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TOPOLOGICAL SEMIVECTOR SPACES:

CONVEXITY AND FIXED POINT THEORY

Prem Prakash Murat R. Sertel

0. INTRODUCTION

Without speaking too roughly, (topological) semivector spaces

are to (topological) semigroups as (topological) vector spaces are

to (topological) groups. Recalling J. L. Kelley's [l955, p. lio]

remark indicating the importance of convexity arguments as the

basis of results distinguishing the theory of topological vector

spaces from that of topological groups, one may expect to see

convexity playing a corresponding role more generally in

distinguishing the theory of topological semivector spaces from

that of topological semigroups. Meanwhile, the results presented

here may be taken to illustrate that much of the power of convexity

properties is preserved in less stringent contexts than that of a

vector space structure.

The notion of a "semivector space" was first introduced in

[Prakash & Sertel, 1970a]; some structural aspects of such spaces

were examined in [Prakash & Sertel, 1971a]. [Prakash & Sertel,

1972] is devoted entirely to the structure of semivector spaces.
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Finally, an application of some of the fixed point theory of the

present paper in generalizing existence results for equilibria in

various types of social systems, systems which include economies

and games, will be found in [Prakash, 1971 ], [Sertel, 1971 ] and

[Prakash & Sertel, 1971b].

In this paper we start by defining topological semivector

spaces. After briefly considering some problems in "strengthening"

their topology, we extend the notion of convexity to such spaces.

We then identify a hierarchy of local convexity axioms for such

spaces and present some simple facts about products of spaces

having various local convexity properties. Next, we illustrate

how the spaces of concern arise naturally as certain hyperspaces

of topological (semi-) vector spaces. Finally, we establish a

number of fixed point and minmax theorems for topological

semivector spaces with various local convexity properties. The

fixed point results which we obtain here will be seen to generalize

central fixed point theorems (for topological vector spaces) due

to S. Kakutani [l94l], H. F. Bohnenblust & S. Karlin [l950] and

K. Fan [l952j, which, in turn, are generalizations of results due

to L. E. J. Brouwer [l912], J. Schauder [l930] and A. Tychonoff

[1935], respectively.





1. PRELIMINARIES

Into this section we compress a quick review of some basic

notions introduced and discussed in detail elsewhere [e.g., see

Prakash & Sertel, 1972].

In defining "semivector" spaces, the notion of a "left skew

semlfield" serves as a catalyst. By a left skew semifield we mean

a bimonoid <©,+,.> in which < 0, . > is a group with zero

distinct from its identity 1, <@, +> is a comnutative semigroup

with identity 0, and the (unitary) left action of < ©, . > on

<0, +> is homomorphic: a . (p + y) = O- • P + O- . Y • A left skew

semifield <0, +, . > will be called a skew semifield iff the

(unitary) right action, too, of < 0, . > on < 0, f >, is

homomorphic: (P + y) • Ct. = ^. 0. + y. (X . This certainly obtains if

< 0, . > is commutative, in which case we term <0, +, . > a

semifield . Notably, the set R of non-negative reals under the

usual addition and multiplication provides a useful example of a

semifield, one which we call the usual real semifield . Whenever

considered as a topological space, the set of non-negative reals

will be understood to carry the Euclidean topology.

1.0 Definition : Let be a topological space, <0, f, . > a left

skew semifield, and <S, ®> a commutative topological semigroup

(not necessarily Hausdorff). Let f : © x s -» S , where we denote





Y( \, s) = X s, be a continuous map satisfying

Axiom 1

Axiom 2

Axiom 3

X(|as) = (X.|a)s (action)

s e s (unitariness)

X(s®t) =X.s®Xt (homomorphism)

for all X, li e and s, t e S. S will be called a

topological semivector space over , convex iff contains

the usual real semifield,

1,1 Remark : (1) Clearly, when a left skew semifield is equipped

with a topology yielding its operations continuous (for example,

the discrete topology) , may be viewed as a topological

semivector space over itself. Hence our comment, at the outset,

anticipating the catalytic role of the notion of left skew

semifields in defining topological semivector spaces.

(2) In view of the fact that <0, . > is a group with

zero, it is easily seen that the second axiom of the definition

above is equivalent to the requirement that 1 s = s should

obtain for each s e S.

(3) At this stage it might seem strange that, although

Y is an action merely of < 0, . > on S, we invoke < 0, +>

by defining S to be over a left skew semifield. We intend,

however, to make full use of the operation (+) , e.g., in

speaking of "convexity" of sets in topological semivector spaces.





(4) The reason for adopting the qualifier 'convex' for

S when contains the usual real semifield will become

apparent immediately after we define convexity in 3.1.

