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Abstract

Problems having the mathematical structure of a quadratic assign-
ment problem are found in a diversity of contexts: by the economist in

assigning a number of plants or Indivisible operations to a number of

different geographical locations; by the architect or industrial engi-
neer in laying out activities, offices or departments in a building;
by the human engineer in arranging the indicators and controls in an

operators control room; by the electronics engineer In laying out com-

ponents on a backboard; by the computer systems engineer in arranging
information in drxan and disc storage; by the production scheduler in

sequencing work through a production facility, and so on.

In this paper we discuss several types of algorithms for solving
such problems, presenting a unifying framework for some of the existing
algorithms, and describing some new algorithms. All of the algorithms

discussed proceed first to a feasible solution and then to better and

better feasible solutions, until ultimately one Is discovered which

Is shown to be optimal.

In a subsequent paper we shall discuss our computational experience

with a number of these algorithms.
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I. Introduction

The quadratic assingment problem is one which arises in a diversity

of contexts and has been investigated by a number of researchers. For-

mally, the problem may be stated simply as follows: given n cost coef-

2
ficients S. , (i,j,k.,q = l,2,3,...,n) determine values of the n vari-

iJK-q

ables x..(i,j = 1,2,3,. ..,n) so as to:

Minimize Z = Z_, .Z, S... x. .x, (1)
i,j k,q ijkq ij Icq

n
Subject to: E x. . = 1 j = 1,2,3,.. .,n (2)

i=l ^J

n
Z X =1 i = 1,2,3,. ..,n (3)

j=l ^^

and X.. = 0,1 i,j=l,2, . . . ,n (4)

Historically its name derives from the fact that mathematically

its structure is identical to that of the classical linear assignment

problem concerning the assignment of n indivisible entities to each of

n mutually exclusive classes, one entity per class, except that in the

present case the objective function (1) contains terms which are quadra-

tic in the decision variables.

Commencing in the field of economics, Koopmans and Beckman [15]

identified this name with the structure of problems which concern the

assignment of n indivisible plants to n locations. Suppose the cost

of establishing and operating plant i at location j plus the cost of



supplying prespecified product demand to customers from this location is

c ,i,j = 1,2 n, these costs being independent of other plant-loca-

tion assignments. Also suppose that between plants i and k there is a

commodity flow of f units (e.g. weight) which is independent of plant

location, and that the cost per unit flow between locations j and q is

d. , independent of plant assignments. Then in this context (1) becomes;

Z=. .c. .X.. + .., f., d. X . . X, (5)
i.J ij ij i.j k.q ik jq ij kq ^ '

where

" '^
( c^ + f d , if i = k and j = q

As a generalization to this assignment problem, Lawler [18] discusses

the multicommodity case in which there is a flow f., for each commodity

t and a cost per unit flow between locations j and q of d. . As another
^ jq

generalization. Graves and Whinston [12] point out the possibility in

this model of a cost component w that depends on a pair of assignments,
Ij Kq

such as might be illustrated by the cost of laying a pipe line between

two plants. Combining these we thus have the more general cost expression:

/i-..cx+ w. ., X..X, + . ^ ,
f., d^ X..X,

i.J ij ij i.j k,q ijkq ij ^q i,j k,q t ik jq ij k q

where / .. . Z ^ t

S
( ^Jkq +

t ^k '^Jq
i^ i '^ ^ ^'^ ^ ^ O

iji^q
I i
' c. + f d if i = k and j * q /

(6)

'ij ii jj



In the event there are no inter-plant flows f = o for all i,k,t, and

the problem in (5) reduces to the linear assignment problem. When c

= for all i, j and

ilk=i+l, i<n

1 i = n, k = 1

otherwise

the problem reduces to the traveling salesman problem.

At a more micro-economic level this problem arises in the context of

locating department of offices within a plant or store to minimize the

cost of transporting product, the total distance walked, or some similar

measure [1,2A , 31 ,32] . At a still more micro level it is the problem of lo-

cating operator dials and indicators on a display and control panel. In other

contexts (1) - (4) is the problem of minimizing "latency" in magnetic drum

or disc storage computers [19], minimizing total wire length in the place-

ment of electronic components in assemblies [2,7,30], or minimizing total

flow time or total variable production and inventory carrying cost in various

production sequencing problems [22].

In some contexts there may be constraints applicable to the problem

which are not represented in the statement as embodied in (1) - (4). For

example, there may be a restriction that plant i not be located at j,

or a restriction that plants i and k be not more than distance d apart,

or that i and k be closer than d. All single and pairwise constraints



of this kind are readily accommodated in (1) - (A) by setting s^ = M, M-«o.

However, more difficult to Include are constraints involving three or

more assignments unless it be possible to derive an equivalent set of

pairwise constraints. While the algorithms to be discussed can be adapted

for such cases the resulting algorithms may not be as efficient.

From a problem-solving point of view there may in practice, be fewer

than n plants, m < n, but with no loss of generality we may assume m = n

by introducing dummy plants m + 1, m + 2,...,n with c . , = and f =

for all i,k > m. Also it is noted that, stated in terms of a plant i

and its location l(i), problem (1) - (4) and its variations is the problem

of finding a permutation (1(1), 1(2), 1(3),..., l(n)} of the integers

{1,2,3, ... ,n} so as to minimize:

Z= ^ S^ i,k ^ikl(i)l(k)

This representation will sometimes be used in the following discussion.

For solving quadratic assignment problems a number of procedures of

both the reliable and the unreliable type have been reported in the liter-

ature. Reliable procedures for determining optimal solutions with objec-

tive function (5) have been presented by Gilmore [10] and Lawler [18], and

2
for the symmetric case of (5) by Land [16] and Gavett and Plyter [8].

For the problem with the general objective function (6) a reliable algo-

rithm has been given by Lawler [18]. On the other hand unreliable proce-

dures have been reported for various quadratic assignment problems by

By a reliable problem-solving procedure we shall mean one which, if
carried through to completion, guarantees the discovery of an optimal
solution.

2A symmetric distance matrix dj_ = dq^ for all j and q allows the flow
between activities to be summed, f' » f + f , thereby possibly simplifying
the problem-solving process.



Armour and Buffa [1], Gaschutz and Ahrens [7], Gilmore [10], Graves and

Whinston [12], Hillier [13], Hillier and Connors [14], Nugent, Vollman,

and Ruml [23], Pegels [24], Steinberg [30], Vmitehead and Eldors [32] and

3
by Wimmert [33]. An interesting experimental comparison of a number of

these latter procedures is presented in the paper by Nugent et al [23].

From a computational point of view, the present status can perhaps

be succinctly summarized as follows. Existing reliable algorithms can

essentially be classified into three groups: the integer programming ap-

proach of Lawler [18]; the semi-enuraerative procedures of Lawler [18]

and Gilmore [10]; and the semi-enumerative approaches of Gavett and Plyter

[8] and Land [16]. With presently available integer programming algorithms

the first appraoch is impractical even for small problems, in light of the

size of the programming problem which results. For the second group we

know of no actual computational experience with the algorithms, but as

stated by Gilmore [10] his reliable algorithms are "probably not compu-

tationally feasible for n much larger than 15." For the third group

Gavett and Plyter [8] report that with their algorithm as programmed in

Fortran on an IBM 7044, a problem with n=7 required 14 minutes and one

with n=8, 42 minutes. In short, in the words of Nugent et al, "one is

forced to conclude that no computationally feasible optimal-producing

procedure exists at present. Interest must focus on suboptima] procedures."

