brought to you by TCORE

LHC POTENTIAL FOR STANDARD MODEL MEASUREMENTS

Maarten Boonekamp, CEA-Saclay Physics at LHC, July 2006

Standard processes as a background and as a signal. Refining discoveries and their interpretation

August 21, 2006

- Thanks to all CMS and ATLAS contributors for providing many new results (I'll reference notes when they exist, and names if they are only foreseen...)
- Apologies for the uncovered parts : I try to discuss what is not on the menu this afternoon, and link to the talks when relevant

August 21, 2006

- Needs and prospects for standard processes measurements. A few examples:
 - □ Main argument : dijets and dileptons
 - □ Also : multijets, multilepton signals
- Precision measurements
 - \Box Main argument : M_w
 - $\hfill\square$ Consequences : M_t
- Conclusions

Measurements of Standard Processes (a few examples)

August 21, 2006

Dijets and dileptons (1)

□ Non-resonant extra-dimension signals predict deviations in dilepton or dijet spectra:

Dijets and dileptons (2)

□ What is the uncertainty on the dijet cross-section?

Maarten Boonekamp, CEA-Saclay

6

Dijets and dileptons (3)

□ Similarly, for dileptons :

□ How to improve without absorbing the effect of possible new physics?

August 21, 2006

Maarten Boonekamp, CEA-Saclay

7

Dijets and dileptons (4)

- Measure standard cross-sections sensitive to the same sources of uncertainty, efficiently triggered, and unlikely to hide new physics : W,Z
- Recent analysis (CMS)
 - $\Box~~Z$: 2 isolated muons with p_T>20 GeV, $|\eta|<$ 2, 84<M_{\mu\mu}<99 GeV, no jet nearby, ...
 - \square W : 1 isolated muon with p_T>25 GeV, $|\eta|<2$, 40<M_T(μ ,E_TMiss) <200 GeV, ...

Dijets and dileptons (5)

- □ Cross-sections :
 - □ $\sigma(Z \rightarrow \mu \mu + X) = 1160 \pm 1.5 \text{ (stat)} \pm 27 \text{ (syst)} \text{ pb}$
 - □ $\sigma(W \rightarrow \mu v + X) = 14700 \pm 6 \text{ (stat)} \pm 485 \text{ (syst)} \text{ pb}$

Already dominated by systematics.

CMS NOTE 2006/082

□ Systematics breakdown: theory dominated (acceptance).

Source	Uncertainty (%)	
Tracker efficiency	1	
Magnetic field knowledge	0.03	
Tracker alignment	0.14	
Trigger efficiency	0.2	
Jet energy scale uncertainties	0.35	
Pile-up effects	0.30	
Underlying event	0.21	
Total exp.	1.1	
PDF choice (CTEQ61 sets)	0.7	
ISR treatment	0.18	
p_T effects (LO to NLO)	1.83	
Total PDF/ISR/NLO	2.0	
Total	2.3	

Source	Uncertainty (%)	
Tracker efficiency	0.5	
Muon efficiency	1	
Magnetic field knowledge	0.05	
Tracker alignment	0.84	
Trigger efficiency	1.0	
Transverse missing energy	1.33	
Pile-up effects	0.32	
Underlying event	0.24	
Total exp.	2.2	
PDF choice (CTEQ61 sets)	0.9	
ISR treatment	0.24	
p_T effects (LO to NLO)	2.29	
Total PDF/ISR/NLO	2.5	
Total	3.3	

August 21, 2006

Dijets and dileptons (6)

- So this is a first step : total cross-sections don't teach us much about how to constrain the theory; the effects that hinder our high-mass predictions are also playing here.
- □ Specifically, the acceptance uncertainties (not knowing how many events are outside the y, M, p_T(I) windows we select) should be improved.
- It is thus important to analyse the shapes : dσ/dy, dσ/dp_T, dσ/dM. Z events are better than W in this respect (fully measured). Since the Z decay is well known, the acceptance uncertainty on differential cross-sections is very small.
- □ Improvement on the theoretical description then comes from:
 - $\hfill\square$ Confronting data and theory within the analysed (y,p_T,M) domain
 - Better extrapolation outside the analysed domain

August 21, 2006

Dijets and dileptons (7)

□ Two examples on structure functions :

Dijets and dileptons (8)

It is important to extend the y_z acceptance if possible, reducing the extrapolation uncertainty. Consider the Z \rightarrow ee channel:

- □ Link with high mass dileptons :
 - \Box central heavy object (~2.5-3 TeV) has x ~ M/ $\!\sqrt{s}$ ~ 0.2
 - \Box Can be controlled by Z events if forward enough : $x_{1,Z} \sim 0.2$ if $y_Z \sim 3.5$
 - \Box Expect ~800k events in 2.5<y_z<4 for 10 fb⁻¹

August 21, 2006

Maarten Boonekamp, CEA-Saclay

12

□ Higgs search – the ttH \rightarrow evqqbbbb (!) channel :

□ Challenges :

- □ tt properties (talk by Ivo van Vulpen)
- □ Precise jet distributions (talk by Maria Jose Costa)
- □ Experimental performance control

Multijets (2)

□ Large uncertainty. However, data will tell to 1%, even for $N_{iet} \sim 10$

August 21, 2006

□ The main background to the H \rightarrow 4I and 2I2v channels

□ Measurement prospects : talk by V.Briglievic, poster by N.Vranjes

- □ WW production most copious; will normalize ZZ production
- □ Cross-section measurements and anomalous couplings

August 21, 2006

Precision Measurements

August 21, 2006

□ Simple and powerful in principle: consider e.g the $p_T(I)$ spectrum

- □ Statistical sensitivity : ~2 MeV (1 channel/experiment, 10 fb⁻¹)
- □ But need to predict the spectrum precisely!

August 21, 2006

Precision measurements : M_W

Ingredients

- □ Lepton energy scale and resolution. Linearity. Reconstruction efficiency
- □ W dynamics : rapidity, transverse momentum, polarization, final state radiation

Current consensus (hep-ph/0003275...)

Lepton energy scale:	15 MeV	(limitation : Z \rightarrow W extrapolation. Linearity)
PDF's :	10 MeV	(from comparison of existing sets)
QED FSR :	10 MeV	(calculation up to $O(\alpha^2)$)
Lepton resolution :	5 MeV	
QCD corrections :	5 MeV	(limitation : Z \rightarrow W extrapolation)

\Box \rightarrow The Z calibration sample revisited

- $\hfill\square$ Improvements on the above. Expected performance
- □ Recent studies by CMS (note 2006/061) and ATLAS (t.b.p)

 \Box Achievable precision : $\delta\beta$ ~ 10^{-5}, $\delta\sigma$ ~ 10^{-4}

□ But indeed, how does this translate to a W-mass measurement?

August 21, 2006

M_W : energy scale and resolution (2)

Now differentiate in energy (i.e consider lepton energy bins i, j).
 Repeat previous fit for every pair configuration (i,j):

- $\Box \quad M_{ij}^{2} = E_{i}E_{j}(1-\cos\theta) ; (1+\beta_{ij})^{2} M_{ij}^{2} = (1+\alpha_{i})E_{i}(1+\alpha_{j})E_{j}(1-\cos\theta)$
- $\Box \implies \beta_{ij} \sim (\alpha_i + \alpha_j)/2 \ ; \ \sigma_{ij}^2/M^2 = \sigma_i^2/E_i^2 + \sigma_j^2/E_j^2 \ ; \ \text{write this for all } (i,j)$
- $\hfill\square$ and solve the linear system (least squares) to get the α_i and σ_i^2

M_W : energy scale and resolution (3)

□ Propagation to M_w : vary the linearity and resolution functions within their uncertainties (at random), distribute M_w (fit) :

 $\Box \rightarrow \delta M_W(\text{scale}) = 3 \text{ MeV} (\text{one channel/experiment, 10 fb}^{-1})$

□ After combinations, get ~1 MeV \rightarrow strong correlation with δM_z !

August 21, 2006

M_W : W dynamics

- $\Box \quad W \rightarrow I \text{ angular distribution}$
- □ W distributions (cut by detector acceptance): the difficult part!
- □ What happens:

22

M_W : structure functions (1)

- **Directly affect** y_w (...and indirectly p_{Tw})
- □ Using CTEQ6 pdf "uncertainty sets", one can evaluate the current uncertainty :

 \Box $\delta M_{W} \sim 20 \text{ MeV}$: worse than expected!

M_W : p_T spectrum (1)

- \Box W,Z p_T predictions is currently a busy subject. Large uncertainties remain
- □ However, QCD tells that the mechanisms at work in W and Z production are identical. Differences come from phase space $(M_W \neq M_Z)$ and different couplings of W and Z to the partons in the proton.