Given a topological semivector space S over 0, for each

X e 0, the restriction Y of Y to {X} x S will be called the

(X-) transition of S. From Axiom 3 we see that each transition

of S is an endomorphism of S, and from the continuity of Y it

is immediate that each transition is also continuous. In fact,

when X ?^ 0, ¥ is an automorphism of S, and, writing (J. = —

,

X

where — denotes the inverse of X under multiplication (.), we
A.

have ^ continuous, whereby Y is both an open and a closed

map. It follows that Y is an open map when restricted to

(0 \ l0|) X S.





2. STRENCTHENABILITY OF THE TOPOLOGY

If <S, ©> is a commutative Hausdorff topological semigroup

with identity e, it is possible to strengthen the topology on S,

without destroying the continuity of ®, in such a way that (i)

the neighborhood (nbd) system of e is unaltered, while (ii)

U ® s is now open whenever U is open in S (s e S) [Paalman-

De Miranda, 1964; Theorem 3.2.13], Given a Hausdorff topological

semivector space S with identity e, by a
" strengthened " or

" strong" topology on S we will mean one which satisfies (i) and

(ii) as just stated.

Given a Hausdorff (topological) semivector space S over 0,

we may now ask whether--or when--there exists a strengthened

topology on S under which S remains a topological semivector

space. (Of course, in a topological vector space the topology is

already a strengthened version of itself).

Having Paalman-De Miranda's result as stated above, the

question clearly boils down to whether the continuity of Y can

be preserved under a strengthened topology on S. Although we are

unable to assert in general when this can be done and when it

cannot, we recognize a research problem here and offer the following

as an example of where it cannot be done even though the space

whose topology is to be strengthened is, as the reader may check,

a pointwise convex (see 3.2) topological semivector space with





identity and with a topology which is locally compact, metrizable,

3 locally convex (see 4.1 and 6.5), etc.

2.1 Example : Let F be the real field with the usual topology, and

let R be the topological group of the reals (under the usual

addition and with the usual topology) . Equip K^(R) , the set of

closed intervals of R, with the Hausdorff metric topology.

Defining [a, b] ® [c, d] = jx + y| (x, y) e [a, b] x [c, d]| and

X[a, b] = [Xa, Xb] (a, b, c, d 6 R; X e F) , KJliR) with these

operations is a topological semivector space over F and has JOJ

= e as its identity. Now strengthen the topology on ?('.2(R) by

declaring the translates V. ^ 7 to be (basic) open for each

P e ?C.2.(R) and for each "originally" open nbd 1( of e. Fix

attention to any non-singleton P £ ?C,i(R) , and consider the

restriction Y: Fx jp |
-» J^.2.(R) of 11. The fact is that Y is

not continuous under the strengthened topology on K^(R) • For

let 1( be an open nbd of e, and consider the (basic) open nbd

1{ ® XP of XP for some X > 0. Now the inverse image of li 9 XP

under Y_ contains (X, P) , but it contains no (\J., P) such

that < ^i < X. (For suppose that < (j. < X and that pP = XP

© U for some U e ^(. Then P = ^ P ® q U. But this is

impossible, since diam(— P © — U) ^ diam(— P) > diam(P).)

This shows that Tp is not continuous. Thus, the topological

semivector space just considered, despite all its properties, does

not remain a topological semivector space when its topology is

strengthened in the fashion sought.





3. CONVEXITY & POINTWISE CONVEXITY

The familiar notion of convexity for (topological) vector

spaces extends naturally and usefully to the case of topological

setnivector spaces. In the latter spaces, a property which we term

"pointwise convexity" begins to assume an important role in its

own right. This property, though automatically present in convex

vector spaces, needs to be assumed separately in the general case

of convex (topological semivector) spaces. In fact, it is when

the two properties (convexity and pointwise convexity) are combined

that they become specially useful.

3,0 Standing Notation : We denote the simplex {(X„, ..., X )
U m

m+1 I
^

e R+
I iSo ^i = ^^ ^y ^m ^"^ = °' ^' •••^-

3,1 Definition : Let S be a convex topological semivector space

(i.e., a topological semivector space over with containing

the usual real semifield). Given any two points x, x' e S,

their segment [x: x'] is defined to be js = \x ® X'x'| (X, X')

e A j. A subset T cz S will be called convex iff [x: x'] ^T

whenever x, x' ST,

Thus, what we call a convex topological semivector space

(see 1.0), indeed checks to be convex according to the above

definition.









The following are plain: if A is convex in a topological

semivector space S, then |_lA = j^aj a e AJ also is convex

(fi e R) ; if B, too, is convex in S, then so are A ® B

= |a®b| aSA, bSBJ and all convex combinations Xa ® X 'B

((X, X') e A^).

It is important to note that, unlike in topological vector

spaces, in topological semivector spaces there is no guarantee

that X or x' belongs to [x:x'J or even that x £ [x:x].

