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6 High-energy heavy-ions physics: from RHIC to LHC
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A selection of experimental results in high-energy nucleus-nucleus collisions after five years
of operation of the Relativistic Heavy-Ion Collider (RHIC)is presented. Emphasis is put on
measurements that provide direct information on fundamental properties of high-density QCD
matter. The new experimental opportunities accessible at LHC are introduced, in particular
those that may help clarify some of the current open issues atRHIC.

1. Introduction

Quantum Chromodynamics (QCD) is the only quantum field theory of the Standard Model
whosecollectivebehaviour (phase diagram and phase transitions) is accessible to study in the
laboratory. High-energy heavy-ion (AA) collisions offer the only experimental means known
so far to concentrate a significant amount of energy (O(1,10 TeV) at RHIC,LHC) in a “large”
volume (O(100 fm3) at thermalization times ofτ0 ≈ 1 fm/c). The study of the many-body
dynamics of high-density QCD covers a vast range of fundamental physics problems:

• Deconfinement and chiral symmetry restoration: Lattice QCD calculations predict a
new form of matter at energies densities aboveε ≈ 1 GeV/fm3 consisting of an extended
volume of deconfined and bare-mass quarks and gluons: the Quark Gluon Plasma (QGP) [
1]. The scrutiny of this new state of matter (equation-of-state, order of the phase transi-
tion, ...) promises to shed light on fundamental questions of the strong interaction such as
the nature of confinement, the mechanism of mass generation (chiral symmetry breaking,
structure of the QCD vacuum) and hadronization, which stillevade a thorough theoretical
description due to their highly non-perturbative nature [ 2].

• Early universe cosmology: The quark-hadron phase transition took place some 10µs
after the Big-Bang and was the most important event taking place in the Universe be-
tween the electro-weak (or SUSY) transition (τ ∼ 10−10 s) and Big Bang nucleosynthesis
(τ ∼ 200 s). Depending on the order of the QCD phase transition1, several cosmological
implications such as the formation of strangelets and cold dark-matter (WIMP) clumps
or baryon fluctuations leading to inhomogeneous nucleosynthesis, have been postulated [
3].

• Parton structure and evolution at small-x: At high energies, hadrons consist of a very
dense system of gluons with small (Bjorken) parton fractional momentax= pparton/phadron.

1The order itself is not exactly known: the pure SU(3) gauge theory is first-order whereas introduction of 2+1
flavours makes it of a fast cross-over type [ 1].
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At low-x, the probability to emit an extra gluon is large∝ αs ln(1/x) and non-linear
gg processes will eventually dominate the parton evolution inthe hadronic wave func-
tions. Whereas HERA results indicate that forx &10−3, the parton evolution withQ2 (or
ln(1/x)) is described by the usual DGLAP (or BFKL) equations, at lower values ofx and
around a saturation momentum ofQ2

s ∼ 2 GeV2, such a configuration is theoretically de-
scribed in terms of the “Colour Glass Condensate” (CGC) picture [ 4]. Since the nonlinear
growth of the gluon density depends on the transverse size ofthe system (i.e.Q2

s ∝ A1/3,
whereA is the number of nucleons in the nucleus), the effects of gluon saturation are
expected to set in earlier for ultrarelativistic heavy nuclei than free nucleons.

• Gauge/String duality: Theoretical calculations based on the Anti-de-Sitter/Conformal-
Field-Theory (AdS/CFT) correspondence permit to obtain results in strongly coupled
(λ = g2Nc ≫ 1) SU(Nc) gauge theories in terms of a weakly-coupled dual gravity the-
ory [ 5]. Recent applications of this formalism for QCD-likeN = 4 super Yang-Mills
theories have allowed to compute transport properties of experimental relevance, - such
as the QGP viscosity [ 6], the “jet quenching” parameter〈q̂〉 [ 7], or the heavy-quark
diffusion coefficient [ 8] -, from black hole thermodynamicscalculations. Such results
provide valuable insights on dynamical properties of non-perturbative QCD that cannot
be directly treated by lattice methods.