In the present paper we re-direct attention back to reliable procedures

for solving quadratic assignment problems. The methods to be considered are

\he algorithm of Wimmert was originally presented as ylelding^optimal

ions but was sul

suboptimal solutions.
solutions but was subsequently shown by Conway and Maxwell [3] to yield



those which have equivalently been referred to as branch and bound

procedures [20], back-track programming procedures [11], implicit

enumeration procedures [9], reliable heuristic programming procedures

[25], and others. Essentially these are the types of methods that

were used in the algorithms of Gavett and Plyter [8], Gilmore [10],

Land [16], and Lawler [18]. In the following sections we present a

unified framework in which to compare the existing algorithms, and

discuss some alternative search strategies and other means by which it

may be possible to devise more efficient procedures.

Before turning to the algorithms in detail, however, we shall

comment briefly on the nature of the methods to be considered and the

reasons for our inclination toward them. The most common name for the

procedures to be investigated is "branch and bound," the name given to

the ideas employed by Little et al. [20] in their algorithms for solving

the traveling salesman problem. Their work has made demonstrably clear

the great potential of these methods for the solution of complex com-

binatorial problems. The "branch" notion stems from the fact that in

terms of a tree of alternate potential solutions to the problem the

procedure is continually concerned with choosing a next branch of the

tree to elaborate and evaluate. The "bound" term denotes their emphasis

on, and effective use of, means of bounding the value of the objective

function at each node in the tree, both for eliminating dominated paths

and for selecting a next branch for elaboration and evaluation. '•



Perhaps the essence of the procedures to be considered is most suc-

cinctly captured in the meaning given to "combinatorial programming" by

its authors Rossman and Twery [26]. By combinatorial programming we mean

procedures developed on the basis of two principal concepts: the use of a

controlled enumerative technique for (implicitly) considering all poten-

tial solutions; and the elimination from explicit consideration of parti-

cular potential solutions which are known from dominance, bounding and

feasibility considerations to be unacceptable. All of the equivalent

terms for these methods will be used interchangeably thoughout.

As will become apparent many of the feasibility, dominance and bounding

considerations presented in the following sections are also applicable in

other combinatorial programming algorithms as well as in other types of

problem-solving procedures. In the following sections,

attention will be focused on combinatorial programming algorithms in

which problem-solving proceeds first to the discovery of a feasible

solution and then to successively better feasible solutions until

ultimately one is discovered which is shown to be optimal. We direct

attention to these procedures principally because they have the follow-

ing three desirable attributes.

First, with such procedures there is a possibility of obtaining

usable solutions and terminating problem-solving prior to the ultimate

completion of the problem-solving process. This feature is obviously

important for quadratic assignment problems.



Second, these procedures exploit In an efficient manner Information 1

that is available beforehand pertaining to the value of an optimal solu-

i
tion, as is always the case for instance when a feasible solution is known 1

from experience or has been derived with the aid of a heuristic (unreliable)

procedure. That is, since in the procedures to be investigated subsequent

search is always directed toward solutions with a value better than the best

known so far and will terminate if a solution is discovered attaining a known

lower bound, use of a priori knowledge of upper and/or lower bounds serves to

reduce the region that need be searched. Therefore, in contexts where

good heuristic procedures are available, for example, a system of problem-

solving procedures may prove advantageous in which the reliable, direct

algorithm is employed as an adjunct to the heuristic procedures, an adjunct

to be employed when in a given instance the economics of the problem and

problem-solving effort together with environmental considerations warrant

the added search for a solution better than that yielded by the heuristic

procedures.

Thirdly, these algorithms are attractive in that with slight modifi-

cation they can be employed to find not only an optimal solution, but all

optimal solutions, or a specified number of most preferred solutions, or

all solutions having a value within a specified interval of the optimal

value, and so on. Such possibilities may be of interest in contexts in

which there are attributes of the problem of importance which are not di-

rectly represented in the model of the problem being solved.
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II. Single-Assignment Algorithms

As noted earlier, a first principle of combinatorial programming is

the use of a controlled enumeration procedure for systematically consider-

ing, at least implicitly, all potential solutions. For quadratic assign-

ment problems there are at least two general procedures; one based on the

systematic consideration of single assignments, x , and one based on the

systematic consideration of pairs of assignments, x x . Both types

have appeared in reliable algorithms to date, Gilmore [10] and Lawler [18]

using the former, and Land [16] and Gavett and Plyter [8] using the latter.

In this section we consider algorithms of the former type.

A property of a feasible solution to the problem (2)- (4) is that with

the variables x.. arranged In an n x n matrix X =» \\^jA\ there exists

exactly one variable in each row and column of the row assignment matrix

X having unit value. To satisfy the requirements for considering all

potential solutions, we therefore need a controlled enumeration procedure

for generating all possible ways of selecting one element from each row

and column of X- One possible procedure, for example, is to successively

select elements from successive rows of X and to select within a given

row the first element (when scanned from left to right, say) which wl,ll result

neither in a nonfeasible solution nor in a solution already generated.

Ultimately upon making a selection from row n and hence completing the speci-

fication of a solution, the procedure backs up to row n-1, selects the next

admissable element and steps forward to row n again. The results may be
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represented in a tree structure with the i th level of nodes representing

the permissable assignments for plant i, 1(1), in the permutation

{1(1), 1(2), .... l(n)} as shown in Figure 1. Note that each path in

this tree represents a feasible solution to our problem.

Level 1: PLANT 1

Level 2: PLANT 2

Level n: PLANT n

Location

Locatio;

Location G
Illustrative tree with each level representing
a unique plant.

Figure 1

The procedure described above would thus elaborate the tree shown

from left to right. Enumeration may thus be equivalently viewed as en-

tailing the successive row by row selection of an element from matrix X

to include in the permutation 9 = {1(1), 1(2), ..., 1 (n) } or as entailing

the successive level by level selection of branches in a tree (one branch

per level) until a terminal node is reached at level n. Upon reaching a

terminal node, the corresponding assignment is evaluated and the tree-

evaluation process backtracks to the lowest node on the path for which all

branches have not been elaborated, selects the next and resumes. When the

process has backtracked to the origin node and all its branches have been

enumerated, generation and hence problem solving is complete.
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In addition to this illustrative enumeration scheme there are many

others for systematically selecting an element from each row and column

of X. For example, if we interchange the words "row" and "column" in

the cited procedure, we have a tree with levels corresponding to locations

rather than plants, as shown in Figure 2.

Level 1: Location 1

Level 2: Location 2

» « •

Level n: Location n

Plant

Plan

Illustrative tree with each level

representing a unique location.

Figure 2

If in the process of exhaustive enumeration, it becomes knovm with

certainty for a particular node assignment, that all paths which pass through

this node represent potential solutions which are nonfeasible or are

dominated by a feasible solution already discovered, then the enumeration

and evaluation of all branches emanating from this node can be eliminated

without imparing the reliability of the problem-solving procedure. Let

us consider possibilities for reducing search based on dominance considerations,

tes 0. if Z-. < Z^ . .For any two feasible solutions, 0. and , 0^ dominates 0. if Zq <_

J

If in an exhaustive procedure 0. denotes the ith feasible solution discovered

then in general Z„ = Z„ . Through dominance consideration we seek to

®i^ i+1



I

reduce enumeration and evaluation of feasible solutions to a subset in which

®1 °2 °(u)

4
where Z,-, is an optimal solution. In effect, this is accomplished by

affixing to the problem throughout the search process a constraint of the

form Z„ < Zg where is -; '~ - -f-

solution discovered so far. In essence, the optimization problem is hereby

transformed into a sequence of u feasibility problems for purposes of problem-

solving. To implement this type of consideration a lower bound B is developet

on Zg at each node in the tree for all 0. whose paths pass through the given

node, that is, B £ Z^^ for all ; if B >^ Zi then no branches emanating from th

node need be explicitly considered

For the quadratic assignment problem these bounds can be determined in

number of ways. Suppose we have arrived at a node on level v of a tree of th(

problem (v=o,l, . . . ,n-l) having made assignments ( 1, l(i)) and we now wish to

chose a next assignment, x .
. . Let a be a lower bound on the sum

S +S +ES
ijij k £ I Ijkl(k) -r- p^I ijpl(p) .where I is the set of assigned

plants i. Since the first two terms are known exactly we have

^ij ' ^ijij
"*

k e I ^ijkl(k) "^
2 ^ij ^^^

— V
where a. is a lower bound on the sum of (n-v) terms, Z -r

S., ,, >,

.

ij ^ '
, 'p / I ijpl(p)

As noted by Lawler a minimum bound a. . can be obtained by solving the

linear assignment problem of dimension (n-v). In the special case of

(5) where S , = (f ., d. + f , . d .), both Lawler and Gilmore point out that aijkq Ik jq kl qj
' ^

lower bound is more easily obtained by matching the largest value of f ,

with the smallest d. , the next to largest f., with the second smallest
jq ° ik

It is possible that more than one optimal solution could exist,
e.g. , Zg = Z = . ..= Zg

(u) ^(u+1) °(v) ,, .
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d,, and so on. For the symmetric case of d. =d . and t=l, S... =(f.,+f, .)d.
jl jq q1 ijkq Ik ki Jq

so that the sum of the products of these values actually gives a minimum

value. This applies equally to the case S. ., = ( f,, d. -f f , . d . )

.