For example, give the discrete topology to the set [rj of all

non-empty subsets A, B C R, where R stands for the set of reals,

and obtain a topological semivector space (with identity element

e = J0|) over the real field, with the understanding, as usual,

that A®B= |a+b| aSA, be b}, while setting Xa = {\a\ a e A

if X ?^ and XA = R otherwise (A, B 6 [r]; X e R) . In this

space the only element belonging to its own segment is Re [rJ.

Possibilities such as the above motivate the following definition.

3.2 Definition : Let S be a convex topological semivector space,

and let T C S. T will be said to be pointwise convex iff each

|x| CI T is convex.

3.3 Exercise : A convex topological semivector space S is pointwise

convex iff (a + P)s = as ® Ps for all a, P e R_^ and s e S

[Prakash 6e Sertel, 1972].
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Given a convex topological semivector space over a semifield

®, the largest pointwise convex subset of S forms a (convex)

topological semivector subspace , i.e., it is a topological

semivector space over when considered under the restrictions

of the operations of S [Prakash & Sertel, 1972],

We close this section by defining the notion of convex hull

and recording two intuitively pleasing facts concerning convexity

in topological semivector spaces. (See also the last sentence

preceding 5.1.)

3.4 Definition : Let S be a convex topological semivector space,

and let T c S. The convex hull f of T is defined to be the

intersection of all convex subsets of S containing T.

3.5 Exercise : Let S and T be as above. Denote the set of finite

subsets of T by J(T) , and, for each F = (t^, ..., t^)

e J(T), define (the " open simplex") a(F) = l(>^QtQ «...

®\t)l (\„, ..., X) eA; X. >0, i=0, ...,m}. Then
m m ' m mi

T = UJCT(F)1 F e 3^(1)], if S is pointwise convex [Prakash

& Sertel, 1972].

3.6 Proposition : In convex topological semivector spaces,

topological closure (CI) preserves convexity.

Proof: Let Q be convex in S, a convex topological semivector
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space. If Q = there is nothing to prove, so let q, q be

adherent points of Q. Suppose Xq 9 X q' = q t C1(Q) for some

(X, X') e A^ . Then there exists a nbd V of q disjoint from

C1(Q). The map Q: S x S -» S, defined by Vl(x, x') = Xx ® X'x',

being continuous, there is a nbd U x u' of (q, q') such that

n(U X u') C V. Since q and q' are adherent points of Q,

there exists (y, y') e U x U' such that y, y' e Q. Then, by

convexity of Q, Cl(y , y') e Q, a contradiction. Hence,

q e C1(Q) and C1(Q) is convex, as to be shown.
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4. LOCAL CONVEXITY

Apart from preparation for their use in the fixed point theory

of Section 7, our motivation for stating the following "axioms of

local convexity" derives from the fact that, although for a

topological subspace X of a (Hausdorff) topological vector space

the first three are always equivalent and all four are equivalent

when X is convex, we are able to assert only weaker relationships

between them in the case of topological semivector spaces. Given

a subset X in a convex topological semivector space, we consider

the following alternative

4.1 Axioms ;

0. For any x € X and any nbd V of x, in the subspace

topology of X there exists a convex nbd U of x such

that U c V.

1. There exists a quasi-uniformity S = \e <= X x x| a £ AJ of

X inducing its subspace topology, such that, for each

E^ e (S, there exists a closed Eq e c? with E- c e and
cc p p a

Ea(x) convex for each x e X.

2. There exists a quasi-uniformity 3 = jE CXxXlaeAJ of

X inducing its subspace topology, such that, for each

E e S, there exists a closed Eq e S with Ep C e and

Eq(K) convex for each compact and convex subset K C X.
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3. X is convex and there exists a uniformity S = JE c: x x x]

a e a} of X inducing its subspace topology, such that, for

each E e (5, there exists a convex E^. & S with

X will be called 0° ll" 12° 13° locally convex (I.e. )

accordingly as it satisfies 0/1/2/3 among these axioms. Thus,

local convexity is the familiar local convexity.

4.2 Proposition : Given a subset X of a convex topological

semivector space,

(1) If X is 1° I.e., then it is 0° I.e.;

(2) If X is 2° I.e. and pointwise convex, then it is

1 I.e.; and

(3) If X is 3° I.e., then it is 2° I.e.

