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ABSTRACT

This paper investigates the use of individual cross section data to

describe macro functions. Necessary and sufficient conditions (denoted

AS) are found for OLS slope coefficients from a cross section to con-

sistently estimate the first derivatives of the macro function. AS em-

bodies both sets of aggregation assumptions known; linear aggregation

and sufficient statistics , and thus represents generalized aggregation

conditions. A methodology is given for estimating second order deriva-

tives of the macro function from cross section data for distributions

of the exponential family, which extends to higher order derivatives.

Finally, a general test of linear aggregation schemes is described.

KEYWORDS

Cross Section Least Squares Regression

Aggregation Theory

Asymptotic Sufficiency

Linear Aggregation

Sufficient Statistics

Exponential Family



- 2 -

* Thomas M. Stoker is Assistant Professor, Sloan School of

Management, Massachusetts Institute of Technology, Cambridge,

MA 02139. The author wishes to thank J. Green, D. Schmalensee,

D. McFadden, J. Hausmann, P. Krugman, and E. Kuh for helpful

comments

.



statistical Aggregation Analysis:

Characterizing Macro Functions with Cross Section Data*

1. INTRODUCTION

It is common practice in the study of macroeconomic relations to derive

a model among the relevant variables based on individual behavior, and then

estimate the model's parameters using time series data on the averages of those

variables across the population. Such estimated relations are justified as

describing the behavior of an individual with "representative" values of the

predictor variables.

In general, the true macro relation between averaged data results from

the process of integrating (averaging) the true individual behavioral function

over the distribution of its arguments in the population. Even in the simplest

consumption function regression of average consumption on average income, one

is only capturing the statistical relation between two s\immary statistics of

the underlying consumption-income distribution. Unless saving behavior is

virtually identical across individuals or the structure of the income distribution

can be simply represented, an average consumption-average income regression will not

adequately describe the structure relating average consumption to the income dis-

tribution. In this sense, any macro function in the form of an individual be-

2
havioral relation is likely to ignore important distributional influences.

A consistent model of such a macro relation thus requires both the speci-

fication of the individual behavioral function and the population distribution

of its arguments. Only if the analyst resorts to restrictive assumptions pro-

vided by aggregation theory, such as linearity in the individual behavioral func-

tion, can the requirement of fully specifying the behavioral function and dis-

tribution forms be relaxed. In addition, just stating such restrictions and

ni^5HD
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proceeding to estimate with average data only provides a weak basis for the

macro relation form, as any violation of the underlying restrictions will alter

it. For instance, if the true individual function is nonlinear, then in general

the macro relation between averages will differ in form from the individual func-

tion, with the true macro relation form heavily dependent on the actual distri-

bution of individual variables.

Often there are available cross section data - individual data on the com-

ponents of the averages - for one or more time periods of the study. If these

data represent a random sampling of the population, then in principle both the

micro behavioral relation and the underlying population distribution can be

empirically characterized. However, this process is likely to be imprecise,

leaving large portions of the observed data configuration unexplained.

The initial purpose of this paper is to discover when simple statistical

analysis applied to cross section data - namely ordinary least squares (OLS)

regression analysis - can reveal partial information about the true macro

relation without recourse to specific micro functional form or distribution

form assumptions. We find that the slope coefficients from an OLS regression

on cross section data will consistently estimate the first derivatives of

the true macro function if and only if a certain property holds, called asymp-

totic sufficiency (AS) of the average predictor variables for the average de-

pendent variable. This is shown in Section 3, after the notation and basic

assumptions are given in Section 2.

Because of the importance of aggregation theory in the consistent

formation of a macro function, we next investigate the relation of AS to the

two major blocks of aggregation assumptions appearing in the literature; the

4
linear (exact and consistent) aggregation approaches of economics and the

theory of sufficiency in the statistical literature. These approaches are
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reviewed in conjunction with some illustrative examples in Section 4. We find

that the AS property contains both types of aggregation assumptions as special

cases, and thus AS represents a generalized aggregation condition. Next a

characterization theorem for AS is proven which shows linear aggregation (which

uses only functional form assumptions) and sufficient statistics (which uses

only distribution assumptions) as polar cases \inder which AS holds, with inter-

mediate cases showing the trade-offs required between making distribution and

functional form assumptions under AS

.

When the average predictor variables are sufficient statistics for the

parameters of the underlying distribution, the true macro function can be non-

linear in form. In Section 5 we present a methodology for estimating all higher

order derivatives of the true macro relationship from cross section moments,

when the distribution is a member of the exponential family. We present ex-

plicitly the formulae for second order derivatives. Finally, these formulae

give rise to a general test of linear aggregation approaches, relying only on

the existence of certain population moments.

In short, this paper investigates the use of simple statistical techniques

as applied to cross section data to characterize the true macro relation, termed

"statistical aggregation analysis" in the title. These techniques provide

information about the macro function based on relatively weak assumptions, which

can either be used to judge specific modeling assumptions or pooled with averaged

data in a joint estimation process.
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2, PRELIMINARIES

For a complete discussion of the issues addressed in this paper, a very

general specification of the population structure underlying a macro relation

is required. However, in order to direct attention to the distributional in-

fluences on macro relations, which provide the focus of results in Section 3.1,

we present slightly simplified background assumptions and notation. In Section

3.2 these assimiptions are relaxed and the results reinterpreted.

We begin by assuming that there is a large population of individuals in T

time periods with periods indexed by t=l,...,T. There are N individuals in

period t, indexed by n=l,...,N . For each agent n in period t, there is a vec-

t . t
tor of personal attributes A . For given t, A is assumed to capture all

n n

differences in individual agents, whether observable or not. Also, for each

agent n in period t there is a dependent quantity x , which is determined by A
n n

via

x^ = f (A*^) (2.1)
n n

f, the individual behavioral relation, is assiomed here to not vary with t, an

unnecessary restriction which is relaxed in Section 3.2,

Now for each t the set {a |n=l,...,N } may be considered as a random sample
n

from a distribution with density pCAJO ). 6 = (9-, , . . . ,6 )^is an L-vector of

parameters which acco\ant for all changes in the underlying distribution p(a|9 )

over time t. We denote the parameter space of as F, where T = {6eR |p(A|6) is

a density}, where R is L-dimensional Euclidean space.

For each period t, the following average statistics are observed

N^ N^

^ T n . ^T m n
~t n=l —t n=l , ,, (9 2)X = ; V = ; m=l,...,M \^.^)

t m „t
N N
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t t
where v (A ) , m=l,...,M are observable functions of A . The vector

m n n

(v (A ),..., V (A ))' is denoted as v(A ) and the vector (V, ,... ,V„) ' as V .

1 n m n n 1 M
—t —

t

Our primary interest here is in the relation between x and V , referred to as

the macro relation, which arises from the micro functional form f and the

distributional form p. We now proceed to characterize this relation.

We first make an assumption concerning the population structure.

t t
ASSUMPTION Al: All first and second order moments of x and v(A ) exist given

n n

t, and the covariance matrix of v(A ) is nonsingular.
n

As notation, denote

E(xle^) = /f(A)p(Ale^)8A = (j)(6^)

E(v(A)l9'^) = gO'^) = M^
I V

E{(x - (j)(e^))^Ie^)= a^ (2.3)
XX

E((x - (j)(e^)) (v(A) - y^) |e^) = E^
V XV

E{(v(A) - y^)(v(A) - y^)'Ie^)= E^
V V w

In (2.3) the means of x and v(A ) given t are written as functions of
n n

t —t —

t

9 . In order to ascertain the large sample relationship between x and V , we

reparameterize E(xl9 ) = (}) (9 ) in terms of y . For this we require

ASSUMPTION A2: L = M, and M = g(6 ) is invertible in 6 . Moreover, the range

of g, i.e. {g(9) |eer} contains an open convex set $Cr , with the realized values

II ^ 1 T T
^„ = g(9-^),...,y = g(9 ) interior points of $.v V
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Assxamption A2 is mainly made for convenience, and is relaxed somewhat in

Section 3.2.