^ ijkq t' ik jq ki qj

Thus by determining an appropriate bound Sj. a value can be obtained
J V

for each unasslgned plant 1 and location j remaining at level v. Let A

denote the resulting (n-v) matrix
|| a.. || . If we denote by Z =Mln.(

Z a.. X..} the value of an optimal solution to a linear assignment
. . Ij li
ij -* -" V V

problem defined by A , then a lower bound B on all feasible solutions

whose path passes through the node is: •

^ * E
^ = ^v

"
i.k el ^il(l)kl(k)

^^^

V
Thus if B >^ Z_ then the search process can be backtraced immediately without

considering any of the branches emanating from the node.

An alternative to this bound which requires less computation (but

is also less stringent) is suggested by Gilmore for the Koopmans-Beckman

problem which he Investigates.

With the objective function

^%^, ^ki(k)
-^

J^^ ^ik hanM
he suggests at level v the bound:

^ kel kl^^) l,ke I ^^ l(i)l(k) 1 2 J

where S is the value of an optimal solution to the (n-v)- dimensional

assignment problem defined by
1

1 c ^ 1
1 r5* i and t 3* 1(1) for any 1 e I,

^2= ^ (^ik • ^l(i).j "-'^ki -^jKi)

i.k el

j ^ i(q), q e I
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A A
where the largest element f., is matched with the smallest element d ..,,

and so on, and likewise for f, . and d
. , , . . , and finally where

ki Jl(i)

^ f., * d. *

S3=i.k<<I '^ '^

j.g 1« l(w)

any w e I

where the largest element of f * is paired with the smallest element

d. , etc.
jg

Let us now return to the discussion of controlled enumeration

procedures. The controlled enumeration procedures mentioned previously

are data-independent with respect to the order in which potential solutions

are investigated; for every problem having the same number n of plants the ordi

is identical regardless of the characteristics of the particular problem

being solved. In such procedures little problem-solving time is invested

in determining a next branch in the tree for investigation and (at least

in the procedures discussed) in keeping track of the part of the tree

investigated so far. Perhaps, however, more efficient combinatorial

programs may result by expending additional time on these functions and

making the ordering of search more dependent on the particular features

of the problem being solved.

There are at least two basic search patterns of a general data-

dependent nature wherein at each point in the search process a branch is

selected for elaboration to the next level which has associated with it a

most preferred value of a measure w. A natural characteristic to employ

While perhaps making it possible to eliminate from explicit
investigation particular subsets of potential solutions in a given problem,
feasibility and/or dominance considerations do not change the order of
consideration

.

Bookkeeping for the portions of the tree investigated so far would be

considerably more extensive, for InstAnrp. for ^ level-bv-level tvpe
search pattern such as with dynamic programming where all nodes-on-level j of
tree are elaborated before proceeding to level j + 1 ( or j-1), etc.
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as a measure W, for instance, is a lower bound on the total cost B of all
V

potential feasible solutions passing through the node. :

In the "flooding" type pattern a branch is always selected from

among all branches in the current tree requiring elaboration to a next

level. In the second type pattern, search is directed towards the

enumeration of complete paths so that In turn one branch is selected at

level 1, then one at level 2, etc.: at level j all branches emanating from the

single node selected at level j-1 are evaluated in terms of the measure B and

a most preferred one selected for elaboration to level j + 1. Upon reaching

a terminal node or one for which it is known that all paths passing through

it are dominated or nonfeasible, the process backs up as usual to the lowest

node for which all branches have not been considered. We will consider

principally this latter type wherein search can be directed first to the

discovery of a feasible solution and then to better and better feasible

solutions, although the discussion will generally be equally applicable

to the other basic strategies and to mixtures thereof as well.

At this point we can no^^7 summarize the approaches of Lawler and

Gilmore in the following way. Both approaches employ a search strategy

wherein the j*" level in the tree corresponds to the assignment of soiae plant

to the j
^ location, as suggested by the tree of Figure 2. The ordering

of locations j , j ,..., j is arbitrary or, perhaps as suggested by

Gilmore, in accord with some heuristic ordering rule such as by decreasing

y
sums , (d +d. ) Given this ordering, both employ the data-dependent

q ?^ J qj jq •

level-by-level search strategy wherein at level v the node chosen for

elaboration to the next level is one for which the bound B^_|_^ is lowest

among those not yet elaborated. Both approaches explicitly elaborate the
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(n-v) nodes branching from the node, evaluate B^^^^ for each, and repeat

the process. Should B, >^ Z^ for all nodes at any level k the process

backtracks to the lowest level in the tree for which there exists an

unelaborated node which is not dominated, and resumes. The difference

in the algorithms lies in the bounds B used. Lawler being concerned

with the general quadratic assignment problem with objective function

(1) solves a linear assignment problem to get each a., in (7), and then

a single linear assignment problem for I|a.,|l to get B , as given in (8);

when his problem specializes to the single-commodity Koopmans-Beckman

— V
problem, he proceeds in the same manner except that he gets each a..

directly by ordering elements as described earlier. Gilmore focuses

on the single-commodity Koopmans-Beckman problem and develops B either

in the manner described for Lawler or in accordance with (9).

As an illustration, we will solve the Koopmans-Beckman problem

of Gavett and Plyter [8] shown in Figure 3, computing bounds according

to (8). In our solution to this problem we will examine the locations

in the sequence A,B,C,D, so that at the first level for instance, we investiga

A-1, A-2, A-3, and A-4 , and so on. We begin however at the level with no

assignments. Therefore for

A-1: 1-0 , Z S . =

i, k G 1 il(i)kl(k)

^J
-

^ijij \il ^ijkKk)
-^ 1/2 IJ

.1/2^
a^_J - (7) (13) + (6) (25) + (2) (28) = 297

Using this procedure we establish matrix 2 la,. 11 and as a result all
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A

B

C

D

jq

B C

6

1
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This terra represents the interaction of the previous assignment (A-1)

with the possible new assignment (B-2)

= (5)(15) + (6) (4) = 99

where d^ ^ > d^
^^

and f (2,A) £ f(2,3)

- 1
a . .
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We select the smallest of these, A-2 to develop first at level two. We

now develop cell C-3 given previous selections of A-2, B-1

* "l.a'-'CA.B)

el ^ijk.l(lt1
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The information for level 3, and 4 are obtained by complete enumeration

which we designate with the symbolV^ J. We begin with B-4 ,

-4J^ __

;^Jf- J . '

403

The value of 806 for A-2,B-4 ,C-3,D-1, is shown to be the optimal solution.

405

478 403

Tree elaborated for problem of Figure 3 using

Gilmore-Lawler algorithm with bounds of equation (8)

Figure 4
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In contrast using the less stringent (but more easily evaluated)

bounds of Gilmore (9) the result is as shown by the tree of Figure 5.

