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ABSTRACT

We study black hole attractor equations for one-(complex structure)modulus Calabi-Yau spaces which are the
mirror dual of Fermat Calabi-Yau threefolds (CY3s).

When exploring non-degenerate solutions near the Landau-Ginzburg point of the moduli space of such 4-dimensional
compactifications, we always find two species of extremal black hole attractors, depending on the choice of the Sp (4,Z)
symplectic charge vector, one 1

2 -BPS (which is always stable, according to general results of special Kähler geometry)
and one non-BPS. The latter turns out to be stable (local minimum of the “effective black hole potential” VBH) for
non-vanishing central charge, whereas it is unstable (saddle point of VBH) for the case of vanishing central charge.

This is to be compared to the large volume limit of one-modulus CY3-compactifications (of Type II A superstrings),
in which the homogeneous symmetric special Kähler geometry based on cubic prepotential admits (beside the 1

2 -BPS
ones) only non-BPS extremal black hole attractors with non-vanishing central charge, which are always stable.
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1 Introduction

Extremal black hole (BH) attractors [1]-[4] have been recently widely investigated [5]- [27], especially in connection

with new classes of solutions to the attractor equations corresponding to non-BPS (Bogomol’ny-Prasad-Sommerfeld)

horizon geometries, supported by particular configurations of the BH electric and magnetic charges. Such geometries

are non-degenerate, i.e. they have a finite, non-vanishing horizon area, and their Bekenstein-Hawking entropy [28] is

obtained by extremizing an “effective BH potential”.

In N = 2, d = 4 Maxwell-Einstein supergravity theories (MESGTs), non-degenerate attractor horizon geometries

correspond to BH solitonic states belonging to “short massive multiplets” (for the 1
2 -BPS case, with 0 < |Z|H =

MADM,H) and to “long massive multiplets”, either with non-vanishing or vanishing central charge Z not saturating

the BPS bound1 [29]

0 ≤ |Z|H < MADM,H . (1.1)

The Arnowitt-Deser-Misner (ADM) mass [30] at the BH horizon is obtained by extremizing a positive-definite “effective

BH potential”2 VBH

(
φ, Γ̃

)
, where the 1 × (2nV + 2) symplectic charge vector Γ̃ ≡

(
pΛ, qΛ

)
Λ=0,1,...,nV

contain both

1Here and in what follows, the subscript “H” will denote values at the BH event horizon.
2Here and below “φ” denotes the set of real scalars relevant for Attractor Mechanism, i.e. the 2nV ones coming from the nV vector

supermultiplets coupled to the supergravity multiplet.
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BH magnetic and electric charges, given by the asymptotical fluxes of two-form field strengths of Abelian vector fields

AΛ
µ .

The BH entropy SBH is given by the Bekenstein-Hawking entropy-area formula [28, 31]

SBH

(
Γ̃
)

=
AH

(
Γ̃
)

4
= π VBH

(
φ, Γ̃

)∣∣∣
∂VBH=0

= πVBH

(
φH

(
Γ̃
))

, (1.2)

where AH is the event horizon area, and the solution φH

(
Γ̃
)

to the criticality condition

∂φVBH

(
φ, Γ̃

)
= 0 (1.3)

is properly named attractor if the critical (2nV + 2) × (2nV + 2) real symmetric Hessian matrix

∂2VBH

(
φ, Γ̃

)

∂φ∂φ

∣∣∣∣∣∣
φ=φH(Γ̃)

(1.4)

is a strictly positive-definite matrix3.

Although non-supersymmetric BH attractors exist also in N > 2, d = 4 and d = 5 supergravities [32, 19],

the most interesting examples arise in N = 2, d = 4 MESGTs, where the scalar fluctuations relevant for the BH

Attractor Mechanism parametrize a special Kähler (SK) manifold. Recently, the classification of “attractor solutions”

for extremal BHs has been performed in full generality for the whole class of homogeneous symmetric SK geometries

[22], and three distinct classes of extremal BH attractors (namely 1
2 -BPS, non-BPS Z 6= 0 and non-BPS Z = 0 ones)

were found as solutions to Eqs. (1.3). In such a framework, the non-BPS charge orbits have been found to depend

on whether the supporting charge vector Γ̃ is such that the N = 2 central charge vanishes or not. Moreover, the

critical Hessian matrix (1.4) was usually found to exhibit zero modes (i.e. “flat” directions), whose attractor nature

seemingly further depends on additional conditions on the charge vector Γ̃, other than the ones given by the extremality

conditions (1.3) (see e.g. [9]).

The aim of the present work is to study a particular class of (1-modulus) SK geometries, namely the ones under-

lying the complex structure moduli space of (mirror) Fermat Calabi-Yau threefolds (CY3s) (classified by the Fermat

parameter k = 5, 6, 8, 10, and firstly found in [33]). The fourth order linear Picard-Fuchs (PF) ordinary differential

equations determining the holomorphic fundamental period 4×1 vector for such a class of 1-modulus CY3s were found

some time ago for k = 5 in [34, 35] (see in particular Eq. (3.9) of [34], where z ≡ ψ−5; see also [36]) and for k = 6, 8, 10

in [37].

3The opposite is in general not true, i.e. there can be attractor points corresponding to critical Hessian matrices with “flat” directions
(i.e. vanishing eigenvalues). In general, when a critical Hessian matrix exhibits some vanishing eigenvalues, one has to look at higher-order
derivatives of VBH evaluated at the considered point, and study their sign. Dependingly on the values of the supporting BH charges, one
can obtains stable or unstable critical points. Examples in literature of investigations beyond the Hessian level can be found in [9, 24, 25].
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In N = 2, d = 4 MESGT the following formula holds4 [3, 4, 38]

VBH (z, z; q, p) = |Z|2 (z, z; q, p) + gjj (z, z)DjZ (z, z; q, p)DjZ (z, z; q, p) . (1.5)

Consequently, the criticality conditions (1.3) can be easily shown to acquire the form [31]

2ZDiZ + gjj (DiDjZ)DjZ = 0; (1.6)

this is what one should rigorously refer to as the N = 2, d = 4 supergravity attractor equations (AEs). gjj (z, z) is

the contravariant Kähler metric tensor, satisfying the usual orthonormality condition:

gij (z, z) ∂i∂kK (z, z) = δj
k
, (1.7)

where K (z, z) is the real Kähler potential. As previously mentioned, Z (z, z; q, p) is the N = 2 central charge function

Z (z, z; q, p) ≡ e
1
2K(z,z)Γ̃ΩΠ (z) = e

1
2K(z,z)

[
qΛX

Λ (z) − pΛFΛ (z)
]
≡ e

1
2K(z,z)W (z; q, p) , (1.8)

where Ω is the (2nV + 2)-dim. symplectic metric (subscripts denote dimensions)

Ω ≡




0nV +1 −InV +1

InV +1 0nV+1


 , (1.9)

and Π (z) is the (2nV + 2) × 1 holomorphic period vector in symplectic basis

Π (z) ≡




XΛ (z)

FΛ (z)


 , (1.10)

with XΛ (z) and FΛ (z) being the holomorphic sections of the U(1) line (Hodge) bundle over the SK manifold (clearly,

due to holomorphicity they do not belong to the related U(1) ring). Finally, W (z; q, p) is the holomorphic N = 2

central charge function, also named N = 2 superpotential.

Let us here recall that Z has Kähler weights (p, p) = (1,−1); thus, its Kähler-covariant derivatives read

DiZ =
(
∂i + 1

2∂iK
)
Z,

DiZ =
(
∂i − 1

2∂iK
)
Z.

(1.11)

4Here and below we switch to the complex parametrization of the set of scalars being considered:

{φa}a=1,...,2nV
−→

{
zi, zi

}
i,i=1,...,nV

.

The relation between such two equivalent parametrizations of the SK scalar manifold is given by Eq. (4.2) of [15].

3



The non-holomorphic basic, defining differential relations of SK geometry are5 (see e.g. [38]):





DiZ = Zi;

DiZj = iCijkg
kkDkZ = iCijkg

kkZk;

DiDjZ = DiZj = gijZ;

DiZ = 0,

(1.12)

where the first relation is nothing but the definition of the “matter charges” Zis and the fourth relation expresses the

Kähler-covariant holomorphicity of Z. Cijk is the rank-3, completely symmetric, covariantly holomorphic tensor of

SK geometry (with Kähler weights (2,−2)) (see e.g. [38]- [42]):

Cijk = eK
(
∂iX

Λ
) (
∂jX

Σ
) (
∂kX

Ξ
)
∂Ξ∂ΣFΛ (X) ≡ eKWijk ;

DiCjkl = 0;

D[iCj]kl = 0;

Rijkl = gijgkl + gilgkj − CikpCjlpg
pp,

(1.13)

where Rijkl is the Riemann-Christoffel tensor of Kähler geometry:

Rijkl = −gmn
(
∂l∂j∂mK

)
∂i∂n∂kK + ∂l∂i∂j∂kK, (1.14)

and square brackets denote antisymmetrization with respect to enclosed indices. By using the first two of relations

(1.12), the N = 2 AEs (1.6) can be recast as follows [31]:

2ZZi + iCijkg
jjgkkZjZk = 0. (1.15)

It is now worth recalling some fundamental identities defining the geometric structure of SK manifolds [43, 8, 13,

15, 16, 24]

Γ̃T − iΩM (N ) Γ̃T = −2iZΠ− 2igjj
(
DjZ

)
DjΠ, (1.16)

where M (N ) denotes the (2nV + 2) × (2nV + 2) real symmetric matrix [38, 3, 4]

M (N ) ≡




Im (N ) +Re (N ) (Im (N ))
−1
Re (N ) −Re (N ) (Im (N ))

−1

− (Im (N ))
−1
Re (N ) (Im (N ))

−1


 , (1.17)

where NΛΣ is a complex symmetric matrix playing a key role in N = 2, d = 4 MESGT (see e.g. the report [38]).

Moreover, it should be here reminded that

DiΠ = (∂i + ∂iK)Π,

DiΠ = ∂iΠ = 0,
(1.18)

5Actually, there are different (equivalent) defining approaches to SK geometry. For subtleties and further elucidation concerning such
an issue, see e.g. [39] and [40].
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since Π is holomorphic with Kähler weights (2, 0).

The 2nV +2 real identities (1.16) (whose real and imaginary parts are related by a suitable “rotation” [16]) express

nothing but a change of basis in the lattice Ψ(p,q) of BH charge configurations, between the integer symplectic (mag-

netic/electric) basis vector Γ̃ ≡
(
pΛ, qΛ

)
Λ=0,1,...,nV

and the complex “supergravity charges” vector Z ≡ (Z,Zi)i=1,...,nV
.

Notice that Z is moduli-dependent, since it refers to supermultiplet eigenstates. It is important to stress that identi-

ties (1.16) entail 2 redundant degrees of freedom, encoded in the homogeneity (of degree 1) of (1.16) under complex

rescalings of Γ̃. Indeed, by recalling the definition (1.8) it can be readily checked that the right-hand side of (1.16)

acquires an overall factor λ under the rescaling

Γ̃ −→ λΓ̃, λ ∈ C. (1.19)

We will reconsider such a point in Sect. 8, when treating the 1-modulus case more in detail.

It should also be noticed that the N = 2 “effective BH potential” given by Eq. (1.5) can also be rewritten as

[3, 4, 38]

VBH (z, z; q, p) = −1

2
Γ̃M (N ) Γ̃T , (1.20)

and therefore it can be identified with the first, positive-definite real invariant of SK geometry (see e.g. [24, 38]). It

is interesting to remark that the result (1.20) can be elegantly obtained from the SK geometry identities (1.16) by

making use of the following relations [19]:

1

2
(M (N ) + iΩ)




Π

DjΠ


 = iΩ




Π

DjΠ


 , ∀j, (1.21)

which follow from the observation that

M (N )




Π

DjΠ


 = iΩ




Π

DjΠ


 , ∀j. (1.22)

In the 1-modulus case a major simplification occurs, since Eqs. (1.15) and (1.5) respectively reduce to (z1 ≡ ψ)

2ZDψZ + iCψψψ
(
gψψ

)−2 (
DψZ

)2

= 0; (1.23)

VBH
(
ψ, ψ; q, p

)
≡ |Z|2

(
ψ, ψ; q, p

)
+
(
gψψ

)−1 (
ψ, ψ

)
|DψZ|2

(
ψ, ψ; q, p

)
. (1.24)

The 1
2 -BPS solutions correspond to Z 6= 0 and DψZ = 0, the non-BPS solutions (DψZ 6= 0) can occur in two species:

1) Z 6= 0, for which [15]

|DψZ|non−BPS,Z 6=0 = 2

[(
gψψ

)2 |Z|
|Cψψψ |

]

non−BPS,Z 6=0

; (1.25)

2) Z = 0, in which case Eq. (1.23) yields

Cψψψ|non−BPS,Z=0 = 0. (1.26)
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At such critical points, the “BH effective potential” respectively becomes (for non-BPS, Z 6= 0 case see [15])

VBH,non−BPS,Z 6=0 = |Z|2non−BPS,Z 6=0

[
1 + 4

(gψψ)3

|Cψψψ |2

]

non−BPS,Z 6=0

; (1.27)

VBH,non−BPS,Z=0 = |DψZ|2non−BPS,Z=0 . (1.28)

For non-BPS, Z 6= 0 critical points of VBH , one can also define the supersymmetry-breaking order parameter as

follows:

Onon−BPS,Z 6=0 ≡




(
gψψ

)−1

|DψZ|2

|Z|2



non−BPS,Z 6=0

=




(
gψψ

)−1

|DψW |2

|W |2



non−BPS,Z 6=0

= (1.29)

= 4




(
gψψ

)3

|Cψψψ|2



non−BPS,Z 6=0

, (1.30)

where in the second line we used Eq. (1.25). It is worth noticing that for a cubic prepotential F (z) = ̺z3 it holds

that Onon−BPS,Z 6=0 = 3 ∀̺ ∈ C [22]; such a result actually holds for cubic prepotentials in generic nV -moduli SK

geometries, such as the ones arising in the large volume limit of CY3-compactifications of Type II A superstring theory

(see Eq. (111) of [9]).

As we are going to compute explicitly in Sects. 4-7 for the k-parametrized class of (mirror) Fermat CY3s, one finds

that (beside the 1
2 -BPS solutions, existing and stable in all cases) for k = 5, 8 only non-BPS, Z 6= 0 solutions exist,

and they are attractors (local minima of VBH), whereas for k = 6, 10 only non-BPS, Z = 0 solutions exist, and they

are not attractors in a strict sense (since they are saddle points of VBH).

In the present paper we will investigate AE (1.23) near one of three typologies of regular singular points in the

complex structure moduli space of (mirror) Fermat CY3s, namely near the so-called Landau-Ginzburg (LG) point

ψ = 0. In such a framework, the identities (1.16) of SK geometry, when considered in the 1-modulus case and in

correspondence of the various above-mentioned species of critical points of VBH , can be used to find the BH charge

configurations supporting the LG point ψ = 0 to be an attractor point of the considered kind. It will be shown that, in

spite of the fact that identities (1.16) give 4 real Eqs. in the 1-modulus case, only 2 of them are independent, and they

are completely equivalent to the 2 real rigorously-named N = 2, d = 4 supergravity AEs (1.23), which are nothing

but the criticality condition ∂ψVBH = 0.

The plan of the paper is as follows.

In Sect. 2 we briefly introduce the holomorphic geometry embedded in the SK geometry of the scalar manifolds of

N = 2, d = 4 MESGTs. Such a geometry is relevant in order to introduce the PF differential equations. In particular,

we focus on the 1-modulus case.

Then, in Sect. 3 we give a sketchy presentation of the formalism of the (mirror) Fermat CY3s (classified by the

Fermat parameter k = 5, 6, 8, 10), in particular near the LG point ψ = 0 of their (complex structure deformation)

6



moduli space. The general analysis of Sect. 3 is consequently specialized to the study of non-degenerate extremal BH

LG attractors in the complex structure moduli space of the four mirror Fermat CY3s, corresponding to k = 5 (Sect.

4), k = 6 (Sect. 5), k = 8 (Sect. 6), and k = 10 (Sect. 7).

In Sect. 8, in order to study the extremal BH LG attractors for the above-mentioned class of CY3s, we exploit

the so-called “SK geometrical identities” approach. This amounts to evaluating near ψ = 0 the 4 real fundamental

identities of 1-modulus SK geometry at the geometrical loci corresponding to the various species of critical points of

the relevant “effective BH potential”. We obtain results perfectly coinciding with the ones we got in Sects. 4-7 by

exploiting the so-called “criticality condition” approach, corresponding to solve near the LG point the 2 real criticality

conditions of VBH , corresponding in the 1-modulus case to the real and imaginary part of the so-called N = 2, d = 4

supergravity AEs.

Then, in Sect. 9 we face the problem of the consistent normalization of the PF ordinary differential equation

obeyed by the vector of fundamental periods of the holomorphic 3-form defined on the above-mentioned Fermat CY3s.

Concluding remarks, summarizing observations and outlooking comments are the contents of the final Sect. 10.

2 Holomorphic Geometry

In this Section we will present a summary of the holomorphic geometry embedded in the SK geometry of the scalar

manifolds of N = 2, d = 4 MESGTs. The main references for such an issue are [44] and [45], to which we will refer at

the relevant points of the treatment.

The PF Equations, satisfied in SK geometry by the holomorphic period vector (in a suitable basis, named PF

basis) are a consequence of SK geometry and of the underlying symplectic structure of the flat symplectic bundle [46],

which encodes the differential relations obeyed by the covariantly holomorphic sections and their covariant derivatives.

Let us start by considering the Kähler-covariantly holomorphic, symplectic 1 × (2nV + 2) vector6

V (z, z) ≡
(
LΛ (z, z) ,MΛ (z, z)

)
= e

1
2K(z,z)ΠT (z) . (2.1)

Flatness of the symplectic connection entails the following relations [46]:





DαV = Uα;

DαUβ = iCαβγg
γγDγV = iCαβγg

γγUγ ;

DαDβV = DαUβ = gαβV ;

DαV = 0.

(2.2)

6In order to make the contact with the relevant literature easier, in this Section, as well in the next one, we will change some notations
with respect to the previous treatment.

Firstly, we will consider row (i.e. 1 × (2nV + 2)), instead of column (i.e. (2nV + 2) × 1), period vectors.
Secondly, we will use lowercase Greek indices to denote homogeneous coordinates (instead of lowercase Latin indices, as done in the

previous Section). Lowercase Latin indices will rather be used to denote indices pertaining to the so-called holomorphic geometry we are
going to discuss.
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Notice that, by the definition (2.1), the N = 2 central charge function (defined by Eq. (1.8)) can be rewritten (in the

notation for period vectors used in the present Section) as Z = Γ̃ΩV T , and the defining relations (1.12) of SK geometry

can thus be obtained by transposing the relations (2.2) and by further left-multiplying them by the 1 × (2nV + 2)

vector Γ̃Ω.