Performing this inversion, we can reparameterize p(aI6 ) as p*(A|y ) =

p(A g (y )), so that mean x in period t appears as
V n

E(xle'^) = (})(g"-'-(yS) = (J)*(yS (2.4)

* —t —t.
<i>

represents the correct large sample relationship between x and V ,

7
because by the Weak Law of Large Numbers;

—

t

* t —t. t
plim X = (j) (y ) ; plim V = y (2.5)
rvjt-Kio

" Nt-K»

so that if N is large,

^ =r ({)*(V^) (2.6)

—t —

t

represents the correct macro relation between x and V over all time periods.

Our final background assumption is

*
ASSUMPTION A3: V

(f)
exists for all y e$ where V denotes the gradient

V
operator.

In addition to the macro data (2.2), we also observe a random sample

of K agents in a particular period t°; a cross section data base. We index

t„ , t.
members of this sample by k=l,...,K, and therefore have as data x °, v(A^°),

Q 4-

k=l,...,K. We assume that K is smaller than N °, but still large enough

9
to employ large sample statistical results. In this paper our main concern

*

is what can be learned from this sample about (j) , the macro function. In

particular, in the next section we establish necessary and sufficient conditions

t t
for the slope coefficients b obtained from regressing x ° on v{J\^°), k=l,...,K

I



* *
(and a constant) to consistently estimate the derivatives of (j) ; V ({) . By

standard methods , we have that

t -1 t
plim b^ = (E °) Z ° (2.7)
K-.O0

K W XV

This concludes the presentation of the basic framework and notation.

As stated in the introduction, if f and p are known, then an integration

*
process (in principle) yields the correct macro relation

(f) , whose parameters

could then be estimated using average data observed over time t. However,

in general, f and p will not be known with certainty. Even if a form f is

*
suggested by economic theory, (p will depend in form on the choice of p, unless

f satisfies consistent (linear) aggregation restrictions. In any

t
realistic model indicating differences between individuals, A and/or

n

v(A ) will be a large vector, usually making certainty about the form
n

of f or p unwarranted. Recall p(a|9 ) is the joint distribution of all

relevant individual attributes. To reiterate, the overall aim of this paper

is to study the conditions under which a cross section data base, as a reflection

of both f and p structures, can through simple statistical techniques provide

*
information about (p .

Our general notation provides for a distinction between the underlying

behavioral attributes A and the observable variables v(A ). If x depends
n n n

t * t t
directly on v(A ) through f; i.e. there exists f such that f (A ) =f*(v(A )),

n n n

then no such distinction is required. However, included in our general analysis

—

t

—

t

are situations where V is the relevant predictor of x through assumptions on

12 t
p only. In general A in used to represent all dimensions on which individuals

n

differ, and therefore linear models with random coefficients, standard dis-

turbance terms, etc., can all be embodied in this framework, in addition to the

predictor variables v(A ).
n
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For concreteness , suppose that consxamer demand is studied, x can represent
n

the demand for a particular commodity by family n in year t, v (A ) family
1 n

income, v (A ) family size and v (A ) a qualitative variable indicating whe-
2 n 3 n

ther the family has a rural residence, x is average quantity demanded in year

—

t

—

t

—

t

t, V average income, V average family size and V the percentage of families

with rural residences . Our framework covers both aggregation schemes where

t t —

t

X is f\inctionally related to v(A ) or where V describes movements in the
n n

—

t

underlying distribution sufficiently to determine x movements over time.

3. MICRO REGRESSIONS AND MACRO FUNCTIONS

_3.1 The Basic Results

In this section we characterize the conditions under which the micro

slope coefficients b of (2.1) will consistently estimate the first derivatives
K

*

of the macro function
(f)

with respect to y . For the majority of this section

we consider only the time period t^, and so the time superscripts are omitted.

Of central importance to this inquiry is the conditional expectation of

x given V, denoted x

X = E(x|v) (3.1)

In general, x is a function of 2M+1 arguments, V, y and N, so that we write

x = x(V,y^,N) (3.2)

X is required to obey some regularity conditions, as summarized in

— ~14
ASSUMPTION A4: x exists and is continuous and differentiable in V, and V_x

approaches a finite limit G (y ) 7^ as N approaches infinity and V approaches

y .

V
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We can obtain the following result concerning the large sample be-

havior of X, V, and x

Lemma 3.1:

a) Under Assvimptions Al and A2, we have that as N increases

_ * _
plim X = * (y ) ; plim V = yV V

and that the asymptotic distribution of

*

X - 4) (y )

v-y^

is multivariate normal with mean zero and variance covariance matrix

XX XV

XV w

b) Under Assumptions Al, A2 and A4, as N-*<»

v^(x(v,y N) - * (y )

)

V V

converges in distribution to

N (V - y ) G(y )

V V

Proof: Part a) is a standard application of the Weak Law of Large Numbers and

the Central Limit Theorem. Part b) is shown in the Appendix.

QED.

We are now in a position to show the first Important result:
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Theorem 3.2: Consider the micro slope coefficients b obtained by re-

gressing x on v(A ) (and a constant) in a cross section random sample.

Under Assumptions Al, A2, and A4, we have plim b = G(iJ ).

Proof: Multiply >^J~(x -
(f) (y ) ) by v^ (V - y ) and take the expectation, giving

E(N (x - 4)*(y )) {V - y )) = Z
V V XV

which expands as

Z = E (N (x - 4) (y ) ) (V - y ) ) + E (N (x - X) (V - y )

)

XV V V V

= E(N(x - c') (y )) (V - y ))

where the second term vanishes by first conditioning on V and then taking

the overall expectation. We also clearly have that

E(N(V - y ) (V - y )') = E
V V w

Applying Lemma 3,1 b) , we obtain the equality

lim E(N(5 -
(J) (y ))(V - y ))

V V

lim E(N(v - y ) (V - y ) )G(y )

V V V

or, in view of the above developments

E = E G(y )

XV W V

which, from (2.7) and the assiomption that E is nonsingular, gives

plim b = G(y )

K V

QED.
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From applying results of the Central Limit Theorem, we have just shown

that OLS slope coefficients from a randomly sampled cross section will con-

sistently estimate the large sample derivatives of the "average" regression

function x = E(x|v) with respect to V. This is a very general result,

relying only on the regularity properties of Assumptions Al, A2 and A4, which

17
concern x and the population distribution p.

*

In order to relate this result to the derivatives of ({) , we begin by noting

the pointwise convergence of the function x to (}) implicit in Lemma 3.1 b) :

lim x(y ,y ,N) = (1) (y ) (3.3)
„ V V V

where the argument V has been set to y . Theorem 3.2 relates the regression
V

coefficients to the large sample derivatives of x with regard to the first

argument only. Because of this we must be very specific about the role of V,

the first argument in x. To this end we introduce an M vector of dimimy argxmients

it and rewrite x as

X = x{^, y^,N)I^^- (3.4)

This allows us to discriminate changes in the first argument ^ as N-*^' from

changes in the second argument y , avoiding the problem of V approaching y

in probability as N^<».

Using this notation, we also have

V-x =V^x(lf-,y^,N)|^^- (3.5)

and pointwise convergence as in

lim V i(y y ,N) = G(y ) (3_g)
N->oo ^

Now, in order to remove some pathological cases from the analysis, we adopt
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the following assumption on V x, the gradient vector with regard to the first

set of arguments ^, and V x, the gradient vector with regard to the second
V

set of arguments y -

18 **
ASSUMPTION A5: V x converges uniformly to a vector function G {i|^,y ) as

N-x». Also, V X exists and converges uniformly to a vector fiinction H{i/;,y )

V
^

as N-x».

