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Artificial intelligence (AI) has recently become a popular term in the 

technological world. AI refers to the simulation of human intelligence 

with the capacity for achieving goals within computers. Machine 

learning (ML) – a subtype of AI – refers to a statistical model that is able 

to independently learn to make inferences on new data based on data 

it has previously analysed. ML has markedly improved efficiency in 

multiple analytic domains including voice recognition, handwriting 

recognition, targeted marketing and robotics.1 ML is a broad term that 

includes a family of methods extending from decision tree models to 

neural networks. Each method has different attributes that relate to 

their suitability for a given task. Interestingly, despite their recent 

popularity, neural networks have been in existence since at least the 

1950s, when Marvin Minsky used an artificial neural network to solve a 

maze.2 However, only in recent times has computing power sufficiently 

improved to allow the wider application of computationally intensive 

ML methods. 

Aside from computing power, the other major development extending 

the reach of ML has been data acquisition and storage – an essential 

component to ML. Big data is a term used to describe the increasingly 

large and more complex datasets that form the basis for ML models.

Modern times have seen increasing accessibility and use of large volumes 

of data. This is apparent in medicine with the advent of electronic health 

records (EHRs), implantable electronic devices and advanced wearable 

monitors, all of which record unprecedentedly large volumes of biological 

data every second.3 ML has already contributed to healthcare advances in 

a number of specialties. This has taken various forms from assisting 

imaging and pathological diagnoses, to identifying novel disease risk factor 

associations and phenotypic subgroups.4,5 Rajpurkar et al. used a 

convolutional neural network to develop a model that detected 14 different 

pathologies from a total of 420 frontal chest radiographs at a much faster 

rate than board-certified radiologists (1.5 minutes versus 240 minutes for 

all 420 radiographs). Their model was trained from a database of over 

100,000 chest radiographs and could also anatomically localise where the 

pathologies (including pneumonia, effusions, masses and nodules) were 

present.6 As an example of unsupervised learning, Horiuchi et al. identified 

three phenotypic groups of acute heart failure patients that significantly 

predict mortality and re-hospitalisation.7 Within cardiac electrophysiology, 

near-term applications of novel data sources have begun appearing. Many 

of these are driven by industry–academic–healthcare partnerships, the 

most famous example of which is the Apple Heart study.8 However, 

significant late stage and outcomes data remain to be seen. 

These early studies demonstrate some applications of ML in healthcare.9 

Updating prior understanding and clinical practice developed over 

years will take time, but ML has the potential to improve disease 

definitions, classification and management.

Big Data
Data are a core requirement of ML methods. Theoretically, ML methods 

can be applied to datasets of any size. However, ML methods often 

benefit from large datasets as they provide more experience on which 

to train a model. ‘Features’ are components of a dataset that describe 

characteristics of the observations being studied. These features are 

fed into computational models that can then provide insight into the 

observations, for example clustering of similar observations into groups 

or prediction of outcomes. Large datasets used in this context are 
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referred to collectively as big data. There are many sources of big data 

in modern healthcare including EHRs, biobanks, clinical trial data and 

imaging datasets. The advent of ML methods has allowed enhanced 

insight into these resources. 

The Three Vs of Big Data
There are three attributes that delineate the attributes of big data. The 

first V refers to volume of data. The larger the volume, the more features 

and experience a model can be trained and tested on. The second V 

refers to the velocity of data, which describes the speed at which the 

data is generated. With a higher velocity of data, models can remain 

more clinically relevant as they are retrained on current experience. 

The third V refers to variety, which reflects the diversity of the types of 

data contained in a dataset. Diverse data allows more features that 

can, in turn, increase generalisability and potentially the accuracy of 

the model.10 As a general rule, an increase in any of these attributes 

create a larger demand on the hardware and complexity of the method 

used to generate a model. 

Potential Pitfalls of Big Data
The issues with big data can be related to the abovementioned Vs. High 

volume and velocity data requires significant computer processing 

power to analyse. Typically it is not an isolated volume or velocity issue, 

but a combination of the two together. This need for computational 

efficiency is one of the reasons novel ML methods outperform 

traditional statistical methods. 