As illustrations, we will now demonstrate the calculations for a bound

on (1) all solutions (li) solutions with A-A and (iii) solutions with

A-4, B-3 are as follows:

(i) 7-4 + 6-13 + 6-15 + 5-23 + 2'25 + 1-28 = 389

(ii) 7-4 + 6-13 + 2-23 +6-15 + 5-25 + 1-28 - 395

(iii) 6-23 + 7-4 + 2-13 +6-15 + 5'25 + 1-28 - 435

The resulting tree is seen to have a greater number of nodes than the

former but since the evaluation of each is less time-consuming the total

problem-solving time could be smaller.
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III. Extensions of the Slngle-Assigmnent Algorithm .

i

Turning to prospective improvements in the problem-solving

procedures which have been discussed, let us review the steps In

the Gilmore-Lawler algorithm at a node on level (v-1) in the tree.

For each of the (n-v+1) assignments (i,j) that can be made a lower

bound B is determined according to (8). To determine each of the

values B requires the formation of an (n-v+l)x (n-v+1) matrix A
v —

and the solution of the linear assignment problem which it defines.

To get each of the elements a., requires in turn the solution of an
ij

(n-v) dimensional assignment problem (which in the Koonmans-Beckman

problem can be accomplished by simply sequencing the relevant flow

and distance values and forming the inner product.) To make an

assignment at this node thus entails the solution of (n-v+1) assign-

2
ment problems of dimension (n-v) and (n-v+1) (n-v) problems of

dimension (n-v-1). By expending less computation effort in making

an assignment at each stage it may, however, be possible to achieve

overall improvement in problem solving. In the following discussion

we shall continue to employ the same level by level search strategy,

choosing at each level a node with a lowest bound, but shall consider

alternate ways of assessing the lower bounds.

In (8) the value Z for an optimal assignment solution to the
V

problem defined by matrix A was employed in developing bound B^,

but in general any value Z constituting a lower bound on Z^ may
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\*

also be used. One such bound less stringent than Z can be computed

with little effort by the matrix reduction method used by Little, et al,

[20]. This method rests on the fact that if T(g) is the cost of an

assignment with respect to a matrix A and if T' (g) is the cost of

that assignment with respect to matrix A' which is formed by subtracting

the constant b from each element of one row or column, then T(g) *

T'(g) + b, and the optimal assignments under both matrices are the same.

By subtracting appropriate constants from each row and column, a matrix

A" of non-negative elements with at least one zero in each row and

column can be obtained. Such a matrix they have termed a "reduced matrix"

and the sum of the constraints subtracted in forming the matrix, the

"amount of reduction." If T"(g) is the total cost of an assignment

with respect to the reduced matrix A", and R is the amount of reduction

incurred in reducing A, then T(g)=T"(g) + R. Since all elements in A"

are non-negative, T"(g)_>0 for all assignments g, and therefore the amount

of reduction R constitutes a lower bound on the optimal value of the

assignment problem defined by A.
,

.

We will denote by A" a reduced matrix for A and by Z" the reduc-
V V V

tlon achieved in reducing it. Z " may be used in place of Z in determining

B .

V -*.

Moreover, between Z" and Z there are a number of values Z' which
V V V

may be used. Of special interest are those derived during solution of

This can be accomplished, for Instance, by first subtracting from
each column the smallest element in the column and then subtracting from
each resulting row the smallest element in the row. In general, however,
the reduced matrix and the amount of reduction are not unique but may be
dependent on the order in which rows and column are reduced.
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the linear assignment problem by a dual algorithm since, for successive

iterations t,t + 1, . . . , of the algorithm, the value of the objective

t t t+1 *
function Z is non-decreasing: Z < Z < . . . <Z . With such an

V °v— V— — V

algorithm problem-solving can teirminate should the condition

Z*^ + E S > ZCi
--:

^ i.kei il(i)kl(k) - ®

become satisfied for any t, since all paths passing through the node

associated with A must then be dominated. Algorithms of this type

include, for example, the Hungarian method [A], the network flow algorithm

of Ford and Fulkerson [6] and the flow algorithm as improved by Sprague

[29]. At each iteration in these dual algorithms Z is the amount of

reduction associated with a matrix of non-negative coefficients A derived from

the original, a matrix in which a.. = for each x. . = 1 in the optimal solution.

Besides the choice of the amount of reduction to perform on a matrix

A =
II a..

1
1 there are numerous alternatives for selecting the elements

V " ij "

a, to be used in assessing B • As was noted earlier, in general any
ij " V

value a. . which results from use of an appropriate lower bound In (7) for

a.. is permissible. Thus, for example, in cases where in developing

A =11 a..
1

1 it is not possible to determine a., simply by sequencing
V " ij " ^ ij

the flow and distance elements and forming their inner product, it may prove

efficient to determine lower bounds on the a., in this same way, and then

proceed to solve the resulting matrix A as discussed. Another possibility

is to simply set A =
|| a^T || , i ?* k and j ?* q where (k,q) is the assign-

ment made in passing from level v-1 to level v, and then to employ the

bound: „v t v-1 _ „
^ - ^v

"^
^kl "^

i,kei il(i)kl(k)
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where Z is a lower bound on the problem defined by A and I is the set of

v-1
assignments existing when the elements a,, were determined. Or, in general:

v-1

^x ~ ^v
"* i^ ^Jil(Ji^

"^ i,i e I ^il(i)kl(k) (10)

where A =||a^,||,and a. ^,, s are the coefficients of the assignments
v,x ij Ji-'^^Jr

made and Z is a lower bound in the problem defined by A . And between
V v,x

V
these extreme alternatives of determining a minimum value for every a.,

according to (7) at level v and of simply using a.. from a previous stage then

is, for example, the alternative of re-computing only selected a. per-

9
ceived to be critical , together with others.

g
The bound in (10) follows directly from the fact that the

sum of the coefficients a in A for any feasible linear assign-
ment solution constitutes a valid lower bound on the cost of that
assignment in the quadratic problem.

9
As the potential variability in a cost coefficient a^^ diminishes

with successive assignments the potential importance of updating its
value may also diminish. For example, referring to (7) it is seen that
the only variability in the coefficient aij from level to level derives
from the product Z f. d. , , which decreases with increasing v. Letting

pel iP JJ^iP^

f* = mjn {f^j} , d* = m^n {d.^^} , f^^=f* + f ._j ,3nd d^j=d* + d^^ .

the sum becomes:

P^i 'iP '^n(p) =p^i <^%^ ^V'ji(p)>

" Constant + ^f d' ''"'
P iP jKp)

The maximum variability is thus TAl - f \A
R^^i(k) i(n+l-k)-'^i(n+l-k)

which can perhaps be used to assess the potential importance of
updating the coefficient a .
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Continuing further the discussion of alternate means of bounding,

recall that the situation we have been discussing was that in which we

had arrived at a node at level (v-1) and, in the manner of Lawler and

Gilmore, were making each of possible (n-v+1) assignments (j,l) at level

V and evaluating through means of an appropriate matrix A a bound B

for each of the (n-v+1) nodes. Any of the ways for getting the elements

for the matrices A and any degree of reduction could be employed in

each case. However, while perhaps resulting in less stringent bounds,

a value for each B at level v can be assessed at level (v-1) without
V

first generating each of the matrices A , hence reducing the computational

effort preparatory to making a next assignment. For if A -, ^^ ^" appropriate

assignment matrix for the problem at level (v-1) and A
_i''||

a,* 1 1 is any

matrix with nonnegative elements derived from it through one or more stages

of reduction, then a lower bound on solutions passing through the node at

level V which results from the assignment (l,j) is:

B*" .(l,j) = a^:
''^ + Z*" , + I S , . , . (11)

v-1 -" ij v-1 l.kET ilCi)kl(.k;

where Z , is the amount of reduction incurred in reducing matrix A to
v-1 V '-

A^ , . In practice A*^ , would most likely be the reduced matrix which
v-1 v-1

results from simply reducing rows and columns, or the matrix A associated

with an optimal assignment solution In which a.. = C for all x^ =1

in the optimal solution. To facilitate discussion, we will assume at

least the former so that there exists at least one zero element In each

row and column of A*^ , although this in no way limits the generality of
v-1

the discussion.
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To employ in this framework the search strategy of Gllmore and

Lawler which selects an assignment (i,v) which has a lower bound, we

simply choose an assignment corresponding to a zero element in the

column of A , representing location v. We then proceed to formulate
v-1

a matrix A for this one node, generating some or all of the remaining
V

(n-v) matrices at this level at a later point in the search process only

if not dominated.

