Christine KOURKOUMELIS University of Athens

The ATLAS Muon spectrometer and the hunt for the Higgs Boson(s)

UX15 Geneva

Tue Aug 22 13:00:02 2006

LHC pp collisions @ √s=14 TeV
 ATLAS (+CMS) detector optimised for l's, γ's,
 b-jets, jets, measurements with the SM and beyond
 Rapidity : |η|< 2.5 (l's, γ's) |η|< 5 (jets)
 Momenta : soft to 5 TeV

The underground cavern at point-1 for the ATLAS Detector

> Length = 55 m Width = 32 m Height = 35 m

13/9/2006

Milestones for the machine

Last magnet delivered*	October 2006
Last magnet tested	December 2006
Last magnet installed**	March 2007
Machine closed	31 August 2007
First collisions	November 2007

(Presented by CERN to SPC and Council 23-6-06)

Full commissioning to 7 TeV during shut-down of winter 2007/8 Physics Run @ $\sqrt{s} = 14 \text{TeV}$: Spring 2008

* >90% of magnets already delivered **half magnets installed July 2006 13/9/2006 C.Kourkoumelis-BPU6

Most spectacular magnet

10/0/2000

C.Rourkoumens-DI-OO

More magnets...

Barrel Solenoid Installed,cold,and operational

End-cap toroid(s) To be installed end 2006 (A) & beg 2007(C)

13/9/2006

Calorimeters :

EM: Pb-Ar (barrel) (filled with 45kl LAr) Hadronic: Fe/Tiles (barrel) Cu/W-LAr (end-caps)

C.Kourkoumens-Bruo

End cap calorimeter

Inner detector (tracking)

SCT + Si pixels + TRD with straws for e/π discrimination

Took cosmics To be installed in the pit soon

13/9/2006

Muon Spectrometer: What for?

- Measure momenta from ~5 GeV to few TeV
- Trigger on muons (+BC)
- Identify muons
- Physics channels:

•
$$H \rightarrow ZZ^* \rightarrow \mu \mu \ell \ell$$
,

•
$$A \rightarrow \mu\mu$$
,
• $Z' \rightarrow \mu\mu$.

13/9/2006

C.Kourkoume

Muon spectrometer +Inner detector

The different technologies of Muon chambers

Overview of muon trigger

Determine Trigger segments ROI in η,ϕ of width ($\delta\eta,\delta\phi$)

Overview of muon identification

I Muon system as tracker

- standalone Muon system
- combination of muon and ID track
- Eloss-calorimeter

II Muon system as tagger

starting point is ID track
muon identification by extrapolation and matching to muon segments/hits

III Calorimetry tagging

13/9/2006

PRECISION CHAMBERS (380,000 MTD tubes)+CSC's Challenge was the construction accuracy and the constant monitoring

The Greek Tracking Muon Chambers (BIS)

Transverse view of the Muon Spectrometer

The three Greek Laboratories:

- University of Athens (UoA)
 MDT tube assembly
- National Technical University of Athens(NTUA) *Quality Assurance/Quality Control of MDT tubes*
- Aristotle University of Thessaloniki (AUTh) MDT chamber assembly and test

Barrel Inner Small Chambers

The tube wiring table at UoA (start 1998)

The finished product!! Installed at the pit (summer 2006)

13/9/2006

Barrel Muon Installation

Barrel chamber installation (to be almost completed at end of August)

Big-Wheel Sectors' installation

13/9/2006

Cosmic rays at station 13 (feet)

13/9/2006

13/9/2006

Now: Let's look at some examples of expected physics performance during the first years

LHC machine scenario:

```
Nov 2007 : pp collisions at \sqrt{s}= 900 GeV @ 10<sup>29</sup> cm<sup>-2</sup>sec<sup>-1</sup>
April 2008 : two beam-collisions (low luminosity)
End 2008 : accumulate few fb<sup>-1</sup>
```

```
Assume: 10 pb<sup>-1</sup>/month @10<sup>30</sup>
100pb<sup>-1</sup>/few days @ 10<sup>32</sup> (eff~50%)
1-10 fb<sup>-1</sup>/year
Assume: 6*10<sup>6</sup> sec/year (duty factor 20%)
L~ few*10<sup>33</sup> cm<sup>-2</sup>sec<sup>-1</sup> up to 2009
```

End 2007 running :pp collisions @ $\sqrt{s=900~GeV}$ L~10²⁹cm⁻²s⁻¹

Very few W, Z's, **mainly detector commissioning**, min bias events (1M/day),UE, compare to SppS data, trigger rate 1-2kHz

C.Kourkoumelis-BPU6

13/9/2006

Process	Eve	Events	Events
	nts/	for	for 10 fb ⁻¹
	S	1 fb ⁻¹	(one year)
$W \rightarrow ev, \mu v$	15	7*106	7*10 ⁷
$Z \rightarrow ee, \mu\mu$	1	~10 ⁶	107
H m=130 GeV	10-2	6*10 ³	6*10 ⁴
H m=180 GeV	10-4	60	6*10 ²
$\widetilde{g}\widetilde{g}$ m=1 TeV	10 -3	10 ² -10 ³	10 ³ -10 ⁴
$tt \rightarrow WbWb \rightarrow \mu v + X$	1	8 * 10 ⁴	8*10 ⁵
$bb ightarrow \mu v$ +X	10 ³	106	107
Minimum bias	10 ⁸	106 >*10-2	107 *10-2
QCD jets p _T >150 GeV	10 ² Kourkoum	10 ⁶ elis-BPU6	10 ⁷ J ₂₇

LOW MASS

Difficult region !!!