The extent of resources required to store and analyse data can be 

prohibitive. This limits the translation of data into clinical investigation 

and clinical practice. This is relevant in electrophysiology where cardiac 

devices create large volumes of data each second.

Another issue with big data is that it is often poorly organised and 

managed. This problem, also observed in small datasets, is amplified on 

a larger scale. Inaccurate data can be inappropriately included or not 

recognised for its limitations. Thus, the problem of inaccurate data 

producing inaccurate models remains. 

Data sharing is an increasingly popular concept made easier with 

improvements in technological infrastructure.11–13 Much of this is 

currently used for subgroup analyses, validation of prior work or the 

exploration of new hypotheses using trial data. Sharing of data will allow 

future researchers larger volumes of data to train and test models on. 

Many models exist for effective data sharing. Federated database 

systems allow geographically separate databases to be connected via 

networks. Thus, without merging the databases, researchers can submit 

queries to the federated database that interfaces with each individual 

database and provides results from all of them. This method allows the 

individual databases to remain heterogeneous and distinct. In contrast to 

this, distributed learning is a method that allows an ML algorithm to be 

trained using separate datasets. A central ML model is created and 

updated based on the training performed in each dataset. This model 

allows maintenance of data security and privacy whilst still harnessing 

the size of multiple datasets. However, opinions on data sharing as 

regards privacy and intellectual property, particularly in the medical 

industry sector, may remain a barrier to the spread of data sharing.14

Machine Learning Methods
ML algorithms use and require significant datasets in order to create 

models and test them. The foundation of ML is creation of a model on a 

training dataset with subsequent validation of that model on an 

evaluation dataset (both of which are often subsets of an original large 

database). The model is then often run on a test dataset to provide an 

unbiased evaluation of its performance. The training dataset is used to fit 

the weights of a model, which detail the relationship between inputs and 

outcomes in a way specific to the chosen model. The validation dataset 

is then used to fine tune the model hyperparameters and evaluate the 

model. Once validated, models can be improved by being re-trained on 

new data. After re-training, models need to be validated again. These can 

increase the generalisability of the model across different populations/

datasets. This allows the on-going improvement of the model with rapid 

responses to changing epidemiological or clinical patterns. 

Machine Learning Computational 
Approaches/Algorithmic Principles
The overarching principle of ML is the use of training, evaluation and 

test datasets to create a valid model.15 ML methods are broadly 

categorised as supervised, unsupervised or reinforcement learning. 

Reinforcement learning aims to refine a strategy in a controlled 

environment stochastically. Reinforcement learning is outside the 

scope of this article. 

Knowing which machine learning technique to apply is essential to 

achieving the objective, analogous to choosing an appropriate statistical 

technique in traditional methods or choosing an appropriate study 

design in epidemiology. 

Supervised Learning Methods
Supervised learning (SL) algorithms aim to classify input data to the 

correct outputs based on prior input-output pairs that are correctly 

labelled. The need for labelling can be time consuming. However, the 

methods are very effective at classification using large datasets.

Examples of ML techniques used in SL include traditional linear and 

logistic regression, artificial neural networks (ANNs), support vector 

machines (SVMs), decision trees and random forests (RFs).15,16 Pictorial 

representations of common ML approaches are shown in Figure 1.

ANNs and SVMs are among the most common SL methods. They require 

intensive computational power and time and are prone to over fitting 

(where the model fits well for the training data but poorly for any new 

data). However, they are flexible regarding assumptions about the data 

and offer significant improvements in large datasets where traditional 

statistical methods struggle.17 ANNs can be layered and altered in order 

to offer more efficiency in dealing with complex and large data. 

Decision trees and RFs are closely related. Decision trees are useful 

with smaller and simpler datasets. They classify data in a binary fashion 

along a chain of steps. Each branch following a step then has further 

classification at the next level. This then spreads out until an outcome 

is reached based on the series of steps taken to get there. The pictorial 

representation gives the shape to which decision trees are named.