To generalize somewhat beyond the search strategy of Gilmore and

Lawler and make search more dependent on the data, we may select from all

candidate assignments (i,j) at level (v-1) a next assignment, not limiting

choice to location v. Assuming A ^ is a reduced matrix, however, there

are at least (n-v-1) zero elements, at least one for each row and column.

Therefore, additional criteria are required for choosing among the zero

elements.

A very effective criterion is that of Little et al. [20] which

employs what is termed an alternate cost. At each point throughout the

search process the selection of an assignment (i,J) partitions the set of all

potential solutions into two subsets, one of all potential solutions

which includes (i,j) and the other of all potential solutions which

does not. At level v-1 a lower bound on the cost of potential solutions

in the first subset is

z'' + ^ S
v-1 p,k e I ''pl(p)kl(k)

,
^

':.,, vr..

since (i,J) is a zero element. On the other hand, since one element must eve
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be selected from each row and each column of the assignment matrix, a

lower bound for potential solutions in the second subset is

E^^, , (l.j) = Z^ , + E S^, ,.,.,,.+ min {a) . ,,,}+ min {a^,, , .) (12)v-1 v-1
p ^^gj^

Pl(p)kl(k) x^i (x), (j) s^il (i).(s)

We will refer to the quantity E (i,j), a lower bound on the objective

function for all potential alternatives to the pair (i,j), as simply

the alternate cost for the pair (i,j). According to the criterion of

Little, et al. , the zero element is chosen for which the alternate cost

is the greatest. Thus, search proceeds stage by stage selecting elements

according to their cost criterion until either a terminal node is reached

or one for which it is known that all potential solutions passing through

It are dominated. At this point ':he search process backtracks to the first

node for which the alternate cost is less than the total completion time

of the best feasible sequence discovered so far, sets a, = M for the

assignment just investigated, and then resumes.

As a computational consideration it is noted that if E _ (i,j )>^Zj^

then the assignment (i,j) must necessarily be included in every non-

dominated path passing through the node. If this is true for two or more

assignments, then it is unnecessary to explicitly consider nodes for each

of these, but rather make all such assignments immediately (jumping levels

in the tree) and then proceed to establish matrix A for the remaining choices.

In the special event that this is true for all zero elements in an optimal

assignment solution at a given node, then the only further consideration that

need be given the node is to evaluate the quadratic asslgui.;eat solution defined

b'y this assignment.

Note that before proceeding to establish the new matrix it might

prove worthwhile to re-evaluate the alternate costs of the remaining zero

elements and re-check whether or not ^t
(^ j )> ^ ^°^ ^^y additional zero

element. v-1 ' — o
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In summary, there are many bounding alternatives that may be

employed within the tree search algorithm. Basically, as we have seen,

these concern alternative ways for determining the elements In matrix A
V

at a given node; alternative degrees of reduction to be applied to it; and

choices regarding the dominance tests to be made on the basis of the

resulting bounds. Further, as has been discussed, there are a number of

alternative search strategies ranging from fixed, data- Independent

strategies to the level-by-level strategy with pre-speclfled levels of

Gilmore and Lawler, end to the general level-by-level strategy with

variable levels. In addition, there is the alternative of stopping to

evaluate the quadratic cost of a feasible solution which results whenever

a feasible solution to the linear assignment problem is determined at

any node: for if Z^. <Z^ a better feasible solution has been discovered

and the lower value of Z may be used to make potentially more stringent

the dominance tests in reducing subsequent search.

To illustrate these extensions we again solve the problem of Figure 3

In the algorithm to be used the search strategy is the general level-by-

level strategy except that when we reach level (n-2) we shift to a data-

independent strategy of exhaustively enumerating all feasible assignments.

Beginning at level and at every level thereafter, we establish matrix A

by determining optimal values of the elements a. . and then reducing fully

to an optimal assignment solution.

We then solve a second time the same problem, illustrating the

possibility of evaluating the feasible quadratic assignment solution

defined by the optimal linear assignment. In this procedure we also
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review the alternate costs at every node to identify variables x. .

which must necessarily have value x =1. For all such variables a

level in the tree is jumped.

We begin with the matrix developed previously and the lower

792
bound on all solutions of —r- = 396. An examination of the matrix shows that

cells A-2, A-4, B-3, B-4, C-2, C-3, D-1, and D-3 may be selected at

zero incremental cost. The alternate cost of D-1, that is 4, is higher

than any other so we make the first branch at this cell with alternate cost

792+4
= 398.

398 396

We then calculate a as before. The elements are

kil ^ijkKkf
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Solving the linear assignment problem associated with this matrix

795
we obtain the following solution with a total reduction of —r— - 398.
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Tree elaborated for problem of

Figure 3 with alternative single-
assignment algorithm.
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419

FIGURE 6

As noted earlier if E (l,j) in (12) is greater than or equal to Z*

then the assignment (i,j) must necessarily be included in every non-

dominated path passing through the node. We will now modify the

calculations in our sample problem to include this test. We begin

again with the initial assignment solution D-l,C-2,B-3,A-4, with a

792 890
total reduction of —r— = 396 and an actual cost of —r— « 445. At this

point we set Zi 445. The first branch is D-1 as before and we

398

form and reduce the second matrix

and solve for an optimal linear

assignment.

396
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The exact cost of the current assignment solution, D-1, A-2

,

B-4, C-3 is 403 and this becomes the new value for Z* . An evaluation

of the alternate costs shows that B-4, with a cost of 87 must be in an

optimal solution if D-1 is. We then enumerate the remaining two

396

/

I

assignments,

440

\

Mandatory
Assignment

'419

An evaluation of the D-1 branch in the original reduced matrix as shown

below
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414

419

Tree elaborated for alternative single-
assignment algorithm together with testing
for mandatory assignments.

Figure 7

We will now show an alternate method for bounding the D-1

path which involves the updating of particular cells in the cost matrix.

To begin we solve the assignment problem for the best solution not

including D-1, getting the following matrix. \
-,
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As remarked in the introduction, there are sometimes constraints

to be satisfied in addition to those of (2)- (A). To the extent that

the conditions of these constraints can be completely stated by setting

8 " M for appropriate i,i,k and q, the algorithms as discussed can
ijkq

be utilized without change. For algorithms which, for problems where

s "
^iv'^-i » determine elements a simply by appropriately sequencing

the elements f,, and d. there are now at least three options:
ik jq

First, continue to determine a,, in the same way, the result being a

lower bound on the true minimum value; second, determine the true mini-

mum by solving an assignment problem with s... " M where appropriate;

or third, determine the sequencing of f ., and d. in the present way

and make adjustments for inadmissable pairings f.. d. which result. In

each case when s . ., « M we will set a M whenever assignment (kq)

V
is made, and a, " M whenever (ij) is made. When constraints involving

three or more assignments are present, we can proceed in the same way

except that the constraints become explicitly represented in the problem

through the s. , and a. . only when a sufficient number of assignments

have already been made to enable identification of these nonfeasible

assignments.