~ **
A5 implies that x converges to a function cf) (ip ,\} ) as N-^°°. From (3.6) and

(3.3) we have that

icic ic

<t>
{\i ,V. ) =

<i> {M ) (3.7)
V V V

**
G (y ,y ) = G(y )

V V V

19
and by the uniform convergence assumption

V'^'^'V =^**('^'V (3.8)

**
so v.* (y ,y ) = G(y )

\p V V v

and

V (J)**(;|;,y^) = H(i|;,y^) (3.9)

V

*
We can now decompose the gradient of the macro function

(f)
with respect to y

(via (3.7)) as

^V V
(3.10)

In view of this discussion, we have shown

Theorem 3.3: Under Assumptions Al, A2, A3, A4 and A5
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^ *

plim b^ = V A (y )

K u V
V

if and only if h(u ^u ) =
V V

Thus, at a given point in time, the micro regression coefficients b
K
*

will consistently estimate the first derivatives of the macro function 4' (y )

** ** **
if and only if V ({) vanishes, where V (j) is the gradient of <^ with

V V

regard to its second set of arguments. For such slope coefficients to always

* ' **
consistently estimate the first derivatives of (}) , we must require that V (\) van-

** ^v
ish at all parameter points, i.e. that

(J)
can be written without reference to its

***
second arg\iment y . Thus there exists a flanction (j) of M arguments, such that

(})**(ijj,y ) = (f)***(ijJ) (3.11)

In view of (3.7),

4>***(y^) = 4'*(y^) (3.12)

*** *

or that ({) and ^ are the same function.

This condition is important enough to merit a name (where we return to using

t superscripts)

.

—

t

—

t

Definition 1: V is asymptotically sufficient for determining x if for all

^e$ and y e$
V

lim 5(i|;,y^,N^) = (f)*(i|;) (3.13)

This property is abbreviated as AS in the rest of the exposition.

We can summarize the following discussion as
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Theorem 3.4: Assume Al, A2, A3, A4 and A5. Let y e$, so that p (Am ) is
V ' V

the population distribution in period t. OLS slope coefficients from a random

* tsample cross section in period t consistently estimate V (}) evaluated at y
y V

t -t ^
for all y £$, if and only if AS holds, i.e. V is asymptotically sufficient

for determining x .

In short, AS holds if x, viewed as a function of V , has the same func-
*

tional form in a large sample as the macro relation
(J) , viewed as a function of

t
y . This condition represents a relatively strong restriction on the forms of

f and/or p. However, as indicated in Section 4, AS embodies virtually all types

20
of aggregation assumptions from the economics and statistics literatures.

Therefore, AS can be viewed as a generalized aggregation condition.

A small sample counterpart to AS can be defined as

1. —

t

Definition 2: V is sufficient for determining x if there exists a function

~* —t t
X of the M + 1 arguments V and N such that

~ ,—t t t, -* ,—t t,
x(v ,y ,N )

= X (V ,N )

V

~ —t t
The small sample definition requires that x(V ,y ,N ) can be written with-

out reference to y , for all N . AS requires this property to hold in the

t —

t

—

t

limit as N -x». Clearly if V is sufficient for determining x , then AS holds,

as well as the conclusion of Theorem 3.4.

The conditions of Definition 2 have appeared previously in the statistics

—

t

. .

literature in a slightly different context. V sufficient for determining

—

t

X represents the precise condition under which the well-known Rao-Blackwell

21 ~ 22
Theorem holds, which states that x is the best unbiased estimator of

—t * t —

t

E(x ) =
<i> (y ) based on V . AS guarantees that x will converge to such a best

V
t

estimator as N ^«'.

I
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We now turn to two extensions of the basic notation, with the reinter-

pretation of Theorem 3.4 under each.

3.2 Extensions

There are two extensions of the basic framework which are of interest to

empirical uses of the AS property. The first is to allow for the behavioral

function f to vary over time. The second is to allow for more distributional

parameters than average statistics (L>M) . These extensions are discussed for-

mally below and illustrated in the examples of Section 4.

Suppose first that the behavioral function f varies over time, as indicated

by a vector of parameters y . Thus, f is rewritten as

x^ = f (A^,Y^) (3.14)
n n

extending the previous notation to include y , From the development of Section

t —

t

3.1, we see that all functions deriving from expectationsof x or x will now

^ * * ** ** *** _ *

depend on Y (i.e. (}),4) ,V c|) ,x,G,G ,H,(|) ,<i> and x ). In particular, the
^"^

t t t
macro function (j) now depends on both y and y / with y representing distri-

bution parameters and y representing behavioral parameters. The defining con-

dition (3.13) of AS is replaced by

lim X (i|^,y^,N^,y^) = cj) {i),y ) for all i> ,]i^e^ (3.15)

t
where each list of arguments is extended to reflect dependence on y .

Under this additional consideration all of the results given above hold,

with the proviso that the y argument in all functions is held constant at

y = y °, the behavioral parameters for the period t„ of the cross section.

—t —

t

Theorem 3.4 is now stated as: given asymptotic sufficiency of V for x (using

condition (3.15)), the slope coefficients from a cross section random sample at
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* t t
time tg will consistently estimate V <t) , evaluated at both y ° and Y °-

V
This extension is of interest to actual empirical uses of these results be-

cause there are often variables common to all micro agents which modify their

*
behavior (e.g. common prices, general economic conditions, etc.). 4* must

be modeled with regard to both distributional influences (y ) and common para-

meter influences (y ) . Here OLS slope estimates from a cross section can be

used to estimate the derivatives of ^ with regard to distributional variables

in a given time period, and thus can be used either to judge restrictive assump-

*

tions on the form of or pooled with average time series data for more pre-

*

cise estimation of 4) . In this way, if cross section random samples are avail-

able for several time periods, slope estimates from each data base can be used

*

to indicate structural changes in <^ , and thus guide the choice of a model con-

sistent with all available evidence. Similarly, multiple sets of estimates can be'

pooled in the estimation of such a model. In addition, this extension is im-

portant in consideration of exact aggregation models, which are reviewed in

Section 4.

For the second extension, assume that f is not changing over time (f is

given in (2.1)), but that 9 is an L vector, L>M, where M is the number of

average statistics V ,m=l,...,M. The inversion \i -<->6 (Assiimption A2) is now
m V

performed with regard to M elements of 9 , conditional on the value of the re-

t "^3

maining L - M parameters, denoted 6^. This implies that all functions de-

riving from expectations using the y ,^ o parameterization will depend ex-

t * * ~ ** ** ~*
plicitly on 9^ (i.e. p , ({) , x, G, G , H, (}) and x ).

In the same fashion as the first extension, all the results of Section 3.1

hold, with the proviso that 9^ is held constant. In particular, if the de-

fining equation (3.13) of AS is replaced by

I
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lim x{\l),\J ,N ,e^) =
<t> {\p, 6^) for all ij;,y^e$

Nt^ V ° V

where 6^ has been appended to the lists of arguments, then Theorem 3.4 states

that OLS slope coefficients from a cross section at time t^ will estimate the

* tpartial derivatives of (J) with respect to y , holding 6^ constant at 9^°.

This extension is of empirical use when certain distributional characteristics

24
have been observed as constant over time, as the modeling process can em-

body this constancy.

A word of caution is required for uses of distributional constancy, how-

ever, as the choice of 0^ (the parameters held constant) is crucial to AS.

In other words, a particular choice of L-M parameters 0^ may cause a violation

of (3.16). This situation is illustrated by example 2 of Section 4.

In short, the validity of AS depends on which set of distributional parameters

is assxjmed constant.

As a practical matter, this problem is of small import when V represents

all available distribution data over time. All results must be necessarily

prefaced by "holding all unobserved distribution parameters constant." Although

not always explicitly stated, this is a requirement of virtually all empirical

studies of macro functions.

However, this consideration does point out two ways OLS slope regression

coefficients from a cross section can fail to describe the macro function.

First is the failure of AS, with H 7^ 0, giving for large N that x has a different

—t * t
functional relationship to V than (t does to y . The second is when there are

V

additional distribution parameteis0o which vary over time, influence the mean

t -t 25
of X , and are not captured by V movements

.
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4. EXAMPLES AND THE RELATION TO PREVIOUS AGGREGATION APPROACHES

This section presents examples which illustrate the main theorems and

notation, and connects the results here to previous aggregation approaches.