RFs are an extrapolation of decision trees where multiple decision trees 

are combined and each tree is independently trained and verified. They 

also have the ability to exclude individual trees or components leaving 

them robust to outliers in meta-analysis and less prone to selection bias.

SL has its limitations including over fitting, the requirement of training 

and validation and the requirement for accurately labelled data, which 
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can be laborious.16 SL models can have poor generalisability and 

struggle transferring experiences to new data owing to over fitting 

whereby the model is very well fit only for the original dataset. As a 

result different models are often required for data from different 

populations. Each model requires large volumes of labelled data to train 

and then validate. Importantly, SL does not necessarily overcome prior 

human biases in classification owing to the labelling step, which is 

often performed by humans and thus translates those biases into the 

model. This has had important implications in algorithms overweighting 

the importance of correlations as causation. This was the case with the 

Correctional Offender Management Profiling for Alternative Sanctions 

tool that analysed recidivism and was found to be using race as a 

Figure 1: Pictorial Representations of Common Machine Learning Techniques
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A: Linear regression where a line of best fit is estimated that allows future predictions to be made given new variables; B: Cluster analysis that separates observations into groups based on 
their similarity. In this case three groups have been determined; C: An artificial neural network demonstrating an input (ECG) that is fed through a number of connected nodes to match to an 
output (sinus rhythm); D: A decision tree diagram where values are determined at each branch until a final output is determined.
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predictor in its algorithm.18 Each of these limitations result in varying 

degrees of bias, impacting on the data and future results.

Unsupervised Learning Methods
Unsupervised learning (UL) has a different goal to SL. In this method, 

the algorithm attempts to find patterns in the data without prior 

labelling. For example, in clustering the algorithm creates an unbiased 

set of categories without human intervention based on similarities 

between observations (e.g. creating groups of people based on their 

similarities). There are a variety of techniques included in UL, such as 

clustering, autoencoders and principal component analysis.15–17 

UL is particularly useful when the dataset is very complex or if there is no 

natural fit to the data. In medicine, it is increasingly being used to identify 

disease phenotypes in heterogeneous conditions. This could suggest new 

classifications or stratifications that lead to more sophisticated treatment 

allocations. It can also be used in less established diseases, where data or 

literature are poorly developed or pathophysiology is not completely 

understood. As an example, Shah et al. clustered heart failure with 

preserved ejection fraction into phenotypic subtypes based on cardio-

metabolic, cardio-renal and biochemical features.19 

UL can produce multiple cluster schemes after analysis. Choosing which 

cluster scheme is most accurate or appropriate can be difficult and 

requires clinical interpretation. Importantly, just because a model defines 

clusters within a disease does not mean these clusters have any clinical 

relevance. For this to be successful sometimes it is necessary for UL to be 

combined with follow-up studies assessing the relevance and utility of 

these clusters. For example, Ahmad et al. identified differing mortality risks 

after clustering groups of patients with chronic systolic heart failure.20

Machine Learning Applications in 
Cardiac Electrophysiology
ML is gradually expanding its utility in medicine, particularly in 

cardiology. Cardiac electrophysiology is particularly suitable for ML 

methods given its big data use and need for more accurate disease 

phenotype definitions and risk prediction. Returning to the three Vs, 

through implantable electronic devices, intracardiac mapping and 

wearable devices, high volume, velocity and variety data are produced. 

ML methods provide an opportunity to extract maximum clinical and 

public health benefit from this data. 

Surface Electrocardiography
Surface ECGs can provide non-invasive, cheap and detailed information 

regarding arrhythmias. Importantly, because of these attributes, improving 

ECG interpretation could have substantial public health benefits. 

There is a bulk of research involving ML and ECGs. While computer 

analysis of ECGs has been available on most machines for many years, 

these are often inaccurate because of the quality of ECG recorded. 