M_W : p_T spectrum (2)

- Not to say that p_{T,W}=p_{T,II}(M_{II}=M_W)! Non-universalities (EW) need to subtracted. Can be precisely computed (need precision MC!) Measuring the off-peak p_{T,II} allows to get rid of the phase space difference and control the non-perturbative effects.
- □ This improves over the "ratio method", where all W distributions are defined from Z distributions rescaled by M_W/M_Z this is an approximation probably not well suited to LHC statistics.

M_W : backgrounds

D Backgrounds distort the $p_T(I)$ spectrum

- □ Main expected sources : Z → II (1-2%), W → $\tau\nu$ (1-2%), Z → $\tau\tau$ (0.2%)
- □ QCD expected small (0.1%) after tight lepton selections

□ CMS studied the impact of imperfectly known background rates:

August 21, 2006

M_w : summary

□ So far, per channel/experiment for 10 fb⁻¹:

(source)	(old est.)	(updated estimate)	(tool)
Energy scale, linearity:	15 MeV	~3 MeV	Z lepton spectra
Lepton resolution :	5 MeV	<1 MeV	w
PDF's :	10 MeV	~1 MeV	dσ _z /dy, dσ _z /dM
QCD corrections :	5 MeV	~2 MeV	$d\sigma_z/dp_T$
Backgrounds :	5 MeV	~5 MeV	known to ~5%
			(conservative)

□ $\delta M_w \leq 5$ MeV looks achievable when combining, or with higher luminosity

- □ No results yet, but encouraging situation :
 - □ QED FSR : recently much improved PHOTOS program (Golonka, Was), now includes radiation up to $O(\alpha^4)$ and exponentiation.
 - □ W polarisation : purely W_T at $p_T \sim 0$, a W_L component develops when $p_T > 0$. This affects the lepton distributions and can be studied using WINHAC (Jadach, Placzek), in development

August 21, 2006

Precision measurements : M_t

Similar situation!

- □ Best channel : tt \rightarrow (lvb)(jjb)
- □ Exploit the (j,j,b) invariant mass; profit from $M_{ij} \sim M_W$
- $\Box \quad \delta M_t(stat) \sim 0.2 \text{ GeV} ; \delta M_t(syst) \sim 2 \text{ GeV}$ (10 fb⁻¹)

August 21, 2006

MinB, U.E : currently large uncertainty, but will improve significantly with data (talk by M.J.Costa, poster by L.Fano)

August 21, 2006

Summary

- Firmly establishing discoveries needs well controlled standard processes. It is crucial to go beyond "background control" and measure cross-sections (in full differential glory), because this is what will constrain the theory.
- □ An improved study of the M_w potential tells us that we should aim at $\delta M_w \le 5$ MeV. This is reasonably close to the absolute lower bound given by δM_z , and follows from the exploitation of all distributions of the Z and its decay particles.
- Given $\delta M_w \sim 5$ MeV, the (reasonable) M_t goal is $\delta M_t \sim 500$ MeV. This requires precise measurements of the soft QCD environment, and exploits the possibility to over-constrain the b-jet scale.
- Certainly not easy, but worth the effort!
- As a reward, the LHC will have an EW output that will allow the experiments to constrain the underlying theory well beyond earlier prospects.

August 21, 2006

CTEQ6.1 error pdf's

ZI

(b)

Orthonormal eigenvector basis

 $\mathbf{p}(i)$

 Z_k

- There are 20 free pdf parameters in the CTEQ6.1 global pdf fit
 - for u,d,g, d-bar/u-bar,d-bar+ubar
- With Hessian method, a 20X20 matrix is diagonalized resulting in 20 eigenvalues and 20 orthonormal eigenvectors

2-dim (i,j) rendition of d-dim (~16) PDF parameter space

 a_i (a)

contours of constant χ^2_{global} u; eigenvector in the I-direction p(i): point of largest a, with tolerance T so: global minimum

> diagonalization and rescaling by the iterative method

· Hessian eigenvector basis sets

low # eigenvectors correspond to large eigenvalues, well-determined directions

high # eigenvectors correspond to small eigenvalues, less well-determined directions

Original parameter basis

Maarten Boonekamp, CEA-Saclay

August 21, 2006

Aug...., ___, ___.

34

• Example of two important plots : $p_{T,I} \rightarrow M_W \& \eta_I \rightarrow PDF$

 \blacklozenge We are interested by the consequences of W_L/W_T contribution on the measurements

• But, what if we misjudge the proportion of $W_L/W_T...$

Distribution in $\cos \theta_{W,l}$ in the CMS with $p_{T,l} > 20 \, {
m GeV}$ & $\eta_l < 2.5$

August 21, 2006