 \square For the mass range $m_{H} \sim 115\text{-}130~GeV$

three channel combination (each about 2σ)

HIGH MASS

Keep in mind that according to SM $m_H < 166 \text{ GeV}$ (Moscow conference)!!!

For $m_H > 2m_Z$ early discovery with:

CMS+ATLAS

H→ ZZ→ 41 "gold plated channel" (low-rate BUT very clean) Good lepton efficiency +good mass resolution

other: $H \rightarrow W W \rightarrow IvIv$ (counting)

	$H \to 4 \mu$	BR*σ (fl)
gg $ ightarrow$ H $ ightarrow$ 4 μ (m=130 GeV))	0.535	0.682 (gg fusion+VBF)
gg \rightarrow H \rightarrow 4 μ (m=150 GeV))	1.02	1.325 (gg fusion+VBF)
gg \rightarrow H \rightarrow 4 μ (m=180 GeV))	0.573	0.759 (gg fusion+VBF)
Irreducible $qq \rightarrow (Z/\gamma^*)(Z)$	ζ*/ γ*) → 4 μ	17.6	22.88 (1.3 factor account for missing $gg \rightarrow ZZ$)
Irreducible qq →(Z/γ*)(Z	ζ*/ γ*) → 2μ2 τ	35.2	45.76 (1.3 factor account for missing $gg \rightarrow ZZ$)
Reducible : $gg \rightarrow (Z/\gamma^*)bb$ 2 μ	, with (Z/ γ^*) $ ightarrow$	22.4 ×10 ³	22.4 ×10 ³
$\begin{array}{l} \mbox{Reducible}:\mbox{gg, qq} \rightarrow \mbox{tt} \rightarrow \\ \rightarrow \mbox{μ ν} \end{array}$	WbWb, with W	5.73 ×10 ³	5.73 ×10 ³

ATLAS discovery potential in 3 yrs low L

34

ONE YEAR Covers almost all mass region (if detector known...)

What do we need fast? (1)

Understand the detector

- Dead/hot channels, dead material
- Calibration and alignment tracker (20µm few months)+ µ chambers
- Run beforehand with cosmics, single beam (10⁶events/3 months, beam-gas 10⁷events/2months)

> Electron energy scale ($Z \rightarrow ee$) EM calorimeter (10⁵ events +uniformity)

- \succ Jet energy scale (tt \rightarrow WbWb \rightarrow blv bjj) hadron calorimeter
- Measure cross-sections : minimum bias, underlying event, QCD jets, DY,W,Z,tt ~ 10-20% (10% from L)
 Measure t mass (~few GeV)
- > B-tagging from top decays (4 high p_T jets)

What do we need fast?(2)

Statistics available: 100 Hz events to tape \implies 10⁷ events to tape /3 days 10³events/day after cuts 1 PB of data /year/experiment

Measure standard SM processes to get to understand the detector and get an estimate of background "today's physics is tomorrow's background (top,bb,W/Z)

> Need $\sigma/m \sim 1\%$ on e,μ and small tails 90% e,μ efficiency even at low p_T $\sigma/m \sim 10\%$ for jets b-tagging

Understanding of background , Forward jet/central veto

When all this has been done (after one year...)

- Get better accuracies (mass scales etc)
- Look for more rare processes

How about MSSM Higgs (h,H,A)?? A large variety of channels (Msusy>1TeV)

 $m_h < 135 GeV$ $m_A \sim m_H$ at large m_A

Minimal mixing mh<116 GeV fully explored by LEP

 $H/A \rightarrow \mu\mu$: Very clean for (see talk of M.Milosavljevic)

> Full exploitation requires 100fb⁻¹ Difficult region : $3 \times \tan \beta \times 10$ and $120 \times M_A \times 220$ GeV Intermediate tanß region : only h detectable 39

Conclusions

With a bit of luck and a lot of hard work everything will be under control (experiments + machine)