In this overview, we present aselectionof experimental results (mostly from the comprehen-
sive reviews of the 4 RHIC experiments [ 9, 10, 11, 12]) from AuAu, dAu and pp collisions up
to a maximum center-of-mass energy of

√
sNN = 200 GeV. Direct information on the thermody-

namical and transport properties of the strongly interacting medium produced in AA collisions
is commonly obtained by comparing the results for a given observableΦAA to those measured
in p(d)A (“cold QCD matter”) and in pp (“QCD vacuum”) collisions as a function of center-of-
mass energy,pT , rapidityy, reaction centrality (impact parameterb), and particle type (mass):

RAA(
√

sNN, pT ,y,m;b) =
“hot/dense QCD medium”

“QCD vacuum”
∝

ΦAA(
√

sNN, pT ,y,m;b)

Φpp(
√

s, pT ,y,m)
(1)

The observedenhancements(e.g. in photon or baryon yields, or soft hadron slopes) and/or
suppressions(e.g. in total multiplicities, high-pT leading hadrons, or quarkonia yields) in the
RAA(

√
sNN, pT ,y,m;b) ratios can be directly related to the properties of the produced QCD matter

after accounting for a realistic modeling of the space-timeevolution of the collision process2.

2. Reduced hadron multiplicities 7→ Saturated gluon distribution function xGA(x,Q2) ?

The bulk hadron multiplicities measured at mid-rapidity incentral AuAu at
√

sNN = 200 GeV
aredNch/dη|η=0 ≈ 700, comparatively lower than thedNch/dη|η=0 ≈ 1000 expectations [ 13]
of “minijet” dominated scenarios, soft Regge models (without accounting for strong shadow-
ing effects), or extrapolations from an incoherent sum of proton-proton collisions (Fig. 1, left).
On the other hand, approaches [ 14, 15] based on gluon saturation [ 4], which take into ac-
count a reducedinitial number of scattering centers in the nuclear parton distribution functions,

2The hot and dense systems produced in heavy-ion collisions at RHIC expand longitudinally (transversely) with
〈β〉 ≈ 1.0(0.6) and stop self-interacting collectively at freeze-out times τ ≈ 15 fm/c.
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fa/A(x,Q2) < A · fa/N(x,Q2), agree well with experimental data. In those CGC calculations,
the final hadron multiplicities are assumed to be simply related to the initial number of released
partons (local parton-hadron duality) which are depleted in the initial state compared to proton-
proton collisions due to non-linear gluon-gluon fusion effects.
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600 800 1000 1200 1400 1600

HIJING (dNch/d , b<3fm)qm99

HIJING+ZPC+ART (b=0)qm99

RQMD (b=3fm)qm99

UrQMD (b<3fm)qm99

VNI+UrQMD (b<1fm)qm99

HSD,VNI+HSD (b<2fm)qm99

NEXUS (b<2fm)qm99

DPM (Pb-Pb)’99

DPMJET (Pb-Pb, 3%)’99

SFM (5%)’99

LEXUS (5%)6/00

EKRT saturation(b=0)’99

Hydro+UrQMD (b=0)’99

Fireball (~5%)qm99

McLV (dN/d , b=0)7/00

Figure 1. Left: Data versus models fordNch/dη|η=0 in AuAu at
√

sNN = 200 GeV [ 13]. Right:
Energy and centrality dependences (in terms of the number ofnucleons participating in the
collision, Npart) of dNch/dη|η=0 (normalized byNpart): PHOBOS AuAu data [ 11] versus the
predictions of the saturation approach [ 15] .

