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ABSTRACT

We study black hole attractor equations for one-(complex structure)modulus Calabi-Yau spaces which are the
mirror dual of Fermat Calabi-Yau threefolds (CY3s).

When exploring non-degenerate solutions near the Landau-Ginzburg point of the moduli space of such 4-dimensional
compactifications, we always find two species of extremal black hole attractors, depending on the choice of the Sp (4,7Z)
symplectic charge vector, one %-BPS (which is always stable, according to general results of special Kéahler geometry)
and one non-BPS. The latter turns out to be stable (local minimum of the “effective black hole potential” Vpgr) for
non-vanishing central charge, whereas it is unstable (saddle point of Vgyy) for the case of vanishing central charge.

This is to be compared to the large volume limit of one-modulus C'Y3-compactifications (of Type IT A superstrings),
in which the homogeneous symmetric special Kéhler geometry based on cubic prepotential admits (beside the %-BPS
ones) only non-BPS extremal black hole attractors with non-vanishing central charge, which are always stable.
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1 Introduction

Extremal black hole (BH) attractors [1]-[4] have been recently widely investigated [B]- [27], especially in connection
with new classes of solutions to the attractor equations corresponding to non-BPS (Bogomol'ny-Prasad-Sommerfeld)
horizon geometries, supported by particular configurations of the BH electric and magnetic charges. Such geometries
are non-degenerate, i.e. they have a finite, non-vanishing horizon area, and their Bekenstein-Hawking entropy [28] is
obtained by extremizing an “effective BH potential”.

In N = 2, d = 4 Maxwell-Einstein supergravity theories (MESGTs), non-degenerate attractor horizon geometries
correspond to BH solitonic states belonging to “short massive multiplets” (for the 3-BPS case, with 0 < |Z|, =
Mapum,m) and to “long massive multiplets”, either with non-vanishing or vanishing central charge Z not saturating

the BPS bound! [29]

0<|Z|y < Mapm,n- (1.1)
The Arnowitt-Deser-Misner (ADM) mass [30] at the BH horizon is obtained by extremizing a positive-definite “effective
BH potential”’? Vgy (d), f), where the 1 x (2ny + 2) symplectic charge vector I' = (p*, aa) p—oq o, contain both

1Here and in what follows, the subscript “H” will denote values at the BH event horizon.
2Here and below “¢” denotes the set of real scalars relevant for Attractor Mechanism, i.e. the 2ny ones coming from the ny vector
supermultiplets coupled to the supergravity multiplet.



BH magnetic and electric charges, given by the asymptotical fluxes of two-form field strengths of Abelian vector fields
A
A
The BH entropy Spp is given by the Bekenstein-Hawking entropy-area formula [28, 3T]
N Am (f) - -
SBH (F):T:’]TVBH ((]5,1_‘)‘ :ﬂ'VBH (¢H (F)), (12)

V=0

where Ap is the event horizon area, and the solution ¢y (f) to the criticality condition

05V (6.T) =0 (1.3)
is properly named attractor if the critical (2ny + 2) X (2ny + 2) real symmetric Hessian matrix

2Vin (¢, f)

3696 (1.4)

¢o=¢x ()
is a strictly positive-definite matrix3.

Although non-supersymmetric BH attractors exist also in A/ > 2, d = 4 and d = 5 supergravities |32, 19,
the most interesting examples arise in N' = 2, d = 4 MESGTSs, where the scalar fluctuations relevant for the BH
Attractor Mechanism parametrize a special K&hler (SK) manifold. Recently, the classification of “attractor solutions”
for extremal BHs has been performed in full generality for the whole class of homogeneous symmetric SK geometries
[22], and three distinct classes of extremal BH attractors (namely 3-BPS, non-BPS Z # 0 and non-BPS Z = 0 ones)
were found as solutions to Eqs. ([3)). In such a framework, the non-BPS charge orbits have been found to depend
on whether the supporting charge vector [ is such that the A" = 2 central charge vanishes or not. Moreover, the
critical Hessian matrix ([C4) was usually found to exhibit zero modes (i.e. “flat” directions), whose attractor nature
seemingly further depends on additional conditions on the charge vector f, other than the ones given by the extremality
conditions ([3) (see e.g. [@]).