Example 1: Here f (A ) is assumed to be a linear function in v(A ); i.e.
n n

x^ = a„ + a'v(A^) + e (A*) (4.1)
n ° n n

t 2(.
where a„ is a constant, a is a M-vector of constants and e (A ) is a residual,

n

with mean and uncorrelated with v(A ). I
n -^

Under our assumptions we have

:

* t t t
(J) (y ) = E(x ) = a„ + a"y

V (}) = a
yV

,—1 1—t ^-t
X = E(x |V ) = a^ + a V

V—X = a, G(y ) = plim V—x = a
V v , V

4) {i/;,y ) = a„ + a'(Jj

G**(i;;,y^) = V^<t>** = a

H(i|^,y^) = V <()** =

Clearly the OLS slope coefficients from a cross section will consistently

estimate a, either by usual least squares theory or by our general development.

The linear functional form (4.1) eliminates all distribution parameters in <^

other than y .

V

This simple linear functional form has appeared in two extended forms

27
in the economics literature. The first is the exact aggregation format of

i
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of Gorman (1953), Muellbauer (1975,1977; and Lau (1980) , where the

constant coefficients a^ and a are allowed to be time varying with re-

t 28
spect to a common set of parameters y . Thus, a^, and a of (4.1) are

replaced by a^ (y ) and a (y ) to give

x^ = a^iy^) + a(Y^)'v(A^) + e(A^) (4.2)
n °

' n n

Our results show that slope coefficients from a cross section at time

t = to will consistently estimate a (Y °).

The form (4.2) arises from the existence of aggregate macro func-

tions which are independent of the underlying distribution form. More

specifically, Lau (1980) proved the following important and general

theorem, summarized in our notation as: Suppose that for all underlying

configurations of {a ,n=l,...,N }, x can be written as

X = F(Y , g^^
(A , .. . ,A^^) ,...,gj^(A^, ... ,A^t)) (4-3)

where g , m=l...,M are symmetric functions of A, ,... ,A .. Then, under
m 1 N^

some general conditions we must have

t t —

t

i) g (A .. . , ,A^,^.) =V , m=l,...,Mml N^ m

ii) x^ = a„(Y''^) + a(Y^)'v(A^) (4.4)
n ° n

iii) ^ = ajY^) + a(Y^)' V*

With no distributional restrictions, the form (4.3) requires the symmetric

functions q to be averages, and x = f(A ) must be a linear function (with
m n n

constant coefficients given t) in the components of the g functions. Thus,
m

a linear function is required for aggregation schemes free of distribution

restrictions.
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The second extension of the simple linear model (4.1) is the consistent

aggregation approach of Theil (1953, 1975), where the fixed coefficients a„
,
a

are replaced by coefficients which vary randomly across the population, inde-

pendently of the predictor variables v(A^) , and have constant means over time.

Thus, (4.1) is extended as

x^ = f(A^) = a„(A^) + a(A^)'v(AS + e (A^) (4.5)
n n ° n n n n

where a (A ) is a scaler random variable and a (A ) is a random M-vectoron ri

t 29
which both vary independently of v(A ). Denoting the (constant) coef-

t I t t i„t . 30
ficient means as a = E(a (A ) 6 ) and a = E(a(A ) 6 ) gives

o o n n

* (yS = a„ + a'y^

V d) = a

\
X = a„ + a"v^ V-5 = a , G(y ) = a (4.6)o V V

**
(J)

(ip,y^) = a„ + a 4j

** **
G {\li,M^) = V^(}) = a

H((i;,y^) = V (j)** =

V

Thus OLS slope coefficients from a cross section will consistently estimate a,

the mean of the marginal coefficient distribution. This framework embodies two

types of assumptions, the linear functional form assumption of (4.5), and

the partial distribution assumption that a (A ) varies independently of v(A^).

Exact and consistent aggregation formats can easily be combined into a

general linear model, allowing random coefficients which vary independently

of v(A^), and whose means vary over time. This specification is given as
n

x''^ = a (A^) + a(A^)'v(A^) + e (A^) (4.7)
n ° n n n n
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where a„ (6 ) = E(a.(A )|e ) and a(0 ) = E(a(A )|6 ) are time varying. If

t 31
a^ and a do not vary with y , then AS holds, and our previous arguments

establish the validity of our previous theorems.

Our next example illustrates where AS holds but does not rely on

linearity of f in v(A )

.

n

Example 2: Suppose for simplicity that x(A ) = A , a scalar random variable
n n

t 2 2
distributed normally with mean y and variance O^ at time t, where O^ is

constant over t. Suppose that the true functional relationship is quadratic

in A .

n

(4.8) x^ = f(A^) = a„ + a A^ + a^(A^)^ (4.8)
n n ° In 2 n

where a^ , a and a are constants. Using normality we have (with V = —— )

N

* t t t 2 2
(}) (y ) = a„ + ajj + a2(y ) + a^O

^

* t
V 4 = a, + 2a y
y 1 2

x = E(3^|^) = a, + a V^ + a (^)^ + a ^-^^ o^

N

V—X = a +2a V
V 12

t ~ t
G(y ) = plim V—x = a +2a y

** t 2 2
4) {\l),\i ) = a„ + a^i) + a^i) + a^o^

G (ijj,y ) = V
(J)

= a^+2a^\l)

H(i|;,y^) = V (j) =0
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t t
Our results state that regressing x ° on A ° in a cross section gives a

* 32
slope coefficient which consistently estimates V ^ .

This example illustrates the second extension of Section 3.2. Here

t 2
there are two distributional parameters y and O^, and AS holds considering

2 t *

Cg held constant. If O^ is not constant (denoted o^) then V ({) only gives

* t
the partial derivative of (}) with respect to y only, and thus captures only

*
a part of the change of cj) from distribution movements. Alternatively, if

T = cr^/y (the coefficient of variation) is the distributional aspect held

t
constant, then reparameterizing the normal distribution in terms of y , T

-, ^ t , t 2 .

instead of y , (o^) gives

*t t t2 2t2
(}) (y ,T) = a„ + a^y + a^ (y ) + a^T (y )

* t 2 t
V

(J)
= a^ + 2a2y + 2a2T y

,-t, ,
—1,2 2, t,2 N - 1

X = a„ + a (V ) + a (V ) + ax (y )
—-

—

^
N

V- X = a, + 2a V*^
V 1 2

** t 2 2 t 2
(j) (ijj,y ) = a„ + a^i|i + a^i]^ + a^x (y )

G(iJ;,y''') = V
<t>

= a^ + 23^11^

, , t, ^ 2 t
H(iJ;,y ) = 2a2X y

Here AS does not hold, and thus the conclusion of Theorem 3.4 is invalid
33

Thus, AS depends on exactly which distributional aspects are assumed constant.

2
The power of the results in example 2 (with O constant) arises

t -t ^^^
from the normality assumption on A . In particular, V = —-^ is a sufficient

statistic for y in the usual statistical sense. More generally, the observed
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M vector V is sufficient for 6 if the conditional distribution of A, , . . . ,A 4.

1 N^
—

t

t —
given V is independent of 6 : formally if P represents the conditional

distribution: t
"^ t| t
;[, p(A )

?(A^ A^^J^=l|.) =2=1
,. ^ = ^

= V^ 5^ 1|J

^t t —t -^
where P (V ,9 ) is the marginal distribution of V , then V is a sufficient

t — t 34
statistic for 9 if P does not depend on . Clearly in this case x =

Eix |v ) depends only on V , and so V is sufficient for deteirmining x as

in Definition 2 of Section 3. In this case AS holds for an arbitrary micro

relation f in accordance with Assumptions A1-A5.

