted with 

unusual scenarios. Its ‘black box’ nature is not easily understood.10 These 

properties can be an issue in the real world because of the flawed and 

imperfect nature of the world. Engineering cannot address every issue in the 

design of these algorithms. Key attributes need to be decided before using 

and designing any algorithm. One way of addressing these issues is to have 

AI classes introduced into medical school curricula to help trainee doctors to 

responsibly use and comprehend AI. Physicians need to constantly update 

themselves regarding advances in AI to fully tap its potential. 

As ML continues to expand across academic institutions, there are 

potential benefits. This technology facilitates the possibility of reducing the 

clinical burden by mitigating repetitive activities, such as measurements, 

data preparation, or quality control.15 As a result, more dedicated time 

can be steered toward medical interpretation and complex decision-

making. Furthermore, ML can supplement and aid the clinical acumen 

of physician by offering more possibilities. This can allow physicians 

to ask patients vital diagnostic questions which can foster improved 

patient care. These possibilities of ML point towards a healthier harmony 

between physician and patient in years to come.

Conclusion
ML has revolutionary potential to completely alter current clinical 

guidelines in diagnostic evaluation and decision-making. It provides 

Figure 4: The Patient-similarity Network: Aortic Stenosis

Age:  80 yrs
Sex:   Female
AVA:  0.6 cm2

MG:   29 mmHg

Age:  67 yrs
Sex:   Male
AVA:  0.5 cm2

MG:   59 mmHg

EF:     57%
LVMi: 91 g/m2

RWT:  0.5
E/e’:  15

EF:     51%
LVMi: 85 g/m2

RWT:  0.47
E/e’:  11.7

1st Echo

2nd Echo

2nd Echo

1st Echo

EF:     60%
AVA:  1.7 cm2

MG:   8.9 mmHg

LVMi: 85 g/m2

RWT: 0.52
E/e’:  8.9

EF:     66%
AVA:  2.1 cm2

MG:   15 mmHg

LVMi: 76 g/m2

RWT:  0.34
E/e’:  23.5

10.0 AV Mean Gradient 40.0

Moderate AS
Moderate AS

M
ild

 A
S

M
ild

 A
S

M
oderate A

S Moderate AS

Se
ve

re
 A

S

Se
ve

re
 A

S

The patient-similarity network containing patients who had aortic valve replacement as delineated in the network with brown-colored nodes. The accompanying figure shows the movement of the 
representative patient who had severe aortic stenosis to mild region after aortic valve replacement. AS = aortic stenosis. Source: Casaclang-Verzosa et al. 2019.32 Used with permission from Elsevier.



U S  C A R D I O L O G Y  R E V I E W116

Trends

1.  Seetharam K, Kagiyama N, Sengupta PP. Application of 
mobile health, telemedicine and artificial intelligence to 
echocardiography. Echo Res Pract 2019;6:R41–52. https://doi.
org/10.1530/ERP-18-0081; PMID: 30844756. 

2.  Shameer K, Johnson KW, Glicksberg BS, et al. Machine 
learning in cardiovascular medicine: are we there yet? Heart 
2018;104:1156–64. https://doi.org/10.1136/heartjnl-2017-311198; 
PMID: 29352006.

3.  Johnson KW, Torres Soto J, Glicksberg BS, et al. Artificial 
intelligence in cardiology. J Am Coll Cardiol 2018;71:2668–79. 
https://doi.org/10.1016/j.jacc.2018.03.521; PMID: 29880128.

4.  Shrestha S, Sengupta PP. Machine learning for nuclear 
cardiology: The way forward. J Nucl Cardiol 2018;26:1755–8. 
https://doi.org/10.1007/s12350-018-1284-x; PMID: 29679221. 

5.  Seetharam K, Shrestha S, Mills JD, Sengupta PP. Artificial 
intelligence in nuclear cardiology: adding value to 
prognostication. Curr Cardiovasc Imaging Rep 2019;12:5 https://doi.
org/10.1007/s12410-019-9490-8. 

6.  Dey D, Slomka PJ, Leeson P, et al. Artificial intelligence 
in cardiovascular imaging: JACC state-of-the-art review. 
J Am Coll Cardiol 2019;73:1317–35. https://doi.org/10.1016/j.
jacc.2018.12.054; PMID: 30898208. 

7.  Sengupta PP, Shrestha S. Machine learning for data-driven 
discovery: the rise and relevance. JACC Cardiovasc Imaging 
2019;12:690–2. https://doi.org/10.1016/j.jcmg.2018.06.030; 
PMID: 30553684.