4.3 Proposition : Every T^ space which is I.e. is pointwise

Proof : Let X be a 0° I.e. T space, and suppose x £ X. As

X is 0° I.e., there is a local base 6 = JB^^I a e AJ at x

consisting of convex nbds. Thus, x e B = H B , and B is

convex. In fact, B = jx|. For, supposing y £ B for some

y / X, as X is T^ , there exists a nbd U of x to which

y does not belong, whereby y jt B Cu for some B & 13

,
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contradicting that y e B. Thus, jx} is convex. This shows

that X is pointwise convex, completing the proof.

i

Of course, all the local convexity properties 0°-3° are

inherited by relative topologies on convex subsets. In the next

section we turn to some basic facts relating local convexity

properties of Cartesian products with those of their factor spaces,
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5. CARTESIAN PRODUCTS OF TOPOLOGICAL SEMIVECTOR SPACES

Given a family jS
|
a e A; of topological semivector spaces

over 0, we equip S = H S with the product topology and define
A "'

its operations coordinatewise as follows:

where ffi_ stands for the semigroup operation of S anda o r r ^

s , t e S are generic (a e A) . Clearly, S is then a

topological semivector space over 0. We call it the product of

jS
I
a e a|. Evidently, a set X c S = 11 S is convex/pointwisea ^ a

convex iff each projection X = TT (X) c S is so.

a

5.1 Lemma : Let |x |
a e a| be a family of 2° I.e. spaces of

which all but finitely many are convex, and let cS be a

quasi-uniformity inducing the product topology on X = 11 X .

A ^

Then, for every T € S , there exists a closed E £ S such

that E C F and E(K) is convex whenever K is the product

K = n K of compact and convex subsets K c X_.
A cx a a

Proof: Contained in F, find a basic H £ tJ which restricts

a finite set N CA of coordinates, including (w.l.g.) the set

MCA of indices m for which X is not convex. Now

H = nH X n (X xX),
N n A\N O. a
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where H belongs to the quasi -uniformity S of X (new).
n ^ ' n n

For each n S N, using the 2° I.e. of X , find a closed
n

E e S such that E cz H with E (K ) convex for each
n n n n n n

compact and convex K ex. Write E = nE x 11 (X xX).
n n N n A\N CC a

5,2 Lemma : The product of a family of 1° I.e. spaces is 1° I.e.,

if all but a finite number of the factor spaces are convex.

Proof : Imitate the last proof.

5.3 Exercise: Let S = 11 S be the product of a family of convex
A

°'

topological semivector spaces over 0, and let X c s be

compact Hausdorff. If the projection X = rr (X) of X into S^ -^ a a a

is Hausdorff, then X is l°/2° I.e., accordingly as X is.

5.4 Exercise : The product of a family of spaces is 3° I.e. iff

each of the factor spaces is 3° I.e.
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6. HYPERSPACES AS EXAMPLES

In this section we show some natural ways in which topological

semivector spaces arise as certain hyperspaces of topological

semivector spaces, e.g., of topological vector spaces. In fact,

this is how, at first, we came to define topological semivector

spaces: as an abstraction from hyperspaces of topological vector

spaces. Our motivation derived from a need to be able to deal

with certain socio-economic adjustment processes in which some of

the variables were set-valued in topological vector spaces [see

Prakash, 1971; Sertel, 1971; Prakash & Sertel, 1971b]. This

abstraction not only enables one to eliminate cumbersome details

in the study of the above mentioned adjustment processes, but it

also turns out to afford many interesting examples besides those

discussed here [see Prakash & Sertel, 1972]. The hyperspace

examples given here, however, form a unified collection,

illustrating essentially all the salient aspects of (topological)

semivector spaces discussed in the previous sections.

In topologising hyperspaces, we use the upper semifinite,

finite or, when applicable, uniform topology, regarding all of

which we adopt E. Michael [l95l] as standard reference. N.B. :

When a topology is unmentioned, it is to be understood as discrete.





6.0 Standing Notation : Given a set X, [x] will denote the set of

non-empty subsets of X. If X is a topological space, C-(X) ,

0(X) and ?C(X) will denote the set of non-empty subsets of X

which are closed, open and compact, respectively. If X lies

in a convex topological semivector space, .2.(X) will denote the

set of non-empty convex subsets of X. Finally, we will denote

C-^(X) = (3-(X) n i(X) , Oi(X) = OCX) n ^(X) and ?Ci(X)

= KU) n ^(x)

.

6.1 Definition : Let X be a topological space. The upper semifinite

(u.s.f.) topology on [x] is the one generated by taking as a

basis for open collections in [x] all collections of the form

<U> = JA e [x]I A c u|, and the lower semifinite (l.s.f. )

topology on [xj is the one generated by taking as a sub-basis

for open collections in [x] all collections of the form

<U>" = JA e [x]l A n U ^ 0}, where U is an open subset in X.

The finite topology on [x] is the one generated by taking as a

basis for open collections in [x] all collections of the form

<U, , . .. , U > = JA e rxlt A c: U U. , A H U. # for
1 n '-

-'
' -^ -L 1

i = 1, ..., nl with U, , ..., U open in X. Furthermore,
' 1 n

given a topological space Y, a mapping f: Y -» [xJ is called

upper semi -continuous (u.s.c. ) [resp. lower semi -continuous

( 1 .s.c. ) 1 iff it is continuous with respect to the u.s.f.