The theory of sufficient statistics is motivated by the question of when

a particular set of statistics captures all of the information from a sample

relevant to the distributional parameters 9 . As such, it is a theory of

aggregation in the same sense as the linear exact aggregation theory of econo-

35
mi cs. A major theorem in the statistical literature proven by Koopman (1936),

Darmois (1935) and Pitman (1936) states under some regularity conditions that

a sufficient statistic n (A
, '\[t) fo^ ^ of dimension M < N exists if and

only if

,t
N

I
n=l

r){A^,...,A\) = ^ v(A^) = nV (4.10)
1 N'- '", n

i.e. T] is a sum of functions of the individual A and the distribution p(a|9 )

36
has the form

p(A|e^) = C(9^)h(A)exp
M
y 7T (9 )V (A)
^, m m

m=l

(4.11)

Distributions of the form (4.11) comprise the exponential family of distri-

butions. Notice the similarity of exact aggregation, requiring a linear

f structure, and sufficient statistics, requiring a linear structure for
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In p as in (4. 11)

.

In the discussion of examples 1 and 2 above, we have reviewed two sets

of aggregation assumptions which embody completely different restrictions

on the individual function f and the distribution p. The first is exact

aggregation, which requires f to be a linear function of v(A ), with no

explicit distribution assumptions. The second uses sufficient statistics,

—

t

nt
in requiring p to be such that V is a sufficient statistic for 8 , with no

explicit assumptions on f. Both of these sets of aggregation assumptions im-

—

t

—

t

ply AS, and therefore asymptotic sufficiency of V in determining x can be

viewed as a generalized aggregation assumption. In addition, exact aggrega-

tion and sufficient statistics represent pol^r extremes under which AS holds,

as shown by the following theorem and corollary:

Theorem 4.1: Under Assumptions Al, A2, A4, A5 and the regularity conditions

presented in the Appendix, we have

y v
V

where

»t -t ~ ,, t t.
S = X - x(i[),y ,N )

K^ =
I V m p (A^ly^) - E( I V inp(A^|y^)Iv = ^)

n=l V n=l V

Also

trt|-t
H(ii;,y'*') = lim E(K <S^|v^ = ^)

^ Nt-x»

Proof: See the Appendix.
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The regularity conditions referred to in the statement of Theorem 4.1

just insure that derivative operators may be passed under the integral

used in defining x. The following corollary is immediate.

Corollary 4.2: Under the conditions of Theorem 4.1, V is sufficient for

--t —t V * t| t
determining x if x and ) V In p (A y ) have zero covariance conditional

^ y n' V
-t t ''^^ "^ t

on V for all y e$. AS holds if this covariance converges to zero as N -><»

V

for all y £<!>.
V

6 = 0, or X = x(V ,y ,N ) , holds for an arbitrary distribution form p if
V

and only if f(A ) is a linear function of v(A ) ; i.e. the conditions for
n n

exact aggregation hold. This follows by a straightforward application of

Lau's Theorem (Lau (1980)). Similarly Z =0 corresponds to the case where

p is of the exponential family form (4.11), with V a sufficient statistic

for 6 . In this sense exact aggregation and sufficient statistics represent

polar extreme sets of assumptions under AS.

Aggregation assumptions making partial functional form and distribution

—

t

assumptions obey AS if and only if V effectively determines all interaction

-t ^y * t, t
between x and the gradient of the log likelihood function ) V In p (A y )

.

n=l y^ n' v'

The zero covariance required by Corollary 4.2 thus gives the correct trade-offs

between making functional form assumptions and distribution form assumptions

under AS. In this way, the consistent aggregation approach of Theil relaxes

the constant coefficient feature of exact aggregation models, and appends the

assumption of random coefficients which vary independently of the predictor

variables v(A )

.

n

In order to further illustrate Theorem 4.1, consider the following example

motivated by the standard errors-in-variables model:
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Example 3: Suppose that

X = 6u(A ) + s(A )

n n n

and V (A ) = u (A ) + r (A )

n n n

where u(A ), s (A ) and r(A ) have independent normal distributions with
n n n

E(u(A*^)) = y^, E(s(A^)) = E(r(A^)) = 0, Var(u(A^)) = a , Var(s(A^)) = a^'
n n n nuns

t 2 2 2 2
Var(r(A )) = a , and a , a and a are assumed constant over time. Our

n r u r s

aim
tit*t t titt

is to study E(x y ) = (J) (y ) = By as a function of E (v(A ) y ) = y .

n n

We have that

x^ = 6v(A^) - 6r{A^) + s(A^)
n n n n

and so (using normality)

x(v*',y*',N^) = (3 - 3X)v^ + 3Ay^

V- S = 3 -3A = G(y^)

(i)**(i|^,y^) = (3 - 3X)if; + ^X\i^

G**{jp,v) = V (})** = 3 - 3A

uii),]!^) = V 4)** = 3A

2 ^-
a

where A = — —-. Unless A = (3 = is ruled out by Assumption A4) , AS

does not hold. Corresponding to this is the familiar result that plim b =

/\

3(1 - A) 7^ 3/ where b is the OLS slope coefficient obtained by regressing
K

H on v(A^) in a cross section. In accordance with Theorem 4.1, we have

6^ = 3A(v*' - y^) - 3?" + r^



and

? = -^(^(v -y)-r)
a
u

-t -t
with r , s defined as the appropriate averages, and we can easily calculate

This illustrates the result of Theorem 4.1.

Consistent and exact aggregation schemes directly imply a linear macro

* t
function (}) in y . Aggregation schemes using sufficient statistics rely

wholly on assumption on p, and can be consistent with both linear and nonlinear

*
(|) formulations. In the next section we show how additional cross section

* t
moments can be used to estimate the derivatives of cf (y ) of all orders, when

V

the distribution p is of the exponential family form (4.11). Through this

development a general test of linearity (consistent or exact aggregation)

emerges, which relies only on our basic population assiamptions.

5. SUFFICIENT STATISTICS AND MACRO FUNCTIONS

In this section a methodology is presented for estimating second-order

derivatives of the macro function with respect to y from cross section
v

moments, when p is a member of the exponential family (4.11). This methodol-

i

ogy amounts to repeated application of derivatives, and extends to derivatives of (})

of all orders.

We begin by adopting:
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ASSUMPTION A6: p is a member of the exponential family in its natural

parameterization

( I ttK (A))
\ ^T m m /
^ m=l '

P(a|tt ) = C(TT )h(A) expl I TT^v (A)) (5.1)

where

C(TT^) =M h(A) exp ( ^ %V^^^0
'^

\ m=l "^ '

and where has been reparameterized by tt = (tt , . . . ,tt ).
1 M

6 of (4.11) has been replaced in (5.1) by the coefficients tt (6 ) , m=l,...,M;
m

here considered as independent parameters. (5.1) holds without loss of

generality from (4.11) if the mapping 6 -^ (tt, (6 ) , . . . ,tt (9 )) is of full rank
1 M

M. Thus, Assumption A6 just eliminates constraints across tt (0 ) , m=l,...,M,
m

which, from an empirical point of view, are unnecessary at the outset.

Two useful textbook facts about the form (5.1) are:

Lemma 5.1: Under Assximption A6, the natural parameter space

r = (tt |p(a|tt ) is a density} is convex.

Lemma 5.2: If i|;(A , ...,A •(-) is a function for which the integral

t t . "C. . t.
/• ••/!(;( A. ,...,A^,t) n h(A ) exp

1 N'- , n

M

'^ m mN ^^1 9^Nt
n=l Lm=l

exists for all TreF, then this integral is an analytic function of tt at all

interior points of F, and derivatives of all orders with respect to tteF may

be passed beneath the integral sign (for discrete exponential families this

integral is replaced by a sum.

)
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Proofs of these lemmae can be found in Lehmann (1959) . They allow a com-

putational method for taking derivatives of various expectations.