Let us now consider a new 1 × (2nV + 2) vector of holomorphic sections7 (a = 1, ..., nV )

Vh (X(z)) ≡
(
X0 (z) , Xa (z) , Fa (X(z)) ,−F0 (X(z))

)
. (2.3)

We notice that, while V (z, z) defined in Eq. (2.1) is symplectic with respect to the symplectic metric Ω, this does

not hold for Vh (X(z)) defined in Eq. (2.3), which is instead symplectic with respect to a newly defined anti-diagonal

symplectic metric (QT = −Q, Q2 = −I2nV +2):

Q ≡




1
−InV

InV

−1


 , (2.4)

where unwritten elements vanish.

In the treatment which follows we will assume the existence of an holomorphic prepotential F (X (z)) of N = 2,

d = 4 vector multiplet couplings such that FΛ (z) = ∂ΛF (X (z)), which is in turn implied by the assumption that the

holomorphic square matrix

eaα (z) ≡
∂
[
Xa(z)
X0(z)

]

∂zα
≡ ∂ta (z)

∂zα
(2.5)

is invertible (non-singular), where in the last step we introduced the homogeneous (Kähler-invariant) coordinates

ta (z) ≡ Xa(z)
X0(z) (see e.g. [38]). The matrix eaα (z) expresses nothing but the change of basis between the ta (z)s and the

zαs. Special (symplectic) coordinates correspond to the case eaα (z) = δaα, implying that ta (z) ≡ Xa(z)
X0(z) = za (in such

a case a-indices and α-indinces do coincide). By further fixing the Kähler gauge such that X0 = 1, one finally gets

ta (z) = Xa (z) = za and X0 = 1, which is the usual definition of special coordinates (yielding ∂αX
Λ = δaα).

The holomorphic period vector Vh (X(z)) in special coordinates (Kähler gaugeX0 = 1 fixed understood throughout,

unless otherwise noted) reads as follows:

Vh,special (z) ≡ (1, za, ∂aF (z) ,−F0 (z)) = (1, za, ∂aF (z) , za∂aF (z) − 2F (z)) , (2.6)

where F (z) is the holomorphic prepotential in special coordinates (and for X0 = 1), and in the second step the

homogeneity of degree 2 of the prepotential was used; for general symplectic and special (X0 = 1) coordinates it

respectively reads
XΛ∂ΛF (X) = X0∂0F (X) +Xa∂aF (X) = 2F (X);

F0 (z) + za∂aF (z) = 2F(X).
(2.7)

7The subscript “h” stands for “holomorphic”.
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By starting from Eq. (2.6) and by differentiating once and twice Vh,special (z), one respectively achieves

∂bVh,special (z) = (0, δab , ∂a∂bF (z) ,−∂bF (z) + za∂a∂bF (z)) ; (2.8)

∂b∂cVh,special (z) = (0, 0, ∂a∂b∂cF (z) , za∂a∂b∂cF (z)) , (2.9)

implying that
∂b∂cVh,special (z) = Wabc (z)V ah,special (z) ;

∂aV
b
h,special (z) = δbaV

0
h,special,

(2.10)

where Wabc (z) ≡ ∂a∂b∂cF (z) is the holomorphic part of Cαβγ in special coordinates and for X0 = 1 (see first of

relations (1.13)) and

V ah,special(z) ≡ (0, 0, δad , z
a) , (2.11)

V 0
h,special(z) ≡ (0, 0, 0, 1) . (2.12)

By adding the definition Vh,special,a (z) ≡ ∂aVh,special(z) and the trivial result ∂aV
0
h,special(z) = 0 to Eqs. (2.10), one

finally gets the set of differential relations [45]

∂aVh,special(z) = Vh,special,a (z) ,

∂a∂bVh,special(z) = ∂aVh,special,b (z) = Wabc (z)V ch,special (z) ,

∂aV
b
h,special (z) = δbaV

0
h,special,

∂aV
0
h,special(z) = 0,

(2.13)

which are the holomorphic counterparts of SK relations (2.2), written in special coordinates and for X0 = 1.

By “holomorphically covariantizing” the relations (2.13), i.e. by writing them in a generic system of homogeneous

coordinates, one obtains (notice that here a-indices and α-indices in general do not coincide) [45]

D̂αVh(z) = Vh,α(z),

D̂αD̂βVh(z) = D̂αVh,β(z) = Wαβγ (z))V γh (z),

D̂αV
β
h (z) = δβαV

0
h (z) ,

D̂αV
0
h (z) = 0,

(2.14)
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where Vh(z), Vh,β(z), V
β
h (z) and V 0

h (z) are respectively given by the following formulæ8 [45]:

Vh(z) =
(
X0(z), Xa(z), X0(z)eαa (z)∂αF (z), Xa(z)eαa (z)∂αF (z) − 2X0(z)F (z)

)
;

Vh,β(z) = D̂βVh(X (z)) =
(
0, X0(z)eaβ(z), X

0(z)eaα(z)D̂α∂βF (z),−X0(z)∂βF (z) +Xa(z)eαa (z)D̂α∂βF (z)
)

;

V βh (z) =
(
0, 0,

(
X0(z)

)−1
eβa(z),

(
X0(z)

)−2
Xa(z)eβa(z)

)
;

V 0
h (z) =

(
0, 0, 0,

(
X0(z)

)−1
)
,

(2.15)

which correspond to the “holomorphically covariantized” counterparts of Eqs. (2.6), (2.8), (2.11) and (2.12), respec-

tively.

Notice that a new holomorphic covariant derivative D̂α has been introduced. In analogy with the usual covariant

derivative in Kähler-Hodge manifold, the action of D̂α on a vector φβ with Kähler weight p reads [44, 45]

D̂αφβ (z, z) =
(
∂a +

p

2
K̂α (z)

)
φβ (z, z) − Γ̂ γ

αβ (z)φγ (z, z) , (2.16)

where Γ̂ γ
αβ (z) is the holomorphic part of the Christoffel connection Γ γ

αβ (z, z) of the SK manifold being considered

[44, 45] (eaα (z) eγa(z) = δγα, eaα (z) eαb (z) = δab ):

Γ̂ γ
αβ (z) ≡ (∂βe

a
α (z)) eγa(z) = Γ γ

αβ (z, z) − T γ
αβ (z, z) = (2.17)

= gγγ (z, z) ∂α∂β∂γK (z, z) − eaα(z)ebβ(z)

[
∂3K

(
t (z) , t (z)

)

∂tb∂ta∂t
d

]
gcd (z, z) eγc (z) . (2.18)

It can be checked that Γ̂ γ
αβ (z) transforms as a connection under holomorphic reparametrizations. Moreover, since

X0 (z) has Kähler weights (2, 0), the quantity

K̂α (z) ≡ −∂α
[
ln
(
X0 (z)

)]
(2.19)

transforms as a connection under Kähler gauge transformations:

K (z, z) −→ K (z, z) + f(z) + f(z) =⇒ K̂α (z) −→ K̂α (z) + ∂αf(z). (2.20)

It is worth pointing out that the Γ̂ γ
αβ s are the Christoffel symbols of the second kind of an holomorphic Riemann

metric

ĝαβ (z) ≡ eaα(z)ebβ(z)ηab =
∂
[
Xa(z)
X0(z)

]

∂zα

∂
[
Xb(z)
X0(z)

]

∂zβ
ηab, (2.21)

where ηab is constant (invertible) symmetric matrix (note that ĝαβ (z) has two holomorphic indices, in contrast to

the Kähler metric gαβ (z, z) = ∂α∂βK(z, z)). ĝαβ (z) is the metric tensor of the so-called holomorphic geometry
8The first of relations (2.15) corresponds to Eq. (2.3) by using the definition of ta (z)s and the homogeneity of degree 2 of the prepotential

F .

10



“embedded” in the considered SK geometry. Due to Eq. (2.5), it can be checked that Γ̂ γ
αβ (z) is actually a Riemann-

flat connection, since it holds that

R̂ γ
δαβ (z) ≡ ∂δΓ̂

γ
αβ (z) − ∂αΓ̂ γ

δβ (z) + Γ̂ ζ
αβ (z) Γ̂ γ

ζδ (z) − Γ̂ ζ
δβ (z) Γ̂ γ

ζα (z) = 0. (2.22)

Finally, it should observed that special coordinates are flat coordinates for the holomorphic geometry, because for

special coordinates (eaα (z) = δaα) (in the Kähler gauge X0 = 1) Eqs. (2.17), (2.19) and (2.21) respectively reduce to

Γ̂ γ
αβ (z) = 0; (2.23)

K̂α (z) = 0; (2.24)

ĝαβ (z) = ηαβ . (2.25)

It is worth pointing out that the system (2.14) is the holomorphic counterpart of the system (2.2), and it is

manifestly covariant with respect to the holomorphic geometry defined by ĝαβ (z) and K̂α (z). By breaking the

“holomorphic covariance” and choosing special coordinates (and fixing Kähler gauge such that X0 = 1), the system

(2.14) reduces to the system (2.13). The system of holomorphic differential relations (2.14) is usually referred to as

the (holomorphic) Picard-Fuchs (PF) system.

Let us now specialize the treatment to the 1-modulus case. Once again, such a case is peculiarly simple, since the

Vielbein is nothing but an holomorphic function (we denote z1 ≡ ψ):

e1ψ (ψ) ≡
∂
[
X1(ψ)
X0(ψ)

]

∂ψ
≡ ∂t1 (ψ)

∂ψ
≡ e (ψ) , (2.26)

and the connections and metric of holomorphic geometry reduce to

Γ̂ ψ
ψψ (ψ) = ∂ψ [ln (e (ψ))] ;

K̂ψ (ψ) = −∂ψ
[
ln
(
X0 (ψ)

)]
;

ĝψψ (ψ) ≡ [e (ψ)]
2
ηψψ .

(2.27)

Consequently, the action of D̂ψ on a 1-vector (function) φ
(
ψ, ψ

)
with Kähler weights (p, p) reads

D̂ψφ
(
ψ, ψ

)
=

(
∂ψ +

p

2
K̂ψ (ψ) − Γ̂ ψ

ψψ (ψ)
)
φ
(
ψ, ψ

)
=

=
{
∂ψ − p

2
∂ψ
[
ln
(
X0 (ψ)

)]
− ∂ψ [ln (e (ψ))]

}
φ
(
ψ, ψ

)
. (2.28)

It can be shown [44, 45] that in the 1-modulus case the PF system (2.14) is equivalent to the following complex

differential relation:

D̂D̂
[
W−1 (ψ)

]
D̂D̂Vh (ψ) = 0, (2.29)
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where D̂ ≡ D̂ψ,

W (ψ) ≡Wψψψ (ψ) = e−K(ψ,ψ)Cψψψ
(
ψ, ψ

)
=

=
[
∂ψX

0 (ψ)
]3
F000 (ψ) + 3

[
∂ψX

0 (ψ)
]2 [

∂ψX
1 (ψ)

]
F001 (ψ)+

+3
[
∂ψX

1 (ψ)
]2 [

∂ψX
0 (ψ)

]
F011 (ψ) +

[
∂ψX

1 (ψ)
]3
F111 (ψ) ,

(2.30)

and (see Eq. (2.3) and the first of relations (2.15))

Vh (ψ) =
(
X0 (ψ) , X1 (ψ) , F1 (X(ψ)) ,−F0 (X(ψ))

)
= (2.31)

=
(
X0(ψ), X1(ψ), X0(ψ)e(ψ)∂ψF (ψ), X1(ψ)e(ψ)∂ψF (ψ) − 2X0(ψ)F (ψ)

)
. (2.32)

Eq. (2.29) can also be rewritten as a fourth order linear ordinary differential equation in Vh (ψ) (1-modulus PF

Eq.) [44, 45]:
4∑

n=0

an (ψ) ∂nVh (ψ) = 0, (2.33)

where ∂n ≡ ∂n

(∂ψ)n (n = 0 corresponds to the identity operator)9. The functional coefficients an (ψ)s can be obtained

by comparing Eqs. (2.29) and (2.33) [44] (∂ ≡ ∂ψ):

a4 ≡W−1;

a3 ≡ 2∂
(
W−1

)
;

a2 ≡W−1
(
∂Λ̂ − Λ̂2 + 2Σ̂

)
+
[
∂
(
W−1

)]
Λ̂ + ∂2

(
W−1

)
;

a1 ≡W−1
(
∂2Λ̂ + 2∂Σ̂ − 2Λ̂∂Λ̂

)
+
[
∂2
(
W−1

)]
Λ̂+

+
[
∂
(
W−1

)] (
2Σ̂ + 2∂Λ̂ − Λ̂2

)
;

a0 ≡W−1
(
Σ̂2 − Σ̂∂Λ̂ − Λ̂∂Σ̂ + ∂2Σ̂

)
+
[
∂2
(
W−1

)]
Σ̂+

+
[
∂
(
W−1

)] (
2∂Σ̂− Λ̂Σ̂

)
,

(2.34)

9For a general treatment of the nV -moduli case, see [45].
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where the following holomorphic functions have been introduced (recall the first two Eqs. of (2.27)):

Λ̂ (ψ) ≡ 2∂ψK̂ψ (ψ) − Γ̂ ψ
ψψ (ψ) = −2∂2

ψ

[
ln
(
X0 (ψ)

)]
− ∂ψ [ln (e (ψ))] ;

(2.35)

Σ̂ (ψ) ≡ ∂2
ψK̂ψ (ψ) +

[
∂ψK̂ψ (ψ)

]2
− Γ̂ ψ

ψψ (ψ) ∂ψK̂ψ (ψ) =

= −∂3
ψ

[
ln
(
X0 (ψ)

)]
+
{
∂2
ψ

[
ln
(
X0 (ψ)

)]}2

+ ∂ψ [ln (e (ψ))] ∂2
ψ

[
ln
(
X0 (ψ)

)]
.

(2.36)

The definitions (2.34) entail the following differential relations between the functional coeffiecients of 1-modulus

PF Eq. (2.33):
a3 (ψ) = 2∂ψa4 (ψ) ;

a1 (ψ) = ∂ψ
[
a2 (ψ) − 1

2∂ψa3 (ψ)
]
.

(2.37)

In special coordinates (with X0 = 1) one has X1 (ψ) = t1 (ψ) = ψ and e (ψ) = 1, and the an (ψ)s simplify

drastically10:
a4,special (ψ) ≡W−1 (ψ) ;

a3,special (ψ) ≡ 2∂ψ
[
W−1 (ψ)

]
;

a2,special (ψ) ≡ ∂2
ψ

[
W−1 (ψ)

]
;

a1,special (ψ) ≡ a0,special (ψ) = 0.

(2.38)

It is interesting to notice that not all the an (ψ)s are actually relevant. Firstly, one can scale a4 (ψ) out from the

1-modulus PF Eq. (2.33), and furthermore drop the coefficient proportional to a3 (ψ) by performing the following

rescaling redefinition of Vh (ψ) [45]:

Vh (ψ) −→ Vh (ψ) exp

[
−1

4

∫ ψ

dψ′ a3 (ψ′)

a4 (ψ′)

]
. (2.39)

By doing this, the PF Eq. (2.33) can be recast in the following form:

DψVh (ψ) ≡
[
∂4
ψ + c2 (ψ) ∂2

ψ + c1 (ψ) ∂ψ + c0 (ψ)
]
Vh (ψ) = 0, (2.40)

where the new functional coefficients cn (ψ)s are (rather complicated) combinations of the an (ψ)s and their derivatives.

Notice that, due to the redefinition (2.39), c3 (ψ) = 0.

As shown in [46], the basic, defining differential relations (2.2) of SK geometry can be recast as a vanishing

condition for a suitably defined flat symplectic non-holomorphic connection. Analogously, the holomorphic differential

Eqs. (2.14) can be rewritten as a vanishing condition for a suitably defined flat holomorphic connection, i.e. as [45]

(I2nV +2∂α − Aα (z))Vh (z) = 0, (2.41)

10However, in the following treatment of Fermat CY3s t1 (ψ) is not a special coordinate, i.e. t1 (ψ) 6= ψ.
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where Vh (z) is a (2nV + 2)× (2nV + 2) holomorphic matrix ((2nV + 2)× 1 vector with 1× (2nV + 2) vector entries)

defined as follows [45]:

Vh (z) ≡




Vh (z)

Vh,β (z)

V βh (z)

V 0
h (z)




, (2.42)

where the entries are defined in Eqs. (2.15). On the other hand, Aα (z) is the following (2nV + 2) × (2nV + 2)

holomorphic connection matrix:

Aα (z) ≡




−K̂α (z) δγα 0 0

0
(
Γ̂α (z) − K̂α (z) InV

) γ

β
(Wα)γβ (z) 0

0 0
(
K̂α (z) InV − Γ̂α (z)

) β

γ
δβα

0 0 0 K̂α (z)




. (2.43)

It should be noticed that Aα (z) is Lie-algebra valued in sp (2nV + 2), i.e. it satisfies the infinitesimal symplecticity

condition [45]

AT
α (z)Q+QAα (z) = 0, (2.44)

where Q is the symplectic metric defined in Eq. (2.4).

Put another way, it can be stated that the PF Eqs. (2.14) are equivalent to the matrix system (2.41), with Aα (z)

defined by Eq. (2.43). The general solution of such an holomorphic matrix system is given by Eqs. (2.15) arranged

as a vector as given by Eq. (2.42).

As expected, by specializing the holomorphic matrix system (2.41) in special coordinates and choosing the Kähler

gauge to be such that X0 = 1, one gets the following holomorphic matrix system:

(I2nV +2∂a − Aa,special (z))Vh,special (z) = 0, (2.45)

which is equivalent to the holomorphic system (2.13).

Vh,special (z) is a (2nV + 2)×(2nV + 2) holomorphic matrix ((2nV + 2)×1 vector with 1×(2nV + 2) vector entries)

defined as follows [45]:

Vh,special (z) ≡




Vh,special (z)

Vh,special,b (z)

V bh,special (z)

V 0
h,special(z)




, (2.46)
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where the entries are defined in Eqs. (2.6), (2.8), (2.11) and (2.12). It is worth mentioning that the matrices

Vh,special (z) and Vh (z) have a symplectic structure with respect to the symplectic metric relevant for holomorphic

geometry, i.e. with respect to Q defined in Eq. (2.4):

VT
h,special (z)QVh,special (z) = Q;

VT
h (z)QVh (z) = Q.