[resp. l.s.f. J topology on [xj. (It follows that f is
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continuous with the finite topology on [x] iff it is both

u . s . c . and 1 . s . c . )

Let S be a semivector space over and, for any A, B CI s,

define A©B={a®b|aeA, bSBJ and XA = iXa| a e a(

(X e 0). Then [s] is a semivector space over 0, and if S

is convex, then JZ(S) is a semivector subspace of L^J*

Furthermore, if S is convex, then S may be embedded as a

topological semivector subspace into ^(S) iff S is pointwise

convex; and S is pointwise convex only if ^(S) is so.

Given a topological semivector space S, equip its hyperspaces

with their respective finite topologies. [s] is then a topological

semivector space and ?C(S) is a topological semivector subspace of

[s], while S is embeddable as a topological semivector subspace

into K(S) . Furthermore, K(S) is Hausdorff iff S is so. If S

is a topological semivector space with a
" strong" topology (cf.

Section 2), i.e., a topology in which U © s is open, (s G S)

,

whenever U c: s is open (such as in topological vector spaces)

,

then 0(S) is a topological semivector subspace of [s].

It follows that .2(5) and ?C^(S) are topological semivector

subspaces of [s] whenever [s] is a topological semivector space,

and (3.2.(3) is a (topological) semivector space whenever 0(S) is

a (topological) semivector space.
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6.2 Proposition : Let S be a convex topological semivector space

with identity e, and let X (= s be convex. Then K-2-(X) is

convex. Assume that S has a strong topology and equip yC^(X)

with the upper semifinite topology. If X is I.e., then

so is ?C.2(X) — although it need not be Hausdorff even if X is

Hausdorff. Furthermore, if X is pointwise convex (so that

K-2-(X) , too, is pointwise convex), then ?C.2(X) is I.e.

only if X is 0° I.e.

Proof : The rest being clear, we only prove that ?C^(X) with

the upper semifinite topology is I.e. when X is so. Let

A e K-^-iX) , and let %<^KMX) be a nbd of A. Find a basic

nbd <V> of A such that <V>c5/-. Then V <= x is a nbd of

A C X. By continuity of ®, for each a 6 A there exist open

nbds U of e and W of a such that U ® W c V, while
a a a a

the local convexity of S allows us to assume each U to be
a

convex and the strong topology assures us that each U ® W is
a a

open. JU © W
I

a e a} thus being an open cover of the compact

A, it has a finite subcover \u ® W |
i G l|. Denoting

i i

U = n U and W = U W , we see that ACU©ACU®WCV
T a

.

T a •

and that U ® A is convex. Furthermore, U ® A is open in the

strong topology, so that <U ® A> = K-^-iV ® A) is an open

convex nbd of A £ K-2.(X) , while <U®A><=<v>c:5/-, as

desired.
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6.3 Corollary : If X is convex in a (0°) locally convex

topological vector space (not necessarily Hausdorf f) , then ?C-2(X)

is convex, pointwise convex and, with the upper semifinite

topology, I.e. as well.

Proof : The topology of a linear topological space being strong,

the last proposition applies.

#

6.4 Corollary : Let X be convex and T in a topological semivector

space with strong topology. Then X is 0° I.e. and ?C.2.(X) is

pointwise convex iff ?C.2(X) with the upper semifinite topology

is I.e. and X is pointwise convex.

Proof: Use 4.3 and 6.2.

6.5 Proposition : Let L be a (0 ) locally convex (not necessarily

Hausdorf f) topological vector space. Then .2.(L) , with the

uniform topology induced by that of L, is 3 I.e.

Proof : Let (W_
|

OL e A } be a fundamental system of convex and

symmetric nbds of the identity e e L, so that defining

Eq^ = |(x, y) I
X e L, ye E^(x) \, where E^(x) = x ® W^ for

each a e A and x £ L, JE CLxLJaeAJ is a fundamental

system of entourages of the uniform structure of L. Then, for

any P € .2(L) , E (P) = P ® W c= L is a nbd of P c L. By
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definition, the uniform structure on 2.{L) induced by

|e
I

a e a1 is the one generated by \J a 2(L) x ^(L)
|
a e AJ,

where J^(P) = JT e i(L)
|
P C E^(T) and T C E^(P)

!
(P e ^(L)

)

It suffices to show that each J is convex. To see this, fix

a and note that (P, Q) £ J^ iff P C Q © W^ and Q C P ® W^.

Let (P, Q) , (P'j q') e <7 , and consider an arbitrary convex

combination (P, Q) = (\P ® X'P', XQ ® X'q'), so that

P, Q e i(L) . Now P = XP © X'p' c X(Q ® W ) © X'(Q' © W )

= Q © XW © XV . Since W„ £ .2(L) and .2(L) is pointwise

convex, we have Xw^ © X'w = W , so that P c Q © W„.
a a a ex

Similarly, Q C P © W„. Hence, (P, Q) £ J„ , so that J is

convex, as to be shown.

