
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4413839?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

MASSACHUSETTS
INSTITUTE OF TECHNOLOGY

50 MEMORIAL DRIVE

CAMBRIDGE, MASSACHUSETTS 02139

MASS. INST. TtCH.

MAY ?2 75

DEWEY UBRARY

WORKING PAPER

ALFRED P. SLOAN SCHOOL OF MANAGEMENT

THE USE OF THE BOXSTEP METHOD
IN DISCRETE OPTIMIZATION

ROY E. MARSTEN

MARCH 1975 WP 778-75

THE USE OF THE BOXSTEP METHOD
IN DISCRETE OPTIMIZATION

ROY E. MARSTEN

MARCH 1975 WP 778-75

WASS. INST. T£CH.

MAY 2 2 75

OiVia UBRARY

MAY 2 2 1975

, Abstract

The Boxstep method is used to maximize Lagrangean functions in the

context of a branch-and-bound algorithm for the general discrete optimization

problem. Results are presented for three applications: facility location,

multi-item production scheduling, and single machine scheduling.

The performance of the Boxstep method is contrasted with that of the

subgradient optimization method.

0724762

ACKNOWLEDGEMENT

The research reported here was partially supported by National

Science Foundation grants GP-36090X (University of California at Los

Angeles) , GJ-1154X2 and GJ-115X3 (National Bureau of Economic Research)

1. Introduction

The Boxstep method [15] has re'cently been introduced as a general

approach to* maximizing a concave, nondifferentiable function over a compact

convex set,
,
The purpose of this paper is to present some computational

experience in the use of the Boxstep method in the area of discrete

optimization. The motivation and context for this work is provided by

Geoffrion [9] and by Fisher, Northup, and Shapiro [5,6] who have shown

how the maximization of concave, piecewise linear (hence nondifferentiable)

Langrangean functions can provide strong bounds for a branch-and-bound

algorithm. We shall consider three applications: facility location,

multi-item production scheduling, and single machine scheduling. Our

experience with these applications, while limited, is quite cLear in its

Implicfitions about the suitability of Boxstep for this class of problems.

We shall also take this opportunity to introduce two refinements of the

original Boxstep method which are of general applicability.

2, The Boxstep Method

We present here a specialized version of the Boxstep method which is

adequate for maximizing the Lagrangean functions which arise in discrete

optimization. We address the problem

max w(tt)

ir >_ (2.1)

where

wCtt) - min(f^ + ug^) (2.2)

keK

f is a scalar, it, g e R , and k is a finite index set. Thus w(tt) is a

concave, piecewise linear function. The Boxstep method solves (2.1) by

solving a finite sequence of local problems. Using (2.2), the local

em at IT with box

P(iT ;S) max a

problem at it with box size 6 may be written as

k k
s.t. f + TTg >_ a for keK

ir^ - B <_ TT ^ <_ TT^ + 6 for i=l, . . . , m

TT >

This local problem may be solved with a cutting plane algorithm [7,12,14].

If a global optimum lies within the current box, it will be discovered. If

not, then the solution of the local problem provides a direction of ascent

from IT . The Boxstep method seeks out a global optimum as follows.

(Let P(r ;B). denote P(tt^;6) with K replaced by some K £ K.)

Step 1. (Start) Choose tt >_0, e>_0, 6>0. Set t-1.

Step 2. (Cutting Plane Algorithm)*

(a) (Initialization) Choose K £ K.

(b) (Reoptimlzation) Solve P (it ;6). Let ft, 6 denote an optimal

solution.

k* k*
(c) (Function Evaluation) Determine k*eK such that w(ft) = f + Itg

(d) (Local Optimality Test) If w(fl) >_ 6-z go to step 3;

otherwise set K = KU{k*} and return to (b).

t+1
Step 3. (Line Search) Choose u as any point on the ray

{ft + a (ft - TT^)
I

a >_ 0} such that w(Tr'^) >^ w(ft).

Step 4. (Global Optimality Test) If w(t:^) <^ w(it*^) + e, stop.

Otherwise set t-t+1 and go to Step 2.

The convergence of the method is proved in [15], In the piecewise

linear case (finite K) we may take e=«0, at least in theory. The implementation

of the method works with the dual of P(i: ;6) so that new cuts can be added

as new columns and the primal simplex method used for reoptimlzation at

Step 2(b).