39

IV Pair-Assignment Algorithms

In contrast to the algorithms which have been discussed in the

previous sections, both Land [16] and Gavett and Plyter [8] have developed

algorithms in which search proceeds on the basis of a controlled enumeration

of the variables y .. = x
. . . x, where as before each variable x.

.

^ijkq ij kq ij

denotes the locating of plant i at location j. These authors too view the

underlying problem as a linear assignment problem but one of assigning a

pair of plants i and k to locations j and q In both instances [8,16]

the algorithms developed apply to the symmetric Koopmans-Beckman problem

wi th S..,=S.,. = f.,d..
ijkq iqkj ik jq

In Figure 8 is shown the relevant assignment matrix for the

problem of Figure 3. In general there are n(n-l)/2 pairs of plants and pairs

of locations in the problem.

LOCATION 2-1

PAIR 1-2

PLANT PAIR
A-B

A-C

A-D

B-C

B-D

C-D

3-1

1-3

4-1

1-4

3-2
2-3

4-2
2-4

168
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However, there are many feasible solutions to this assignment problem

which are not feasible solutions to the original quadratic assignment

problem. For example it is entirely acceptable in the linear assignment

problem for plants A and B to be assigned locations 1 and 2 and plants

A and C locations 3 and 4, a solution clearly infeasible for the original

quadratic problem. For a feasible solution to the original problem we must

therefore, affix to the linear assignment problem the following additional

constraints:

Then
^vipl = (13)

where

yivpi
"0

^iupl

^uvlk = °

y =0
uvqp

i?«u^j,i?tv?«J,k?'p?tq andk^^ll^q

^uvkl
'°

y =0
'uvpq

^iupl = °

Operationally both the algorithm of Land and tbat of Gavett and Plyter

commence by determining an optimal linear assignment solution for the

matrix A . and determining a reduced matrix A" with nonnegative entries in

which a"^.j^ =0 for all variables y. .. =1 in the optimal solution.

Thereafter Gavett and Plyter employ only a row and column-reduced matrix

A at each node, and Land employs only a column-reduced matrix at each node.

As in the procedures discussed in the previous sections, both of their

algorithms proceed level by level in the tree, committing one new pair (i.e., sf

ting yijkq =1) to the solution at each level, and backtracking to the
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lowest level in the tree having an unevaluated branch. In selecting the

pair to be committed at a given level in the tree Gavett and Plyter use

the alternate cost method of Little et al. [20], while Land [16] always

selects from the column having the fewest number of feasible elements in

the column-reduced matrix A a zero element having the largest alternate

cost (based only on alternate costs in the same column). After committing

a pair to the solution at a given node in the tree (i.e., setting Y^jj^. "^^

feasibility condition (13) is invoked by setting the cost c^^ . = M for all

y , , =0 specified in (13), and the resulting matrix used as matrix
^efgh

A , at the next level. In a variation of the search procedures discussed
v+1

heretofore, however, Gavett and Plyter, after selecting the assignment pair

and hence the variable y... at node v, apply (13) for the branch
ij Kq

y... =1 and reduce the resulting matrix A . . to get a lower bound on the
'ijk.q v+1

cost of solutions with y^ ., =1; if the resulting bound exceeds the alternate
ijkq

cost of the assignment (ijkq) they will at this point in the search pursue

the branch for y... =0 rather than that for y-.].„~^-
xjkq ijKq

This latter point is readily illustrated, for instance, in Figure 9

which shows the tree elaborated by the Gavett and Plyter algorithm for the

example of Figure 3. Since the detailed calculations underlying the

development of this tree are contained in [8] we shall omit them here.

In comparison with the other search strategies that have been

discussed, this strategy may entail the elaboration of a longer path in

the decision tree and require longer problem-solving time to determine

a first feasible solution.
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405

416

Tree elaborated for problem
by Gavett and Plyter algorithTD.

Figure 9



As in the case of single-assignment algorithms there are a

number of alternatives to these pair-assignment algorithms which may

result in more efficient algorithms. For example, all of the alternatives

discussed earlier concerning the extent to which a linear assignment matrix

is reduced at a node in the tree are applicable in the present problem.

Similarly the use of alternate costs to identify mandatory assignments

and the jumping of levels in the tree on the basis thereof, is equally

appropriate in the present case. Of course in the present problem the

V
alternatives for determining the costs 3.,, are inapplicable since

v—

1

V
A = a. 4,^ for all v, i.e. the value a... is the actual cost of assigning

plant 1 to location j and plant k to location q rather than simply a lower

bound, and hence need not be updated. -

In concluding discussion of this class of algorithms we comment on

their extension to the nonsymmetric quadratic assignment problem in which

s... ^ s. , . . For this problem we have the associated linear problem:
Ljkq iqk3 ^

Minimize /..n^,, ,
(s y. "•'S y )

(ik),(jq) ijkq-'i.ikq iqkj iqkj

Subject to: n(n-l) /2

/.^^ (y^., +V. aJ =1 all(ik) (14)
(jq) '^ijkq " iqik

n(n-l)/2 n(n-l)/2

(ik) ^ijkq
"^

(ik) ^iqjk =1 all (jq)

^"*^ ^ijkq' ^iqjk'^ ^' •" ^°^ ^""^^ i.j.k.q.

upon which are imposed, as before, constraints (13).
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As discussed In more detail for a related, multi-facility

production requiring problem (or multi-salesman traveling-salesman

problem) in [25], when formulated as a linear programming problem (14)

has a total of n(n-l) variables and activity vectors, the vectors for each

nair v... and y^ ,^ being identical except for their cost. Being
^ ^ijkq iqkj

linearly dependent, at most one of these vectors in each pair can appear in an

optimal feasible solution to (14) , this necessarily being the vector in

the pair with the smaller cost. Therefore setting s.,, = min(s.. ,, ,s,
, .)

it follows that an optimal solution to (14) can be obtained by solving the

n(n-l)/2 X n(n-l)/2 linear assignment problem with costs
|

|
s^j ^i^ ||«

Operationally, then, problem-solving for the nonsymmetric problem

can proceed as for the symmetric except that at each node in the process

the cost matrix to be used is composed of the presently minimum elements,

|min(s... ,s. i^.)||. To this matrix can be applied any degree of reduction

as in the symmetric problem. Upon selecting a pair of assignments to

commit to the quadratic problem solution, all costs (both for a variable

^iikq*"*^ its interchange
y^^gj^^) are updated as required to reflect the

feasibility conditions in (13); for any pair therefore, min (sj^.. ,s^ , ,)

may increase for the next node. Otherwise the only difference between the

symmetric and the nonsymmetric problems concerns the alternate cost of

an assignment: in the nonsymmetric case a valid alternative to the

assignment
Yj^Ji^^g may be the interchanged assignment y^ i.- so that in

this case the alternate cost is the minimum of that as evaluated for the

symmetric problem and the cost of the interchanged assignment.
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V. Pair-Exclusion Algorithms

In all of the algorithms discussed up to this point, problem-

solving has proceeded on the basis of a stage by stage commitment of

assignments to the solution of the problem, each such assignment represent-

ing a level in the decision tree. Upon backtracking a particular assign-

ment would then be excluded from the solution and the forward, assign-

ment process resumed. This has been the nature of the process for both

the single-assignment and the pair-assignment algorithms. In this section

we conclude the paper with an algorithm in which problem-solving proceeds

on the basis of a stage-by-stage exclusion of assignments from a solution

to the problem.

More specifically, let us consider the quadratic assignment

problem as formulated in the previous section. Suppose for this problem

an optimal assignment has been determined for the linear assignment

portion of the problem. If for this assignment conditions (13) are satisfied

for every y -j^ =1 in the solution (i.e. all pairs result in each plant

being assigned to one location, and no location having more than one plant

assigned to it) then this solution represents an optimal , feasible solution

to the original quadratic assignment problem and problem-solving is complete.