(2.47)

Aa,special (z) (named Ca in Eq. (3.6) of the first Ref. of [45]) is the (2nV + 2) × (2nV + 2) holomorphic connection

matrix obtained by Aα (z) (given by Eq. (2.43)) by putting Γ̂α (z) = 0 = K̂α (z) (also recalling that in special coordi-

nates a-indices and α-indinces coincide). Clearly, as its “holomorphically covariant” counterpart Aα (z), clearly also

Aa,special (z) is Lie-algebra valued in sp (2nV + 2), and therefore it satisfies a corresponding infinitesimal symplecticity

condition.

In other words, it can be stated that the the holomorphic system (2.13) can be recast in the matrix form (2.45),

with Aa,special (z) defined by Eq. (3.6) of the first Ref. of [45]. The general solution of such an holomorphic matrix

system is given by Eqs. (2.6), (2.8), (2.11) and (2.12) arranged as a vector as given by Eq. (2.46).

Once again, by considering the 1-modulus case more in detail, one obtains a major simplification. The 1-modulus

PF Eq. (2.33) can be rewritten in matrix form as follows:

(I4∂ψ − Aψ (ψ))Vh (ψ) = 0, (2.48)

where Vh (ψ) is a 4 × 4 holomorphic matrix, corresponding to nV = 1 in Eq. (2.42):

Vh (ψ) ≡




Vh (ψ)

Vh,ψ (ψ)

V ψh ψ

V 0
h (ψ)




= (2.49)

=




X0 (ψ) X1 (ψ) X0(ψ)e(ψ)∂ψF (ψ) X1(ψ)e(ψ)∂ψF (ψ) − 2X0(ψ)F (ψ)

0 X0(ψ)e(ψ) X0(ψ)e(ψ)D̂ψ∂ψF (ψ) −X0(ψ)∂ψF (ψ) +X1(ψ)e(ψ)D̂ψ∂ψF (ψ)

0 0
(
X0(ψ)

)−1
e(ψ)

(
X0(ψ)

)−2
X1(ψ)e(ψ)

0 0 0
(
X0(ψ)

)−1




,

(2.50)

where the second row can be further elaborated by making use of Eq (2.28) (recall that the holomorphic prepotential

F has Kähler weights (4, 0)):

D̂ψ∂ψF (ψ) =
{
∂ψ − 2∂ψ

[
ln
(
X0 (ψ)

)]
− ∂ψ [ln (e (ψ))]

}
∂ψF (ψ). (2.51)
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On the other hand, Aψ (ψ) is a 4 × 4 holomorphic connection matrix, which is Lie-algebra valued in sp (4) and

corresponds to nV = 1 in Eq. (2.43):

Aψ (ψ) =

=




∂ψ
[
ln
(
X0 (ψ)

)]
1 0 0

0
∂ψ [ln (e (ψ))] +
+∂ψ

[
ln
(
X0 (ψ)

)] Wψψψ (ψ) 0

0 0
−∂ψ [ln (e (ψ))] +
−∂ψ

[
ln
(
X0 (ψ)

)] 1

0 0 0 −∂ψ
[
ln
(
X0 (ψ)

)]




,

(2.52)

where use of Eqs. (2.27) has been made (see also Eq. (2.30)).

It can be stated that the 1-modulus PF Eq. (2.33) is equivalent to the matrix system (2.48), with Aψ (ψ) defined

by Eq. (2.52). The general solution of such an holomorphic matrix system (which corresponds to the most general

solution of the fourth order linear PF Eq. (2.52)) is given by Eqs. (2.49)-(2.50) (implemented by Eq. (2.51)).

Let us now further specialize our treatment to the 1-modulus SK geometries endowing the moduli space of Fermat

CY3s. As previously mentioned, the fourth order linear PF ordinary differential equation for each of the four threefolds

(classified by the index k = 5, 6, 8, 10: see next Section) of such a class of CY3s has been obtained for k = 5 in [34, 35]

(see in particular Eq. (3.9) of [34], where z ≡ ψ−5; see also [36]), and for k = 6, 8, 10 in [37] (see Eq. (3.1) of such a

Ref., with notation α ≡ ψ), where a unified, k-parametrized treatment was exploited. We will shortly review it in the

next Section.

In order to recast the 1-modulus PF Eqs. given by Eq. (3.1) of [37] in the form (2.33) with the differential relations

(2.37) between the an (ψ)s holding, one must multiply them by the function ψ−ξk , with ξk = 0, 3, 6, 8 for k = 5, 6, 8, 10

respectively. By doing this, one achieves the result that for Fermat CY3s the fourth order linear PF Eqs. (2.33) can

be recast in the following k-parametrized form11:
∑4
n=0 an,k (ψ) ∂nVh (ψ) = 0,

an,k (ψ) ≡ −σnψn+1 + (−1)
n
τn,kψ

n+1−k,
(2.53)

with the constants σns and τn,ks given by Tables 1 and 2:

3 General Analysis

In the present Section we will briefly present the formalism of one-modulus (mirror) Fermat Calabi-Yau threefolds

(CY3s). We will mainly follow [37], and cite where appropriate other relevant works. We also derive original formal
11As we will see in Sect. 9, for self-consistency reasons the 1-modulus PF Eqs. (2.53) (with Tables 1 and 2) (which are “corrected” by

an overall factor ψ−ξk with respect to the ones given in Eq. (3.1) of [37]) need also to be further multiplied by a suitable “normalization”
constant (see Eq. (9.9)).
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n σn

0 1
1 15
2 25
3 10
4 1

Table 1: Values of the integer constants σn

k −→ 5 6 8 10

τ0,k 0 0 0 0
τ1,k 0 0 15 35
τ2,k 0 2 15 35
τ3,k 0 2 6 10
τ4,k 1 1 1 1

Table 2: Values of the integer constants τn,k

results, which will be then used in the case-by-case analysis of extremal BH LG attractors performed in next Sections.

Fermat CY3s can be defined as the vanishing locus of quasi-homogeneous polynomials in 5 complex variables, of

the general form:

W0 =

4∑

i=0

νi
(
xi
)ni

= 0; (3.1)

such a locus gives the embedding of the consideredCY3 in a suitably weighted complex projective space WCP
4
ν0,ν1,ν2,ν3,ν4 .

By imposing the defining conditions of vanishing first Chern class and of absence of singularities, it is possible to show

that only four possible sets of {νi, ni}i=0,1,2,3,4 exist, all corresponding to CY3s with h (1, 1) = dim
(
H1,1 (CY3)

)
= 1

(i.e. only one Kähler modulus). The four existing Fermat CY3s can be classified by introducing the Fermat parameter

k, defined as the smallest common multiple of the nis
12; the only allowed values of k turn out to be k = 5, 6, 8, 10.

12k can equivalently be defined as the degree of W0. It turns out that k = niνi (no summation on i) ∀i = 0, 1, 2, 3, 4. Moreover, it also
holds that k =

∑4
i=0 νi.
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k
↓

G Ord (G) h (1, 1) h (2, 1) κ ≡ 2 [h (1, 1) − h (2, 1)]

5 (Z5)
3 53 1 101 −200

6 Z3 ⊗ (Z6)
2 3 · 62 1 103 −204

8 (Z8)
2 ⊗ Z2 2 · 82 1 149 −296

10 (Z10)
2 1 · 102 1 145 −288

Table 3: Basic topological data of Fermat CY3s Mks

Thus, the four existing Fermat CY3s Mk are given by the following geometrical loci13 [33, 34, 35, 37]:

k = 5 : quintic M5 =
{
xi ∈ (W) CP

4
1,1,1,1,1 : W0,5 =

∑4
i=0

(
xi
)5

= 0
}

;

k = 6 : sextic M6 =
{
xi ∈ WCP

4
2,1,1,1,1 : W0,6 = 2

(
x0
)3

+
∑4

i=1

(
xi
)6

= 0
}

;

k = 8 : octic M8 =
{
xi ∈ WCP

4
4,1,1,1,1 : W0,8 = 4

(
x0
)2

+
∑4
i=1

(
xi
)8

= 0
}

;

k = 10 : dectic M10 =
{
xi ∈ WCP

4
5,2,1,1,1 : W0,10 = 5

(
x0
)2

+ 2
(
x1
)5

+
∑4

i=2

(
xi
)10

= 0
}
.

(3.2)

By orbifolding the Mks and quotienting by the full phase symmetry group G (see [37] and Refs. therein), one

obtains a pair of Fermat CY3s
14 (Mk,M′

k) related by the so-called mirror symmetry [47, 48, 49, 34, 35], with h(1, 1)

and h(2, 1) = dim
(
H2,1 (CY3)

)
interchanged (and therefore opposite Euler number κ). Correspondingly, the defining

vanishing geometrical loci will be “deformed” as follows:

W0 −→ W ≡ W0 − kψ
4∏

i=0

xi. (3.3)

All the relevant topological data of Fermat CY3s Mks are given in Table 3.

13Here and below, we give a name to the Fermat CY3s corresponding to the various possible values of the Fermat parameter.
The Fermat CY3 with k = 5 has been named quintic some time ago (see e.g. [33, 36, 34, 35, 37]).
In a similar fashion, by using the corresponding Latin cardinal adjectives, we name sextic, octic, and dectic the Fermat CY3s with

k = 6, 8, 10, respectively.
14For simplicity’s sake, we denote in the same way the starting Fermat CY3 and the one obtained by orbifolding and then quotienting

by G.
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ψ is the Kähler deformation modulus for Fermat CY3s Mks (all having h (1, 1) = 1) and the complex structure

deformation modulus for the corresponding mirror Fermat CY3s M′
ks (all having h (2, 1) = 1). Since in the treatment

and computations performed below we will consider ψ as a complex structure modulus, we will be actually working in

the mirror description of the considered CY3s, i.e. we will be considering the mirror Fermat CY3s M′
ks (k = 5, 6, 8, 10).

In such a framework, the relevant quantities for the d = 4 low-energy effective Lagrangian of the d = 10 superstring

theory compactified on Mk are given (within the complex structure moduli space (dimC = 1)) by the Kähler metric

and Yukawa couplings on M′
k (related to Mk by mirror symmetry). All such quantities will be obtained by the

solutions of the fourth order linear PF ordinary differential Eqs. (2.33).

Near the LG point ψ = 0, the 4 × 1 period vector15 in the PF basis ̟k (ψ) is obtained by solving the PF Eqs.16

4∑

n=0

an,k (ψ) ∂n̟k (ψ) = 0. (3.4)

Here we choose the normalization and the gauge of the holomorphic 3-form defined on M′
k such that17

̟k (ψ) ≡ − 1

ψ

(2πi)3

Ord(Gk)




ω2,k(ψ)

ω1,k(ψ)

ω0,k(ψ)

ωk−1,k(ψ)




, (3.5)

with
ωj,k(ψ) ≡ ω0,k(β

2j
k ψ),

βk ≡ exp(πik )
(3.6)

15Once again, in order to make the contact with the relevant literature easier, in this Section as well as in the next ones, we will reconsider
column (i.e. 4× 1), rather than row (i.e. 1× 4), period vectors. Moreover, the holomorphic period vector in the symplectic basis (hitherto
named Vh (ψ)) will be henceforth denoted by Π (ψ).

16When comparing Eq. (3.4) to Eq. (2.33) (and, more in general, considering the treatment given in Sect. 2), the 4 × 1 symplectic
holomorphic period vector Vh (ψ) ≡ Π (ψ) and the 4 × 1 PF holomorphic period vector ̟ (ψ) turn out to satisfy the same fourth order
linear ordinary differential equation.

Consequently, they necessarily have to be related by a global (i.e. ψ-independent) “rotation” in the moduli space. This is precisely what
happens, with such a “rotation” in the moduli space expressed by the 4 × 4 real matrices Mks given in Eqs. (3.15)-(3.16) (see Sect. 4 of
[37]).

17The normalization of ̟k (ψ) adopted in the present work is the same of [34, 35, 37], and it differs from the one adopted in (a part
of the) literature on flux compactifications (see e.g. Subsect. 3.2 of [50]) by a factor 1

Ord(Gk)
(the reason is that we are interested in the

mirror manifolds M′

k
s, not in Mks).

On the other hand, it is easy to realize that the gauge of the holomorphic 3-form adopted in [34, 35, 37] is mostly convenient in order to
study the large complex structure modulus limit. Since we will investigate the LG limit, for our purposes it is better to adopt the gauge
of [50], which amounts to performing the following gauge transformation on the holomorphic 3-form:

Ξ (ψ) −→
1

ψ
Ξ (ψ) ,

in turn corresponding to the following transformation of the Kähler potential:

∂ψK −→ ∂ψK + ln
(
|ψ|2

)
.
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all being solutions of Eq. (3.4) (j = 0, 1, ..., k − 1). However, since Eq. (3.4) is a fourth order (linear) differential

equation, only 4 linearly independent solutions ωj,k(ψ)s exist. Thus, ∀k = 5, 6, 8, 10, k − 4 linear relations between

the ωj,k(ψ)s hold. One possible choice is the following one [34, 35, 37]:

k = 5 :
∑4

j=0 ωj,5(ψ) = 0.
(3.7)

k = 6 :





ω0,6(ψ) + ω2,6(ψ) + ω4,6(ψ) = 0;

ω1,6(ψ) + ω3,6(ψ) + ω5,6(ψ) = 0.
(3.8)

k = 8 : ωi,8(ψ) + ωi+4,8(ψ) = 0, i = 0, 1, 2, 3.
(3.9)

k = 10 :





ωi,10(ψ) + ωi+5,10(ψ) = 0, i = 0, 1, 2, 3, 4;

ω0,10(ψ) + ω2,10(ψ) + ω3,10(ψ) + ω4,10(ψ) + ω5,10(ψ) = 0.
(3.10)

The defining Eq. (3.5) expresses the usual conventions, in which one takes ω0,k(ψ), ω1,k(ψ), ω2,k(ψ) and ωk−1,k(ψ) as

basis for ̟k (ψ). Therefore, due to relations (3.6), the key quantity turns out to be the holomorphic function, whose

series expansion (convergent for |ψ| < 1, with the fundamental region [34, 35, 37] selected by 0 6 arg (ψ) < 2π
k ) reads

[37]

ω0,k(ψ) = −
∞∑

m=1

Ck,m−1β
(k−1)m
k ψm, (3.11)

with

Ck,m−1 ≡ Γ(m
k

)Γ(1−m
k

)km−1

Γ(m)Π4
i=0Γ(1−m

k
νi,k)

γmk ,

γk ≡ Π4
i=0(νi,k)

−νi,k/k,

(3.12)

where in Ck,m−1 Γ denotes the Euler gamma function Γ (s) ≡
∫∞
0 ts−1e−tdt (with Re (s) > 0). By using Eqs.

(3.11)-(3.12), the series expansion (convergent for |ψ| < 1, 0 6 arg (ψ) < 2π
k ) of ̟k (ψ) can be written as follows:

̟k (ψ) = − (2πi)3

Ord(G)

∞∑

m=1

(−1)mCk,m−1ψ
m−1




β3m
k

βmk

β−m
k

β−3m
k




. (3.13)

The change between the PF basis and the symplectic basis for holomorphic 4 × 1 period vector is given by:

Πk(ψ) = Mk̟k (ψ) . (3.14)
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where the 4 × 4 constant matrices Mk read [34, 35, 37]

M5 =




− 3
5 − 1

5
21
5

8
5

0 0 −1 0
−1 0 8 3
0 1 −1 0


 , M6 =




− 1
3 − 1

3
1
3

1
3

0 0 −1 0
−1 0 3 2
0 1 −1 0


 , (3.15)

M8 =




− 1
2 − 1

2
1
2

1
2

0 0 −1 0
−1 0 3 2
0 1 −1 0


 , M10 =




0 1 1 1
0 0 −1 0
1 0 0 −1
0 1 −1 0


 . (3.16)

The Kähler potential is given by:

Kk

(
ψ, ψ

)
= −ln

[
−i Π†

k

(
ψ
)
ΣΠk (ψ)

]
= −ln

[
−i ̟†

k

(
ψ
)
mk̟k (ψ)

]
, (3.17)

where18

Σ ≡




02 I2

−I2 02


 ; (3.18)

mk ≡M †
kΣMk = 1

χk




0 −1 −λk −1
1 0 −ςk −λk
λk ςk 0 −1
1 λk 1 0


 , (3.19)

with the values of χk, λk and ςk given in Table 4. By recalling the third column from the left of Table 3, one can

observe that Ord (Gk) = χkk
2. Substituting Eq. (3.13) and definition (3.19) into Eq. (3.17), one obtains the series

expansion (converging for |ψ| < 1, 0 6 arg (ψ) < 2π
k ) of the Kähler potential:

Kk

(
ψ, ψ

)
= −ln

(
(2π)6

(Ord(Gk))2

∞∑

m,n=1

Ck,m−1Ck,n−1ψ
m−1ψ

n−1
Fk,mn

)
, (3.20)

where the following infinite rank-2 tensor has been introduced:

Fk,mn ≡ i(−1)m+n+1
(
β−3n
k , β−n

k , βnk , β3n
k

)
mk




β3m
k

βmk
β−m
k

β−3m
k


 =

= 2
χk
ei(m+n)π

{
sin(3n−m

k π) + sin(3m−n
k π) + sin(3(n+m)

k π)+

+ςksin(n+m
k π) + λk

[
sin(3n+m

k π) + sin(3m+n
k π)

]}
.

(3.21)

18Note the change of convention with respect to (the case nV = 1 of) the defining Eq. (1.9): Σ = − Ω|nV =1.
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k
↓

χk λk ςk

5 5 3 3

6 3 2 0

8 2 2 1

10 1 1 −1

Table 4: Values of the integer constants χk, λk and ςk

From such a definition, Fk,mn turns out to have the following relevant properties:

Fk,mn = Fk,m n;

Fk,mn = Fk,nm;

Fk,m+k n = Fk,m n+k = (−1)k+1Fk,mn;

Fk,mn = 0 if n+m = k;

Fk,kk = 0.

(3.22)

Consequently, at most only k(k+1)
2 −

[
k
2

]
− 1 (real) non-vanishing independent elements of Fk,mn exist (where

[
k
2

]

denotes the integer part of k
2 ), even though, as evident from Eqs. (4.2), (5.2), (6.2) and (7.2) below, actually such an

upper bound is never reached for the allowed values of the Fermat parameter k = 5, 6, 8, 10.