The motivation behind the method is the empirical observation that

the number of cutting plane iterations required to solve P(Tr :S) is a

monotonically increasing function of S. This presents the opportunity

for a trade-off between the computational work per box (directly related to S)

and the number of boxes required to reach a global optimum (inversely

related to 6). Computational results reported in [15] demonstrate that,

for a wide variety of problems, the best choice of 6 is "intermediate",

i.e. neither very small nor very large. If & is sufficiently small, then

(in the piecewise linear case) we obtain a steepest ascent method; while

if 3 is sufficiently large, Boxstep is indistinguishable from a pure cutting

plane method. (For it = and 6 = °° we recover the Dantzig-Wolfe

method [2],) For intermediate v.alues of g we have something "between"

these two extremes. • ._ s . . .

The three applications which follow are all of the form:

V* - mln f(x) s.t. g(x) <^ b (2.3)

xeX

where f : X-»-K
, g : X-*-R°, and X = {x^

|
keK} is a finite set. The

Boxstep method will be used to maximize a Lagrangean function w(it), defined

for IT e R as

wCir) » mln f(x) + TT[g(x) - b]. (2.4)

xeX

Any branch-and-bound algorithm for (2.3) can compute lower bounds by

eva''-uating this Lagrangean, since w(Tr) <^ v* for all it >_ 0. Finding

the greatest lower bound, i.e. maximizing w(it) over all ir >^ 0, is a

dual problem for (2.3). Thus we shall be using Boxstep to solve a

k k
Lagrangean dual of the discrete program (2.3). By defining f = f(x)

k k
and g = g(x) - b for all kcK we obtain the form assumed above, (2.2).

3. Facility Location with Side Constraints

*

The first application is a facility location model [8] of the form:

^^ I ^i\ + 1 I c y (3.1)
1-1 ^ ^ 1=1 1-1 ^^ ^^

m

1=1 ^ij
^

where, for each facility 1,

w (X,y) » mln (f + vA) x + I' (c,, + X + WR)y
1

-^ ^^1> ^1 ^ ^l.^^lj
-^

'i
^ -Ij-ij

<.y^j < 1 j=l, n

X - or 1

A, and B are columns of A and B, respectively. Each w fxinction is

easily evaluated by considering the two alternatives : x = and x, = 1.

For X - 1 we have a continuous knapsack, problem.

An attempt was made to maximize w(X,y) over all X,p > q with

the Boxstep method. The test problem (Problem A of [8]) has m=9 facilities,

n-4C customers, and p=7 side constraints (Benders cuts). Thus it = (X,y) e R .

Problem (3.1)-(3.5) with (3.6) replaced by (0 <^ x < 1) was solved as a

linear program and the optimal dual variables for constraints (3.2) and

(3.3) are taken as the starting values for X and \i, respectively. At

Step 2(a), K is taken as all cuts already generated, if any. The line

search at Step 3 is omitted (it = 1t^ the tolerance is e"=10 . Table

1 reports the outcome of four runs, each of 20 seconds' duration (IBM360/91).

The last four columns give the number of w(tt) evaluations, number of linear

programming pivots, the pivot /evaluation ratio, and the value of the best

solution fotmd.

The results are not encouraging. Convergence of the first local

problem could not be achieved for a box size of .25, .10, or .01. Convergence

was finally achieved with 8 = .001 and 8 local problems were completed in

the 20 seconds. The increase in the Lagrangean over these 8 boxes amounted

to 76% of the difference between the starting value (10.595676) and the

global optimum (10.850098). The price paid for this Increase, in terms of

6A

computation time, is prohibitively high, however. Geoffrion [8] has executed

an entire branch-and-bound algorithm for this problem in under 2 seconds

(same IBM360/91). Geoffrion did not attempt to maximize the Lagrangean in

his algorithm but simply used it to compute strong penalties [9].

Table 1. Facility Location Problem

e

The computational burden on the cutting plane algorihhm for a given

local problem P(Tr ; 3) depends on the number of cuts needed and on the average

number of LP pivots required to reoptimize after a cut is added. This

average is given by the pivot/evaluation ratio and is recorded in Table 1.

In the present application, difficulty was encountered with both of these

factors. First, some cuts had no effect on the objective function value, d.

As many as ten successive cuts had to be added before the value of d dropped.

This is simply a reflection of degeneracy in the dual of P(it ;e). The

effect of this degeneracy is to increase the number of cuts needed for

convergence. The second and more serious difficulty, however, is the great

nxmber of pivots (more than 20 for 6 >_ .10) required for each reoptimization.

This is in marked contrast to other applications where, typically, only one

or two pivots are required. See section A below and the results in [15].