The good reproduction of the bulk AA hadron multiplicities (including its centrality and
center-of-mass energy dependences, Fig. 1 right) has been one of the supporting arguments in
favour of the existence of non-linear QCD effects in high-energy nuclear collisions. In addi-
tion, the BRAHMS observation of suppressed yields of moderately high-pT hadrons in dAu at
forward rapidities (η ≈ 3.2) [ 12], as well as the “geometrical scaling”-like behaviour of the
nuclear PDFs observed forx <0.017 [ 15], are also consistent with gluon saturation expecta-
tions. It is worth noting, however, that both results are in akinematic range with relatively low
momentum scales,O(1 GeV), where non-perturbative effects can blur a simple interpretation
based on partonic degrees of freedom alone. Indeed, at RHIC (and HERA) energies the satura-
tion momentum, - the scale at which non-linear effects become important and start to saturate
the parton densities -, is in the transition between the softand hard regimes (Q2

s ≈ 2 GeV2).
At LHC the relevance of low-x QCD effects in hadronic collisions will be certainly enhanced
due to the increased (i) center-of-mass energy

√
sNN, (ii) nuclear radiusA1/3, and (iii) rapidity

y of the produced partons. Indeed, at LHC energies not only therelevant Bjorkenx values
will be 30–70 times lower than at RHIC:xmin

2 = (pT/
√

sNN)e−y ≈ 10−3(10−5) at central (for-
ward) rapidities for processes with a hard scalepT ∼10 GeV, but also the saturation momentum,

Q2
s ∼ A1/3sλ/2

NN ≈ 5 – 10 GeV2 [ 14], will be in the perturbative range.



4 D. d’Enterria

3. Strong radial and elliptic collective flows7→ QGP as a perfect fluid ?

The bulk of hadron production (pT . 2 GeV/c) in AuAu at RHIC shows strong collective
effects known as radial and elliptic flows. On the one hand, the measured single hadronpT

spectra have an inverse slope parameter larger than that measured in pp collisions, increasing
with reaction centrality and hadron mass as expected if collective expansion effects blue-shift
the hadron spectra (Fig. 2, left). Phenomenological fits to “blast wave” models yield trans-
verse flow velocities〈β〉 ≈ 0.6 [ 9]. On the other hand, the azimuthal distributiondN/dφ of
hadrons emitted w.r.t. the reaction plane show a strong harmonic modulation with a preferential
“in-plane” emission in non-central collisions. Such an azimuthal flow pattern is a truly collec-
tive effect (absent in pp collisions) consistent with an efficient translation of the initialx-space
anisotropy in non-central reactions (with an almond-shapeoverlap zone) into a final “ellipti-
cal” asymmetry inp-space. The amount of elliptic flow is quantified via the second Fourier
coefficientv2 = 〈cos(2φ)〉pT

of thedN/dφ distribution relative to the reaction plane. The large
v2 ≈ 0.2 measured in the data (Fig. 2, right) indicates a strong degree of collectivity (pressure
gradients) developing in the first instants of the collision. Indeed, elliptic flow develops in the
initial phase of the reaction and quickly self-quenches beyondτ ≈ 5 fm/c as the original spatial
eccentricity disappears. This is confirmed by the observation that not only light hadrons but
charm quarks (indirectly measured via the semileptonic decays of D mesons intoe±) show a
v2 signal as large as 10% [ 17] clearly consistent with strong collective correlations during the
partonicphase of the reaction.
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Figure 2. Left: Transverse spectra for pions, kaons, and protons measured belowpT ≈ 5
GeV/c in 0-10% most central AuAu collisions at

√
sNN = 200 GeV, compared to hydrodynam-

ics(+pQCD) calculations [ 16]. Right: Measured elliptic flow parameterv2(pT) for a variety of
hadrons [ 18] compared to hydrodynamic predictions [ 19].