The holomorphic superpotential (also named N = 2 holomorphic central charge function) is given by:

Wk (ψ; q, p) = ΓΠk (ψ) , (3.23)

where the 1 × 4 BH charge vector in the symplectic basis is here defined as19

Γ ≡ (−p0, −p1, q0, q1) = Γ̃Σ,

Γ̃ ≡ (q0, q1, p
0, p1).

(3.24)

Using Eqs. (3.13), (3.14) and (3.19), one can obtain the following series expansion (convergent for |ψ| < 1, 0 6

19Notice the change in the notation of the symplectic charge vectors with respect to the notation used in Sects. 1 and 2.
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arg (ψ) < 2π
k ) of the holomorphic superpotential:

Wk (ψ; q, p) = Ak

∞∑

m=1

Ck,m−1ψ
m−1Nk,m (q, p) , (3.25)

where the following quantities have been introduced:

Ak ≡ − 1
χk

(2πi)3

Ord(Gk)
; (3.26)

Nk,m (q, p) ≡ (−1)m
[
nk,1 (q, p)β3m

k + nk,2 (q, p)βmk + nk,3 (q, p)β−m
k + nk,4 (q, p)β−3m

k

]
, (3.27)

where

nk (q, p) ≡ χkΓMk ∈ Z
4 (3.28)

is the 1 × 4 BH charge vector in the PF basis.

By inverting the definition (3.28), one obtains

Γ =
1

χk
nk (q, p)M−1

k ∈ Z
4, (3.29)

where Γ is defined in Eq. (3.24). Eqs. (3.28)-(3.29) express the change between the symplectic and PF basis of BH

charges.

By recalling Eq. (1.24) and using Eqs. (3.20) and (3.25), the general form of the “effective BH potential” function

VBH,k
(
ψ, ψ; q, p

)
for the Calabi-Yau threefolds M′

ks reads

VBH,k
(
ψ, ψ; q, p

)
=

1

χ2
kFk,11

[
exp

[
K̃k

(
ψ, ψ

)]] [∣∣∣W̃k

∣∣∣
2 (
ψ, ψ; q, p

)
+ (gψψ̄,k

(
ψ, ψ

)
)−1

∣∣∣DψW̃k

∣∣∣
2 (
ψ, ψ; q, p

)]
≡

≡ 1

χ2
kFk,11

ṼBH,k
(
ψ, ψ; q, p

)
, (3.30)

where

K̃k

(
ψ, ψ

)
≡ Kk

(
ψ, ψ

)
+ ln

[
(2π)6

(Ord(Gk))2
C2
k,0Fk,11

]
;

W̃k (ψ; q, p) ≡ Wk(ψ;q,p)
AkCk,0

.

(3.31)

A remark worth making concerns the holomorphic prepotential F (X (ψ)). In the treatment of 1-modulus SK

geometry underlying the moduli space of Fermat CY3-compactifications, we will assume it to exist. By specializing

Eq. (2.7) for nV = 1, one achieves:

F (X (ψ)) =
1

2

[
F0 (ψ)X0 (ψ) + F1 (ψ)X1 (ψ)

]
=

1

2

[
Π1 (ψ)Π3 (ψ) + Π2 (ψ)Π4 (ψ)

]
, (3.32)

where Πi (ψ) denotes the i-th component (i = 1, 2, 3, 4) of the 4 × 1 symplectic holomorphic period vector Π(k) (ψ).

Consequently, by using Eqs. (3.13) and (3.14), F (X (ψ)) can be explicitly computed in power series expansion

(convergent for |ψ| < 1, 0 6 arg (ψ) < 2π
k ) for the k-parametrized class of Fermat CY3s.

23



Let us now consider the (k-indexed) nV = 1 case of Eqs. (1.6), corresponding to the (k-indexed) 1-modulus AEs

(without explicit use of Cψψψ , in which case one would obtain Eq. (1.23)). By recalling the last step in Eq. (1.8), and

considering that the SK geometry is assumed to be regular (i.e. with
∣∣Kk

(
ψ, ψ

)∣∣ < ∞ everywhere), one obtains the

1-modulus AEs in terms of the superpotential and its covariant derivatives:

2W kDψWk + (gψψ̄,k)
−1 (DψDψWk)DψW k = 0, (3.33)

where (Γ ψ
ψψ,k = gψψk ∂ψgψψ,k = ∂ψln

(
gψψ,k

)
, and recall that Wk has Kähler weights (2, 0))

DψWk = (∂ψ + ∂ψKk)Wk; (3.34)

DψDψWk = (∂ψ + ∂ψKk)DψWk − Γ ψ
ψψ,kDψWk =

= (∂ψ + ∂ψKk) (∂ψ + ∂ψKk)Wk − ∂ψln
(
gψψ,k

)
DψWk =

=
[
∂2
ψ + ∂2

ψKk + 2∂ψKk∂ψ + (∂ψKk)
2 − ∂ψln

(
∂ψ∂ψKk

)
(∂ψ + ∂ψKk)

]
Wk.

(3.35)

In the next Sects. 4-7 we will consistently solve the 1-modulus AEs (3.33) (with covariant derivatives given by

Eqs. (3.34)-(3.35)) near the LG point ψ = 0, using all the formal machinery elaborated above in the framework of

1-modulus SK geometry underlying the moduli space of Fermat CY3-compactifications. In other words, we will solve

the criticality condition for the “effective BH potential” (3.30) near the LG point ψ = 0, obtaining the constraints

which define the BH charge configurations supporting the LG point to be a critical point of VBH,k given by Eq. (3.30).

Furthermore, we will address the issue of the stability, by inspecting the real form of the 2 × 2 Hessian matrix.

We will exploit such a procedure for each of the mirror Fermat CY3s M′
ks, classified by the values of the Fermat

parameter k = 5, 6, 8, 10.

4 k = 5 : Mirror Quintic

In the case of mirror quintic M′
5 it is easy to realize that one has to consider the “effective BH potential” (3.30) (at

least) up to O
(
ψ3
)

(or, as always understood below, O
(
ψ

3
)
). As a consequence, the AEs (3.33) and the Hessian

matrix will be known up to O (ψ).

For k = 5 the definitions (3.12) yield

C5,5l−1 = 0, l ∈ N; (4.1)

moreover, since F5,m+5, n = F5,m ,n+5 = F5,mn (see the third of properties (3.22)), the only independent elements of
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the rank-2 tensor F5 belong to the 5 × 5 matrix

F5,mn =




√
5 + 2

√
5 0 0 0 −

√
5 + 2

√
5

0 −
√

5 − 2
√

5 0 0
√

5 − 2
√

5

0 0
√

5 − 2
√

5 0 −
√

5 − 2
√

5

0 0 0 −
√

5 + 2
√

5
√

5 + 2
√

5

−
√

5 + 2
√

5
√

5 − 2
√

5 −
√

5 − 2
√

5
√

5 + 2
√

5 0



.

(4.2)

Let us now write down all the relevant quantities up to the needed order (here and below, unless otherwise specified,

we omit the Fermat parameter k = 5):

K̃ ≈ (
√

5 − 2)
C2

1

C2
0

[
ψψ̄ −

(
C2

2

C2
1
− (

√
5−2)
2

C2
1

C2
0

)
(ψψ̄)2 + C5C0

C2
1

(
√

5 + 2)(ψ5 + ψ̄5)
]

+ O(ψ6);
(4.3)

gψψ̄ ≈ (
√

5 − 2)
C2

1

C2
0

[
1 − 4

(
C2

2

C2
1
− (

√
5−2)
2

C2
1

C2
0

)
ψψ̄
]

+ O(ψ4);
(4.4)

W̃ ≈ N1 + C1

C0
N2ψ + C2

C0
N̄2ψ

2 + C3

C0
N̄1ψ

3 + O(ψ5).
(4.5)

Now, by using the formulæ of the general analysis exploited in Sect. 3, we can get the “effective BH potential” and

the holomorphic superpotential, as well as their (covariant) derivatives, up to O (ψ) (notice that in all the treatments

of Sects. 4-7 we are interested only in ordinary derivatives of ṼBH , since they coincide with the covariant ones at the

critical points of ṼBH):

W̃ = N1 + C1

C0
N2ψ;

(4.6)

DψW̃ = C1

C0

[
N2 + 2C2

C1
N̄2ψ + C1

C0
(
√

5 − 2)N1ψ̄
]
;

(4.7)

DψDψW̃ = 2C2

C0
N̄2 + 6C3

C0
N̄1ψ + 4

C2
2

C0C1
N2ψ̄, (4.8)

ṼBH = |N1|2 + (
√

5 + 2)|N2|2 + 2C1

C0

[
N2N̄1 + (

√
5 + 2)C2C0

C2
1

(N̄2)
2
]
ψ+

+2C1

C0

[
N̄2N1 + (

√
5 + 2)C2C0

C2
1

(N2)
2
]
ψ̄;

(4.9)

∂ψṼBH = 2C1

C0

[
N2N̄1 + (

√
5 + 2)C2C0

C2
1

(N̄2)
2
]

+ 6C2

C0

[
1 + (

√
5 + 2)C3C0

C2C1

]
N̄1N̄2ψ+

+2
C2

1

C2
0

[
|N1|2(

√
5 − 2) + |N2|2

(
1 + 4(

√
5 + 2)

C2
0C

2
2

C4
1

)]
ψ̄;

(4.10)
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∂ψ∂ψṼBH = 6C2

C0

[
1 + (

√
5 + 2)C3C0

C2C1

]
N̄1N̄2+

+24C3

C0
(N̄1)

2ψ + 4C1

C0

[
C2

C0

(
1 + 4(

√
5 + 2)

C2
0C

2
2

C4
1

)
(N̄2)

2 +

+ (
√

5 − 2)
C2

1

C2
0

(
1 + (

√
5 + 2)

C2
0C

2
2

C4
1

+ 3(
√

5 + 2)2
C3

0C2C3

C5
1

)
N̄1N2

]
ψ̄;

(4.11)

∂ψ∂ψ̄ṼBH = 2
C2

1

C2
0

[
|N1|2(

√
5 − 2) + |N2|2

(
1 + 4(

√
5 + 2)

C2
0C

2
2

C4
1

)]
+

+4C1

C0

[
C2

C0

(
1 + 4(

√
5 + 2)

C2
0C

2
2

C4
1

)
(N̄2)

2 +

+ (
√

5 − 2)
C2

1

C2
0

(
1 + (

√
5 + 2)

C2
0C

2
2

C4
1

+ 3(
√

5 + 2)2
C3

0C2C3

C5
1

)
N̄1N2

]
ψ+

+4C1

C0

[
C2

C0

(
1 + 4(

√
5 + 2)

C2
0C

2
2

C4
1

)
(N2)

2 +

+ (
√

5 − 2)
C2

1

C2
0

(
1 + (

√
5 + 2)

C2
0C

2
2

C4
1

+ 3(
√

5 + 2)2
C3

0C2C3

C5
1

)
N1N̄2

]
ψ̄.

(4.12)

Let us now find the solutions of the AE ∂ψṼBH
(
ψ, ψ; q, p

)
= 0, and check their stability. Since we are working

near the LG point, by using Eq. (4.9) we can rewrite the AE for M′
5 as follows:

N2N̄1 + (
√

5 + 2)
C2C0

C2
1

(N̄2)
2 ≈ 0. (4.13)

Here we simply put ψ = 0. Solving Eq. (4.13), we will find one (or more) set(s) of BH charges supporting ψ ≈ 0 to

be a critical point of VBH . As understood throughout all our treatment of Sects. 4-7, ça va sans dire that actual BH

charges are very close to the found one, and also that the critical value of ψ is not zero, but it belongs to a suitable

neighbourhood of the LG point.

The stability of the critical point ψ ≈ 0 of VBH is governed by the symmetric, real form of Hessian 2 × 2 matrix

of VBH evaluated at the considered extremum; in general, it reads

HVBH
real form ≡

(
A C
C B

)
, (4.14)

where A, B, C ∈ R are given in terms of ∂ψ∂ψVBH , ∂ψ∂ψVBH , ∂ψ∂ψVBH ∈ C by Eqs. (4.7)-(4.12) of [15]. By using

such Eqs., and also Eqs. (4.11)-(4.12) evaluated along the criticality condition (4.13), it can be computed that the
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components of H ṼBH
real form constrained by the AE (4.13) read as follows:

A ≈ C2
1

C2
0

[
|N1|2(

√
5 − 2) + |N2|2

(
1 + 4(

√
5 + 2)

C2
0C

2
2

C4
1

)]
+

+ 3
2
C2

C0

[
1 + (

√
5 + 2)C3C0

C2C1

]
(N̄1N̄2 +N1N2);

(4.15)

B ≈ C2
1

C2
0

[
|N1|2(

√
5 − 2) + |N2|2

(
1 + 4(

√
5 + 2)

C2
0C

2
2

C4
1

)]
+

− 3
2
C2

C0

[
1 + (

√
5 + 2)C3C0

C2C1

]
(N̄1N̄2 +N1N2);

(4.16)

C ≈ − 3
2 i
C2

C0

[
1 + (

√
5 + 2)C3C0

C2C1

]
(N̄1N̄2 −N1N2). (4.17)

The resulting real eigenvalues of H ṼBH
real form constrained by the AE (4.13) read:

λ± ≈ C2
1

C2
0

[
|N1|2(

√
5 − 2) + |N2|2

(
1 + 4(

√
5 + 2)

C2
0C

2
2

C4
1

)]
+

±3
C2

C0

[
1 + (

√
5 + 2)

C3C0

C2C1

]
|N1||N2|. (4.18)

By recalling Eq. (3.30) and using Eq. (4.9) with ψ ≈ 0 and constrained by the AE (4.13), one obtains that the purely

charge-dependent LG critical values of the “effective BH potential” for the mirror quintic M′
5 are

VBH,LG−critical,k=5 ≈ 1

25
√

5 + 2
√

5

[
|N1|2 + (

√
5 + 2)|N2|2

]
; (4.19)

by recalling formula (1.2), this directly yields the following purely charge-dependent values of the BH entropy at the

LG critical points of VBH,5 in the moduli space of M′
5:

SBH,LG−critical,k=5 ≈ π

25
√

5 + 2
√

5

[
|N1|2 + (

√
5 + 2)|N2|2

]
. (4.20)

Let us write down here the numerical values of constants relevant to our treatment:

C0 ≈ 2.5, C1 ≈ 2.25, C2 ≈ 0.77, C3 ≈ 0.054. (4.21)

Let us now analyze more in depth the species of LG attractor points arising from the AE (4.13). As it can be easily

seen, the AE (4.13) has two non-degenerate solutions (i.e. with non-vanishing VBH and therefore with non-vanishing

BH entropy, see Eq. (1.2)):

I. The first non-degenerate solution to AE (4.13) is

N2 ≈ 0. (4.22)
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As one can see from Eq. (4.6)-(4.7), such a solution corresponds to a 1
2 -BPS LG critical point of VBH (W̃ 6= 0,

DψW̃ = 0). From the definitions (3.27) and (3.28), in order to get the solution (4.22), we have to fine-tune 2 PF BH

charges out of 4 in the following way:

n3 ≈ 1

2
(1 +

√
5)(n2 − n1), n4 ≈ −1

2
(1 +

√
5)n1 + n2. (4.23)

The charges n1, n2 are not fixed; they only satisfy the non-degeneration condition N1 6= 0. The real eigenvalues (4.18)

for the 1
2 -BPS critical solution coincide and, as it is well known [31, 15, 16], are strictly positive:

λ+, 12−BPS = λ−, 12−BPS ≈ (
√

5 − 2)
C2

1

C2
0

|N1|2 > 0. (4.24)

Consequently, the 1
2 -BPS LG critical point ψ ≈ 0 supported by the PF BH charge configuration (4.23) is a stable

extremum, since it is a (local) minimum of VBH , and it is therefore an attractor in a strict sense. The “effective BH

potential” and BH entropy at such a (class of) 1
2 -BPS LG attractor(s) take the values

VBH, 12−BPS ≈ 0.013|N1|2, SBH, 12−BPS ≈ 0.013π|N1|2, (4.25)

where

N1 ≈ n1

8

[
4
√

5 − i

√
2(5 +

√
5)3
]
− n2

4

[
5 +

√
5 − i

√
10(5 −

√
5)

]
. (4.26)

II. The second non-degenerate solution to AE (4.13) is

|N1| ≈ ξ|N2|,

ξ ≡ (
√

5 + 2)C0C2

C2
1

≈ 1, 6;

arg(N1) − 3arg(N2) ≈ π,

(4.27)

where

N1 ≈
√

5 − 1

4

(
n1 + n4 −

(3 +
√

5)

2
(n2 + n3)

)
+
i

2

√
(5 +

√
5)

2

(
n4 − n1 +

(
√

5 − 1)

2
(n3 − n2)

)
, (4.28)

N2 ≈ −
√

5 + 1

4

(
n1 + n4 −

(3 −
√

5)

2
(n2 + n3)

)
+
i

2

√
(5 −

√
5)

2

(
n4 − n1 −

(
√

5 + 1)

2
(n3 − n2)

)
. (4.29)

As one can see from Eq. (4.6)-(4.7), such a solution corresponds to a non-BPS, Z 6= 0 LG critical point of VBH

(W̃ 6= 0, DψW̃ 6= 0). The real eigenvalues (4.18) for such a non-BPS, Z 6= 0 critical solution read

λ±,non−BPS,Z 6=0 ≈ C2
1

C2
0

|N2|2
[
1 + 5(

√
5 − 2)ξ2 ± 3

(
ξ(
√

5 − 2) + (
√

5 + 2)
C2

0C3

C3
1

)
ξ

]
. (4.30)
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Substituting the numerical values (4.21) of the involved constants in Eq. (4.30), one reaches the conclusion that both

λ±,non−BPS,Z 6=0 are strictly positive:

λ±,non−BPS,Z 6=0 ≈ |N2|2 [3.277 ± 1.97] > 0. (4.31)

Thus, the non-BPS, Z 6= 0 LG critical point ψ ≈ 0 supported by the PF BH charge configuration (4.27)-(4.29) is a

(local) minimum of VBH and consequently an attractor in a strict sense.

