

QCD Prospects for ATLAS

Rainer Stamen Universität Mainz On behalf of the ATLAS collaboration

> QCD 06 Montpellier, July 3rd 2006

$$\sigma = \sum_{i,j} \int dx_1 dx_2 f_i(x_1, \mu^2) f_j(x_2, \mu^2) \hat{\sigma}_{ij}(x_1, x_2, \alpha_s(\mu^2))$$

Everything we do at LHC is QCD

Goals for QCD studies at LHC:

- Precision Tests of SM
- Input to understand BSM signal cross sections
- Input to understand background processes for searches

Outline

- · LHC & ATLAS
- Kinematic Space
- Examples for Physics Possibilities
 - Parton Densities
 - Jet Physics
 - Underlying Event

		and and

Schedule: Now: Installation 2007: First Collisions (450 GeV × 450 GeV) 2008: High Energy (7 TeV × 7 TeV) 3 y. low lumi (10³³cm⁻²s⁻¹<=> 10 fb⁻¹/y.) 3 y. high lumi (10³⁴cm⁻²s⁻¹<=> 100 fb⁻¹/y) pp Interactions $\sqrt{s} = 14$ TeV

LHC

 $L = 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ (design)

Process	σ (nb)	Evts/year (10 fb ⁻¹)
Minimum Bias	10 ⁸	~10 ¹⁵
Inclus. Jets (p _T > 200 GeV)	100	~ 10 ⁹
bb	5 10 ⁵	~ 10 ¹²
$W \rightarrow ev$	15	~ 10 ⁸
$Z \rightarrow e^+ e^-$	1.5	~ 10 ⁷
tt	0.8	~ 107
Dibosons	0.2	~ 10 ⁶

ATLAS

* hadronic $|\eta| < 4.9$: $\sigma_{F}/E = 50\% / E(GeV) + 3\%$

Calorimetry:

Muon system (~4T toroid ,|n|<2.7):

* electromagnetic $|\eta|$ <3.2:

 $\sigma_{\text{pt}}/\text{p}_{\text{t}}$ = 10% for p_t(µ) = 1 TeV/c

Inner Detector (2T solenoid, $|\eta| < 2.5$):

 $\sigma_{pt}/p_{t} = 0.05\% \times p_{t}(GeV) + 1\%$

 $\sigma_{\rm F}/{\rm E} = 10\%/{\rm E}({\rm GeV}) + 0.1\%$

Length ~45 m, height ~22 m, weight ~7000 tons

Energy Scale Uncertainty: Electrons 0.1% (0.02%) Jets 1% -> Precision Device

ATLAS

ATLAS Atlantis Event: JiveXML_1114_00005

- construction & commissioning of components underway
- ATLAS will be ready in 2007

Kinematic Space

- x momentum fraction of participating parton
- Q Energy Scale of the hard interaction

Large Mass range accessible

x-space almost covered by HERA DGLAP -> prediction for LHC -> check DGLAP at low x (higher orders needed?) -> more precision at high x

- Vector Boson Production: Photons, W's, Z's
- Jets, heavy quarks, ...

sea quark distributions driven by gluon (main uncertainty for LHC x-sections)

- sensitivity to PDF differences 16-18% disagreement on γ and jet p_T distributions
- develop full analysis

differences: up to 5%

systematics: goal 3.5%

Jet Physics

increase of phase space by factor 5

- precision tests at high scales - differential dijets x-sections (E_T, η_1, η_2) give also constraints on PDFs

Parton Densities

Impact of PDF uncertainties: Search for extra dimensions (Dijet cross section)

- Extra Dimensions are masked behind PDF uncertainties (high-x gluon)
- Sensitivity: (Mc ~ 2 TeV)

-> increase precision

Underlying Event

-> Very important first measurement

Underlying Event

- Many models exist, tuned to Tevatron Data
- Large discrepancies when extrapolated to LHC energies

Possible Timeline

Depends on: machine development (increasing luminosity) 1-2 fb⁻¹/y. 3×10fb⁻¹/y. 3×100fb⁻¹/y. detector understanding (increasing precision) precision needs time and luminosity calibration using data (e.g. Z->ee, γ+jet production)

Summary

- Possibility to test QCD at highest energies, smallest distances (smallest coupling constant) e.g. Jet cross sections, ...
- Refinement of PDF knowledge
- Nonperurbative aspect (inelastic pp event structure)