Interestingly, the strongv2 seen in the data is inconsistent with the much lower values,v2 .
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6%, expected for purely hadronic matter [ 20] as well as for a partonic system cascading with
perturbative cross-sections (σgg ≈ 3 mb) [ 21]. The magnitude,pT and mass dependences of
the radial and elliptic flows belowpT ≈ 2 GeV/c are, however, remarkably well described by
ideal hydrodynamics models whose space-time evolution starts with a QGP equation-of-state
(EoS) with initialε0 ≈ 30 GeV/fm3 at very short thermalization timesτ0 ≈ 0.6 fm/c [ 22, 23,
24, 19] (Fig. 2). The fast (local) thermalization times, therobust collective flow generated in the
first instants of the reaction, and the excellent agreement of the data with ideal hydrodynamics
models which assume a fluid evolution with zero viscosity, have been presented [ 25, 26, 27, 28,
29] as evidences that the QGP formed at RHIC is a strongly coupled liquid (characterized by
Coulomb coupling parameterΓ =

〈

Epot
〉

/〈Ekin〉 > 1) rather than a weakly interacting gas of
partons. Estimates of the maximum amount of viscosity allowed by thev2(pT) data [ 27] give
a value close to the conjectured universal lower bound for the dimensionless viscosity/entropy
ratio,η/s= ~/(4π) , obtained from AdS/CFT calculations [ 6]. This result wouldmake the QGP
the most perfect fluid ever observed. The measurement of the differential elliptic flow properties
in AA collisions at LHC will be of primary importance to confirm such an interpretation and
search for a possible transition from a hotter weakly interacting QGP to the liquid-like state
found at RHIC [ 26, 27].

4. High pT hadron suppression7→ dense QGP withdNg/dy∼ 1000,〈q̂〉 ∼ 14 GeV2/fm

Among the most exciting results of the RHIC physics programme is the observed strong sup-
pression of high-pT leading hadron spectra in central AA [ 30] consistent with the predicted
energy loss of the parent light quarks and gluons traversingthe dense colored medium (“jet
quenching”) [ 31]. AbovepT ≈ 5 GeV/c, π0, η, and inclusive charged hadrons show all a
common factor of∼5 suppression compared to an incoherent superposition of ppcollisions
(Fig. 3, left) [ 32]. TheRAA = 1 perturbative expectation which holds for other hard probes such
as “color blind” direct photons and for high-pT hadrons in dAu reactions (where no final-state
dense and hot system is produced) [ 33], is badly broken (RAA≈ 0.2) in central AuAu collisions.
Most of the empirical properties of the quenching factor forlight-flavor hadrons (magnitude,
pT-, centrality-,

√
sNN- dependences of the suppression) [ 34] are in quantitative agreement with

the predictions of non-Abelian parton energy loss models which assume that the parent parton
loses energy by gluonstrahlung while traversing a medium with a large color density. Very large
initial gluon rapidity densities,dNg/dy≈ 1000 [ 35], or equivalently, transport coefficients3,
〈q̂〉 ≈ 14 GeV2/fm [ 37, 38], are needed to explain the amount of hadron suppression. However,
the fact that the quenching factor for high-pT electrons from semi-leptonicD andB decays is as
suppressed as the light hadrons in central AuAu (Fig. 3, right) [ 39, 40] is in apparent conflict
with the robust∆EQ < ∆Eq < ∆Eg prediction of radiative energy loss models. In order to repro-
duce the highpT open charm/bottom suppression, jet quenching models require either initial
gluon densities (dNg/dy≈ 3000) inconsistent with those needed to describe the quenched light
hadron spectra [ 41, 42], or a smaller relative contributionof B relative toD mesons than theo-
retically expected in the measured decay electronpT range [ 38]. This discrepancy may point
to an additional contribution from elastic (i.e. non-radiative) energy loss [ 43, 44] for heavy-
quarks [ 42] which was considered negligible so far. The unique possibility at LHC of fully
reconstructingc,b jets will be very valuable to clarify the response of strongly interacting mat-

3〈q̂〉 characterizes the squared averagekT transfer from the medium to the hard parton per unit distance[ 36].
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Figure 3. Nuclear modification factorRAA(pT) for different particles measured in central AuAu
at

√
sNN = 200 GeV compared to parton energy loss model predictions. Left: Directγ, π0, and

η [ 32]. Right: “Non-photonic”e±, mainly from D,B meson decays [ 40].

ter to fastheavyquarks, and provide detailed additional information on thetransport properties
of QCD matter [ 8].