This behavior was quite unexpected and appears to be a kind of instability.

Starting with only one negative reduced cost coefficient (for the newly

introduced cut), each pivot eliminates one negative but also creates one (or

more). This process continues for several pivots before optimality is

finally regained. Unfortunately this phenomenon is not unique to this

class of facility location problems but arises in the application of

section 5 as well. Its effect is to impose a heavy "overhead" on the

Boxstep method, rendering it very expensive computationally.

Three suggestions that might be offered are: (a) generate a

separate column for each facility at each iteration [12, p. 221] (b)

use the dual simplex method at Step 2 (b); and (c) use a larger tolerance,

say e"10 . The outcomes are : (a) much worse; (b) much worse; and (c)

no change. We shall return to this test problem in section 6.

4. Multi-item Production Schedulirfg ,

1

The second application we shall consider is the well-known Dzielinski-

Gomory multi-item production scheduling model with one shared resource [3,12,13]

Two test problems are used: one with 1=25 items and T=6 time periods, the

other with 1=50 and T-6. The variables tt = (ir , ..., ir) are the prices

of the shared resource in each time period; resource availability in each

period is given by b = (b.., ..., b_) . The Lagrangean function w(tt) is given

by

I T
w(rr) -

I w^tt) -
J ii.b, (4.1)

i-1 k»l
^

where w (ir) is the optimal value of a single-item production scheduling

problem of the Wagner-Whitin type [16] and is evaluated by a dynamic

programming algorithm. Thus evaluating w(tt) involves solving I separate

T-period dynamic programs.

The 25- and 50-item problems are solved, for several box sizes, using

Boxstep. The origin is taken as the starting point at Step 1 (it =0) and the

line search is omitted at Step 3 (it = ^). No more than 13 cuts are carried.

(Once 13 cuts have been accumulated, old nDn-;basic cuts are discarded at random

to make room for new ones.) A tolerance of e = 10 is used. Note that tteR

The results are presented in Tables 2 and 3. For each run the number of w(it)

evaluations, LP pivots, and pivot/evaluation ratio are recorded. The computa-

tion times are in seconds for an IBM370/165. For the 25-item problem w(0)

«|47,754.00 and v* = w(t:*) = 48,208.80; while for the 50-item problem w(0)

- 92,602.00 and v* = w(7r*) = 94,384.06.

xo

In this application the Boxstep method has no difficulty in reaching

a global optimxjm. Notice that the pivot /evaluation ratio never exceeds 2.

This is a significant qualitative difference from the facility location

problem of section 2. Examination of local problem convergence reveals the

signs of degeneracy in the dual of PCir :6)f that is, several cuts may be

required to reduce &. This difficulty can apparently be overcome (at least

in R) as long as each reoptimlzation takes only one or two pivots.

The same two test problems were also solved by the direct

Generalized Upper Bounding (GUB) approach advocated by Lasdon and Terjung

[13]. The times are 2.20 seconds and 6.87 seconds for the 25-item and 50-item

problems, respectively. This suggests that Boxstep may be quite

successful on Dzielinski-Gomory problems, particularly since these

\i8ue.lly Involve only a T = 6 or 12 month horizon. This will require

testing on industrial-size problems for verification (e.g. I-AOO, 1-12).

These production scheduling problems will serve to illustrate a- refine-

ment of the original Boxstep method. Let ff denote an optimal solution of

the local problem P(tt^;6). We may define G = w(ft) - w(ir) as the gain

achieved in box t. Because of the concavity of w(Tf), we would expect the gain

achieved in successive boxes to decline as we approach a global optimum. For

example, in the g = .20 run from Table 2, the sequence of gains over the

nine boxes is: 271, 71, 33, 25, 23, 14, 10, 6, 2 (rounded). Notice

that solving the first local problem gives us some idea of the gain to be

expected in the second. Since solving a local problem to completion is often

not worth the computational cost when we are far from a global optimum, this

suggests the following cutoff rule. Choose an "anticipated gain" factor

Y. < Y ^1.0, and if while working on P(tt ; 3) a point tt is generated with

then stop the cutting plane algorithm, set ft = tt, and proceed immediately

to Step 3. (In this event take G = G .) A large value of Y should have

little effect on the trajectory {tt^
|
t=l,2, ... } while offering the possibility

of computational savings. Too small a value of Y, however, may cause wandering

in response to small improvements and hence an increase in the number of

boxes required. These effects may be observed in Table 4 where the 3 » .10

and .20 runs from Table 2 are repeated with alternative gain factors

(y"1 reproduces the original results) . The column headed "subopt" gives

the number of local problems which are terminated when the anticipated gain

is achieved. In both cases the maximum reduction in computation time is.

a

little lass than 40%.