Traditional methods have relied on examining R-R intervals and P-wave 

presence. However, newer ML-based models have undertaken more 

sophisticated feature extraction to analyse a variety of rhythms.21 

Research on ML in ECG began with basic improvements in pre-processing 

such as noise reduction or extraction of features such as P-wave or QRS 

complex characteristics.22,23 This initial work laid the foundation for future 

research to use these algorithms to create features that could be fed into 

classifiers such as ANNs and SVMs to further analyse ECGs. Much of the 

work performed in this area uses the MIT-BIH publicly available classified 

data that consists of 25 ECG recordings that are 10 hours long.24–26 

Importantly, this should herald caution in the assessment of diagnostic 

accuracy in such studies given the small sample sizes.

Many investigators have attempted to optimise the detection of AF using 

differing methods, duration of recordings and leads. Models differ by 

analysing either P-wave absence, R-R intervals or a combination of many 

ECG features. Ladavich and Ghoraani created a ‘rate-independent’ model 

that was able to identify AF using only a single cardiac cycle in order to 

overcome difficulties associated with detection of AF with rapid 

ventricular response. After feature extraction from the surface ECGs, an 

expectation-maximisation algorithm was used to train a model. The 

ultimate model had a sensitivity of 89.37% and specificity of 89.54% for 

detection of AF using just a single cardiac cycle.24 

Longer duration analysis has also been used to provide higher accuracy 

in the detection of AF. He et al. used a convolutional neural network on 

time-frequency features (as opposed to P-wave absence or R-R 

intervals) to train a model for AF detection.26 The final model had an 

accuracy of 99.23%. Notably, the ECGs still required significant pre-

processing before being classified using the convolutional neural 

network, which limits the potential for clinical use. 

Other authors have used differing algorithms to train AF detection models. 

Kennedy et al. used RFs to train a model based on R-R intervals using their 

own database.27 They later tested this model on the MIT-BIH database. The 

RF model had a specificity of 98.3% and sensitivity 92.8%, which is 

comparatively less than seen in many of the neural-network-based 

approaches. However, their training database was also considerably 

smaller and further direct comparisons of RF and ANN models are needed 

to determine their comparative accuracy in AF detection.

In contrast to ANNs and RFs, Asgari et al. used an SVM to train a model 

for detection of AF based on wavelet transformation.28 The use of 

wavelet transformation obviates the need for pre-processing of P or 

R-waves that is required by many algorithms. However, this method still 

required feature extraction prior to classification with the SVM. The 

authors tested their model on the MIT-BIH database and found an area 

under the curve (AUC) of 0.995, which outperformed both a naïve 

Bayesian classifier and logistic regression based method. 

There is less literature available on identification of ventricular 

arrhythmias. Mjahad et al. demonstrated that time-frequency analysis 

using a variety of models (logistic regression, ANN, SVM and bagging 

classifier) accurately identifies ventricular tachycardia (VT) and ventricular 

fibrillation (VF) on 12-lead ECG.25 This method required pre-processing of 

the ECG signal for both noise reduction and computation of time 

windows. On testing, all models performed similarly, with ANNs having a 

98.19% accuracy for VF and 98.87% accuracy for detection of VT. 

Huang et al. demonstrated the ability of ANNs to localise atrioventricular 

accessory pathways in patients undergoing ablation.29 Using features 

of delta wave polarity and R-wave duration as a proportion of the QRS 

complex, an ANN generated model trained on 90 cases correctly 

identified the site of accessory pathways in 58/60 test cases. In the two 

cases of misclassification, the accessory pathway was located in a 

contiguous region to the identified area. 

The aforementioned studies have generally required significant pre-

processing of the ECG signal prior to classification as well as involving 
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models trained for a specific arrhythmia. Hannun et al. created their 

own test and validation database.21 This included 91,232 single lead 

ECGs from the Zio patch-based electrode device. These ECGs were 

then fed to an ANN to create a model for classifying 12 different output 

rhythms (10 arrhythmias, sinus rhythm and noise). Importantly, their 

method did not require significant feature extraction or ECG signal pre-

processing. The authors validated their findings against a committee of 

cardiologists who had classified the test dataset. The ANN achieved an 

AUC of 0.91 across all rhythms. Additionally, they compared their model 

to that of ‘average’ cardiologists outside the adjudication committee 

and found that the model outperformed cardiologists across every 

rhythm. This work represents a significant step forward in ECG 

classification as it demonstrates end-to-end machine learning, where 

raw data is inputted and diagnostic probabilities are outputted without 

the use of extensive data manipulation or pre-processing. 