6.6 Corollary : Let L be as in 6.5. Then K-l(L) , with the

uniform (equivalently , the finite) topology induced by that

of L, is 3 I.e.

Proof: (The parenthetically stated equivalence is directly

from [Michael, 1951, Theorem 3.3].) As K^(h) is convex in

.2(L) , it inherits the local convexity of Jl(L) granted by

6.5 , and is thus 3° I.e., as to be shown.

#





23

6.7 Theorem : Given a Hausdorff topological vector space L, let

X C L be non-empty and convex, and equip ?C(X) with the finite

(equivalently , the uniform) topology induced by the subspace

topology of X (so that KW , too, is Hausdorff). Then K-^-OO

is closed in ?C(X)

.

Proof : (The parenthetical assertions can be checked from [Michael,

1951, Theorems 3.3 and 4.9.3].) Clearly, KMx) ^ 0, as

singleton sets are compact and, in a convex vector space, convex

as well. Let ^ be a filterbase on ^J2.(X) converging to some

Q e }(iX) . We show that Q S K-2-(X) .

As KU) = K(.L) n [x], the finite topology on KW induced

by that of X is the same as the subspace topology on ?C(X)

C ?(f(L) relative to the finite topology on K(W - As K(L) with

the finite topology is a topological semivector space (see the

comments following 6.1), the algebraic operations of ?C(L) are

continuous. For each (X, X') 6 A , define a map Cl on KW
by fi(P) = XP © X P. As each such Cl is continuous and as X is

convex, Q is into ?C(X) . As X, hence ?('.2.(X) , is pointwise

convex, the restriction Q] ?C.2(X) of each such Q to ?('.2.(X) is,

in fact, nothing but the identity map f. K-^-iX) -» ?C.2.(X)

.

Fix attention to any particular (X, X'). Let iTCiKiX) be

a nbd of Q(Q) . By continuity of Cl, there exists a nbd

liCL^iX) of Q such that ClCU) <^ "if. As /S -» Q, there exists an
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element ^ e B such that 5/- C ^(. Then Q(y) a n(^() c r. But

n(y) =5/-, since 5/- C ?C^(X) . This shows that B converges to

Q(Q) . As KW is Hausdorff, B converges to a unique point.

This implies that fi(Q) = Q, and this is true for any (X, X')

e A^ . Hence, Q c X is convex and Q e ?('i(X) , as to be shown.

6.8 Exercise : Given a (0 ) locally convex Hausdorff topological

vector space L, let X C L be non-empty, compact and convex.

Denote ?Co2.(L) by S and KJl(X) by Y. Equip S with the

finite topology and consider it as a (convex) topological

semivector space with operations induced in the usual fashion

by those of L. Then S is Hausdorff and pointwise convex

having identity e_ = |0| and 0£ = £ for each £ e S, where

0^ denotes the identity of L. Furthermore, Y is a non-empty,

compact, convex and 3 I.e. subset of S. Finally, L x S is

a corvex, pointwise convex, Hausdorff topological semivector

space with identity e = (£, e) and Ot = e for each t e L x S,

while X X Y e K-2.{L x S) and is 3° I.e.
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game theory, economic theory and other instances of social analysis.

Given topological spaces X and Y and a mapping f of X

into the set of non-empty subsets of Y, when we say that f is

upper semi-continuous (use) , we will mean that, for each x e X,

given any nbd V C Y of f (x) , there exists a nbd U of X such

that f(U) C V. (This definition is equivalent to the one in 6.1.)

For the composition of two binary relations F cz A x B and

E C C X D, we will write E » F for the set (binary relation)

l(a, d) I Bx e B n C such that (a, x) e F and (x, d) G e|.

7.1 THEOREM (Fixed Point) : Given a pointwise convex topological

semivector space S with Hausdorff topology, let X be the

closed convex hull X = jX^a^ ® ... © X a I X = (X_, ...,
n n '

X ) e A I
of some ja„, ..., a | CS, and let f: X -* CJliY.)

n n 'On'
be an upper semi-continuous transformation. Then there exists

a (fixed) point x'''' e X such that x* £ f (x^'O .

Proof: Let cp: A^ - X be the map defined by cp(X) = X a

® ... ® X a , and let $: A x A -» X x x be the map definedn n n n

by $(X, \l) = (cp(X), op(|a)). Since the algebraic operations of

S are continuous, so are cp and $.

Let g c X X X be the graph of f and let G c A x A
n n

be the graph of the map F: A - [A ] defined by F(X)n '- n J \ '
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= cp (f(cp(\))). Thus, G = $"*"(§). Since A is compact, by

continuity of cp, X = cp(A ) is compact, hence regular. Thus,

g is closed, since f is use. Hence, by continuity of $,

G is closed, whereby F is use by compactness of A .

n

Clearly, for each X e A , F(X) is non-empty; also, it

is closed, since f((p(X)) is closed and cp is continuous.