Recall, as in earlier sections, that we denote

(j)(^^) = ECx'^l^'*')

and that

-1
C{tt'^) = /"h(A)exp y IT V (A) 9a

C(Tr ) appears in (5.1) as just a normalizing factor to make p(Al7T ) a

density. Both (^ and C have some remarkable properties, however, as shown

in the following lemma:

Lemma 5.3: Under Assumption Al and A6, all derivatives of ^ and In C with

respect to it are expressible as functions of moments of the x ,v(A ) dis-

tribution. In particular, we have for C that

81nC „, ,,, I

t, t
= E(v (A) IT ) = y , m=l,...,M

Btt m ' m
m

2
- I

-'•"^ = E((v (A) - y*) (V .(A) - /.) |/ = a^ ., m'=l,...,M
dTT 9tt ^ m mm m mm
m m

2

and - - ^^^^^r, = E((v (A) - y^) (v .(A) - y^.) (v. (A) - y^) [tt^)
dTT dTT ^oTT. m mm m x- x,mm X,

= a ^„ ,
m,m'', £=1, . . . ,M

mm X,

For (j) we have

-|^ = E((x -
(}) (^^) ) (V (A) - y^) [/) = o^

3iT m m xm
m

2

and -^-J = E((x -
(|) (TT^) ) (V (A) - y^) (v .(A) - y^ .) ]/)

a-n 87T ^ m mm m
m m

= ,, m,m =1,...,M
xmm
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Proof: The first statement follows from Proposition 5.2. The formulae

38
are obtainable by direct computation.

^
QED.

V-Je are primarily interested in the behavior of <j>('n" ) with respect

to changes in y . We proceed as before to reparameterize via the mapping.

y = E(v(A) ItT ) = g(7T )

V
(5.3)

In view of Lemma 5.3, this mapping is expressible as

t t t
y = -V 4- lnC(TT ) = gClT )

v 1T^
(5.4)

We can reparameterize the distribution (5.1) in terms of y if the mapping

g is invertible; i.e. if the differential (Jacobean) matrix dg is non-

singular. This matrix, again from Lemma 5.3, can be written as

(5.5)
t ^ /_ 9^1nC \ ^ ^ t

\ m m TTt/

dg =

the covariance matrix of v(A ). Thus, under AssxjmptionsAl and A6,
n

Assumption A2 is guaranteed. We therefore form

t -1, t^
n = g (y )

V

P*(AlyS = p(Alg~^(yJ)) (5.6)

and (})*(y^) = (})(g
-'(y*'))

V V

Under the additional assumption A6, we can show the main result of Section

3.1 by direct computation.

Theorem 5.4: Under Assumptions Al and A6 the gradient of (}) with respect to

y is
V
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* t t -1 t
V <}; (y^) = (Z^ ) ^l^
y V w XV
V

and so is consistently estimated by micro slope regression coefficients from

a single period random sample cross section.

Proof: By the chain rule

V 4)* = (dg^)""'"V (J)

V

Now (dg ) = (Z ) and by Lemma 5.3, V ({) = IW TT XV

QED.

*
We can similarly calculate all higher order derivatives of

(f)
with

respect to u as functions of moments of the x , v(A ) distribution. Be-
V n n

cause these calculations increase greatly in complexity as the order of

the derivatives increase, we present only the second derivative calculation.

We first require some new notation to facilitate the formulae:

t ^ t „
Q„ denotes the M X M matrix with m, m element 0„ ^,il=l,— ,M
£7T7T x,mm

n denotes the M X M matrix 9. = [9,^ / • • • /fi,- ]

7T7T TTTT ItTTT MtTTT

t ^ t
Z denotes the M X M matrix with m, m element axw xmm

and

D^ = (Z^ )~"^Z^ (Z^ )~"^-(Z^ f-^ fi [(Z^
)~^ Z^ ^ (Z^ )"-^] (5.7)W xw W VV TTTT W XV W

We can now show

Theorem 5.5: Under Assiamptions Al and A6, the matrix of second order

*

partial derivatives of ^ with respect to y evaluated at period t is given as
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V7
2,* t

V (^ = D

V (p IS the M X M matrix with m, m element t ^

^ mm y

The proof is by direct computation, with a sketch of it presented in the

Appendix.

*
The formula (5.7) for the second derivatives of ({) is sufficiently com-

plex to warrant illustration by a simple example. Suppose that M = 1,

or that A is distributed according to

P(aI-r ) = c(Tr )h(A) exp (tt v (A) )

where tt is a sca]ar parameter. Here no assumption is made on the micro

functional form x = f(A ), other than its expectation exists. We have
n n

therefore

E(x|tT ) = (|)(TT ) =
<i> (y )

In accordance with Theorem 5.4, we find that

where b is the estimated coefficient from the cross section regression
K

X, = a + bv, (A, ) . Now
K Ik

2 * 2
8 4) ^ 9^

te)
9^ 3fiT_

9tt 9y 2

I

(5.8)

By Lemma 5.3, we have

„ 2 Xll '
d]J, 0,,t' dTT

dTT 1 11

9Tr 19*^*
x̂l

cind so we must find
'^2
9 TT

9y^2-
since
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^^ 37r

3tt 8y
= 1

by differentiation with respect to y we get

or

3.2 v^/3 TT 37T \ 1/ 111

(5.9)

^2 3y^ / t, 3

Inserting these values into (5.8) gives

t t t

3 9 _ xll _ xl 111

which agrees with D of (5.7) for M = 1.

*
As we have shown, we can express the second order derivatives (f>

in terms of moments of the underlying exponential family population

density. This holds for arbitrary micro functional forms x = f (A )

n n

obeying Assumption Al. Estimating these moments by their sample counter-

parts in a cross section data base allows consistent estimation of

2 * t 39
V 4) = D for that time period. Asymptotic inferences using these es-

v
40

timates are possible by standard methods. Thus m particular, we can

* t
test whether 6 is a linear function of y .

V

The testing of linearity on the basis of D extends beyond the case

of sufficient statistics, as shown in

Theorem 5.6: Assume that the moments defining D exist, and that Assumption
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t t
Al holds. If X = f(A ) is of the generalized linear form (4.7), then

n n

D^ = 0.

Proof: See the Appendix.

Thus, asymptotic inferences on the estimate of D can be used to test

whether a generalized linear form aggregation model is consistent with

41 t
a cross section data base. In particular, if D = is rejected, then

the generalized linear form is rejected as inconsistent with the micro

data. Notice that this property relies on extremely weak underlying assump-

tions, namely the existence of the moments required by Assumption Al, the

construction of D , and the application of the Central Limit Theorem to

the sample moments used in estimating D .
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6. CONCLUSION

The first major result of this paper is that micro slope regression

coefficients will consistently estimate the first derivatives of the true

macro relation if and only if AS holds. The AS property is seen as a

generalized aggregation condition, embodying both linear aggregation assump-

tions and assumptions for sufficient statistics, as well as providing the

relevant structure for partial functional form and distribution form assump-

tions.

In addition, we have shown that if the predictor averages are sufficient

for the underlying population parameters, then in principle (when the popu-

lation density is a member of the exponential family) one can empirically

characterize macro function derivatives of all orders using cross section data,

making possible a test of a linear, quadratic or some higher order nonlinear

macro function. These techniques extend to provide a general test of linear

aggregation schemes, such as the consistent and exact aggregation models.

The main appeal of these results is that they make possible an empirical

characterization of macro functions using micro data, without restrictive

modelling assiamptions (besides AS) . In addition even if the true macro function

is linear, the independent effects of the average variables over time may be

difficult to identify because of trending behavior or other data problems

(referred to as multicollinearity) . In this spirit, a first order approx-

imation of the true macro relation using average and cross section data is

provided by an exact aggregation model , as the estimates obtained from each

data source will coincide in large samples, and allow the analyst to take

advantage of the increased data input by increasing the precision of the final
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estimate values. Moreover, the exact aggregation scheme can easily incorporate

structural change as indicated by additional cross section data sources.

The techniques given here can provide additional insight into the dis-

tributional influences on macroeconomic relations. Hopefully they will help

end the practice of neglecting such issues, a practice which is now so prevalent.

i
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Appendix: Omitted Proofs

Proof of Lemma 3.1 b)

Lemma 3.1 b) is shown as the result of combining Lemma 3.1 a) with two

other propositions, the first is shown in Rao (1973) Section 6.2 a;

Lemma AP .