UL methods have, thus far, had more limited application in the analysis 

of surface ECG. Donoso et al. used a k-means clustering algorithm to 

separate AF on ECG into five different types based on frequency values. 

However, this work is yet to be validated by examination of the clinical 

significance of the five different types of AF.30 

AliveCor uses ML software built into their app to work in combination 

with an electrode band and phone or smartwatch.31 Their model is 

one of the first that has the ability to analyse the rhythm and diagnose 

AF in almost real time, as well as other ML models they have 

developed to identify long QT and hyperkalaemia off ECG.32,33 Twice 

weekly ECGs using their devices has been shown to be 3.9 times 

more likely to identify AF in high risk patients aged >65 years than 

routine monitoring.31 Additionally, recent work has examined the 

sensitivity of an AliveCor convolutional neural network using the 

Apple Watch heart rate, activity and ECG sensors as inputs compared 

to traditional implantable cardiac monitors for the detection of AF.3 

The results suggest that the wearable monitor provides excellent 

sensitivity (97.5%) for detecting AF episodes lasting >1 hour but poor 

positive predictive value (39.9%). Given the excellent sensitivity, this 

strategy may help define those who would benefit from an implantable 

cardiac monitor post cryptogenic stroke. 

Continual progress is being made in ML-based surface ECG analysis. With 

the advent of wearable technology, the availability of training data on 

which to improve models will increase and the quality of the raw data 

may also improve alongside the technology. However, these data will still 

require labelling for the implementation of SL methods, which represents 

a major resource barrier. External validation of the abovementioned 

models on larger datasets will be required before more sophisticated 

conclusions about the utility of such models can be made. 

Intracardiac Mapping
ML is gradually emerging as a tool to improve the understanding and 

efficacy of ablation. Preclinical and early clinical work has focused on 

stratifying and classifying electrogram morphology to guide 

electrogram-based AF ablation. 

In attempt to improve complex fractionated atrial electrogram (CFAE) 

based AF ablation, Schilling et al. created four classes of CFAEs based 

on patient data. They established classes that increased in complexity 

from class 0 to class 3.34 They used a variety of features in order to 

create their complexity classes, including time domain descriptors, 

phase space descriptors, wavelet based descriptors, similarity of 

active segments and amplitude based-descriptors. Once defined, 

they employed a fuzzy-decision tree (similar in methodology to a 

standard decision tree) to classify electrograms from 11 patients 

undergoing AF ablation. This algorithm had 81% accuracy for defining 

the CFAE class of an electrogram. The fuzzy decision tree model 

imparted the advantage of applying a probability that an electrogram 

belonged to a certain class unlike other algorithms. Duque et al. later 

validated and improved these CFAE classes by using a genetic 

algorithm (that optimised the included features) to further define the 

four classes.35 After the initial consolidation of the classes, they used 

a k-nearest neighbour SL algorithm to classify electrograms. They 

demonstrated 92% accuracy for classification of CFAE class and 

performed simulation to demonstrate that the more complex CFAE 

classes were associated with rotor locations in a simulated model. 

Orozco-Duque et al. similarly tried to improve classification of CFAEs 

using four features (two time-domain morphology based and two non-

linear dynamic based) to separate four classes of fractionation.36 They 

used a semi-supervised clustering algorithm to validate these classes 

on partially labelled data. They then went on to apply those classes to 

an unlabelled dataset and created clusters with reasonable separation. 

This work suggests that ML may be able to separate subtle differences 

in recorded electrograms and possibly provide feedback about areas 

most likely to result in AF termination after ablation. 