Otherwise there exists one or more conflicting assignments in this solution

rendering infeaslble the solution to the quadratic assignment problem.

As an example Figure 10a shows a reduced matrix for the Illustrative

problem in Figure 8 in which the optimal linear assignment is indicated

by the cells with alternate costs represented in the upper right hand corner.

As is readily verified, this optimal linear assignment is not feasible for the
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quadratic problem, e.g. assignment (AB,14) is inconsistent with (BD,23),

(BC, 34) with (AD, 13) and (CD, 12). In an optimal feasible quadratic

assignment, then, it must be true that at least one of the assignments in

this optimal linear assignment will not be present. We can therefore

subdivide the total set of feasible quadratic assignments into those

that do not include the assignment (AB,14), those that do not include

(AC, 24), and so on, for each of the present assignments. The result,

in terms of a tree, is as shown as the first level of nodes in Figure 11.

If for each subset we now determine the best feasible quadratic assign-

ment among solutions in that subset, the best among these is aii optimal

solution to the original problem. ••.^

Beside each of the nodes on level 1 in Figure U is shown a lower

bound on the cost of solutions in the subset equal to the cost of the

optimal solution in Figure 10a. (the amount of the reduction) plus the

alternate cost of the particular assignment which, as indicated by the

node, is to be excluded. Suppose we now choose for elaboration one of

these nodes for which this bound is minimum, say ABI4. Making inadmissable

this assignment in the cost matrix in Figure 10a( i.e. giving a large cost of

M) and solving for an optimal assignment to the resulting problem, there

results the matrix in Figure 10b. Checking the assignment which results,

this solution is not feasible for the quadratic problem either; the result

is the tree with the new level of nodes as shown in Figure 11.

In a similar manner, we can now proceed to select any of these nodes

«lth lowest bound, solve the assignment problem and check it for feasibility.
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continuing until a node Is reached for which the optimal linear assignment

is a feasible quadratic assignment. At this point we would then backtrack

and resume with a node whose lower bound was less than the value of the

quadratic assignment solution, continuing in this manner until the com-

plete tree has been considered.

In general it is difficult to anticipate the performance of

this type of algorithm relative to the commitment types as discussed In

the earlier sections. For the related, basic traveling salesman problem

this general approach has proved significantly more efficient than stage-

by-stage commitment algorithms [4, 28, 29] . Undoubtedly tills is due at

least in part to the fact that. In the words of Shapiro [28] , the optimal

traveling salesman solution is frequently quite "close" to the optimal

linear assignment solution in the respect that a large majority of

assignments in the former are present in the latter, so that relatively

small decision trees need be explicitly elaborated. In addition it is

due in part to the existence of an efficient dual algorithm for solving

the linear assignment problems at each node [ 29] . In the present problem

this latter element will be equally important but, on the other hand, it

is not apparent that the optimal quadratic assignment will be "close" to

the optimal linear assignment, i.e., that in optimal linear assignments

the conditions in (13) will commonly be automatically satisfied.

To pursue discussion in greater detail, there are a number of

choices which must be made in specifying a particular "pair-exclusion"

algorithm. What search strategy is to be employed in selecting a node

in the tree to elaborate next? Given the conflicts in an optimal linear

assignment solution at a given node how should solutions be subdivided

into subsets for further evaluation? Which branch emanating from a

node (i.e. which subset) should be considered first?
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For specificity let us assume for discussion purposes that the

search strategy used is the same as that which has been assumed in

all of the other algorithms discussed. That is, we proceed downward

in the tree one level at each successive stage, choosing at each stage for

elaboration the node having the smallest lower bound on the cost of

solutions represented by the node. Upon reaching the bottom of the tree

or reaching a node for which there exists no feasible, nondomlnated

solutions the process backtracks to the lowest level In the tree for which

there is an unevaluated node and resumes. There remains, then, the

determination of subsets at nodes and the assessment of lower bounds for

the solutions contained in the resulting subsets.

While subdividing the subsets into the n subsets on the basis of

the n assignments in the linear solution Is perhaps the easiest sub-

division to specify at a node (as was done in the Illustration) It is by no

means the only possibility nor probably the most desirable subdivision. In

general, any subdivision Into subsets at a node is permissable which

excludes at least one conflict present among the present assignments

(and hence renders inadmissable the present solution) and for which

12
the union of the subsets contains at least one feasible quadratic

assignment which is optimal for the set being subdivided.

Figure 12 shows all conflicts In the optimal -'' '
'""' '

assignment solution of Figure 10a arising between pairs of the assign-

ments. Any of these conflicts could be used as the basis for subdividing.

For example. Figure 13a illustrates subdivision of the basis of the

conflicts between the assignments (AC2A) and (AD13). Of course, in the

optimal linear assignment at the resulting nodes there may persist con-

flicts which were present at the parfent node; thus at node (AD13)it

12
T̂he subsets need not be mutually exclusive,
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might be necessary to resolve at a next level the conflict between (AC24)

and (BD23) should it be present in the new solution at that node, as

illustrated in Figure 13b. On the other hand, the conflict may not appear

in subsequent linear assignment solutions and hence not have to be con-

sidered explicitly.

signment
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(a) (b)

(c) (d)

(e)

Illustrative, alternate ways to partition
sets of quadratic assignment solutions into

subsets of pair-exclusion algorithms.

FIGURE 13



meaning siraply that a necessary condition for feasibility is the event

"not assignment AC24" or "not assignment AD13," or both. Suppose we

now consider the conflict between, say, AC24 and BD23. For resolution

of this conflict we must have AC2A « BD23, so that in conjunction

with (15) we must have for resolution of both:

(AC24 e AD13) . (AC24 « BD23) = AC 24 » (AD13 • BD23) (K^)

as represented in Figure 9c. If desired we could consider in conjunction

with these two, say, the pair of conclicts AD13 and BC34, with the result:

(AC24 • AD13) • (AC24 » BD23) • (AD13 » BC34) - (17)

AC24 • AD13 9 AC24 • BC34 » AD13 • BD23

as represented in Figure 13d,or perhaps these in conjunction with the

pair BC34 and CD12 as represented in Figurel3e. Similarly, any combi-

13
nation of the constraints can be considered.

For the resulting nodes we proceed just as before to determine an

optimal linear assignment, where now every assignment appearing in the

expression defining a node is made inadmissable. For a lower bound

for a node probably the easiest is to simply use the largest alternate

cost of the assignments to be excluded at the node. A more stringent

bound of course would result by actually making the elements inadmissable

and reducing the resulting assignment matrix or by obtaining an optimal

assignment solution.

13
Note that conflicts involving assignments not actually committed in

the optimal linear assignment can be used in conjunction with these as well.
Thus, for example, since the cost of assigning AB tn 23 in Figure 6a is zero
this could well appear as an assignment in the solution at a subsequent level,

Since this assignment, however, would conflict with, say, assignment CD12,

one could if desired explicitly consider that conflict at the present node

in forming the subdivisions.
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These illustrations serve to indicate the nature of the choices to

be made at a node in the tree. Referring to Figure 13 it is clear that

(c) is preferable to (b) since the resulting subdivision is obtained at

a single level of the tree, and with no increase in the number of nodes

at that level. Similarly it can be argued that the subdivision in

Figurel3e. is preferable to that on the first level in Flgurell since

the total number of subdivisions or nodes to be considered is the same

while the size of each of the subsets in the former is smaller.

Unclear, however, is the choice among, say, those in Figures 13(c),

(d) , and (e) , a choice involving a larger number of subsets but each of

smaller size. On the one hand it is necessary to determine a bound

and/or optimal assignment for each node, but on the other, the subset

being smaller the greater is the possibility the node will be bounded

by an existing feasible solution and hence not require any further

consideration. Similarly with regard to the evaluation of lower bounds

at a node: reducing the assignment matrix and/or determining an optimal

assignment yields a more stringent bound and enhances the liklihood that

the node will be bounded, but to do either requires establishing and

manipulating the appropriate assignment matrix for that node _in contra-

distinction to the use of the alternate cost information which requires

no explicit consideration of that node's matrix. These choices remain

subjects for empirical study.