The aim of the present work is to study a particular class of (1-modulus) SK geometries, namely the ones under-
lying the complex structure moduli space of (mirror) Fermat Calabi-Yau threefolds (CY3s) (classified by the Fermat
parameter k = 5,6,8,10, and firstly found in [33]). The fourth order linear Picard-Fuchs (PF) ordinary differential
equations determining the holomorphic fundamental period 4 x 1 vector for such a class of 1-modulus CY3s were found
some time ago for k = 5 in [34, 35] (see in particular Eq. (3.9) of [34], where z = 1) ~°; see also [36]) and for k = 6,8, 10
in [37].

3The opposite is in general not true, i.e. there can be attractor points corresponding to critical Hessian matrices with “fat” directions
(i.e. vanishing eigenvalues). In general, when a critical Hessian matrix exhibits some vanishing eigenvalues, one has to look at higher-order
derivatives of Vpp evaluated at the considered point, and study their sign. Dependingly on the values of the supporting BH charges, one
can obtains stable or unstable critical points. Examples in literature of investigations beyond the Hessian level can be found in [9, 24 25].



In N =2, d = 4 MESGT the following formula holds* [3, @, 5]
Vi (2,%:0.p) = |Z” (2.%0.p) + ¢ (2,2) D; Z (2,%4.p) D3Z (2.5 0,p) . (1.5)

Consequently, the criticality conditions (L3) can be easily shown to acquire the form [31]

97D, Z + ¢* (D;D; Z) D-Z = 0; (1.6)

j—, =

this is what one should rigorously refer to as the N’ = 2, d = 4 supergravity attractor equations (AEs). ¢%7 (z,%) is

the contravariant Kahler metric tensor, satisfying the usual orthonormality condition:
97 (2,%) 0,0:K (2,%) = oz, (1.7)

where K (z,%) is the real Kahler potential. As previously mentioned, Z (z,Z; q, p) is the A' = 2 central charge function

Z(2,%q,p) = e KEITQI (2) = K2 [y XA (2) — pPFy (2)] = e2KEAW (214,p), (1.8)
where ) is the (2ny + 2)-dim. symplectic metric (subscripts denote dimensions)

Onv+1 _]Inv+1
0= , (1.9)
Iny 41 Ony 41

and II (2) is the (2ny + 2) x 1 holomorphic period vector in symplectic basis

XA (2)
IM(z) = , (1.10)
Fa(2)
with X (2) and Fj (z) being the holomorphic sections of the U(1) line (Hodge) bundle over the SK manifold (clearly,
due to holomorphicity they do not belong to the related U(1) ring). Finally, W (z;q,p) is the holomorphic N' = 2
central charge function, also named N = 2 superpotential.
Let us here recall that Z has Kéhler weights (p,p) = (1, —1); thus, its Kdhler-covariant derivatives read
D;Z = (0; + 10iK) Z,
- B B (1.11)
D;Z = (0; — 30;K) Z.

4Here and below we switch to the complex parametrization of the set of scalars being considered:

The relation between such two equivalent parametrizations of the SK scalar manifold is given by Eq. (4.2) of [1H].



The non-holomorphic basic, defining differential relations of SK geometry are® (see e.g. [35]):
D;Z = Zy
D¢Zj = iO@jkgk_EEZ = iOijkng7E§
(1.12)

D;Z =0,

where the first relation is nothing but the definition of the “matter charges” Z;s and the fourth relation expresses the
Kahler-covariant holomorphicity of Z. Cjyji is the rank-3, completely symmetric, covariantly holomorphic tensor of
SK geometry (with Kahler weights (2, —2)) (see e.g. [B8]- E2]):

Oijk = eK (8ZXA) (8jXE) (8kXE) 8582FA (X) = eKWijk;

E{Cjkl = 0;
(1.13)
D Cijp = 05
R = 959 + 9729k — CikpC 159"
where R 7 is the Riemann-Christoffel tensor of Kéahler geometry:
Riyq = —9"" (0950mK ) 000K + Bdid0, K, (1.14)

and square brackets denote antisymmetrization with respect to enclosed indices. By using the first two of relations
([CI2), the N =2 AEs ([CH) can be recast as follows [31]:

277; +iCijng" " Z;Z;; = 0. (1.15)

It is now worth recalling some fundamental identities defining the geometric structure of SK manifolds [43] 8, [T3]

15, [16, E24]
7 — QM (M) TT = —2iZT1 - 2igi (337) DjII, (1.16)
where M (N) denotes the (2ny + 2) x (2ny + 2) real symmetric matrix |38, 13} 4]
Im (N) + Re (N) (Im (V)" Re (N) —Re (N) (Im (N)) ™
M(N) = , (1.17)
—(Im(N)) " Re(N) (Im (M)~

where My is a complex symmetric matrix playing a key role in N' = 2, d = 4 MESGT (see e.g. the report [38]).

Moreover, it should be here reminded that

D, = (9; + &, K) 11,
(1.18)
D11 = 6511 = 0,
5 Actually, there are different (equivalent) defining approaches to SK geometry. For subtleties and further elucidation concerning such
an issue, see e.g. [39] and [H0].




since II is holomorphic with Kéhler weights (2, 0).
The 2ny + 2 real identities ([LTH) (whose real and imaginary parts are related by a suitable “rotation” [I6]) express
nothing but a change of basis in the lattice ¥, , of BH charge configurations, between the integer symplectic (mag-

netic/electric) basis vector I= (pA, (]A) . and the complex “supergravity charges” vector Z = (Z, Z;),_,

A=0,1,..., n
Notice that Z is moduli-dependent, since it refers to supermultiplet eigenstates. It is important to stress that identi-

syt

ties ([CIO) entail 2 redundant degrees of freedom, encoded in the homogeneity (of degree 1) of (LIH) under complex
rescalings of I'. Indeed, by recalling the definition (LX) it can be readily checked that the right-hand side of ([IH)

acquires an overall factor A under the rescaling
I — A, AeC. (1.19)

We will reconsider such a point in Sect. B when treating the 1-modulus case more in detail.
It should also be noticed that the N/ = 2 “effective BH potential” given by Eq. ([H) can also be rewritten as
3, @, B8
1~ ~
Veu (2,%;¢,p) = —§PM (M) T, (1.20)
and therefore it can be identified with the first, positive-definite real invariant of SK geometry (see e.g. [24, BY]). It

is interesting to remark that the result (CZ0) can be elegantly obtained from the SK geometry identities ([CIH) by

making use of the following relations [T9]:

1 11 II

5(M N+ =& |, V], (1.21)
D- D-11
J J
which follow from the observation that
II II
M (N) = ), Vi, (1.22)
D;-H D;-H

In the 1-modulus case a major simplification occurs, since Eqs. (CIH) and ([CH) respectively reduce to (2! = 1)
_ —2 ,_ _\2
97Dy Z + iClyyy (gw) (DEZ) —0; (1.23)
— — -1 — —
Veu (¥, %;4,p) = 12 (¥, %5 4,p) + (9@) (¥, %) 1Dy ZI* (4,95 4,p) - (1.24)

The %—BPS solutions correspond to Z # 0 and Dy Z = 0, the non-BPS solutions (DyZ # 0) can occur in two species:
1) Z # 0, for which [I5]
2]

4l : (1.25)
|Coypapp| } non—BPS,Z£0

2
Dy 20— pPs.zz0 = 2 [(QW)
2) Z =0, in which case Eq. (CZ3) yields

Ci/”‘””nonfBPS,Z:O =0. (126)



At such critical points, the “BH effective potential” respectively becomes (for non-BPS, Z # 0 case see [15])

(gwﬁ)s
|Cpps [?

; (1.27)

2
VBH,non—BPS,Z;éO = |Z|nonfBPS,Z;é0 |:1 +4 :|
non—BPS,Z#0

VBH non—BPS,z=0 = |D1/JZ|1210”_BPS’Z20- (1.28)
For non-BPS, Z # 0 critical points of Vgy, one can also define the supersymmetry-breaking order parameter as
follows:
-1 ) -1 )
(9,7) 1Du2] (9,7) 1DsW]

Onon—BPs,z#0 = Iz = W = (1.29)

non—BPS,Z#0 non—BPS,Z#0
3
(9:2)

— 4| , (1.30)
|Cypupl?

non—BPS,Z#0

where in the second line we used Eq. ([CZH). It is worth noticing that for a cubic prepotential F (z) = ¢z® it holds
that Onon—pps,z+0 = 3 Yo € C [22]; such a result actually holds for cubic prepotentials in generic ny-moduli SK
geometries, such as the ones arising in the large volume limit of C'Y3-compactifications of Type II A superstring theory
(see Eq. (111) of [@]).