McGillivray et al. used an RF classifier to identify re-entrant drivers of AF 

in a simulated model where the ‘true’ location of the re-entrant circuits 

were known.37 This model used electrogram features to assess the 

rhythm, predict the location and reassess the predictions until focused 

on the source of the driver. The model correctly identified 95.4% of 

drivers whether one or more were present in the simulation. 

Muffoletto et al. simulated AF ablation in a 2D model of atrial tissue using 

three different methods – pulmonary vein isolation, fibrosis-based and 

rotor-based ablation.38 They were able to model the outcomes of these 

ablation strategies and use the outcome as labelled data for a ANN. 

Using different patterns in their AF simulation, the model was able to 

identify the successful ablation strategy in 79% of the simulations. This 

work serves as a proof-of-concept for ML prediction of optimal ablation 

strategies, but the difficulty of identifying the ‘correct’ ablation strategy 

amongst a number of options in vivo makes the possibility of clinical 

translation daunting. Computer modelling of AF is becoming more 

complex with the advancement of cell-level, tissue-level and organ-level 

models.39,40 These models have provided crucial insights into the 

relationships driving AF including the nature of automatic and rotational 

foci, the role of fibrosis and the effect of channel-types. ML may prove a 

useful tool in integrating the significant high-dimensional data produced 

by computer modelling. Possibilities include the definition of phenotypes 

using UL or the prediction of AF rotors based on patient-specific 

attributes, thus guiding ablation strategy using SL. 

In an abstract presented at the American Heart Association 2018 

scientific meeting, Alhusseini et al. described the use of a convolutional 

neural network to identify organised AF drivers that acutely terminate 

with ablation in persistent AF based on features extracted from 

spatial phase maps.41 They reported 95.2% accuracy for determining 

organised sites of activity that terminate AF upon ablation. These 

early results suggest another possibility for real-time ML-guided 

ablation strategies. However, the long-term efficacy of such an 

approach remains unclear. 
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ML is gradually entering the field of ablation and has the opportunity to 

integrate the significant volume of data generated by electroanatomical 

mapping systems and guide electrophysiologists to appropriate sites 

and methods of ablation. The use of SL in this way will face challenges 

given the significant data load and difficulties of creating labelled 

datasets, though the ultimate goal of machine-guided ablation may be 

achieved. However, UL methods may provide more insight into the 

patterns of arrhythmia seen during procedures. 

Cardiac Implantable Electronic Devices
Cardiac implantable electronic devices (CIEDs) are an ideal target for 

ML methods given the high volume and velocity of data they produce. 

ML applications have allowed for risk stratification, improved arrhythmia 

localisation and streamlined remote monitoring which may significantly 

reduce the workload faced by electrophysiologists.42–44 

CRT is an effective component of heart failure management in selected 

patients.45 Benefit is restricted to those who meet current guideline 

criteria based on trial data. ML models may provide a more 

sophisticated method of identifying those likely to respond to CRT. 

Kalscheur et al. used multiple SL methods on data from the Comparison 

of Medical Therapy, Pacing, and Defibrillation in Heart Failure 

(COMPANION) trial to construct a model capable of predicting 

outcomes with CRT.42 They employed an RF, decision tree, naïve 

Bayesian classifier and SVM with 48 features available in the clinical 

trial. They found that the RF model produced the best results, 

demonstrating an AUC of 0.74 for predicting outcomes. The quartile of 

highest risk predicted by the model had an eightfold difference in 

survival in comparison to the lowest risk quartile. When using traditional 

factors of QRS duration and morphology there was no significant 

association with outcomes. The features used in their model are easily 

clinically available. Cikes et al. employed UL for a similar purpose, 

seeking to identify high- and low-risk phenotypes for those likely to 

respond to CRT.46 Using data from the Multicenter Automatic 

Defibrillator Implantation Trial with Cardiac Resynchronization Therapy 

(MADIT-CRT) trial, they employed a k-means clustering algorithm to 

create groups with similar characteristics based on echocardiographic 

and clinical parameters. Of the four phenotypes they identified, two 

were associated with a better effect of CRT on heart-failure-free 

survival (HR 0.35 and HR 0.36 compared to non-significant). The 

advantage of using UL in this instance was the ability to identify the 

phenotypic aspects associated with CRT benefit. This is often not 

possible in SL owing to the nature of how the algorithms create 

associations, referred to as the ‘black-box’ problem. 