Let us now find the fine-tuning conditions for PF BH charges supporting the considered non-BPS, Z 6= 0 LG

attractor for the mirror quintic M′
5. This amounts to solving Eqs. (4.27)-(4.29) by recalling the definitions (3.27) and

(3.28). By doing so, one gets the following three different sets of constraining relations on the PF BH charges:

II.1) n2 = n1
a2−a1,±−1
a1,±+2 , n3 = −n1

a2+a1,±−1
a1,±+2 , n4 = n1

a1,±−2
a1,±+2 ,

a1,± (ξ) ≡ ±
√

20(1+3ξ)

−5+2
√

5+ξ(−5−4
√

5ξ+2(5+
√

5)ξ2)
, a2 (ξ) ≡

√
5(5+2

√
5)+

√
10(5+2

√
5)ξ√

5−2
√

5+
√

2(5+2
√

5)ξ
;

(4.32)

II.2) n2 = n1
1−

√
5+ξ(1+

√
5)

ξ(
√

5−1)−
√

5−1
, n3 = n2, n4 = n1; (4.33)

II.3) n2 + n3 − n1 − n4 = a, n1 + n2 + n3 + n4 = b, 2n3 − 2n2 + d = c, n4 − n1 = d,

a (ξ; b, c, d) ≡ −
√

5+2
√

5c−
√

5(5−2
√

5)d+
√

2(5+
√

5)ξ(−c+
√

5d)√
5(5−2

√
5)c−

√
5(5+2

√
5)d+

√
2(5+

√
5)ξ(

√
5c−5d)

b,

b (ξ; c, d) ≡
√

(2
√

5+(5+
√

5)ξ)c2−10(1+
√

5)ξcd+5(−2
√

5+(5+
√

5)ξ)d2

2

√
(−2

√
5+3(5+

√
5)ξ)c2−30(1+

√
5)ξcd+5(2

√
5+3(5+

√
5)ξ)d2

(5−2
√

5+2ξ(5−
√

5+(5+
√

5)ξ))c2−10(1+ξ(ξ+1)(1+
√

5))cd+5(5+2
√

5+2ξ(5+3
√

5+(5+
√

5)ξ))d2

.

(4.34)

Notice that the typology II.2 of fine-tuning conditions for PF BH charges given by Eq. (4.33) is the one adopted in

[9] (see in particular Sect. 4 and App. C of such a Ref.).

By recalling that ξ ≈ 1, 6 (see Eq. (4.27)), the typology II.1 of fine-tuning conditions for PF BH charges yields

n2/n1 ≈ 0.342(−138.3), n3/n1 ≈ −1.352(35), n4/n1 ≈ 0.009(102.3), (4.35)

where, here and below, the numbers in round brackets correspond to considering a1,−, rather than a1,+, in Eqs. (4.32).

Since the PF BH charges are integers as are the symplectic BH charges (see definition (3.28)), the numerical conditions

(4.35) can approximately be met by taking e.g.

n1 = 1000(10), n2 = 342(−1383), n3 = −1352(350), n4 = 9(1023). (4.36)

Switching to the symplectic (electric/magnetic) basis for BH charges by using Eq. (3.29), one finally gets

p0 = 3n1 + n4 = 3009(1053), p1 = 1
5 [−4(n1 + n4) + n2 + n3] = −1009(−1033),

q0 = 1
5 (8n1 + 3n4) = 1605(630), q1 = 1

5 (−3n1 + n2 − n4) = −533(−487).
(4.37)
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By repeating the same procedure for the typology II.2 of fine-tuning conditions for PF BH charges given by Eq.

(4.33), one achieves the same results obtained at the end of Sect. 4 of [9].

It is worth remarking that all three distinct sets of fine-tuning conditions for PF BH charges (4.32)-(4.34) do

support a non-BPS, Z 6= 0 LG attractor in a strict sense.

The “effective BH potential” and BH entropy at such a (class of) non-BPS, Z 6= 0 LG attractor(s) take the values

VBH,non−BPS,Z 6=0 ≈ 0.055|N2|2, SBH,non−BPS,Z 6=0 ≈ 0.055π|N2|2, (4.38)

where N2 is given by Eq.(4.29), implemented by one of the fine-tuning conditions (4.32)-(4.34).

Finally, by recalling the definition (1.29), one can compute the supersymmetry-breaking order parameter for the

non-BPS, Z 6= 0 LG attractor in the mirror quintic M′
5; by using Eqs. (4.4), (4.6), (4.7) and (4.27), one gets

Onon−BPS,Z 6=0 ≡




(
gψψ

)−1

|DψW |2

|W |2



non−BPS,Z 6=0

=




(
gψψ

)−1

|DψW̃ |2

|W̃ |2



non−BPS,Z 6=0

≈ (
√

5 + 2)

ξ2
≈ 1.65,

(4.39)

which is consistent with the result obtained at the end of Sect. 4 of [9].

5 k = 6 : Mirror Sextic

For the mirror sextic M′
6 the computations (but not the results!) go the same way as for the mirror quintic M′

5.

Thus, also for k = 6 it is easy to realize that one has to consider the “effective BH potential” (3.30) (at least) up to

O
(
ψ3
)

in order to get the AEs (3.33) and the Hessian matrix up to O (ψ).

For k = 6 the definitions (3.12) yield

C6,3l−1 = 0, l ∈ N (5.1)

moreover, since F6,m+6, n = F6,m ,n+6 = −F6,mn (see the third of properties (3.22)), the only independent elements of

the rank-2 tensor F6 belong to the 6 × 6 matrix

F6,mn =




2
√

3 0 −
√

3 0 0 3
0 − 2√

3
1 0 0 − 1√

3

−
√

3 1 0 −1
√

3 −2
0 0 −1 2√

3
0 − 1√

3

0 0
√

3 0 −2
√

3 3
3 − 1√

3
−2 − 1√

3
3 0




. (5.2)

Let us now write down all the relevant quantities up to the needed order (here and below, unless otherwise specified,
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we omit the Fermat parameter k = 6):

K̃ ≈ 1
3
C2

1

C2
0

[
ψψ̄ + 1

6
C2

1

C2
0
(ψψ̄)2

]
+ O(ψ6);

(5.3)

gψψ̄ ≈ 1
3
C2

1

C2
0

[
1 + 2

3
C2

1

C2
0
ψψ̄
]

+ O(ψ4);
(5.4)

W̃ ≈ N1 + C1

C0
N2ψ − C3

C0
N̄2ψ

3 − C4

C0
N̄1ψ

4 + O(ψ6).
(5.5)

Now, by using the formulæ of the general analysis exploited in Sect. 3, we can get the “effective BH potential” and

the holomorphic superpotential, as well as their (covariant) derivatives, up to O (ψ):

W̃ = N1 + C1

C0
N2ψ;

(5.6)

DψW̃ = C1

C0

[
N2 + 1

3
C1

C0
N1ψ̄

]
;

(5.7)

DψDψW̃ = −6C3

C0
N̄2ψ − 12C4

C0
N̄1ψ

2;
(5.8)

ṼBH = |N1|2 + 3|N2|2 + 2C1

C0
N2N̄1ψ + 2C1

C0
N̄2N1ψ̄;

(5.9)

∂ψṼBH = 2C1

C0
N2N̄1 − 18C3

C1
(N̄2)

2ψ + 2
3
C2

1

C2
0

(
|N1|2 + 3|N2|2

)
ψ̄;

(5.10)

∂ψ∂ψṼBH = −18C3

C1
(N̄2)

2 − 24C3

C0

(
1 + C4C0

C3C1

)
N̄1N̄2ψ + 4

3
C3

1

C3
0
N̄1N2ψ̄;

(5.11)

∂ψ∂ψ̄ṼBH = 2
3
C2

1

C2
0

(
|N1|2 + 3|N2|2

)
+ 4

3
C3

1

C3
0
N̄1N2ψ + 4

3
C3

1

C3
0
N1N̄2ψ̄. (5.12)

From the definitions (3.27) and (3.28), for k = 6 one gets that

N1 = −
√

3

2
(n2 + n3) +

i

2
(2n4 − 2n1 + n3 − n2), (5.13)

N2 =
1

2
(n3 + n2 − 2n4 − 2n1) −

√
3i

2
(n3 − n2). (5.14)

Let us now find the solutions of the AE ∂ψṼBH
(
ψ, ψ; q, p

)
= 0, and check their stability. Since we are working

near the LG point, by using Eq. (5.9) we can rewrite the AE for M′
6 as follows:

N2N̄1 ≈ 0. (5.15)

Here we simply put ψ = 0. Solving Eq. (5.15), we will find one (or more) set(s) of BH charges supporting ψ ≈ 0 to

be a critical point of VBH .
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By using Eqs. (4.7)-(4.12) of [15] and Eqs. (5.11)-(5.12) evaluated along the criticality condition (5.15), it can be

computed that the components of H ṼBH
real form (given by Eq. (4.14)) constrained by the AE (5.15) read as follows:

A =
1

3

C2
1

C2
0

(
|N1|2 + 3|N2|2

)
− 9

2

C3

C1

(
(N̄2)

2 + (N2)
2
)
; (5.16)

B =
1

3

C2
1

C2
0

(
|N1|2 + 3|N2|2

)
+

9

2

C3

C1

(
(N̄2)

2 + (N2)
2
)
; (5.17)

C =
9

2
i
C3

C1

(
(N̄2)

2 − (N2)
2
)
. (5.18)

The resulting real eigenvalues of H ṼBH
real form constrained by the AE (5.15) read:

λ± ≈ C2
1

C2
0

[
1

3
|N1|2 + |N2|2

(
1 ± 9

C2
0C3

C3
1

)]
. (5.19)

By recalling Eq. (3.30) and using Eq. (5.9) with ψ ≈ 0 and constrained by the AE (5.15), one obtains that the purely

charge-dependent LG critical values of the “effective BH potential” for the mirror sextic M′
6 are

VBH,LG−critical,k=6 ≈ 1

18
√

3

[
|N1|2 + 3|N2|2

]
; (5.20)

by recalling formula (1.2), this directly yields the following purely charge-dependent values of the BH entropy at the

LG critical points of VBH,6 in the moduli space of M′
6:

SBH,LG−critical,k=6 ≈ π

18
√

3

[
|N1|2 + 3|N2|2

]
. (5.21)

Let us write down here the numerical values of constants relevant to our treatment:

C0 ≈ 2.27, C1 ≈ 1.52, C3 ≈ −0.247, C4 ≈ 0.054; 9
C2

0C3

C3
1

≈ −3.25. (5.22)

Let us now analyze more in depth the species of LG attractor points arising from the AE (5.15). As it can be

easily seen, the AE (5.15) has two non-degenerate solutions:

I. The first non-degenerate solution to AE (5.15) is

N2 ≈ 0. (5.23)

This is nothing but the k = 5 solution (4.22). As one can see from Eq. (5.6)-(5.7), also for k = 6 such a solution

corresponds to a 1
2 -BPS LG critical point of VBH (W̃ 6= 0, DψW̃ = 0). From the definitions (3.27) and (3.28), in order

to get the solution (5.23), we have to fine-tune 2 PF BH charges out of 4 in the following way:

n3 ≈ n2, n4 ≈ n2 − n1. (5.24)
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The charges n1, n2 are not fixed; they only satisfy the non-degeneration condition N1 6= 0. As it was for k = 5, also

the real eigenvalues (5.19) for the 1
2 -BPS critical solution coincide and, as it is well known [31, 15, 16], are strictly

positive:

λ+, 12−BPS = λ−, 12−BPS ≈ 1

3

C2
1

C2
0

|N1|2 > 0. (5.25)

Consequently, the 1
2 -BPS LG critical point ψ ≈ 0 supported by the PF BH charge configuration (5.24) is a stable

extremum, since it is a (local) minimum of VBH , and it is therefore an attractor in a strict sense. The “effective BH

potential” and BH entropy at such a (class of) 1
2 -BPS LG attractor(s) take the values

VBH, 12−BPS ≈ 0.032|N1|2, SBH, 12−BPS ≈ 0.032π|N1|2, (5.26)

where

N1 ≈ −
√

3n2 + i(n2 − 2n1). (5.27)

II. The second non-degenerate solution to AE (5.15) is

N1 ≈ 0. (5.28)

As one can see from Eq. (5.6)-(5.7), such a solution corresponds to a non-BPS, Z = 0 LG critical point of VBH

(W̃ = 0, DψW̃ 6= 0). The real eigenvalues (5.19) for such a non-BPS, Z = 0 critical solution read

λ±,non−BPS,Z=0 ≈ C2
1

C2
0

(
1 ± 9

C2
0C3

C3
1

)
|N2|2. (5.29)

Substituting the numerical values (5.22) of the involved constants in Eq. (5.29), one reaches the conclusion that one

eigenvalue is positive and the other one is negative:

λ±,non−BPS,Z=0 ≈ |N2|2 [0.45 ∓ 1.46] ≶ 0. (5.30)

Let us now find the fine-tuning conditions for PF BH charges supporting the considered non-BPS, Z = 0 LG attractor

for the mirror sextic M′
6. This amounts to solving Eq. (5.28) by recalling the definitions (3.27) and (3.28). By doing

so, one gets the following unique set of constraining relations on PF BH charges:

n3 ≈ −n2, n4 ≈ n2 + n1. (5.31)

Thus, the non-BPS, Z = 0 LG critical point ψ ≈ 0 supported by the PF BH charge configuration (5.31) is a saddle

point of VBH and consequently it is not an attractor in a strict sense.

The “effective BH potential” and BH entropy at such a (class of) non-BPS, Z = 0 LG saddle point(s) take the

values

VBH,non−BPS,Z=0 ≈ 0.096|N2|2, SBH,non−BPS,Z=0 ≈ 0.096π|N2|2, (5.32)
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where

N2 ≈ −2n1 − n2 + i
√

3n2. (5.33)

Switching to the symplectic (electric/magnetic) basis for BH charges by using Eq. (3.29), one gets

n1 = p0 − 3q0;

n2 = p0 + 3q1;

n3 = −p0 + 3p1 + 9q0 − 3q1;

n4 = −p0 + 6q0,

(5.34)

one can easily show that fine-tuning condition (5.31) can be rewritten in terms of symplectic BH charges as follows:

p0 = 3q0 − q1, p1 = −3q0. (5.35)

It is worth remarking that such a critical solution for the mirror sextic M′
6 had been previously investigated in

Sect. 7 of [10]. Up to irrelevant changes of notation, Eq. (5.35) coincides with Eq. (7.8) of [10]. By considering the

second derivatives (5.11)-(5.12) of the “effective BH potential” constrained by Eq. (5.28) and comparing them with

Eq. (7.9) of [10], one can state that the crucial difference between the results of [10] and ours lies in the critical value

of the second holomorphic derivative of VBH . Indeed, Eq. (7.9) of [10] reads

(∂ψ∂ψVBH)non−BPS,Z=0 = 0. (5.36)

From our previous computations, consistently taking into account the needed orders in ψ to get the series expansion

for VBH up to O
(
ψ2
)

(or O
(
ψ3
)
), we disagree with the critical value of the second holomorphic derivative of VBH at

the considered non-BPS, Z = 0 critical point given by Eq. (5.36). According to our results, the statement made in [10]

that the considered non-BPS, Z = 0 LG critical point of VBH is actually an attractor in a strict sense for all possible

supporting symplectic BH charge configurations (5.35) does not hold. Instead, as correctly stated above, the non-BPS,

Z = 0 LG critical point ψ ≈ 0 supported by the BH charge configurations (5.31) (PF) and (5.35) (symplectic) is a

saddle point of VBH and consequently it is not an attractor in a strict sense.

Also, by recalling Eq. (5.32) and using Eqs. (5.33) and (5.34)-(5.35), our analysis yields that the “effective BH

potential” and BH entropy at the considered (class of) non-BPS, Z = 0 LG saddle point(s) take the purely charge-

dependent values:

VBH,non−BPS,Z=0 =
1

2
√

3
(3q20 + q21), SBH,non−BPS,Z=0 =

π

2
√

3
(3q20 + q21). (5.37)

As one can see, the value of VBH,non−BPS,Z=0 given by Eq. (5.37) does not coincide with the one given by Eq. (7.10)

of [10].
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6 k = 8 : Mirror Octic

The case of mirror octic M′
8 (as well as the one of mirror dectic M′

10 treated in Sect. 7) needs a different approach

with respect to the cases of mirror quintic M′
5 and mirror sextic M′

6, respectively treated in Sects. 4 and 5.

Indeed, contrary to what happens for k = 5, 6 (see Eqs. (4.4) and (5.4), respectively), for k = 8, 10 the series

expansion of the Kähler metric gψψ
(
ψ, ψ

)
near the LG point starts with no constant term (namely, it is not regular at

ψ = 0). As a consequence, one has to consider the series expansion of the “effective BH potential” VBH up to O
(
ψ4
)

(rather than up to O
(
ψ3
)
, as it is for k = 5, 6), in order to obtain all the relevant quantities up to O

(
ψ2
)

(rather

than up to O (ψ), as it is for k = 5, 6).

For k = 8 the definitions (3.12) yield

C8,2l−1 = 0, l ∈ N; (6.1)

moreover, since F8,m+8, n = F8,m ,n+8 = −F8,mn (see the third of properties (3.22)), the only independent elements of

the rank-2 tensor F8 belong to the 8 × 8 matrix

F8,mn =




2(2 +
√

2) −
√

10 + 7
√

2 0

√
2 +

√
2 0 −

√
2 +

√
2 0

√
10 + 7

√
2

−
√

10 + 7
√

2 2

√
2 −

√
2 −

√
2

√
10 − 7

√
2 0

√
2 +

√
2 −3

√
2

0

√
2 −

√
2 2(−2 +

√
2)

√
2 −

√
2 0 −

√
10 − 7

√
2 0

√
10 − 7

√
2

√
2 +

√
2 −

√
2

√
2 −

√
2 0 −

√
2 −

√
2

√
2 −

√
2 +

√
2 2

0

√
10 − 7

√
2 0 −

√
2 −

√
2 4 − 2

√
2 −

√
2 −

√
2 0

√
10 − 7

√
2

−
√

2 +
√

2 0 −
√

10 − 7
√

2
√

2 −
√

2 −
√

2 −2

√
10 + 7

√
2 −3

√
2

0

√
2 +

√
2 0 −

√
2 +

√
2 0

√
10 + 7

√
2 −4 − 2

√
2

√
10 + 7

√
2

√
10 + 7

√
2 −3

√
2

√
10 − 7

√
2 2

√
10 − 7

√
2 −3

√
2

√
10 + 7

√
2 0




.