As we are going to compute explicitly in Sects. BHA for the k-parametrized class of (mirror) Fermat CY3s, one finds
that (beside the %—BPS solutions, existing and stable in all cases) for k = 5,8 only non-BPS, Z # 0 solutions exist,
and they are attractors (local minima of Vpy), whereas for k = 6,10 only non-BPS, Z = 0 solutions exist, and they
are not attractors in a strict sense (since they are saddle points of Vpg).

In the present paper we will investigate AE ([C23)) near one of three typologies of regular singular points in the
complex structure moduli space of (mirror) Fermat CY3s, namely near the so-called Landau-Ginzburg (LG) point
¥ = 0. In such a framework, the identities ([CIH) of SK geometry, when considered in the 1-modulus case and in
correspondence of the various above-mentioned species of critical points of Vpp, can be used to find the BH charge
configurations supporting the LG point ¢ = 0 to be an attractor point of the considered kind. It will be shown that, in
spite of the fact that identities ([CIH) give 4 real Egs. in the 1-modulus case, only 2 of them are independent, and they
are completely equivalent to the 2 real rigorously-named N = 2, d = 4 supergravity AEs (CZ3), which are nothing
but the criticality condition 0y Vpu = 0.

The plan of the paper is as follows.

In Sect. B we briefly introduce the holomorphic geometry embedded in the SK geometry of the scalar manifolds of
N =2, d =4 MESGTs. Such a geometry is relevant in order to introduce the PF differential equations. In particular,
we focus on the 1-modulus case.

Then, in Sect. Bl we give a sketchy presentation of the formalism of the (mirror) Fermat CY3s (classified by the

Fermat parameter k = 5,6,8,10), in particular near the LG point ¢ = 0 of their (complex structure deformation)



moduli space. The general analysis of Sect. Blis consequently specialized to the study of non-degenerate extremal BH
LG attractors in the complex structure moduli space of the four mirror Fermat CYss, corresponding to k = 5 (Sect.
B), k =6 (Sect. B), k = 8 (Sect. H), and k = 10 (Sect. [).

In Sect. B in order to study the extremal BH LG attractors for the above-mentioned class of CY3s, we exploit
the so-called “SK geometrical identities” approach. This amounts to evaluating near ¢ = 0 the 4 real fundamental
identities of 1-modulus SK geometry at the geometrical loci corresponding to the various species of critical points of
the relevant “effective BH potential”. We obtain results perfectly coinciding with the ones we got in Sects. HA by
exploiting the so-called “criticality condition” approach, corresponding to solve near the LG point the 2 real criticality
conditions of Vg, corresponding in the 1-modulus case to the real and imaginary part of the so-called N' =2, d = 4
supergravity AEs.

Then, in Sect. @ we face the problem of the consistent normalization of the PF ordinary differential equation
obeyed by the vector of fundamental periods of the holomorphic 3-form defined on the above-mentioned Fermat CY3s.

Concluding remarks, summarizing observations and outlooking comments are the contents of the final Sect. [0

2 Holomorphic Geometry

In this Section we will present a summary of the holomorphic geometry embedded in the SK geometry of the scalar
manifolds of N = 2, d = 4 MESGTs. The main references for such an issue are [44] and [45], to which we will refer at
the relevant points of the treatment.

The PF Equations, satisfied in SK geometry by the holomorphic period vector (in a suitable basis, named PF
basis) are a consequence of SK geometry and of the underlying symplectic structure of the flat symplectic bundle [A6],
which encodes the differential relations obeyed by the covariantly holomorphic sections and their covariant derivatives.