Table 2. Twenty-five item problem; original Boxstep method.

6

13

Table 4. Twenty-five item problem; suboptimization

based on anticipated gain factors (y).

boxes subopt v(y) eval LP pl'vots time

10

14

5. Single Machine Scheduling.

Finally we consider the single machine scheduling model of Fisher [A]*.

The problem is to schedule the processing of n jobs on a single machine so

as to minimize total tardiness. Job 1 has processing time p , due date d ,

and start time x. (all Integer valued) . To obtain bounds for a branch-and-

bound algorithm, Fisher constructs the Lagrangean function

w(ir) = mln [{max {x + p. - d , 0} + J^
^ ir }

X€X j=»l J J J k-x +1

where u, is the price charged for using the machine in period k and X

is a finite set determined by precedence constraints on the starting times.

Fisher, who has devised an ingenious special algorithm for evaluating wCtt) ,

uses the subgradient optimization method [11] to maximize wCir).

When using subgradient optimization the sequence of Lagrangean values

{w(ir)| t = l,2, ...} is not monotonic and there is no clear indication

of whether or not a global optimum has been found. Consequently, a pre-

determined number of steps is made and the biggest w(tt) value found is taken

as an approximation of the maximum value of the Lagrangean. It was therefore

of Interest to determine how close the subgradient optimization method was

coming to the true maximum value. To answer this question, one of these

Lagrangeans was maximized by the Boxstep method.

A second refinement of the original Boxstep method is Illustrated in

this application. An upper limit is placed on the number of cutting plane

*The author is grateful to Marshall Fisher for his collaboration in

the experiments reported in this section.

15

Iterations at Step 2. If this limit is exceeded, then the local problem

P(iT ;e) is terminated and the box is contracted (set B = 6/E for E > 1).

0/ t
Furthermore, if it is the best solution of PCir ;6) generated so far, and

/\, \^ t+1 "^ t+1 t
w(ir) > w(ir), then we take -n = ir; otherwise it = it . This provides

another opportunity for suboptimizing local problems and also offers some

automatic adjustment if the initial box size is too large.

The test problem used is taken from [4] and has n = 20 jobs. The

number of time periods is. the sum of all n processing times, in this case

53
53. Thus IT e R . The starting point for Boxstep is the best solution

found by the subgradient optimization method. Furthermore, some of the

subgradients that are generated are used to supply Boxstep with an initial

set of linear supports. (If w(it) = f* + irg*, then g* is a subgradient of

w(ir) at IT TT.)

For the 20-job test problem, subgradient optimization took about one

second (IBM360/67) to increase the Lagrangean from w(0) = 54 to w(t;) »

91.967804. The Boxstep method was started at tt with 6 = 0.1. Up to 55

cuts were carried and a tolerance of e = 10 was used. A maximum of

10 cutting plane iterations was allowed for each local problem. Each

contraction replaced the current 3 by 6/2. These parameters (3 = 0.1,

55 cuts, 10 iterations, E = 2) were chosen after some exploratory runs

had been made.

The final run is summarized in Table 5. Four boxes were required to

reach the global optimum, v* = w(it*) " 92. The first two of these boxes had

to be contracted; the last two converged. The time for Boxstep was 180

seconds. As with the facility location problem, this is exceedingly

16

expensive. Fisher [4] reports that the entire branch-and-bound algorithm

for this problem took only 1.8 seconds. The details of this run

display the same two phenomena we have encoxintered before: a high pivot/

evaluation ratio (as In section 3) and degeneracy In the dual of P(tt B)

(as In sections 3 and 4)

.

17

Table 5. Single Machine Scheduling Problem

w(tt) eval LP plv piv/eval

Box 1

18

6. Conclusions

The most promising alternative method for maximizing the class

of Lagrangean functions we have considered here is subgradient opti-

mization [10,11]. Subgradient optimization tends to produce a close

approximation to the global maximum, v*, for a very modest computational

cost. Fortunately, this is precisely what is needed for a branch-and-

bound algorithm. Since v* is not actually required, the time spent

pursuing it must be weighed against the enxmeration time that can be

saved by having a tighter bound. This is dramatically illustrated in

the example of section 5. Subgradient optimization obtained

w(iT) = 91.967804 in about one second. Since it is known that the

optimal value of the problem is integer, any w(tt) value can be

rounded up to the nearest integer, in this case 92. Boxstep spent

180 seconds verifying that 92 was indeed the global maximum. This is

2
a factor of 10 longer than the 1.8 seconds required for the complete

branch-and-bound algorithm!