1

Let T be an M dimensional statistic (T, „,..., T )^ such that the asymp-
N IN MN

totic distribution of v^ (x, - y ^) , . .

.

,/n (t ~ Y ) is M-variate normal
IN 1 I4N M

with mean zero and variance covariance matrix E . Further, let g(T, , . . . ,T , N)
T IN MN

be a function which is totally differentiable in T, , . . . ,T , and that
IN MN

V g -> G 7^ as both N-x» and T -> (Y , . . . ,y )^ = Y. Then the asymptotic dis-
T„ N ' 1 ' M '

N

tribution of

v¥(g(T^^,...,T^,N) - g(Y-^,...,Y^,N))

is the same as that of

»^(T^ - Y)'G

that is, normal with mean zero and variance

(TI G
T

*

Moreover, g (y^ » . • • /Yw'N) may be replaced in the above by g (Y-, f • • • 'Y„) if

lim v/N[g(Y,,...,Yw,N) - g*(YT,...,Yw)J =
N->oo

X 11 ± n

Lemma AP .

2

_ *
limv^ (x (y ,y ,N) - 4) (y ))=

V V V
N-^oo

Proof: Fix N and consider

E[v^ {x -
<t) (y )) + v^ (x(v ,y ,N) - x(y ,y ,N))]

V N V V V
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= E(v^(x - x(V,y ,V,y ,N))) + )^(x(y ,y ,n) - * (y )

)

V V V V V

= + v¥(x(y ,y ,N) -
(t> (y ))

V V V

Now as N-x», the first expectation approaches zero by virtue of Lemma 3.1 a)

and Lemma AP.l applied to x. Thus

lim /n (x(y ,y ,N) - * (y ))=
V V V

N->oo
QED

Applying Lemma AP.l to x in view of Lemma 3.1 a) and AP.2 gives Lemma 3.1 b)

Additional conditions for Theorem 4.1:

- t t t
np*(A^|y^)

Let P(A
, ...,A^tl'l^'^ ) = ^t

^
' ^ = '^

V

be the distribution of A,,..., A ±. conditional on V = '!'• Let e. be the M-
1 N^ ^ 1

th
vector with i component 1 and all other components 0, i=l,...,M. Assume

* t
p and P are differentiable with respect to each component of y , and that

the difference quotients.

i) r(P(*I'l''Vi + e.h) - p{'\i),\i ))
h VI V

ii) ^ (p(«li|;,y + e.h) - p('Ii|;,y ))
h ' V 1 V

are all botinded by integrable functions of A ,...,A ^, for <
| h |

< h^.
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Proof of Theorem 4.1:

The above conditions ii) allow differentiation of

~ ~t t t —1|—

t

xiV^rV ,N ) = E(x V )

V

-t — , t t |--t t, „ t „,t

\inder the integral sign, which gives

V 5 = E(x^y^|v^,y^)

where

t
N

T^ = y V, In p*(A"|y^) - V, In P(V^|y^)
^ y n V y V

1 V V
n=l

Theorem 4.1 is shown if

E('i'^|v^,y^) = (AP.l)
' V

By condition i) above, we can differentiate

1 = E(l|v^,yS

under the integral sign, which gives (AP.l) above

QED

Proof Sketch for Theorem 5.5

Denote the components of tt^ = g ^(yj) by g"^(y^) = (g~^(yj) , . . . ,gj"^^(yj))
.

'
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*
V ({) =

94)

9P,

3g.
-1

d\l.

3g/

i9U
M

9g.
M

3y.

3g
-1

M

9y,
M

94)

9u,

94)

9tt,

M

Therefore

2 *
9 4)

M
= ^

94) 9 8.

-1

9y. 9y. ^ , 9tt
X J m =1 m

m
9y . 9y

.

1 J

M M

m=l m =1

9^4)

m m 3y^

9g.

-1'

m

^.

(AP.2)

The second term of the above (the double sum) is expressible in full

matrix format as

3g. 9g
-1

M

^. 9y.

38i 9g.

-1

M

ay
M

9y
M

^ 2
9tt^

9tt, 9tt,,
1 M

9^4)

9Tr^97r^

•

•

•

9^4)
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which by Lemma 5 . 3 equals

v-1

w xw w
(AP.3)

giving the second term in the statement of the theorem. Now if B =

is an MxM matrix of fionctions of y then we denote by D B the matrix

[W]

D B =
y

8b (y)

dy

The first term of (AP.2) is expressible in matrix format as

D (dg "") V 4), • •, D (dg "*") V cf)
(AP.4)

Now, in order to evaluate D (dg ) , m = 1 , • • • , M, we use the relation
m

(dg ) (dg) = I so that (if 0„ is an MxM matrix of zeros)MM
D (dg

m

or

"^) dg + dg ^ /d^ (dg)j= m = 1 , . . . ,M

D (dg'^ = -dg " (D (dg)

m \ '^m

9 g.mNow, if g^^^ denotes the MxM matrix with i, j element -^ ^ , we express
i J

mTTTT

D (dg) as

^m

D
-1

glTTTT II ^ 5 * * *J 8v,__ D g'Itttt ym
Mtttt \i

m

']
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so that

D (dg ) = -dg
m

-1
. . . p -1

m m
dg

-1

(AP.5)

The proof is completed by inserting (Ap.5) into (AP.4), making the associations

dg"-*- = a ^) ; V 4) = E
^

* W 7T^ " XV

g = Q, ; m = 1, • • •
, M

f^i^"'
• \''[ = dg ' [-]

-1

and rewriting the whole expression in terms of ",
TT7T

QED

Proof of Theorem 5.6:

For th-e generalized linear model (4.7), we have

Z^ = Z^ 0(0^);
XV w

so

^ = [fi, a(6 ),..., Q,_a(e )]
XVV iTTTT MTTTT

D^ = (E^ )~^[fi, a(e^), O, a(0^)](z]i)w Itttt ^tttt w

(Z^ )
-^{Q^

) (a(e^) ® (Z^ )
^)W TTTT VV

since (E ) Z^ = a(6 )• Now, by syitmietries in the construction of ^ ,W XV TTTT

we have

W., a(O^) 9.^ n(0^)](y.l)~
llTTT Mcii VV
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= n (a(9^) (x) (Z^ )

•")

TTTT ^ W

by direct computation, which gives D = 0.

QED
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FOOTNOTES

1. One of the reasons Friedman's book The Theory of the Consumption Function

is so masterful is that the distributional foxmdation is clearly stated

and investigated empirically with both macro and micro data, although not

using pooled methods as advocated here. Other early works in demand analysis

which estimated income elasticities from cross section data and applied them

to time series analysis were Wold (1953) and various work of Stone, although

these authors did not use aggregating models specifically. A recent demand

application of an exact aggregation model is Jorgenson, Lau and Stoker (1979)

.

2. This critique applies equally well to studies of aggregate variables such

as national income, total personal consimption expenditures, etc.

3. This becomes a major empirical problem when there are several predictor

variables, as then the full (multivariate) distribution of xinderlying at-

tributes must be characterized. Moreover, if the cross section data is

available for only one time period, the underlying distribution is held

constant, and so distribution movements over time cannot be captured by

this process.

4. See Theil (1954, 1975), Green (1964), Gorman (1953), Muellbauer (1975, 1977)

and Lau (1980)

.

5. The theory of sufficient statistics is presented in most standard textbooks on

mathematical statistics; c.f, Lehman (1959), Ferguson (1967) or Rao (1973).

6. p may just be taken as the density of the sample distribution in the population.

However, with N sufficiently large, p may be taken as a continuous approximation]

to this density. We utilize this framework in order to allow structure

to be given to the population configuration (a |n=l,...,N } via p(a|6 ).
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7. See Rao (1973), section 2c. 3 for a statement of the Weak Law of Large Numbers.

8. Each index k of random sample has a counterpart n index in the population

(n=l,...N ) numbering. We utilize the k indices only when discussing statistics

of the cross section.