We now check that F(X) is convex. Let \s, \l' e F(X) [i.e.,

for some y, y' £ f(cp(X)), let y = Li„a„ © ... ® u a and
U n n

y' = la^aQ ® ... © l-^^a^]. For arbitrary O, P') € A , define

|Ii = PlJ. + P'l-l', and denote y = [J„ar. ® ••• ® Ci a . Using
u u n n

pointwise convexity of S, one may compute that y = Py

e P'y'> and convexity of f(cp(X)) yields y £ f(cp(X)).

Hence, [i £ F(X) , showing F(X) to be convex.

Now applying Kakutani's fixed point theorem, there exists

a X* e A^ such that X- £ F(X*). Choosing x* = cp(X*) , we

see that x* £ f(x^O.

#

7.2 Corollary (Kakutani's Fixed Point Theorem [l94l]): Let

f: X -» C-.2.(X) be an upper semicontinuous transformation of an

n-dimensional closed simplex X c R into C-.2.(X) . Then there

exists a (fixed) point x* £ X such that x^f £ f(x''0.

7.3 THEOREM (Fixed Point) : Let f : X -> X be a continuous
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transformation of a 1 I.e., non-empty, compact and convex

subset X of a Hausdorff topological semivector space. Then

there exists a (fixed) point viy'' 6 X such that x* = fix*) .

Proof : Since X is compact, there exists a unique uniformity

on X compatible with its subspace topology. Since X is

1° I.e., we assume that JE cxxxjaeAJ is a

fundamental system of closed entourages of this uniformity

such that E (x) is (closed and) convex for all x e X.

Define Y„ = jxl x 6 E„(f(x))j. We will show that Y is

non-empty and closed for each a e A. Then, as the inter-

section of any finite collection of Y 's is non-empty,

compactness of X will imply that Y ^0, thus proving^ ^ ^ aeA a '

the theorem, for x* € fl. Y^ implies x* = f(x*).
CCSA CO

Now first we note that, being 1° I.e. and Hausdorff, hence

0° I.e. and T^ , X is pointwise convex (see Propositions 4.2

and ^.3). To show that Y is non-empty, let JD c X x x| a

e a} be a family of open symmetric entourages such that D c E^

(aeA). Thus, for any given a e A, {Dg^(^)
|
x e XJ is an open

cover of X, so that there exist x~, ..., x e X with
U n

n
X C U D (x.). Denote the closed convex hull of |x_, ,.., x

j

by P = ip = X-x„ e... ®Xx
I
X= (X-, ..., X) eA }. Define00 nn n n

the map F on P by F„(p) = E (f(p)) C\ P. Then, by symmetri-

city of D C E , for all p £ P, F (p) is non-empty; clearly,

it is also closed and convex. Thus F maps P into (3-.2(P) .
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Denoting the graph of E <> f by G , the graph of F is

simply ^a ~ Gq. '^ ^^ '^ ^^ * Since E is use (by the closedness

of E in the compact X x x) and since f is continuous,

E o f is use, i.e., G is closed, as X is regular (in fact,

compact). Hence, T is closed and, by compactness of the

range P, F is use. Thus, by Theorem 7.1, there exists

p e F (p) , i.e., p e Y , showing that Y is non-empty.

Y is obviously closed, since it is nothing but the projection

TT (G n A) of the compact set G fl A, where A is the
X CC Q*

diagonal in X x X. This completes the proof.

7.4 Corollary (Tychonoff's Fixed Point Theorem [l935]): Let

f : X - X be a continuous transformation of a non-empty

compact and convex subset X of a locally convex linear

Hausdorff topological space. Then there exists a (fixed) point

X* e X such that x* = f (x*)

.

7.5 THEOREM (Fixed Point) : Let JX C S
|
a e a| be a non-empty

family of 1 I.e., non-empty, compact and convex subsets of

Hausdorff topological semivector spaces S , and let

}f:X-»XaeAl be a family of continuous functions on
a a'

X = n X . Define F: X - X by F(x) = U^M
\^Qf^-

Then there

exists a (fixed) point x'"'' e X such that x-^ = F(x''0.
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Proof : Clearly, the topological semivector space S = 11 S
A "

is Hausdorff, and X C S is non-empty, compact and convex.

Since each X is 1° I.e., so is X (see Lemma 5.2).

Furthermore, F is continuous, as each f is so. Hence,

the result follows readily by application of Theorem 7.3.