To further illustrate this qualitative difference, the performance

of Boxstep and subgradient optimization was compared on the facility location

problem of section 3. An approximate line search was used at Step 3 of

the Boxstep method and suboptimization of the local problems was done as

in section 4, with y = 1/2. The box size was held fixed at g= .001 and

up to 56 cuts were carried. The global maximum was found at w(ir*) = 10.850098

after a sequence of 28 local problems and line searches. This required 318

w(Tr) evaluations, 929 LP pivots, and over 90 seconds of CPU time (IBM370/168)

.

ThB subgradient optimization method, starting from the same initial solution,

reached the global maximum (exactly) in only 0.9 seconds-again a factor

2
of 10 ! This required only 75 steps (w(it) evaluations). It is apparent

from these and other results [4,5,11] that subgradient optimization is the

preferred method in this context. Boxstep may be viewed as a method

"last resort" to be used if it >is essential to find an exact global

maximum. In this event, Boxstep can start from the best solution found

by subgiradient optimization and can be primed with an initial set (K £ K)

of subgradients.

The performance of the Boxstep method is clearly limited by the

rate of convergence of the imbedded cutting plane algorithm. Wolfe

[17] has provided an invaluable insight into the fundamental difficulty

we are encountering. He shows that for a strongly and boundedly concave

ftjnctlon (as our Lagrangeans would typically be) , the convergence ratio ^g at best

.' (a/4A) ^ where < a <_ A and n is the dimension of the space. Notice

that the convergence ratio gets worse (i.e. approaches unity) quite

rapidly as n increases. The Boxstep method attempts to overcome this slow

convergence by imposing the box constraints, thereby limiting the number

of relevant cuts (indices keK)- • What we observe when n is large, however,

is that to achieve even near convergence the box must be made so small

that we are forced into an approximate steepest ascent method. (Boxstep

can do no worse than steepest ascent, given the same line search, since

it is based on actual gain rather than initial rate of gain.) Steepest

ascent is already known to work very poorly on these problems [5].

Degeneracy in the dual of the local problem P<ir ;3) is an important

characteristic of all of the problems we have considered. This is not

surprising since this dual is a convex! fication of the original problem

(2.3) and degeneracy in the linear programming approximations of discrete

problems is a well-known phenomenon. The effect of this degeneracy is

to further slow the convergence of the cutting plane algorithm. In two

of the three applications we have encountered the phenomenon of

20

high pivot /evaluation ratios. That is, many LP pivots are required to

reoptimlze after each new cut is added. This difficulty, when present.

Increases the computational burden associated with each cut. It is

not clear yet whether this is caused by problem structure or is another

consequence °f higher dimensionality.

There remains one opportunity which we have not investigated here.

In the course of a b ranch-and-bound algorithm we have to solve many

problems of the form (2.1). The Lagrangean function is somewhat different

In each case, but the optimal ir-vector may be nearly the same. When

this is the case, starting Boxstep at the previous optimal tr-vector

and using a small box can produce rapid detection of the new global

optimum. This has recently been applied with considerable success by

Austin and Hogan [1].

21

References

[I] L.M. Austin and W.W. Hogan, "Optimizing Procurement of Aviation Fuels",
Working Paper, U.S. Air Force Academy Wune 1973). (To appear in
Management Science.)

[2] G.B. Dantzig and P. Wolfe, "Decomposition Principles for Linear Programs",
Operations Research 8 (1) (i960) 101-111.

[3] B.P. Dzielinski and iUE. Gomory, "Optimal Programming of Lot Sizes, Inventory,
and Labor Allocations", Management Science 11 (1965) 874-890.

[4] M.L. Fisher, "A Dual Algorithm for the One-Machine Scheduling Problem",
Technical Report No. 243, Department of Operations Research, Cornell
University (December 1974)

.

[5] M.L. Fisher, W. Northup, and J.F. Shapiro, "Using Duality to Solve

Discrete Optimization Problems: Theory and Computational Experience",

Mathematical Programming^ Study 3.

[6] M.L. Fisher and J.F. Shapiro, "Constructive Duality in Integer Programming",
Sim J. Appl. Math., 27 (1) (1974).