8.  Omar AMS, Narula S, Abdel Rahman MA, et al. Precision 
phenotyping in heart failure and pattern clustering of 
ultrasound data for the assessment of diastolic dysfunction. 
JACC Cardiovasc Imaging 2017;10:1291–303. https://doi.
org/10.1016/j.jcmg.2016.10.012; PMID: 28109936.

9.  Sengupta PP, Kulkarni H, Narula J. Prediction of abnormal 
myocardial relaxation from signal processed surface ECG. 
J Am Coll Cardiol 2018;71:1650–60. https://doi.org/10.1016/j.
jacc.2018.02.024; PMID: 29650121.

10.  Seetharam K, Shrestha S, Sengupta PP. Artificial intelligence 
in cardiovascular medicine. Curr Treat Options Cardiovasc Med 
2019;21:25. https://doi.org/10.1007/s11936-019-0728-1; 
PMID: 31089906. 

11.  Shrestha S, Sengupta PP. The mechanics of machine learning: 
from a concept to value. J Am Soc Echocardiogr 2018;31:1285–7. 
https://doi.org/10.1016/j.echo.2018.10.003; PMID: 30522604.

12.  Bizopoulos P, Koutsouris D. Deep learning in cardiology. 
IEEE Rev Biomed Eng 2019;12:168–93. https://doi.org/10.1109/
RBME.2018.2885714; PMID: 30530339.

13.  Cho JS, Ashraf M, Shrestha S, et al. The classification of 
intracardiac vortex structure and function using the patient 
similarity analysis. J Am Coll Cardiol 2019;73(Suppl 1):1436. https://
doi.org/10.1016/S0735-1097(19)32042-X.

14.  Zhang J, Gajjala S, Agrawal P, et al. Fully automated 
echocardiogram interpretation in clinical practice. 

Circulation 2018;138:1623–35. https://doi.org/10.1161/
CIRCULATIONAHA.118.034338; PMID: 30354459. 

15.  Sengupta PP, Adjeroh DA. Will artificial intelligence replace the 
human echocardiographer? Circulation 2018;138:1639–42. https://
doi.org/10.1161/CIRCULATIONAHA.118.037095; PMID: 30354473. 

16.  Samad MD, Ulloa A, Wehner GJ, et al. Predicting survival from 
large echocardiography and electronic health record datasets: 
optimization with machine learning. JACC Cardiovasc Imaging 
2019;12:681–9. https://doi.org/10.1016/j.jcmg.2018.04.026; 
PMID: 29909114. 

17.  Sengupta PP, Shrestha S. Machine learning for data-driven 
discovery: the rise and relevance. JACC Cardiovasc Imaging. 
2019;12:690–2. https://doi.org/10.1016/j.jcmg.2018.06.030. 
PMID: 30553684.

18.  Narula S, Shameer K, Salem Omar AM, et al. Machine-learning 
algorithms to automate morphological and functional 
assessments in 2D echocardiography. J Am Coll Cardiol 
2016;68:2287–95. https://doi.org/10.1016/j.jacc.2016.08.062; 
PMID: 27884247. 

19.  Madani A, Arnaout R, Mofrad M, Arnaout R. Fast and accurate 
view classification of echocardiograms using deep learning.  
NPJ Digit Med 2018;1 2018;1:pii6. https://doi.org/10.1038/s41746-
017-0013-1; PMID: 30828647. 

20.  Arsanjani R, Xu Y, Dey D, et al. Improved accuracy of myocardial 
perfusion SPECT for the detection of coronary artery 
disease using a support vector machine algorithm. J Nucl Med 
2013;54:549–55. https://doi.org/10.2967/jnumed.112.111542; 
PMID: 23482666.

21.  Arsanjani R, Xu Y, Dey D, et al. Improved accuracy of myocardial 
perfusion SPECT for detection of coronary artery disease 
by machine learning in a large population. J Nucl Cardiol 
2013;20:553–62. https://doi.org/10.1007/s12350-013-9706-2; 
PMID: 23703378.

22.  Haro Alonso D, Wernick MN, Yang Y, et al. Prediction of cardiac 
death after adenosine myocardial perfusion SPECT based on 
machine learning. J Nucl Cardiol 2018. 26(5):1746–54. https://doi.
org/10.1007/s12350-018-1250-7; PMID: 29542015.

23.  Motwani M, Dey D, Berman DS, et al. Machine learning for 
prediction of all-cause mortality in patients with suspected 
coronary artery disease: a 5-year multicentre prospective 
registry analysis. Eur Heart J 2017;38:500–7. https://doi.
org/10.1093/eurheartj/ehw188; PMID: 27252451. 