In concluding discussion it is noted that in practice it may be

efficient within this exclusion type of algorithm to be looking at each

node for mandatory assignments as well as for assignments to be excluded.

As before this could be done simply by checking the alternate costs of

the assignments which occur in the optimal linear assignment. For each
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mandatory assignment discovered the appropriate related assignments

would at that time be made inadmlssable, thereby making subsequent bounding and

search potentially more effective.

As an Illustration we again consider the problem in Figure 8 , and

solve it with the following algorithm. For a search strategy we use

the same level-by-level strategy used for illustration throughout, choosing

at each subdivision an unexplored node having the smallest lower bound. In

each optimal linear assignment the al ternate costs of the assignments are

all checked to see if the assignment can be shown to be mandatory. When-

ever a node is encountered for which the optimal linear assignment results

in a nonfeaslble quadratic assignment, a subdivision is formed In the

following way. All pairs of assignments in the optimal solutions are

investigated for conflict and those so found are noted together with their

alternate costs (as was done in Figurel^2 ) , From this list is selected

the pair for which the smaller of the two alternate costs is largest

among the minimum of all pairs: ultimately every feasible quadratic

assignment which resolves all of these conflicts must have a cost at

least as large as this value. Should there be more than one pair with

this same minimum, a pair is selected for which the other alternate cost

is maximum. (In Flgurel2 we thus select either the pair AC24-AD13 or

AC2A-BD23.) For the selected pair we then search for other pairs which

have an assignment identical to the assignment in the selected pair

having the larger alternate cost, and use these pairs in conjunction

with the selected pair. (In Figurel2 we would thus form from the pairs

AC2A-Ani3 and AC2A-BD23 the subdivision: (AC2A 9 AD13 • BT)23).) The

resulting subdivision will thus insure that at least the necessary minimal

Increase in cost that eventually must be Incurred will in fact he incurred
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now, and possibly a greater Increase — but without proliferating the

number of Individual subsets to be considered at this level in the

tree. Finally, other assignments are sought having exactly the same

conflicting assignments as this assignment in the original selection

pair with the higher alternate cost (in the example, all assignments

having the conflicts with the same assignments AD13 and BD23 aS does

AC2A) and these conjugated with the present set of conflicts (there are

no such assignments in the example). The result is a subdivision con-

sisting of two subsets.

In the event there is conflict in an optimal linear assignment

solution but no conflict among simple pairs of assignments we simply

choose the first subset of the assignments discovered to be in conflict,

remove the assignments in the subset not contributing to the conflict,

and subdivide on the basis of the remaining assignments — each assignment

defining one subdivision.

Occasionally in the development of the enumeration tree it can be

shown at a node that a particular pair of assignments is mandatory in

the same sense as in Section III. For example, in Figure 14a we have

a solution 445 CL labelled with a * which was obtained as follows: The

solution to the linear assignment problem obtained after adding AD32 had a

reduction of 445 (equal to the current best feasible solution). The alter-

nate cost of assignment CD12 was 19 and therefore CD12 would have to be in

any optimal solution to the probelm. Similarly the updated alternate costs

of AB34 and BD13 force them into a solution. These assignments taken jointly

give A=4, B-3, C=2 and D-1 for an actual cost of 445. It is interesting to
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note that the assignments which are obtained in this manner may result

in a nonfeasible solution to the linear assignment problem at that point

in the enumeration tree. For example, we might have arrived at the

above solution even if BC23 were specifically excluded.

For the Gavett and Plyter problem in Figures 3 and 8, the tree

which is elaborated is shown in Figure 14. At least for this problem

the optimal quadratic assignment solution is not "close" to the optimal

quadratic assignment solution.
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ALTKKNATE COST
Rovm

O ASSIGNMEOT SOLUTION BOUND

B - Bounded

CL -Complete Solution From
Exclusion Logic

CA -Complete Solution From
Assignment Solution

4506

Tree elaborated for problem of Figure 3

with illustrative pair-exclusive
algorithm.

A=3
B=4
C=l
0=2

445CA

A=4
!1=3

0=2

D=l
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452B

FIGURE 14b
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A38B

A19

458B

FIGURE 14c
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A19CL

FIGURE 14d



62

506CL

FIGURE 14e
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VI. Concluding Remarks - .. . ' i

In this paper three classes of algorithms have been discussed for

solving quadratic assignment problems. Regardless of its class each

algorithm which has been considered is reliable in the respect that if

carried to completion it guarantees the discovery of an optimal solution.

Furthermore in finding an optimal solution it proceeds first to a feas-

ible solution and then to better and better feasible solutions so that,

if desired, problem-solving can be terminated prematurely with a usable,

if not optimal, solution. In addition, these procedures can all effi-

ciently exploit information available beforehand regarding the value of

a known feasible solution and hence, for example, can be readily used in

conjunction with heuristic procedure which gives good sub-optimal solu-

tions. Moreover, if desired, all of the algorithms discussed can be used

with slight modification to determine all optimal solutions, or a speci-

fied number of the most preferred solutions, and so on. > .'

Common to all three classes of algorithms is the structuring of the

quadratic assignment problem in terms of a related linear assignment prob-

lem. In each this latter problem is then used in directing the tree-

search process and in bounding and dominance considerations designed to

reduce search. However, between the linear assignment problems used for

the single-assignment algorithms and the pair-assignment algorithm there

are major differences. .. ^
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In the single-assignment case the linear assignment problem is

only of dimensions n x n and has the property that a feasible solution

always represents a feasible solution to the quadratic assignment

problem. Its shortcoming, however, lies in the fact that the cost

structure embodied in the linear assignment problem is not In general

an exact representation of the true cost structure of the quadratic

problem but only an approximation. The effect is to diminish the

stringency of the bounds and dominance tests, and to necessitate the

periodic expenditure of problem-solving time in updating the representa-

tion of the cost structure.

In the pair-assignment or pair-eclusion cases, on the other hand,

the associated linear assignment problem is significantly larger, being

of dimensions n(n-l)2 x n(n-l)/2, but in this larger problem it is

possible to represent exactly the cost structure of the quadratic problem.

However, the shortcoming of this representation lies in the fact that a

feasible solution to the linear problem need not bonstitute a feasible

solution to the quadratic problem.

Even from our experience with the one sample problem in this paper

it is clear that the different algorithms can give rise to the elaboration

of quite different partial trees of solutions with quite differing numbers

of nodes (see Figures 4,5,6,7,9 and 14). However, in light of the fact

that the time required to elaborate and evaluate a single node in a tree

can differ markedly among the algorithms, it is difficult to assess the

relative efficiency of the different algorithms even for this one, single
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problem. In practice, moreover, the relative efficiency may well

turn out to be highly dependent on the particular form of the quadratic

assignment being solved. For example, were the coefficients c . in a

problem with objective function (5) to predominate, the approximate

cost structure in the single-assignment methods might in fact be quite

"close" to the true cost structure and hence that class of algorithms

be quite efficient. On the other hand, were an architect to pose a

13
problem with a large number of pairwise constraints on the permissable

assignments, the ability to reflect directly their implications in the

cost representation of the pair-assignment or pair-exclusion classes

might render these approaches more efficient. Hopefully, it will be

possible to glean Information pertaining to these questions from the

computational results to be reported in the subsequent paper.

Were he to present constraints involving, say, triplets of assign-

ments, one might then wish to formulate the problem in terms of an

(n(n-l)(n-2)/6) x (n(n-l) (n-2)/6) linear assignment problem, and proceed

with a triplet-assignment or triplet-exclusion algorithm akin to algorithms

discussed in Sections IV and V.
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