7.6 THEOREM (Minmax) : Let X and X be 1° I.e., non-empty,

compact and convex subsets, each lying in a Hausdorff

topological semivector space. Let u be a continuous real-

valued function on X = X x X , such that

f ^ (x„) e jx
I
u(x , x) = Max u(y, x )

i "^ 1 1 ^ yex ^

f„(x,) e {x„l u(x , X ) = Min u(x , z)
/ i ^ i ^ r^CY izex^

define functions f : X -X and f^: X -X^. Then

Min Max u(x, , x„) = Max Min u(x, , x„)

.

XX 12 X, X 12
2 1 12

Proof ; It is obvious that, for all (x , x ) e X,

Max u(x , x„) ^ Min Max u(x, , x„) S Max Min u(x , x )

X 12 XX 12 XX 12
1 2 1 12

s Min u(x, , X )

.

\ ' '

Clearly, the functions f and f are continuous, so

that the function F: X - X defined by F(x , x ) = (f (x )

,

f^Cx )) is continuous. Then by Theorem 7.5, there exists an

x* e X such that x* = (x*, x*) = F(x*). Hence, Max u(x ,

x^c) = Min uCx';!;, X ), thus proving the desired equality.

2
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7.7 THEOREM (Minmax) : Let A and A be non-empty but finite

sets, each lying in a pointwise convex Hausdorff topological

semivector space, and let X and X be the closed convex

hull of A and A , respectively. Let u be a continuous

real-valued function on X = X x X-, such that

f (x ) = jx
I
u(x , x) = Max u(y, x)|12 ' 1

' 1 2 yex 2

f (x ) = jx
I
u(x , x) = Min u(x , z)

|

^ I I 11 zex i

define maps f : X - C-^CX ) and f : X - (3-i(X ) . Then

Min Max u(x , x ) = Max Min u(x , x ).XX ^ ^ XX ^ ^
2 1 12

Proof: Use Theorem 7.1.

7.8 THEOREM (Fixed Point) : Let f: X - C-.2(X) be an upper semi-

continuous transformation of a pointwise convex, 2 I.e.,

non-empty, compact and convex subset X of a Hausdorff

topological semivector space into C'.ZCX) . Then there exists

a (fixed) point x* e X such that x-'^ e f (x*) .

Proof : As in the proof of Theorem 7.3, it suffices to show

that the sets Y = jx] x e E (f(x))| are non-empty and

closed, where, in this case, IE OC e A 1 is a fundamental
' ' a'

system of closed entourages of the space X such that

E (K) is (closed and) convex for each non-empty, compact
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and convex subset K CI x. The proof is the same as that of

Theorem 7.3, except that appeal is now made to the upper

semi-continuity, rather than the continuity, of f.

7.9 Corollary ( Fan's Fixed Point Theorem [l952]): Let X be

non-empty, compact and convex in a locally convex Hausdorff

linear topological space, and let f: X -» C3-.2.(X) be an upper

semicontinuous transformation. Then there exists a (fixed)

point X* e X such that x* S f (x*)

.

7.10 THEOREM (Fixed Point) : Let jx |
a e A j be a non-empty family

of pointwise convex, 2 I.e., non-empty, compact and convex

subsets of Hausdorff topological semivector spaces, and let

jf : X - C-.2.(X )
I

CX e A I be a family of upper semicontinuous

transformations, where X = 11 X . Define F: X -» 11 (3.2.(X^) by
A ct ^ a

F(x) = n f„(x) (x ex). Then there exists a (fixed) point
A u

x''^ e X such that x'^ e F(x*) .

Proof: Clearly, F is an use transformation of the pointwise

convex, non-empty, compact and convex Hausdorff space X into

^.^(X) . Although X need not be 1 I.e., by the 1 local

convexity of each X , the uniformity on X allows a

fundamental system JE |
i e I } of closed entourages such

that, whenever K is the product K = 11 K of compact and
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convex subsets K CX , each E . (K) is closed and convex (see
a ct i

Lenma 5.1). Notice that F(x) is such a product of compact

and convex sets f (x) cz X . Thus, as in Theorem 7.8, defining

Y. = jx| X e E.(F(x))}5 it is clear that Y. is non-empty

and closed for each i e I, implying that Pi Y. ^ and

proving the theorem.

7.11 THEOREM (Minmax) : Let X and X be pointwise convex

2° I.e., non-empty, compact and convex, each lying in some

Hausdorff topological semivector space, and let u be a

continuous real-valued function on X = X x X , such that

f (x^) = |x
I
u(x , X ) = Max u(y, x )12 1 12 yex ^

f (x ) = jx
I
u(x , x) = Min u(x , z)

2 1 2' 1 2 ^ex 1

define maps f : X^ -K3-.2.(X ) and f^: X^ - C-.^CX^) ,

respectively. Then Min Max u(x , x ) = Max Min u(x , x )

X^ X^ 1 2 X^ X^ 1 2

Proof: Use Theorem 7.10.
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