(6.2)

Let us now write down all the relevant quantities up to the needed order (here and below, unless otherwise specified,

we omit the Fermat parameter k = 8):

K̃ ≈ (3 − 2
√

2)
C2

2

C2
0
(ψψ̄)2

[
1 −

(
C2

4

C2
2
− 1

2 (3 − 2
√

2)
C2

2

C2
0

)
(ψψ̄)2

]
+ C8

C0
(ψ8 + ψ̄8) + O(ψ9);

(6.3)

gψψ̄ ≈ 4(3 − 2
√

2)
C2

2

C2
0
ψψ̄
[
1 − 4

(
C2

4

C2
2
− 1

2 (3 − 2
√

2)
C2

2

C2
0

)
(ψψ̄)2

]
+ O(ψ7);

(6.4)

W̃ ≈ N1 + C2

C0
N3ψ

2 − C4

C0
N̄3ψ

4 − C6

C0
N̄1ψ

6 + O(ψ8).
(6.5)

Now, by using the formulæ of the general analysis exploited in Sect. 3, we can get the “effective BH potential” and
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the holomorphic superpotential, as well as their (covariant) derivatives, up to O
(
ψ2
)
:

W̃ = N1 + C2

C0
N3ψ

2;
(6.6)

DψW̃ = 2C2

C0
N3ψ − 4C4

C0
N̄3ψ

3 + 2(3 − 2
√

2)
C2

2

C2
0
N1ψψ̄

2;
(6.7)

DψDψW̃ = −8C4

C0
N̄3ψ

2;
(6.8)

ṼBH = |N1|2 + (3 + 2
√

2)|N3|2 + 2C2

C0

(
N3N̄1 − (3 + 2

√
2)C4C0

C2
2

(N̄3)
2
)
ψ2+

+2C2

C0

(
N̄3N1 − (3 + 2

√
2)C4C0

C2
2

(N3)
2
)
ψ̄2;

(6.9)

∂ψṼBH = 4ψ
[
C2

C0

(
N3N̄1 − (3 + 2

√
2)C4C0

C2
2

(N̄3)
2
)
− 3C4

C0

(
1 + (3 + 2

√
2)C6C0

C4C2

)
N̄1N̄3ψ

2+

+
C2

2

C2
0

(
|N1|2(3 − 2

√
2) + |N3|2

(
1 + 4(3 + 2

√
2)
C2

0C
2
4

C4
2

))
ψ̄2
]
;

(6.10)

∂ψ∂ψṼBH = 4C2

C0

(
N3N̄1 − (3 + 2

√
2)C4C0

C2
2

(N̄3)
2
)
− 36C4

C0

(
1 + (3 + 2

√
2)C6C0

C4C2

)
N̄1N̄3ψ

2+

+4
C2

2

C2
0

(
|N1|2(3 − 2

√
2) + |N3|2

(
1 + 4(3 + 2

√
2)
C2

0C
2
4

C4
2

))
ψ̄2;

(6.11)

∂ψ∂ψ̄ṼBH = 8
C2

2

C2
0

(
|N1|2(3 − 2

√
2) + |N3|2

(
1 + 4(3 + 2

√
2)
C2

0C
2
4

C4
2

))
ψψ̄.

(6.12)

Let us stress once again that, contrary to the treatment of Sects. 4 and 5, and as evident from Eqs. (6.9)-(6.12), for

the case of mirror octic we truncate the series expansion of the “effective BH potential” and of its second derivatives

around the LG point up to O
(
ψ2
)

included, and the series expansion of its first derivative around the LG point up to

O
(
ψ3
)

included. This is due to the absence of an O (ψ) term in expression of ṼBH given by Eq. (6.9). As mentioned

at the start of the present Section, such a fact can be traced back to the non-regularity of gψψ̄ at ψ = 0 (see Eq. (6.4)).

Let us now find the solutions of the AE ∂ψṼBH
(
ψ, ψ; q, p

)
= 0, and check their stability. Since we are working

near the LG point, by using Eq. (6.9) we can rewrite the AE for M′
8 as follows:

C2

C0

(
N3N̄1 − (3 + 2

√
2)C4C0

C2
2

(N̄3)
2
)

+

+
C2

2

C2
0

(
|N1|2(3 − 2

√
2) + |N3|2

(
1 + 4(3 + 2

√
2)
C2

0C
2
4

C4
2

))
ψ̄2 ≈

≈ 3C4

C0

(
1 + (3 + 2

√
2)C6C0

C4C2

)
N̄1N̄3ψ

2.

(6.13)

Solving Eq. (6.13), we will find one (or more) set(s) of BH charges supporting ψ ≈ 0 to be a critical point of VBH .

Since we are working near the LG point, it is clear that the first term in the left-hand side (l.h.s.) of Eq. (6.13) must
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be small enough. This implies the following fine-tuning condition:

N3N̄1 − ϑ(N̄3)
2 ≈ 0,

ϑ ≡ (3 + 2
√

2)C4C0

C2
2
.

(6.14)

By using Eqs. (4.7)-(4.12) of [15] and Eqs. (6.11)-(6.12) evaluated along the criticality condition (6.13)-(6.14), it can

be computed that the components of H ṼBH
real form (given by Eq. (4.14)) constrained by Eqs. (6.13)-(6.14) read as follows:

A = −6C4

C0

(
1 + (3 + 2

√
2)C6C0

C4C2

) (
N̄1N̄3ψ

2 +N1N3ψ̄
2
)
+

+4
C2

2

C2
0
ψψ̄
(
|N1|2(3 − 2

√
2) + |N3|2

(
1 + 4(3 + 2

√
2)
C2

0C
2
4

C4
2

))
;

(6.15)

B = 6C4

C0

(
1 + (3 + 2

√
2)C6C0

C4C2

) (
N̄1N̄3ψ

2 +N1N3ψ̄
2
)
+

+4
C2

2

C2
0
ψψ̄
(
|N1|2(3 − 2

√
2) + |N3|2

(
1 + 4(3 + 2

√
2)
C2

0C
2
4

C4
2

))
;

(6.16)

C = −6iC4

C0

(
1 + (3 + 2

√
2)C6C0

C4C2

) (
N1N3ψ̄

2 − N̄1N̄3ψ
2
)
.

(6.17)

The resulting real eigenvalues of H ṼBH
real form constrained by Eqs. (6.13)-(6.14) read:

λ± ≈ 4ψψ̄

[
C2

2

C2
0

(
|N1|2(3 − 2

√
2) + |N3|2

(
1 + 4(3 + 2

√
2)
C2

0C
2
4

C4
2

))
±

±3
C4

C0

(
1 + (3 + 2

√
2)
C6C0

C4C2

)
|N1||N3|

]
. (6.18)

By recalling Eq. (3.30) and using Eq. (6.9) with ψ ≈ 0 and constrained by Eqs. (6.13)-(6.14), one obtains that

the purely charge-dependent LG critical values of the “effective BH potential” for the mirror octic M′
8 are

VBH,LG−critical,k=8 ≈ 1

8(2 +
√

2)

[
|N1|2 + (3 + 2

√
2)|N3|2

]
; (6.19)

by recalling formula (1.2), this directly yields the following purely charge-dependent values of the BH entropy at the

LG critical points of VBH,8 in the moduli space of M′
8:

SBH,LG−critical,k=8 ≈ π

8(2 +
√

2)

[
|N1|2 + (3 + 2

√
2)|N3|2

]
. (6.20)

Let us write down here the numerical values of constants relevant to our treatment:

C0 ≈ 1.64, C2 ≈ −0.9, C4 ≈ 0.24, C6 ≈ −0.007, C8 ≈ −0.004; ϑ ≈ 2.83. (6.21)

Let us now analyze more in depth the species of LG attractor points arising from the AE (6.14). As it can be

easily seen, the AE (6.14) has two non-degenerate solutions:
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I. The first non-degenerate solution to AE (6.14) is

N3 ≈ 0. (6.22)

As one can see from Eq. (6.6)-(6.7), such a solution corresponds to a 1
2 -BPS LG critical point of VBH (W̃ 6= 0,

DψW̃ = 0). From the definitions (3.27) and (3.28), in order to get the solution (6.22), we have to fine-tune 2 PF BH

charges out of 4 in the following way:

n3 ≈ −n1 +
√

2n2, n4 ≈ −
√

2n1 + n2, (6.23)

The charges n1, n2 are not fixed; they only satisfy the non-degeneration condition N1 6= 0. The real eigenvalues (6.18)

for the 1
2 -BPS critical solution coincide and, as it is well known [31, 15, 16], are strictly positive:

λ+, 12−BPS = λ−, 12−BPS ≈ 4ψψ̄
C2

2

C2
0

|N1|2(3 − 2
√

2) > 0.

Consequently, the 1
2 -BPS LG critical point ψ ≈ 0 supported by the PF BH charge configuration (6.23) is a stable

extremum, since it is a (local) minimum of VBH , and it is therefore an attractor in a strict sense. The “effective BH

potential” and BH entropy at such a (class of) 1
2 -BPS LG attractor (s) take the values

VBH, 12−BPS ≈ 0.0366|N1|2, SBH, 12−BPS ≈ 0.0366π|N1|2, (6.24)

where

N1 ≈
√

4 − 2
√

2[n1(1 − i(1 +
√

2)) − n2(1 +
√

2 − i)]. (6.25)

II. The second non-degenerate solution to AE (6.14) reads (from Eqs. (6.14) and (6.21): ϑ ≡ (3+2
√

2)C4C0

C2
2

≈ 2.83):

|N1| ≈ ϑ|N3|,

arg(N1) ≈ 3arg(N3),
(6.26)

where

N1 ≈ −
√

2 −
√

2

2

(
n1 + n4 + (1 +

√
2)(n2 + n3) − i((n4 − n1)(1 +

√
2) + n3 − n2)

)
; (6.27)

N3 ≈
√

2 +
√

2

2

(
n1 + n4 + (1 −

√
2)(n2 + n3) + i((n4 − n1)(1 −

√
2) + n3 − n2)

)
. (6.28)

As one can see from Eq. (6.6)-(6.7), such a solution corresponds to a non-BPS, Z 6= 0 LG critical point of VBH

(W̃ 6= 0, DψW̃ 6= 0). The real eigenvalues (6.18) for such a non-BPS, Z 6= 0 critical solution read

λ±,non−BPS,Z 6=0 ≈ 4ψψ̄|N3|2
C2

2

C2
0

[
(1 + 5(3 − 2

√
2)ϑ2) ± 3(3 − 2

√
2)ϑ2

(
1 + (3 + 2

√
2)
C0C6

C2C4

)]
≈

≈ 4ψψ̄|N3|2
C2

2

C2
0

[7.9 ± 5.5] > 0, (6.29)
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where in the second line we replaced some constants with their numerical values by using Eq. (6.21).

Thus, the non-BPS, Z 6= 0 LG critical point ψ ≈ 0 supported by the PF BH charge configuration (6.26)-(6.28) is

a (local) minimum of VBH and consequently an attractor in a strict sense.

Let us now find the fine-tuning conditions for PF BH charges supporting the considered non-BPS, Z 6= 0 LG

attractor for the mirror octic M′
8. This amounts to solving Eqs. (6.26)-(6.28) by recalling the definitions (3.27) and

(3.28). By doing so, one obtains the following three different sets of constraining relations on PF BH charges:

II.1) n2 = (a1,± + a2)n1, n3 = n1(a1,± − a2), n4 = −n1,

a1,± (ϑ) ≡ ±
√

2
ϑ+1

√
3(2−

√
2)ϑ+

√
2

(2−
√

2)ϑ−
√

2
, a2 (ϑ) ≡

√
2+ϑ(2−

√
2)√

2(1+ϑ)
;

(6.30)

II.2) n2 = n1
2+

√
2(ϑ−1)

(2−
√

2)ϑ−
√

2
, n3 = n2, n4 = n1; (6.31)

II.3) n2 + n3 = a, n1 + n4 = b±, n2 − n3 = c, n1 − n4 = d,

a (ϑ; b±, c, d) ≡ − (1−(
√

2+1)ϑ)c+(1+ϑ)d

(1+ϑ)c−(1+(
√

2−1)ϑ)d
b±,

b± (ϑ; c, d) ≡ ±
√

−(
√

2+(2+
√

2)ϑ)c2+2
√

2(ϑ−1)cd+(
√

2+(−2+
√

2)ϑ)d2√
2(

√
2−3(2+

√
2)ϑ)c2+4

√
2(1+3ϑ)cd+2(−

√
2+3(−2+

√
2)ϑ)d2

(1+ϑ)2c2−2(1+ϑ)(1+ϑ(
√

2−1))cd+(1+ϑ(−2+2
√

2+(3−2
√

2)ϑ))d2

.

(6.32)

By recalling that ϑ ≈ 2.83 (see Eq. (6.21)), the typology II.1 of fine-tuning conditions for PF BH charges yields

n2/n1 ≈ 2.44(−1.31), n3/n1 ≈ 1.31(−2.44), (6.33)

where, here and below, the numbers in round brackets correspond to consider a1,−, rather than a1,+, in Eqs. (6.30).

Since the PF BH charges are integers as are the symplectic BH charges (see definition (3.28)), the numerical conditions

(6.33) can approximately be met by taking e.g.

n1 = 100, n2 = 244(−131), n3 = 131(−244), n4 = −100. (6.34)

Switching to the symplectic (electric/magnetic) basis for BH charges by using Eq. (3.29), one gets

p0 = 2n1 + n4 = 100(100), p1 = 1
2 [−3(n1 + n4) + n2 + n3] = 187(−187),

q0 = 1
2 (n1 + n4) = 0(0), q1 = 1

2 (−2n1 + n2 − n4) = 72(−115).
(6.35)

For what concerns the typology II.2 of fine-tuning conditions for PF BH charges, it is worth remarking that Eq.

(6.31) is the analogue for the mirror octic M′
8 of the fine-tuning condition (4.33) adopted for the mirror quintic M′

5
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in [9] (in particular, see Sect. 4 and App. C of such a Ref.). By recalling that ϑ ≈ 2.83 (see Eq. (6.21)), the typology

II.2 of fine-tuning conditions for PF BH charges yields

n2/n1 ≈ 18.6. (6.36)

Once again, since the PF BH charges are integers as are the symplectic BH charges, the numerical conditions (6.36)

can approximately be met by taking e.g.

n1 = 10, n2 = 186, n3 = 186, n4 = 10. (6.37)

Switching to the symplectic (electric/magnetic) basis for BH charges by using Eq. (3.29), one obtains

p0 = 2n1 + n4 = 30, p1 = 1
2 [−3(n1 + n4) + n2 + n3] = 156,

q0 = 1
2 (n1 + n4) = 10, q1 = 1

2 (−2n1 + n2 − n4) = 78.
(6.38)

Once again, it is worth remarking that all three distinct sets of fine-tuning conditions for PF BH charges (6.30)-

(6.32) do support a non-BPS, Z 6= 0 LG attractor in a strict sense.

The “effective BH potential” and BH entropy at such a (class of) non-BPS, Z 6= 0 LG attractor(s) take the values

VBH,non−BPS,Z 6=0 ≈ 0.211|N3|2, SBH,non−BPS,Z 6=0 ≈ 0.211π|N3|2, (6.39)

where N3 is given by Eq.(6.28), implemented by one of the fine-tuning conditions (6.30)-(6.32).

Finally, by recalling the definition (1.29), one can compute the supersymmetry-breaking order parameter for the

non-BPS, Z 6= 0 LG attractor in the mirror octic M′
8; by using Eqs. (6.4), (6.6), (6.7) and (6.26), one gets

Onon−BPS,Z 6=0 ≡




(
gψψ

)−1

|DψW |2

|W |2



non−BPS,Z 6=0

=




(
gψψ

)−1

|DψW̃ |2

|W̃ |2



non−BPS,Z 6=0

≈ 3 + 2
√

2

ϑ2
≈ 0.72.

(6.40)

7 k = 10 : Mirror Dectic

For the mirror dectic M′
10 the computations (but not the results!) go the same way as for the mirror octic M′

8.

For k = 10 the definitions (3.12) yield

C2l−1 = C5l−1 = 0, l ∈ N; (7.1)

moreover, since F10,m+10, n = F10,m ,n+10 = −F10,mn (see the third of properties (3.22)), the only independent elements
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of the rank-2 tensor F10 belong to the 10 × 10 matrix

F10,m n =




√
5(5 + 2

√
5) −3 −

√
5 0 3 +

√
5 −

√
5(5 + 2

√
5) 2 +

√
5 0 −2 0 2 +

√
5

− 3 −
√

5

√
5 + 2

√
5 3 −

√
5 −

√
2(5 +

√
5) 2 +

√
5 −

√
10 − 2

√
5 −2 +

√
5 0 2 −

√
25 − 2

√
5

0 3 −
√

5 −
√

5(5 − 2
√

5) 2 −
√

5(5 − 2
√

5) 3 −
√

5 0 2 −
√

5 0 −2 +
√

5

3 +
√

5 −
√

2(5 +
√

5) 2 −
√

5 − 2
√

5 −2 +
√

5 0 −3 +
√

5

√
10 − 2

√
5 −2 −

√
5

√
25 + 2

√
5

−
√

5(5 + 2
√

5) 2 +
√

5 −
√

5(5 − 2
√

5) −2 +
√

5 0 2 −
√

5

√
5(5 − 2

√
5) −2 −

√
5

√
5(5 + 2

√
5) 8

2 +
√

5 −
√

10 − 2
√

5 3 −
√

5 0 2 −
√

5

√
5 − 2

√
5 −2

√
2(5 +

√
5) −3 −

√
5

√
25 + 2

√
5

0 −2 +
√

5 0 −3 +
√

5

√
5(5 − 2

√
5) −2

√
5(5 − 2

√
5) −3 +

√
5 0 −2 +

√
5

− 2 0 2 −
√

5

√
10 − 2

√
5 −2 −

√
5

√
2(5 +

√
5) −3 +

√
5 −

√
5 + 2

√
5 3 +

√
5 −

√
25 − 2

√
5

0 2 0 2 −
√

5

√
5(5 + 2

√
5) −3 −

√
5 0 3 +

√
5 −

√
5(5 + 2

√
5) 2 +

√
5

2 +
√

5 −
√

25 − 2
√

5 −2 +
√

5

√
25 + 2

√
5 8

√
25 + 2

√
5 −2 +

√
5 −

√
25 − 2

√
5 2 +

√
5 0




(7.2)

Let us now write down all the relevant quantities up to the needed order (here and below, unless otherwise specified,

we omit the Fermat parameter k = 10):

K̃ ≈ (5 −
√

2)
C2

2

C2
0
(ψψ̄)2

[
1 + (5−

√
2)

2
C2

2

C2
0
(ψψ̄)2

]
+ O(ψ9);

(7.3)

gψψ̄ ≈ 4(5 −
√

2)
C2

2

C2
0
ψψ̄
[
1 + 2(5 −

√
2)
C2

2

C2
0
(ψψ̄)2

]
+ O(ψ7);

(7.4)

W̃ ≈ N1 + C2

C0
N3ψ

2 − C6

C0
N̄3ψ

6 + O(ψ8).
(7.5)

Now, by using the formulæ of the general analysis exploited in Sect. 3, we can get the “effective BH potential” and

the holomorphic superpotential, as well as their (covariant) derivatives, up to O
(
ψ2
)
:

W̃ = N1 + C2

C0
N3ψ

2;
(7.6)

DψW̃ = 2C2

C0
N3ψ + 2(

√
5 − 2)

C2
2

C2
0
N1ψψ̄

2;
(7.7)

DψDψW̃ = −24C6

C0
N̄3ψ

4;
(7.8)

ṼBH = |N1|2 + (
√

5 + 2)|N3|2 + 2C2

C0
N3N̄1ψ

2 + 2C2

C0
N̄3N1ψ̄

2;
(7.9)

41



∂ψṼBH = 4ψ
(
C2

C0
N3N̄1 − 3(

√
5 + 2)C6

C2
(N̄3)

2ψ2 +
C2

2

C2
0

(
|N1|2(

√
5 − 2) + |N3|2

)
ψ̄2
)

;
(7.10)

∂ψ∂ψṼBH = 4
(
C2

C0
N3N̄1 − 9(

√
5 + 2)C6

C2
(N̄3)

2ψ2 +
C2

2

C2
0

(
|N1|2(

√
5 − 2) + |N3|2

)
ψ̄2
)

;
(7.11)

∂ψ∂ψ̄ṼBH = 8
C2

2

C2
0

(
|N1|2(

√
5 − 2) + |N3|2

)
ψψ̄.