Back-up slides

7/10/2000

ct--lik-l-- 2000

	ATLAS	CMS
MAGNET (S)	Air-core toroids + solenoid in inner cavity 4 magnets Calorimeters in field-free region	Solenoid Only 1 magnet Calorimeters inside field
TRACKER	Si pixels+ strips TRT \rightarrow particle identification B=2T $\sigma/p_T \sim 5x10^{-4} p_T \oplus 0.01$	Si pixels + strips No particle identification B=4T $\sigma/p_T \sim 1.5 \times 10^{-4} p_T \oplus 0.005$
EM CALO	Pb-liquid argon σ/E ~ 10%/√E uniform longitudinal segmentation	PbWO ₄ crystals $\sigma/E \sim 2-5\%/\sqrt{E}$ no longitudinal segm.
HAD CALO	Fe-scint. + Cu-liquid argon (10 λ) $\sigma/E \sim 50\%/\sqrt{E \oplus 0.03}$	Cu-scint. (> 5.8 λ +catcher) $\sigma/E \sim 100\%/\sqrt{E} \oplus 0.05$
MUON	Air $\rightarrow \sigma/p_T \sim 7 \%$ at 1 TeV standalone	$Fe \rightarrow \sigma/p_T \sim 5\%$ at 1 TeV combining with tracker

Monitored Drift Tubes width (tube length) : 83-494 cm length : 90-216 cm

Tube : Al, 30 mm φ , 0.4 mm wall Wire : 50 µm, W/Re alloy (97/3) Gas : Ar/CO₂ (93%/7%) at 3 bar Gas gain : 2x10⁴ at 3080 V Maximum drift time : ~ 700 ns Resolution : 80 µm \checkmark 13/9/2006 C.Kourkoumelis-

44

RPC's : Trigger in Barrel

- Three RPC detector layers:
 - 2 in the middle station, 1 in the outer (380 MDT/RPC stations)
- Each layer:
 - 2 gas gaps and 4 readout planes for each detector element
 - Eta and Phi read-out copper strips panels, pitch ranging from 26.4 to 33.9 mm
- Each gap:
 - 2 mm gas gap with plastic laminate electrodes
 - plate resistivity : ~ 1- 4x10¹⁰ Ωcm
 - Gas mixture: (C₂H₂F₄) 94.7% (C₄H₁₀) 5% -(SF₆) 0.3%
- Performance:
 - RPCs working in avalanche mode
 - Efficiency: > 98%
 - Time resolution: ~ 1-2 ns
 - Spatial resolution: 5-10 mm
 - Rate capability: ~ 1000 Hz/cm²

C.Kourkoumelis-BPJ6 controlled, gas controlled5

13/9/2006

TGC's Trigger in forward regions

 Basic structure a MWPC with graphite cathode

- Signal is read from both anode wires and cathode strips
- · Gap between ano-cath is 1.4 mm
- Wire spacing is 1.8 mm
- 50 μm tungsten wire
- Gas CO₂:n-Pentane (55:45)
- Efficient 25 ns tag

G. Mikenberg - Weizmann/CERN

13/9/2006

 Determine muon position by interpolating the charge on 3 to 5 adjacent strips

- ΣQi ~ Landau Distribution
- Measure Q1, Q2, Q3... with 150:1 SNR to get σ_x ~ 60 μm.
- Second set of y-strips measure transverse coordinate to ~ 1 cm.
- Position accuracy unaffected by gas gain or drift time variations.
- Accurate intercalibration of adjacent channels essential.

Technology & Layouts – ATLAS & CMS

Chamber Technology	ATLAS	CMS
Tanakan Tanakan		
Outer radius of Tracker Technology Min (XX ₆) η ~ 0 Max (XX ₆) η ~ 1.7	107 cm Silicon & Straw Tubes 0.3 1.2	110 cm Silican 0.4 1.5
Drift Tubes	MDT	DT
Coverage Number of chambers Number of channels Function	אַ < 2.0 inner. אַ < 2.7 middle & outer 1.170 364.000 Precision Measurement	n < 1.2 250 172.000 Precision Measurement. Trigger
Cathode Strip Chambers (CSC)		
Coverage Number of chambers Number of channels Function	2.0< ŋ < 2.7 Inner layer 32 31.000 Precision Measurement, 2nd Coordinate	1.2< ŋ < 2.4 458 600.000 Precision Measurement. Trigger
Resistive Plate Chambers (RPC)		
Coverage Number of chambers Number of channels Function	n <1.06 1.112 374.000 Triggering, 2nd Coordinate	n < 2.1 912 160.000 Triggering
Thin Gap Chambers (TGC)		
Coverage Number of chambers Number of channels Function	1.05< n < 2.4 1.578 320.000 Triggering. 2nd Coordinate	

Physics Impact of Staging ATLAS components

ATLAS RRB-D 2001-118 F.Gianotti and P.Jenni

Staged items	Main impact expected	Effect (loss in significance)
1 pixel layer	ttH →ttbb	~8%
Cryostat Gap scintillator	H →4e	~8%
TRT wheels + CSC's MDT's HLT (trigger)	H →4µ A/H →4µ B-physics + High-p _T physics	~7% ~10% for m=300GeV dangerously cut

5-σ Discovery Contour for H⁺

50

13/9/2006