24.  Schoenhagen P, Mehta N. Big data, smart computer systems, 
and doctor-patient relationship. Eur Heart J 2016;38:508–10. 
https://doi.org/10.1093/eurheartj/ehw217; PMID: 27354057. 

25.  van Rosendael AR, Maliakal G, Kolli KK, et al. Maximization of 
the usage of coronary CTA derived plaque information using a 
machine learning based algorithm to improve risk stratification; 
insights from the CONFIRM registry. J Cardiovasc Comput Tomogr 
2018;12:204–9. https://doi.org/10.1016/j.jcct.2018.04.011; 
PMID: 29753765.

26.  Zreik M, Lessmann N, van Hamersvelt RW, et al. Deep learning 
analysis of the myocardium in coronary CT angiography for 
identification of patients with functionally significant coronary 
artery stenosis. Med Image Anal 2018;44:72–85. https://doi.
org/10.1016/j.media.2017.11.008; PMID: 29197253.

27.  Winther HB, Hundt C, Schmidt B, et al. ν-net: deep learning 
for generalized biventricular mass and function parameters 
using multicenter cardiac MRI data. JACC Cardiovasc Imaging 
2018;11:1036–8. https://doi.org/10.1016/j.jcmg.2017.11.013; 
PMID: 29361481.

28.  Bai W, Sinclair M, Tarroni G, et al. Automated cardiovascular 
magnetic resonance image analysis with fully convolutional 
networks. J Cardiovasc Magn Reson 2018;20:65. https://doi.
org/10.1186/s12968-018-0471-x; PMID: 30217194.

29.  Tan LK, Liew YM, Lim E, McLaughlin RA. Convolutional neural 
network regression for short-axis left ventricle segmentation 
in cardiac cine MR sequences. Med Image Anal 2017;39:78–86. 
https://doi.org/10.1016/j.media.2017.04.002; PMID: 28437634.

30.  Tabassian M, Sunderji I, Erdei T, et al. Diagnosis of heart 
failure with preserved ejection fraction: machine learning of 
spatiotemporal variations in left ventricular deformation. J Am 
Soc Echocardiogr 2018;31:1272–84. https://doi.org/10.1016/j.
echo.2018.07.013; PMID: 30146187.

31.  Lancaster MC, Salem Omar AM, Narula S, et al. Phenotypic 
clustering of left ventricular diastolic function parameters: 
patterns and prognostic relevance. JACC Cardiovasc Imaging 
2018;12:1149–61. https://doi.org/10.1016/j.jcmg.2018.02.005; 
PMID: 29680357.

32.  Casaclang-Verzosa G, Shrestha S, Khalil MJ, et al. Network 
tomography for understanding phenotypic presentations in 
aortic stenosis. JACC Cardiovasc Imaging 2019;12:236–48. https://
doi.org/10.1016/j.jcmg.2018.11.025; PMID: 30732719.

33.  Betancur J, Commandeur F, Motlagh M, et al. Deep learning 
for prediction of obstructive disease from fast myocardial 
perfusion SPECT: a multicenter study. JACC Cardiovasc Imaging 
2018;11:1654–63. https://doi.org/10.1016/j.jcmg.2018.01.020; 
PMID: 29550305.

34.  Sabharwal NK. Could deep learning change our working lives? 
JACC Cardiovasc Imaging 2018;11:1664–5. https://doi.org/10.1016/j.
jcmg.2018.02.010; PMID: 29550322.

35.  Yang H, Sun J, Li H, et al. Neural multi-atlas label fusion: 
application to cardiac MR images. Med Image Anal 2018;49:60–75. 
https://doi.org/10.1016/j.media.2018.07.009; PMID: 30099151. 

36.  Slomka PJ, Dey D, Sitek A, et al. Cardiac imaging: working 
towards fully-automated machine analysis and interpretation. 
Exp Rev Med Dev 2017;14:197–212. https://doi.org/10.1080/174344
40.2017.1300057; PMID: 28277804. 

37.  Bostrom N, Yudkowsky E. The ethics of artificial intelligence. 
In: Frankish K, Ramsey WM, (eds) The Cambridge Handbook of 
Artificial Intelligence. Cambridge: Cambridge University Press, 
2014;316–34. 

limitless possibilities for analyzing data. As data continue to become 

larger and more complex, ML will become pivotal. In this data-driven 

era, traditional beliefs in statistics must evolve with changing times and 

embrace data-driven discoveries.7 At the same time, cardiologists must 

evaluate the legal and ethical ramifications and develop a set of reference 

standards for the successful implementation of ML in clinical care. 
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