5. Modified semihard di-hadron φ correlations 7→ QGP speed of soundcs ?

A second striking observation of the jet-quenching phenomena at RHIC is the strongly mod-
ified azimuthal dijet correlations compared to baseline pp results. Due to the difficulties of
full jet reconstruction in AA at RHIC, jet-like correlations are measured on a statistical basis
by selecting the highestpT trigger hadron of the event and measuring the azimuthal (∆φ =
φ−φtrig) and rapidity (∆η = η−ηtrig) distributions ofassociatedhadrons (pT,assoc< pT,trig):
d2Npair/d∆φd∆η. In pp collisions, a dijet signal appears as two distinct back-to-back Gaussian
peaks at∆φ ≈ 0 (near-side) and at∆φ ≈ π (away-side). At variance with this standard dijet
topology in the QCD vacuum, the away-side dihadron azimuthal correlationsdNpair/d∆φ in
central AuAu collisions shows a “dip” with a “double peak” structure at∆φ ≈ π± 1.1 (Fig. 4)
for semihard associated hadrons (pT,assoc= 1 – 2.5 GeV/c) [ 45, 46]. Such a non-Gaussian
(“volcano”-like) profile in the away-side hemisphere has been interpreted as due to the prefer-
ential emission of energy from the quenched parton at a finiteangle with respect to the jet axis.
Such a conical-like pattern can appear if the lost energy excites a collective mode of the medium
and generates a wake of lower energy gluons with Mach- [ 47, 48] or Čerenkov-like [ 48, 49] an-
gular emissions. In the first case, thespeed of sound4 of the traversed matter,c2

s = ∂P/∂ε, can be
determined from the characteristic supersonic angle of theemitted secondaries: cos(θM) = cs,
whereθM is the Mach shock wave angle. The resulting preferential emission of secondary par-
tons from the plasma measured at afixedangleθM ≈ 1.1, yields an average value of the speed
soundcs ≈ 0.45, larger than that of a hadron gas (cs ≈ 0.35) [ 50], and not far from that of an
ideal QGP (cs = 1/

√
3).

4The cs of an ultrarelativistic fluid is a simple proportionality constant relating its pressure and energy density:
P = c2

s ε.
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Figure 4. Azimuthal distributions of semihard hadrons (pT,assoc= 1 – 2.5 GeV/c) with respect to
a trigger hadron measured at RHIC. Left: PHENIX data in central (top) and peripheral (bottom)
AuAu [ 45]. Right: STAR data in central AuAu and dAu collisions [ 46].

6. Summary

A selection of experimental data from central AuAu collisions at RHIC energies (
√

sNN =
200 GeV) has been presented providing direct information onfundamental thermodynamical
and transport properties of high-density QCD matter. Four notable experimental results have
been discussed: (i) the reduced total hadron multiplicities consistent with gluon saturation in
the initial nuclear parton distribution functions, (ii) the strong transverse and elliptic differen-
tial flows in the bulk hadron spectra indicative of a high degree of collectivity and very low
viscosities during the first instants of the reaction, (iii)the factor∼5 suppression of highpT

leading hadrons reproduced by parton energy loss calculations for a medium with very large
initial gluon densities (dNg/dy≈ 1000) and transport coefficient (〈q̂〉 ≈ 14 GeV2/fm), and (ii)
the non-Gaussian shape of the azimuthal distributions of secondary hadrons in the away-side
hemisphere of high-pT trigger hadrons attributed to Mach conical flow caused by thepropaga-
tion of a supersonic parton through the dense system. Other interesting probes of quark-gluon
matter (photons, quarkonia, ...), not covered here by lack of space, will be discussed in a coming
publication [ 51]. Nucleus-nucleus collisions at LHC energies will undoubtedly contribute to
expand the knowledge of many-body QCD at extreme conditionsof temperature, density and
low-x shedding light on a vast ramification of fundamental physicsproblems.
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