9. Typical numbers for a study of U.S. family demand behavior are N =70

million for 1972, with a budget study of size K = 10,000.

10. See Section 4.

11. For instance, Jorgenson, Lau and Stoker (1979) differentiate individual

families on the basis of 17 income and demographic variables.

—

t

12. For example, if V is a sufficient statistic for the distributional para-

meters 6 - c.f. Section 4.

13. Variables common to all families, such as prices, can be entered as para-

meters of f, as in Section 3.2. If prices vary over families, they should

be considered as components of v(A )

.

14. V—X represents the gradient of x with respect of V,i.e. the M vector with

.th
1 component

3x_

9v. v,y ,N
V

15. Rao (1973) section 2c is an excellent reference for these theorems; also,

see section 6a for some useful corollaries.

16. It is useful to point out that our underlying population assumptions give

b a slightly different asymptotic distribution than in the standard linear
K

model. In particular, v^(b - G(lJ )) approaches a normal vector as Kr^

with mean zero and variance coveriance matrix

s. = (i*°)~^(i:^°
.

^
,){T.^°)~^

b vv (xv) (xv) vv
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where Z °
, , , is the matrix with mm' element

(xv) (xv)

E[((x*'° - cj)
) (v (A^°) - y^°) _ a^°) '

m m ' xm

((X^° - 4)*) (V .(A^°) - y^o^) _ g^o^)]
m ™ xm

2 t -1 2
Z will correspond to the usual expression (i.e. O (Z ) , O is residual
b w

2 t t
variance if there is a zero correlation between u and (v. (A °) - y.°)

1 k 1

(v. (A °)-y^°) for i, j, .. .,1,.. .,M, where u = x,^° - y^° - (v(a5°) - V^°)'b .DKj XkKKKK
Use of the standard estimators may provide an adequate approximation to I,

b

if the sample counterparts to these correlations are small.

t t *
17. Suppose that x is fiinctionally related to v(A ), i.e. there exists f

n n
t t * t

such that X = f (A ) = f (v(A )). A related but different question than
n n n

tthat asked here is under what conditions will plim b = V f (y °i-? This
K v V

problem is addressed by White (1978) , where relatively restrictive conditions

*
on f and p are found.

18. The definition of uniform convergence can be found in Apostol (1967) , p.

424 and Buck (1965), p. 180-2.

19. This standard result of analysis is available in most books on advanced

calculus, c.f. Buck (1965), section 4.2 (Theorem 21 in particular).

20. The only exception known to this author is Friedman's permanent income -

permanent consumption model. See example 3 of Section 4 (errors in

variables) for illustration of this fact.

21. See Rao (1973), Section 5a. 2 for the usual statement of the Rao-Blackwell

Theorem. Note 2 (p. 321-322) verifies the property referred

to here, as pointed out by Arnold and Katti (1972)

.

.i
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22. With respect to any convex loss function - e.g. minimum variance. See

Rao (1973) , p. 322.

23. i.e. Assumption A2 is replaced by the full invertibility of the function

y^ = gO^)
v

where 6 = (6^, ^o^'- Inverting gives

,t -1, t „t

t -1 t t *
and so 9 can be replaced by g (y , 9^,) in forming (j) .

24. For example, the stylized fact that the coefficient of variation of the

U.S. log - income distribution is roughly constant.

25. If (3.16) is replaced by

lim X ii), y^, N^, 9^) = (}) {^i) for all i> , \i^e^ and all 9^

this second problem is avoided. However, this structure is more

restrictive than (3.16) in the text, and depends on the precise role

of 9g in p and the (y ,
9^)-«->- (9-j^, 9^) reparameterization.

26. Recall that A is just used to signify dependence on the underlying dis-
n

tribution p(A|9 ).

27. The basic form (4.1) represents the "perfect" aggregation conditions of

Theil (1953) and Green (1964).

28. This reflects the first extension discussed in Section 3.3.

29. Theil (1953, 1975) assumes a (A ) uncorrelated with v(A ), which gives
n n

a linear macro function. AS requires that squared terms involving the

components of v(A
) are uncorrelated with a (A ) , and so we assvmie independence.
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although weaker conditions may suffice.

30. The independence assiomption allows the (derived) distribution of

a. (A ), a (A ) and v(A ) to be written as the product of the marginal
n n n

distribution of a„ (A ) , a (A ) and the marginal distribution of
° n n

v(A ). We assume that the marainal distribution of a„ (A ) and a (A )

n ° n n

has a constant mean over time t.

31. That is, the means of the marginal coefficient distribution referred

to in footnote 30 are determined by distributional parameters other

than 9 = g (y ,6o) of footnote 23.

32. Simple specification analysis techniques verify this formally, if one

t t
< ° = b„ + b^ A
R ° 1 K

t t
estimates x ° = b„ + b, A with (4.8) as the true model, then plim b.

It ° 1 f 1

a^ + 2a^ .

t *
33. In the notation of footnote 32, we have plim b = a + 2a u ?^ V

(f)
=

V
a^ + '2-3^^+ 2ei^i:\^.

34. For definitions and further discussions of sufficient statistics, see

Lehmann (1959), Rao (1973) and Ferguson (1967).

35. Lau (1980) mentions sufficient statistics in some concluding remarks.

However, his framework is not general enough to precisely describe the

role of sufficient statistics in aggregation, as is done here. Actually,

the sufficient statistic structure underlies the model in Houthakker (1956)

This type of model, arrived at by direct integration of a behavioral func-

tion over a specific distribution, has appeared in several works, as

surveyed by Fisher (1969), with a recent example MacDonald and Lawrence

(1978).
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36. Briefly, the regularity conditions required are that the range of variation

of A does not depend on fl , a continuously differentiable sufficient statistic
n

n for 6 exists and p(A|0 ) is continuously diffentiable in A and 9 ,

plus some conditions on the dimension of possible variation in A . Under
n

these conditions p(a|9 ) must have the form (4.11) locally. If p(a|6 ) is

further assumed to be analytic, (4.11) is the global form of the density.

For an excellent paper that proves this theorem in more generality than that

needed here, see Barankin and Maitra (1963)

.

37. The exponential family form (4.11) is quite general. Examples of univariate

2
distributions expressible in this form are the normal {\i ,o ), Poisson (y) ,

negative binomial (r,0), the gamma distributions and the beta distributions.

Examples of multivariate distributions expressible in this form include

the normal with mean y and variance covariance matrix Z. Distributions

which are not of the form (4.1) include the uniform and Cauchy distributions.

See Ferguson (1967) for more details.

36. Actually the formulae involving the first and second order derivatives

of -InC appear as an exercise in Lehmann (1959), p. 58, problem 14.

39. Here we are referring to using the method of moments for estimating D .

A potential empirical problem with this approach is that the sample

variances of high order moments can be quite large. See Kendall and

Stuart (1963) p. 234 for a discussion of this problem. While D in-

corporates only third order moments, extensions of our methodology

*
to higher order derivatives of (j) will involve fourth and higher order

moments, and thus the sampling variability problem of the method of

moments may be more critical.

40. This is because the formulae (5.7) is a continuous and differentiable

function of the moments comprising it. "Standard methods" refer to

applications of theorems such as Lemma AP.l.
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41. Although D of (5.7) is directly estimable from cross section moments,

it would be useful if D could be related to simpler statistics, such as

regression coefficients. In this sense it is easily shown that if M = 1,

performing the micro regression

x^° = C„ +C^ v^ (aJ°) +S(v,(a^°))'

gives

,. : "xii ^11 ^111 "ii
plim C = — r r —r-

K-^ ^ a ° a ° - (a °
) - (a °)

11 1111 ^ 111' ^ ll'

which is proportional to (5.9), and thus provides an easily computable

test of (5.9) equaling zero (although bear in mind stochastic structure

differences, as in fn 16). The natural conjecture is that including

all squared and cross product terms in a micro regression produces co-

efficients which consistently estimate D up to a proportion matrix. Un-

fortunately, proving or disproving this result is a computational mightmare,

and to date the author has not solved this problem.
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