[7] A.K. Geoffrion, "Elements of Large-Scale Mathematical Programming",
Management Science 16 (11) (July 1970) 652-691.

[8] A.M. Geoffrion, "The Capacitated Facility Location Problem with Additional
Constraints", Graduate School of Management, University of California
at Los Angeles, (February 1973).

[9] A.M. Geoffrion, "Lagrangean Relaxation for Integer Programming", Mathematical

Programming^ Study 2, December, 1974, 82-114. . _

[10] M. Held and'R^M. Karp, "The Traveling-Salesman Problem and Minimum Spanning
Trees: Part II", Mathematical Programming (1) (1971) 6-25.

[II] M. Held, P. Wolfe, and H. Crowder, "Validation of Subgradient Optimization",

Mathematical Programming, 6 (1) (1974) 62-88.

112] L.S. Lasdon, Optimization Theory for Large Systems (The Macmillan Company,

New York, 1970)

.

[13] L.S. Lasdon and R.C. Terjung, "An Efficient Algorithm for Multi-Item
Scheduling", Operations Research, 19 (4) (1971) 946-969.

[14] D.G. Luenberger, Introduction to Linear and Nonlinear Programdng
(Addison-Wesley, Reading, Mass., 1973).

[15] R.E. Marsten, W.W. Hogan, and J.W. Blankenship, "The Boxstep Method
for Large Scale Optimization", Operations Research, 23 (3) (1975).

[16] H.M. Wagner and T.M. Whitin, "A Dynamic Version of the Economic Lot

Size Model", Management Science 5 (1958) 89-96.

22

[17] P. Wolfe, "Convergence Theory in Nonlinear Programming", in:

Integer and Nonlinear Progranvning^ Ed. J. Abadie (North Holland,
AfflSterdam, 1970), 1-36.

23

Appendix 1. Data for the facility location problem.
(in-9, p=7, n=40)

.069837

.065390

.072986

.068788

.072986

.064241

.067739

0.0

0.0

_1

24

1

25

Let C=(G-'-, C^ C^) where C^ = (ch for'i=l, 9; and j=l, ..., 40.

Only the finite components of C will he listed. (Each facility can

serve only a subset of 40 customers)

.

'

fi

26

fl

27

i

28

Let B = [B-'-, B^ B^] where B^ - (b^.) for i = 1, 9; p-1, 7; and

8
j-1, AO. Only the non-zero tomponents of B .will be listed. Note that B -

and B' 0.

-1.0 for j = 5,7,8,10,11,12

-1.0 for j = 10,11,12

-1.0 for j = 17,23,24,25

-1.0 for j - 31,38,39

-1.0 for j = 34,35,36,37

-1.0 for j = 13,14,16

-1.0 for j = 4,16,19

^2 ^3 ^i

2 7.0 1.0

3 1.0 4.0

4

5 4.0

6

7

3.0

4.0

1.0

4.0

4.0

1.0

r - (1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0)

29

Appendix 2. Data for the multi-item production

schetitiling problem.

We shall use the following notation [12, pp. 171-177],

8. set-up cost for item i,

h, inventory holding cost for item i,

p. unit production cost for item i,

a = amount of resource required for one set-up for item i,

k, = amount of resource required to produce one unit of item i,

b = amoxmt of resource available in time period t.

D = demand for item i in period t.

The data for the 50-item problem will be given. The first 25 items constitute

25
the /5-item problem when used with the resource vector b = (3550,3550,3250,

3250, 3100, 3100). The resource vector for the full 50-item problem is

b - (7000,6000,6000,6000,6000,6000). Both problems have 6 time periods. Let

h - 1, p = 2, and k = 1 for all i=l, ...,50. Let [x] denote the largest

integer that does not exceed the real number x, and let 0(j) = j(niod 5) for any

integer j. Then for i=l 25 we have

a^ = 10*
I

[i^J,] + ij

8^ = 75 + 25* 0(1-1)

while for i=26 , . . . , 50 ^q have

a - 5 + 10* 0(i-26)

s^ - 30 *
j [i-26] + 2 "l .

30

DEMAND

il 12 13 14 15 16

1

31

Appendix 3. Data for the single machine scheduling

problem.

1 6 34

2 10 61

3 5 56

4 1 23

5 9 80

6 9 1

7 1 18

8 5 21

9 2 14

10 3 113

11 7 95

12 4 77

13 6 63

14 2 56

15 3 60

16 8 78

17 10 1

18 6 58

19 9 27

20 8 24