(7.12)

Contrary to the cases of mirror quintic and sextic (see Sects. 4 and 5, respectively), and similarly to the case of

mirror octic (see Sect. 6), for the case of mirror dectic it is evident from Eqs. (7.9)-(7.12) that we truncate the series

expansion of the “effective BH potential” and of its second derivatives around the LG point up to O
(
ψ2
)

included,

and the series expansion of its first derivative around the LG point up to O
(
ψ3
)

included. This is due to the absence

of an O (ψ) term in expression of ṼBH given by Eq. (7.9). As mentioned in Sect. 6, such a fact can be traced back to

the non-regularity of gψψ̄ at ψ = 0 (see Eq. (7.4)).

Let us now find the solutions of the AE ∂ψṼBH
(
ψ, ψ; q, p

)
= 0, and check their stability. Since we are working

near the LG point, by using Eq. (7.9) we can rewrite the AE for M′
10 as follows:

C2

C0
N3N̄1 +

C2
2

C2
0

(
|N1|2(

√
5 − 2) + |N3|2

)
ψ̄2 ≈ 3(

√
5 + 2)

C6

C2
(N̄3)

2ψ2 (7.13)

Solving Eq. (6.13), we will find one (or more) set(s) of BH charges supporting ψ ≈ 0 to be a critical point of VBH .

Since we are working near the LG point, it is clear that the first term in the l.h.s. of Eq. (7.13) must be small enough.

This implies the following fine-tuning condition:

N3N̄1 ≈ 0. (7.14)

By using Eqs. (4.7)-(4.12) of [15] and Eqs. (7.11)-(7.12) evaluated along the criticality condition (7.13)-(7.14), it

can be computed that the components of H ṼBH
real form (given by Eq. (4.14)) constrained by the Eqs. (7.13)-(7.14) read

as follows:

A = −6(
√

5 + 2)
C6

C2

(
(N̄3)

2ψ2 + (N3)
2ψ̄2

)
+ 4

C2
2

C2
0

ψψ̄
(
|N1|2(

√
5 − 2) + |N3|2

)
; (7.15)

B = 6(
√

5 + 2)
C6

C2

(
(N̄3)

2ψ2 + (N3)
2ψ̄2

)
+ 4

C2
2

C2
0

ψψ̄
(
|N1|2(

√
5 − 2) + |N3|2

)
; (7.16)

C = −6i(
√

5 + 2)
C6

C2

(
(N3)

2ψ̄2 − (N̄3)
2ψ2
)
. (7.17)

The resulting real eigenvalues of H ṼBH
real form constrained by Eqs. (7.13)-(7.14) read:

λ± ≈ 4ψψ̄

[
C2

2

C2
0

(
|N1|2(

√
5 − 2) + |N3|2

)
± 3(

√
5 + 2)

C6

C2
|N3|2

]
. (7.18)
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By recalling Eq. (3.30) and using Eq. (7.9) with ψ ≈ 0 and constrained by by Eqs. (7.13)-(7.14), one obtains that

the purely charge-dependent LG critical values of the “effective BH potential” for the mirror dectic M′
10 are

VBH,LG−critical,k=10 ≈ 1√
5(5 + 2

√
5)

[
|N1|2 + (

√
5 + 2)|N3|2

]
; (7.19)

by recalling formula (1.2), this directly yields the following purely charge-dependent values of the BH entropy at the

LG critical points of VBH,10 in the moduli space of M′
10:

SBH,LG−critical,k=10 ≈ π√
5(5 + 2

√
5)

[
|N1|2 + (

√
5 + 2)|N3|2

]
. (7.20)

In both Eqs. (7.19) and (7.20) N1 and N3 are given by

N1 = −1

2

√
5 −

√
5

2

(
n1 + n4 +

(1 +
√

5)

2
(n2 + n3)

)
+ i

√
5 + 1

4

(
n4 − n1 +

3 −
√

5

2
(n3 − n2)

)
; (7.21)

N3 =
1

2

√
(5 −

√
5)

2

(
n1 + n4 −

√
5 − 1

2
(n2 + n3)

)
+ i

√
5 − 1

4

(
n4 − n1 +

3 +
√

5

2
(n3 − n2)

)
. (7.22)

Let us write down here the numerical values of constants relevant to our treatment:

C0 ≈ 1.57, C2 ≈ −0.66, C6 ≈ 0.077; 3(
√

5 + 2)
C6

C2
≈ −1.48. (7.23)

Let us now analyze more in depth the species of LG attractor points arising from the AE (7.14). As it can be

easily seen, the AE (7.14) has two non-degenerate solutions:

As it can be easily seen, also in this case the attractor equation (7.14) has two (non-degenerate) solutions:

I. The first non-degenerate solution to AE (7.14) is

N3 ≈ 0. (7.24)

This is nothing but the k = 8 solution (6.22). As one can see from Eq. (7.6)-(7.7), also for k = 10 such a solution

corresponds to a 1
2 -BPS LG critical point of VBH (W̃ 6= 0, DψW̃ = 0). From the definitions (3.27) and (3.28), in order

to get the solution (7.24), we have to fine-tune 2 PF BH charges out of 4 in the following way:

n3 ≈ 1

2
(
√

5 − 1)(n1 + n2), n4 ≈ −1

2
(
√

5 − 1)n1 + n2. (7.25)

The charges n1, n2 are not fixed; they only satisfy the non-degeneration condition N1 6= 0. As it was for k = 5, 6, 8,

also the real eigenvalues (7.18) for the 1
2 -BPS critical solution coincide and, as it is well known [31, 15, 16], are strictly

positive:

λ+, 12−BPS = λ−, 12−BPS ≈ 4(
√

5 − 2)ψψ̄
C2

2

C2
0

|N1|2 > 0. (7.26)
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Consequently, the 1
2 -BPS LG critical point ψ ≈ 0 supported by the PF BH charge configuration (7.25) is a stable

extremum, since it is a (local) minimum of VBH , and it is therefore an attractor in a strict sense. The “effective BH

potential” and BH entropy at such a (class of) 1
2 -BPS LG attractor(s) take the values

VBH, 12−BPS ≈ 0.166|N1|2, SBH, 12−BPS ≈ 0.166π|N1|2, (7.27)

where

N1 ≈ −
√

5

2



√

5 − 2
√

5n1 +

√
5 +

√
5

2
n2 + i

(
n1 −

√
5 − 1

2
n2

)
 . (7.28)

II. The second non-degenerate solution to AE (7.14) is

N1 ≈ 0. (7.29)

Interestingly, this is nothing but the k = 6 solution (5.28). As one can see from Eq. (7.6)-(7.7), also for k = 10 such a

solution corresponds to a non-BPS, Z = 0 LG critical point of VBH (W̃ = 0, DψW̃ 6= 0). The real eigenvalues (7.18)

for such a non-BPS, Z = 0 critical solution read

λ±,non−BPS,Z=0 ≈ 4ψψ̄|N3|2
[
C2

2

C2
0

± 3(
√

5 + 2)
C6

C2

]
. (7.30)

Substituting the numerical values (7.23) of the involved constants in Eq. (7.30), one reaches the conclusion that one

eigenvalue is positive and the other one is negative:

λ±,non−BPS,Z=0 ≈ 4ψψ̄|N3|2 [0.18 ∓ 1.48] ≶ 0. (7.31)

Let us now find the fine-tuning conditions for PF BH charges supporting the considered non-BPS, Z = 0 LG attractor

for the mirror dectic M′
10. This amounts to solving Eq. (7.29) by recalling the definitions (3.27) and (3.28). By doing

so, one gets the following unique set of constraining relations on PF BH charges:

n3 ≈ −1

2
(1 +

√
5)(n1 + n2), n4 ≈ 1

2
(1 +

√
5)n1 + n2. (7.32)

Thus, the non-BPS, Z = 0 LG critical point ψ ≈ 0 supported by the PF BH charge configuration (7.32) is a saddle

point of VBH and consequently it is not an attractor in a strict sense.

The “effective BH potential” and BH entropy at such a (class of) non-BPS, Z = 0 LG saddle point(s) take the

values

VBH,non−BPS,Z=0 ≈ 0.7|N3|2, SBH,non−BPS,Z=0 ≈ 0.7π|N3|2, (7.33)

where

N3 ≈
√

5

2



√

5 + 2
√

5n1 +

√
5 −

√
5

2
n2 − i

(
n1 +

√
5 + 1

2
n2

)
 . (7.34)

Similarly to the treatment of Sects. 4-6, one can also switch to the symplectic (electric/magnetic) basis for BH

charges by using Eq. (3.29), re-expressing the fine-tuning condition (7.32) in terms of the symplectic BH charges

Γ ≡ (−p0, −p1, q0, q1) (see definitions (3.24)).
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8 Special Kähler Geometrical Identities and Fermat CY3s

Let us now consider the real part of the nV = 1 case of SK geometry identities (1.16) [43, 8, 13, 15, 16, 24]; by taking

into account the change in the notation of the symplectic charge vectors with respect to the notation used in Sects. 1

and 2 (see Footnote before Eq. (3.24)), one achieves:

Γ̃T = 2eKIm

[
WΠ +

(
gψψ

)−1

D̄ψ̄WDψΠ

]
, (8.1)

where the 1 × 4 BH charge vector in the symplectic basis Γ̃ is defined in Eq. (3.24).

Next, let us switch to more convenient variables for the treatment of 1-modulus SK geometries endowing the moduli

space of Fermat CY3s. By recalling the definition (3.28) of the 1× 4 PF BH charge vector n, we can rewrite Eq. (8.1)

as follows (here and below, unless otherwise specified, we omit the classifying Fermat parameter k = 5, 6, 8, 10):

nT =
2

χF1 1
eK̃Im

[
W̃ Φ̃ +

(
gψψ

)−1

D̄ψ̄W̃DψΦ̃

]
, (8.2)

where the notations introduced in Sect. (3) have been used. Furthermore, we defined the 4 × 1 holomorphic vector

Φ̃ ≡ 1

AC0
MTΣTΠ =

1

AC0
mT̟, (8.3)

where Eqs. (3.14) and (3.19) have been used in the second step.

Firstly, let us investigate Eq.(8.2) in a certain neighbourhood of the LG point ψ = 0. The treatment given in Sects.
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4-7 yields that, by its very definition (8.3), Φ̃ has the following series expansion near the LG point20:

k = 5 :





Φ̃ (ψ) = ϕ1 + C1

C0
ϕ2ψ,

DψΦ̃ = C1

C0

[
ϕ2 + 2C2

C1
ϕ2ψ + C1

C0
(
√

5 − 2)ϕ1ψ̄
]
; (8.4)

k = 6 :





Φ̃ (ψ) = ϕ1 + C1

C0
ϕ2ψ,

DψΦ̃ = C1

C0

[
ϕ2 + 1

3
C1

C0
ϕ1ψ̄

]
; (8.5)

k = 8 :





Φ̃ (ψ) = ϕ1 + C2

C0
ϕ3ψ2,

DψΦ̃ = 2C2

C0
ψ
[
ϕ3 − 2C4

C2
ϕ̄3ψ2 + C2

C0
(3 − 2

√
2)ϕ1ψ̄2

]
; (8.6)

k = 10 :





Φ̃ (ψ) = ϕ1 + C2

C0
ϕ3ψ2,

DψΦ̃ = 2C2

C0
ψ
[
ϕ3 + C2

C0
(
√

5 − 2)ϕ1ψ̄2
]
. (8.7)

We defined the complex 4 × 1 vector

ϕmk ≡ mk




β3m
k

βmk

β−m
k

β−3m
k




, (m = 1, 2, 3) , (8.8)

20Notice that, consistently with the approach to the truncation of series expansions near the LG point performed in Sects. 4-7, for
k = 5, 6 we truncate up to O (ψ) included, whereas for k = 8, 10 we truncate up to O

(
ψ2
)

included.
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whose explicit forms relevant for the series expansion (8.4)-(8.7) read as follows:

k = 5 : ϕ1 = 1
2

√
5+

√
5

2




−
√

5 + 2
√

5 + i
√

5

−
√

5+
√

5
2 + 1

2 i(5 + 3
√

5)√
5+

√
5

2 + 1
2 i(5 + 3

√
5)√

5 + 2
√

5 + i
√

5



, ϕ2 = 1

2

√
5−

√
5

2




√
5 − 2

√
5 − i

√
5

−
√

5−
√

5
2 + 1

2 i(5 − 3
√

5)√
5−

√
5

2 + 1
2 i(5 − 3

√
5)

−
√

5 − 2
√

5 − i
√

5




; (8.9)

k = 6 : ϕ1 = 3
2




−
√

3 + i
2i
2i√

3 + i


 , ϕ2 = 1

2




1 − i
√

3
−1
1

−1 − i
√

3


 ; (8.10)

k = 8 : ϕ1 = 1
2

√
2 +

√
2




−2 −
√

2 + i
√

2

−
√

2 + i(2 +
√

2)√
2 + i(2 +

√
2)

2 +
√

2 + i
√

2


 , ϕ3 = 1

2

√
2 −

√
2




−2 +
√

2 + i
√

2√
2 + i(−2 +

√
2)

−
√

2 + i(−2 +
√

2)

2 −
√

2 + i
√

2


 ; (8.11)

k = 10 : ϕ1 = 1
2

√
5+

√
5

2




− 1
2

√
3 +

√
5 + i

√
5+

√
5

10

1 + i
√

1 + 2√
5

−1 + i
√

1 + 2√
5

1
2

√
3 +

√
5 + i

√
5+

√
5

10



, ϕ3 = 1

2

√
5−

√
5

2




1
2

√
−3 +

√
5 + i

√
5−

√
5

10

1 − i
√

1 − 2√
5

−1 − i
√

1 − 2√
5

1
2

√
3 −

√
5 + i

√
5−

√
5

10



.(8.12)

Using Eqs. (8.3)-(8.12), one obtains that Eq. (8.2) near the LG point of the moduli space of Fermat CY3-

compactifications (when consistently truncated up to the order in ψ considered above) reads

k = 5, k = 6 : nT =
2

χF1 1
Im

[
N1ϕ̄

1 − F1 1

F2 2
N̄2ϕ

2

]
; (8.13)

k = 8, k = 10 : nT =
2

χF1 1
Im

[
N1ϕ̄

1 − F1 1

F3 3
N̄3ϕ

3

]
. (8.14)

Thence, it is easy to check that, substituting the explicit forms of Nk,m (q, p), ϕmk and Fk,mn (see Eqs. (3.27), (8.8)

and (3.21), respectively) in Eqs. (8.13)-(8.14), they become trivial identities, yielding nothing but

n1 = n1, n2 = n2, n3 = n3, n4 = n4. (8.15)

In other words, the 4 real Eqs. (8.2) are not equations, but rather they are identities. Therefore, they are satisfied at

every point in the moduli space and for every BH charge configuration. Therefore, it is no surprise if, when evaluating

them in a certain neighbourhood of the LG point as we did, one finds the identical relations (8.15). Thus, we found

nothing new but another confirmation of a well known fact of SK geometry [43, 8, 13, 15, 16, 24].

However, the 4 real identities (8.2) can still be used to find extremal BH attractors, when properly evaluated

along the constraints defining the various species of such attractors satisfying the criticality condition of the “effective

BH potential” VBH . Put another way, in the 1-modulus case with which we are concerned, when evaluated at the

geometrical loci in the moduli space defining the various tipologies (i.e. 1
2 -BPS, non-BPS Z 6= 0 and non-BPS Z = 0)
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of attractors, the 4 real identities (8.2) become 4 real equations. These are equivalent to the 2 real equations given

by the real and imaginary part of the criticality condition ∂ψVBH = 0. This approach has recently been used in [8]

for the general nV -moduli case, and then further investigated in [13]. The SK geometrical identities in the general

nV -moduli case had previously been formulated in [43] in terms of the decomposition of the third real cohomology

H3 (CY3; R) of the CY3 in the Dolbeaut cohomology basis (see [43], and [38] for further Refs.).

In the remaining part of the present Section we will focus on the 1-modulus case related to FermatCY3-compactifications,

and we will evaluate the 4 real identities (8.2) at the geometrical loci in the moduli space defining the various classes

of extremal BH attractors. We will consequently show that solving the obtained 4 real equations is equivalent to

solving the 2 real equations corresponding to the real and imaginary parts of the criticality condition (3.33). Thus,

it follows that only 2 equations are independent out of the starting 4 ones. From a computational point of view, one

can realize that, at least in the framework we are considering, the “criticality condition” approach is simpler than the

“SK geometrical identities” approach, at least for the non-BPS, Z 6= 0 case.

Let us now evaluate the 4 real SK identities (8.2) along the 3 geometrical loci defining the 3 species of critical

points of VBH arising in SK geometry.