Recognising the potential clinical difficulty of employing such 

models, Feeny et al. attempted to predict improved left ventricular 

ejection fraction with CRT using only nine features selected to 

optimise model performance.47 These nine variables were employed 

in multiple ML models (including an SVM, RF, logistic regression, an 

adaptive boosting algorithm and a naïve Bayesian classifier). They 

found that the Bayesian classifier performed best demonstrating an 

AUC of 0.70, which was significantly better than guideline-based 

prediction. To demonstrate the clinical adaptability of their approach 

they generated a publicly available online calculator. The above 

studies are clinically relevant examples of using both UL and SL to 

risk stratify patients and help with decision making around significant 

interventions. The benefits of UL as regards transparency are 

observed, as well as the potential difficulties around clinical 

adaptation of complex models. 

Rosier et al. examined the potential for ML to automate monitoring of 

alerts from CIEDs.44 They used natural language processing to examine 

EHR data to determine the significance of AF alerts from CIEDs. The 

natural language processing algorithm was able to calculate CHA
2
DS

2
-

VASc scores and anticoagulant status for each patient and thus, classify 

the importance of the AF alert. Their algorithm correctly stratified 

CHA
2
DS

2
-VASc scores of 0, 1 and ≥2 97% of the time. As a result of this, 

98% of AF alerts were correctly classified with regard to their importance 

and the remaining misclassified alerts were overclassified, allowing for 

human review. This study highlights the ability of ML to act as an assistant 

to electrophysiologists by guiding attention to where it is needed. 

In a similar vein of aiding electrophysiological intervention, Sanromán-

Junquera et al. used ICD electrograms to localise exit sites during 

pace mapping for VT ablation.43 Using implanted RV leads as sensors, 

they employed multiple algorithms including ANNs, SVMs and 

regression methods to identify left ventricular exit sites. Their SVM 

model produced the best results, localising the exit site to one eighth 

of the heart 31.6% of the time (where a random model would produce 

results of 12.5%). This work serves as a proof of concept for ML based 

ablation localisation, especially where a 12-lead ECG of the tachycardia 

may not be available. However, significant improvements are required 

before such methods are clinically applicable. 

In an application of RF models, Shakibfar et al. used only ICD data 

without clinical variables to predict risk of electrical storm.48 They 

developed 37 ICD electrogram-based features found during the four 

consecutive days prior to the onset of electrical storm (defined using 

device detection). They found that their RF model had an AUC of 0.80 

for predicting electrical storm. The most relevant features were 

percentage of pacing and reduced daytime activity. These results are 

limited by the use of device-defined ventricular arrhythmias, however, 

they signify promise for the increasing use of the high dimensional 

data produced by CIEDs. 

Conclusion
ML in electrophysiology is nascent. However, early work suggests the 

potential use that ML may have in stratification, diagnosis and therapy 

for arrhythmia. These methods may also affect the nature of the 

electrophysiologist’s role into the future with increasing data sources 

and methods of analysis to add to each patient’s data profile. As data 

derived from the use of wearable devices increases, consideration 

needs to be given to how these technologies will be implemented to 

ensure patient safety and appropriate use. In particular, the risk of over-

diagnosis will need to be considered as wearable monitors become 

more commonplace. 

Clinical Perspective
• Big data, easily collected from electronic health records and 

cardiac devices, allows the use of sophisticated models to 

generate new insights. 

• Machine learning models can accurately diagnose multiple 

rhythms from short segments of surface electrocardiographs in 

almost real time.

• Optimisation of intra-cardiac mapping and implantable device 

analysis are areas that can significantly gain from increased 

machine learning integration owing to the large volume of data 

created in these fields.
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