1
2 -BPS critical points. The corresponding geometrical locus in the moduli space is given by the constraints

W̃ 6= 0, DψW̃ = 0, which directly solve the criticality condition (i.e. the 1-modulus AE) (3.33). By evaluating the 4

real SK identities (8.2) along such critical constraints, one gets

nT =
2

χF1 1

{
eK̃Im

[
W̃ Φ̃

]}
1
2−BPS

. (8.16)

Such 4 real equations constrain the PF BH charge configurations along the locus W̃ 6= 0, DψW̃ = 0 of 1
2 -BPS critical

points of VBH in the moduli space (dimC = 1) of Fermat CY3s. One can explicitly check that for all Fermat CY3s

the solutions of the 4 real Eqs. (8.16) near the LG point give nothing but the 1
2 -BPS-supporting PF BH charge

configurations previously computed in Sects. 4-7 exploiting the so-called “criticality condition” approach.

non-BPS, Z 6= 0 critical points. The corresponding geometrical locus in the moduli space is given by the

constraints W̃ 6= 0, DψW̃ 6= 0, which, by the criticality condition (3.33) and the definition (3.31), yield

(
DψW̃

)
non−BPS,Z 6=0

= −




(gψψ̄)−1
(
DψDψW̃

)
DψW̃

2W̃



non−BPS,Z 6=0

. (8.17)

By inserting Eq. (8.17) in the 4 real SK identities (8.2), one obtains [8, 13, 16]

nT =
2

χF1 1



e

K̃Im


W̃ Φ̃ −

(gψψ̄)−2
(
DψDψW̃

)
DψW̃

2W̃
DψΦ̃






non−BPS,Z 6=0

= (8.18)

=
2

χF1 1




eK̃Im


W̃ Φ̃ + i

(gψψ̄)−3Cψψψ

(
DψW̃

)2

2W̃
DψΦ̃







non−BPS,Z 6=0

, (8.19)
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where, in the second line, we used the nV = 1 case of the second SK differential relation of (1.12), yielding

DψDψW̃ = iCψψψ(gψψ̄)−1DψW̃ (8.20)

at every point in the moduli space. The 4 real Eqs. (8.18)-(8.19) constrain the PF BH charge configurations along

the locus (8.17) of non-BPS Z 6= 0 critical points of VBH in the moduli space (dimC = 1) of Fermat CY3s.

Let us for example consider the mirror quintic M′
5. From the treatment given in Sect. 4 and above, the 4 real

Eqs. (8.18) take the following form near the LG point:

nT =
2

χF1 1
Im

[
N1ϕ̄

1 − (
√

5 + 2)ξ
N2N2

N1
ϕ2

]
, (8.21)

where ξ is defined in Eq. (4.27). Substituting into Eqs. (8.21) the explicit expressions for the Ns (see Sect. 4) and the

ϕs (see Eq. (8.9)) and performing long but straightforward computations, it can be shown that one generally recovers

all the three distinct sets of BH charge configurations (4.32)-(4.34) supporting the considered non-BPS Z 6= 0 LG

attractor. The same can be explicitly checked for the mirror octic M′
8.

non-BPS, Z = 0 critical points. The corresponding geometrical locus in the moduli space is given by the

constraints W̃ = 0, DψW̃ 6= 0, which, by the criticality condition (3.33) and the definition (3.31), yield
(
DψDψW̃

)
non−BPS,Z=0

= 0. (8.22)

By recalling Eq. (3.35), the replacement of W̃ = 0 and of the condition (8.22) into the 4 real SK geometrical identities

(8.2) yields the following 4 real equations:

nT = − 2

χF1 1




(
gψψ

)−1

eK̃Im



∂2
ψW̃ +

(
∂ψK̃

)
∂ψW̃

∂ψ

[
ln
(
gψψ̄

)
−K̃

] DψΦ̃






non−BPS,Z=0

. (8.23)

Such 4 real equations constrain the PF BH charge configurations along the locus (8.22) of non-BPS Z = 0 critical

points of VBH in the moduli space (dimC = 1) of Fermat CY3s.

Let us for example consider the mirror sextic M′
6. As one can easily check by using Eqs. (3.35) and (5.6)-(5.8), in

this case W̃ = 0 directly satisfies the criticality condition (3.33). Consequently, rather than Eqs. (8.23), in order to

exploit the so-called “SK geometrical identities” approach, one can consider the 4 real equations

nT =
2

χF1 1

{(
gψψ

)−1

eK̃Im
[
∂ψ̄W̃DψΦ̃

]}

non−BPS,Z=0

, (8.24)

obtained from identities (8.2) by simply putting W̃ = 0 and by replacing Dψ̄W̃ with ∂ψ̄W̃ , as implied by W̃ = 0.

From the treatment of Sect. 5 and above, the 4 real Eqs. (8.24) take the following form near the LG point:

nT = − 2

χF2 2
Im
[
N̄2ϕ

2
]
. (8.25)

Substituting the explicit expressions for N2 (see Eq. (5.33)) and for ϕ2 (see Eq. (8.10)) into Eqs. (8.25), it can be

shown that one obtains nothing but the fine-tuning conditions (5.31) for PF BH charges supporting the considered

non-BPS Z = 0 LG attractor. The same can be explicitly checked for the mirror dectic M′
10.
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9 Consistent Normalization of Picard-Fuchs Equations for Fermat CY3s

It is interesting to notice that Eq. (8.20) yields a way to compute the covariantly-holomorphic Yukawa coupling

function Cψψψ
(
ψ, ψ

)
along the locus DψW̃ 6= 0 of nV = 1 SK manifolds, such as the moduli spaces of Fermat CY3s.

Indeed, Eq. (8.20) implies

iCψψψ = gψψ̄
DψDψW̃

D̄ψ̄W̃
,
(
DψW̃ 6= 0

)
. (9.1)

Therefore, by employing the formulæ and the treatment given in Sects. 4-7, one can use Eq. (9.1) to compute iCψψψ

for all the Fermat CY3s near the LG point ψ = 0. Keeping only the first orders, the LG limit for iCψψψ or all the

Fermat CY3s reads:

k = 5 : iCψψψ = 2(
√

5 − 2)
C1C2

C2
0

; (9.2)

k = 6 : iCψψψ = −2
C1C3

C2
0

ψ; (9.3)

k = 8 : iCψψψ = −16(3− 2
√

2)
C2C4

C2
0

ψ3; (9.4)

k = 10 : iCψψψ = −48(
√

5 − 2)
C2C6

C2
0

ψ5. (9.5)

Now, by recalling the first of defining relations (2.34) and Eq. (2.30), one arrives at

a4,k (ψ) ≡ 1

Wψψψ,k
= i

eKk

iCψψψ,k
= i

(Ord(Gk))
2

(2π)6C2
k,0Fk,11

eK̃k

(iCψψψ,k)
, (9.6)

where the first definition of (3.31) has been used in the last step, and classifiying Fermat parameter k has been

restored in the notation. By substituting Eqs. (9.2)-(9.5) in Eq. (9.6) and recalling the treatment of Sects. 4-7, one

gets nothing but the LG limit of the holomorphic function a4,k (ψ) for Fermat CY3s:

limψ−→0a4,k (ψ) = limψ−→0i
(Ord(Gk))

2

(2π)6C2
k,0Fk,11

eK̃k

(iCψψψ,k)
= i

kχk
(2π)3

ψ5−k, (9.7)

where the constants χks are given in Table 4.

In order for the general treatment reported in Sects. 1 and 2 to be consistent with the general analysis and explicit

computations for Fermat CY3s performed in Sects. 3-8, the LG limit given by Eq. (9.7) should coincide with the

LG limit of a4,k (ψ) as given by Eq. (2.53). By putting n = 4 in such an equation, and recalling that τ4,k = 1

∀k = 5, 6, 8, 10 (see Table 2), one achieves that

limψ−→0a4,k (ψ) = limψ−→0

[
−σ4ψ

5 + τ4,kψ
5−k] = ψ5−k. (9.8)

By comparing Eq. (9.7) with Eq. (9.8), one notices that they differ by the factor i kχk(2π)3 .

The factor “i” can be explained simply: the definitions (2.34) are consistent with a notation in which the Cijk

tensor of our treatment actually is “−iCijk” (compare e.g. the second of Eqs. (8) of [44] with the second of Eqs.

(2.2)); thus, one can get rid of the “i” without any problem.
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Concerning the k-dependent real factor “ kχk
(2π)3 ”, it simply means that, in order to make our treatment of 1-modulus

SK geometry of the moduli space of Fermat CY3s consistent with the general theory exposed in Sects. 1 and 2, one

has to multiply the l.h.s. of 1-modulus PF Eq. (2.53) for Fermat CY3s by the k-dependent real factor kχk
(2π)3 . Of course,

such an overall multiplication by a constant factor will not affect the differential relations (2.37), nor will it change

the solutions of 1-modulus PF Eq. (2.53).

In other words, the consistent normalization of 1-modulus PF Eq. (2.53) for Fermat CY3s implies Eq. (2.53) to

be further “corrected” as ∑4
n=0 an,k (ψ) ∂nVh (ψ) = 0,

an,k (ψ) ≡ kχk
(2π)3

[
−σnψn+1 + (−1)

n
τn,kψ

n+1−k] .
(9.9)

Having obtained the matching in the LG limit, we can now reconsider the first of the defining relations (2.34); from

the correctly normalized definition of the an,k (ψ)s given in the second line of Eq. (9.9), one can achieve the exact,

k-parametrized formula for the holomorphic part Wψψψ,k (ψ) of Cψψψ,k
(
ψ, ψ

)
for Fermat CY3s:

Wψψψ,k (ψ) ≡Wk (ψ) = [a4,k (ψ)]−1 =
(2π)3

kχk

1

(ψ5−k − ψ5)
, (9.10)

where Tables 1 and 2 have been used.

By using the exact formula (9.10), the evaluation of such an holomorphic Yukawa coupling function near the three

species of regular singular of points of PF ordinary differential Eqs. for Fermat CY3s yields:

LG limit : limψ−→0Wk (ψ) = limψ−→0
(2π)3

kχ ψk−5 = (2π)3

kχ δk,5; (9.11)

Conifold limit :
∣∣limψk−→1Wk (ψ)

∣∣ = ∞; (9.12)

Large complex structure modulus limit : limψ−→∞Wk (ψ) = − (2π)3

kχ ψ−5. (9.13)

Finally, by multiplying Wk (ψ) by eKk(ψ,ψ) and recalling the first definition of (3.31), one can obtain the k-

parametrized formula for Cψψψ,k
(
ψ, ψ

)
for the class of Fermat CY3s:

Cψψψ,k
(
ψ, ψ

)
= eKk(ψ,ψ) [a4,k (ψ)]−1 =

(Ord(Gk))
2

(2π)3C2
k,0Fk,11kχk

eK̃k(ψ,ψ)

(ψ5−k − ψ5)
=

k3χk
(2π)3C2

k,0Fk,11

eK̃k(ψ,ψ)

(ψ5−k − ψ5)
, (9.14)

where in the last step we used the relation Ord(Gk) = χkk
2 (see Sect. 3). If the real function K̃k

(
ψ, ψ

)
is left as a

generic one, Eq. (9.14) can be considered as the exact formula for Cψψψ,k
(
ψ, ψ

)
, holding true at every point in the

moduli space of the class of Fermat CY3s. On the other hand, if K̃k

(
ψ, ψ

)
is given, through the first definition of

(3.31), by Eq. (3.20), Eq. (9.14) gives the series expansion of the covariantly-holomorphic Yukawa coupling function

Cψψψ,k
(
ψ, ψ

)
near the LG point of the moduli space of Fermat CY3s. In such a case, by performing the LG limit

ψ −→ 0 of Eq. (9.14) and considering the treatment and the formulæ from Sects. 3-7, one finally achieves:

limψ−→0Cψψψ,k
(
ψ, ψ

)
≈ k3χk

(2π)3C2
k,0Fk,11

ψk−5. (9.15)
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As expected, this is nothing but the k-parametrized formula summarizing Eqs. (9.2)-(9.5).

10 Conclusions and Outlook

In the present work we investigated non-degenerate extremal BH attractors near the so-called LG point ψ = 0 (herein

named LG attractors) of the moduli space (dimC = 1) of the class of Fermat Calabi-Yau threefolds. We found the

BH charge configurations supporting ψ = 0 to be a critical point of the real, positive-definite “effective BH potential”

VBH defined in Eq. (1.24).

In order to do this, we exploited two different approaches:

1) “criticality condition” approach: we solved at ψ ≈ 0 the 2 real criticality conditions of VBH , corresponding in

the 1-modulus case to the real and imaginary part of the Attractor Eqs. (1.23) (see Sects. 4-7);

2) “SK geometrical identities” approach: we evaluated at ψ ≈ 0 the 4 real fundamental identities (8.1) of 1-modulus

SK geometry at the geometrical loci corresponding to the various species of critical points of VBH (see Sect. 8).

We found that the results of two such solving approaches do coincide, in spite of the different number of real Eqs.

involved in approaches 1 and 2. The equivalence of the above-mentioned approaches to find the critical points of VBH

(and the BH charge configurations supporting them) is explicit proof of the fact that the relations (8.1) actually are

identities and not equations, i.e. that, for any point of the moduli space at which we evaluate them, they do not give

any constraint on the charge configuration.

It is worth pointing out that the “criticality condition” approach had been previously exploited in literature only

for the following cases:

a) mirror quintic (k = 5) in [9], where however peculiar Ansätze (on the BH charge configuration and on ψ in the

neighbourhood of the LG point) were used, implying a certain loss of generality;

b) mirror sextic (k = 6) in [10].

On the other hand, the “SK geometrical identities” approach (and its equivalence with the “criticality condition”

one) had been hitherto exploited only in [13]; in such a Ref., the mirror quintic was considered within the same

simplifying Ansätze formulated in [9], obtaining a complete agreement with the results of [9].

As a by-product of our computations, we extended the results of [9] and [13] to full generality (see Sect. 4).

Moreover, we found that the analysis of the stability of ψ = 0 as a non-BPS, Z = 0 critical point of VBH in the mirror

sextic, performed in Sect. 7 of [10], suffers from some problems of inconsistency. Indeed, in [10] it was found that

the LG point (supported by a certain BH charge configuration characterizing it as a non-BPS, Z = 0 critical point

of VBH) is stable (minimum of VBH). Instead, our computations (see Sect. 5), which carefully took into account the

relevant orders in ψ and ψ in the truncation of the series expansion around ψ = 0, allow us to conclude that, for the

same supporting BH charge configuration, the LG point is unstable (namely, a saddle point of VBH).

We also checked the stability of ψ = 0 by inspecting the Hessian matrix of VBH in correspondence to the various

BH charge configurations supporting the LG point to be a critical point of VBH . A sketchy summary of our results is
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given by the following Table:

k −→ 5 6 8 10

1
2 -BPS

stable,
1 charge config.

stable,
1 charge config.

stable,
1 charge config.

stable,
1 charge config.

non-BPS, Z 6= 0
stable,

3 charge configs.
− stable,

3 charge configs.
−

non-BPS, Z = 0 − unstable,
1 charge config.

− unstable,
1 charge config.

Table 5: Species and stability of the critical points of VBH in the moduli space of Fermat CY3s

The stability of ψ = 0 as a 1
2 -BPS attractor agrees with the known results from general analysis of SK geometry

of scalar manifolds in N = 2, d = 4 supergravity coupled to nV Abelian vector multiplets [31, 15, 16].

Regardless of the kind of BH charge configuration supporting them, the non-BPS, Z 6= 0 LG attractors, when

they exist, are found to be stable (local minima of VBH). This means that, for all the configurations of supporting

BH charges, these non-BPS, Z 6= 0 LG attractors satisfy the general condition of stability in 1-modulus SK geometry,

given by Eq. (4.27) of [15].

It is interesting to compare such a result to what happens in the large volume limit of CY3-compactifications of

Type II A superstring theory. Indeed, in such a framework (with a generic number nV of complex structure moduli)

in [9] it was shown that the stability of non-BPS, Z 6= 0 critical points of VBH (and therefore their actual attractor

behaviour) within a certain supporting BH charge configuration, crucially depends on the possible vanishing of p0, i.e.

of the asymptotical magnetic flux of the graviphoton field strength, whose microscopical interpretation corresponds to

a D6-brane wrapping p0 times a 3-cycle of the considered CY3. Nevertheless, also in such a context in the 1-modulus

case (nV = 1) the non-BPS, Z 6= 0 critical points of VBH are always stable, and therefore they are attractors in a

strict sense.

Furthermore, one can also observe that all Fermat CY3s admit only one kind of non-BPS LG attractors, either

with Z 6= 0 or with Z = 0; for the allowed values of the classifying Fermat parameter k = 5, 6, 8, 10, one gets the

“pattern” shown in Table 5 above.

Once again, such a feature is exhibited also by the large volume limit of of CY3-compactifications, whose related

SK geometry is characterized by cubic holomorphic prepotentials; indeed, it can be explicitly computed that the

1-modulus prepotential F (z) = 1
3z

3, corresponding to the homogeneous symmetric SK manifold SU(1,1)
U(1) (see [22] and

Refs. therein), admits 1
2 -BPS and non-BPS, Z 6= 0 attractors only [22].

It is worth mentioning that the fourth order linear ordinary differential Picard-Fuchs equations of Fermat CY3s

(2.53) (specified by Tables 1 and 2) exhibit other two species of regular singular points, namely the k-th roots of

unity (ψk = 1, the so-called conifold points) and the point at infinity ψ −→ ∞ in the moduli space, corresponding

to the so-called large complex structure modulus limit. It would be interesting to solve criticality conditions for VBH

near such regular singular points, i.e. to investigate extremal BH conifold attractors and extremal BH large complex
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structure attractors in the moduli space of 1-modulus (Fermat) CY3s, also in view of recent investigations of extremal

BH attractors in specific examples of 2-moduli CY3-compactifications [25].

When CY3-compactifications with more than one complex structure deformation modulus are considered, it is clear

that interesting situations might arise other than the ones present at 1-modulus level. Indeed, differently from what

has been studied so far [25], in such frameworks all three species of extremal BH (LG) attractors (namely 1
2 -BPS,

non-BPS Z 6= 0 and non-BPS Z = 0) should exist, each typology being supported by distinct, zero-overlapping BH

charge configurations. Ça va sans dire that such an issue deserves more investigation and analyzing efforts.

Finally, it is worth spending a few words concerning the instability of non-BPS, Z = 0 (LG) attractors in the

1-modulus case. It would be intriguing to extend to such a framework the same conjecture formulated in [24]. In

Sect. 5 of such a Ref., in the framework of (the large volume limit of CY3-compactifications leading to) the peculiarly

symmetric case of cubic stu model, it was argued that the instability of the considered non-BPS attractors might be

only apparent, since such attractors might correspond to multi-centre stable attractor solutions, whose stable nature

should be “resolved” only at sufficiently small distances. As mentioned, it would be interesting to extend such a

conjecture to the non-BPS, Z = 0 (LG) attractors, also in relation to the possible existence of non-BPS lines of

marginal stability [51, 52].
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