Let us start by considering the Kihler-covariantly holomorphic, symplectic 1 x (2ny + 2) vector®
V(z,2) = (LA (2,2) , Mp (2,2)) = e2 KA (2). (2.1)

Flatness of the symplectic connection entails the following relations [46]:

D,V =Uyg;

DoUs = iCopyg" D5V = iCapyg"Us;

DQDEV = DaUﬁ = gaﬁV;

D,V =0.

6In order to make the contact with the relevant literature easier, in this Section, as well in the next one, we will change some notations
with respect to the previous treatment.

Firstly, we will consider row (i.e. 1 X (2ny + 2)), instead of column (i.e. (2ny + 2) x 1), period vectors.

Secondly, we will use lowercase Greek indices to denote homogeneous coordinates (instead of lowercase Latin indices, as done in the
previous Section). Lowercase Latin indices will rather be used to denote indices pertaining to the so-called holomorphic geometry we are
going to discuss.




Notice that, by the definition @), the N' = 2 central charge function (defined by Eq. (L)) can be rewritten (in the
notation for period vectors used in the present Section) as Z = fQVT, and the defining relations ([CI2) of SK geometry
can thus be obtained by transposing the relations ([Z2) and by further left-multiplying them by the 1 x (2ny + 2)
vector T'(.

Let us now consider a new 1 x (2ny + 2) vector of holomorphic sections” (a =1, ...,ny)
Vi (X(2)) = (X°(2), X7 (2), Fu (X(2)) , ~Fy (X (2))) . (2.3)

We notice that, while V' (z,%) defined in Eq. ) is symplectic with respect to the symplectic metric 2, this does
not hold for V3, (X(z)) defined in Eq. ([3), which is instead symplectic with respect to a newly defined anti-diagonal
symplectic metric (QT = —Q, Q? = —Iap, 42):

where unwritten elements vanish.
In the treatment which follows we will assume the existence of an holomorphic prepotential F (X (2)) of N' = 2,
d = 4 vector multiplet couplings such that Fy (z) = OaAF (X (z)), which is in turn implied by the assumption that the

holomorphic square matrix

| 5 a
“ (z) ot (z
e (z) = {520‘ } = az(a ) (2.5)

is invertible (non-singular), where in the last step we introduced the homogeneous (Kéhler-invariant) coordinates

t*(z) = §§§§j§ (see e.g. [B8]). The matrix e (z) expresses nothing but the change of basis between the t* (z)s and the

implying that t® (z) = f(Z—gzz; = 2% (in such

z%s. Special (symplectic) coordinates correspond to the case e? (z) = 62,
a case a-indices and a-indinces do coincide). By further fixing the Kihler gauge such that X° = 1, one finally gets
t%(2) = X% (z) = 2% and X° = 1, which is the usual definition of special coordinates (yielding 9, X* = 62).

The holomorphic period vector Vj, (X (z)) in special coordinates (Kihler gauge X° = 1 fixed understood throughout,

unless otherwise noted) reads as follows:
Vh7special (Z) = (]-7 za’ aaf (Z) ) _fO (Z)) = (17 Za’ aa]: (Z) ) Zaaaf (Z) —-2F (Z)) ) (26)

where F (z) is the holomorphic prepotential in special coordinates (and for X° = 1), and in the second step the
homogeneity of degree 2 of the prepotential was used; for general symplectic and special (X° = 1) coordinates it

respectively reads
XANF(X) = X0 F (X) + X0, F (X) = 2F(X);
(2.7)
Fo (2) + 220, F (2) = 2F(X).

"The subscript “h” stands for “holomorphic”.




By starting from Eq. ) and by differentiating once and twice Vj, speciai (2), one respectively achieves

5th7specml (z) = (0, 5?, 0,0 F (Z) ,—OpF (z) + 2%0,0pF (z)) ; (2.8)

3b3th,specml (Z) = (07 0,0,0,0.F (Z) , 290,050 F (Z)) ) (29)

implying that
abacvh,special (Z) = Wape (Z) Vizl,special (Z) ;
(2.10)
aavlll)7special (Z) = 5b VO

a "’ h,special?’

where Wape (2) = 9,0p0.F (2) is the holomorphic part of Cyp, in special coordinates and for X = 1 (see first of

relations (CI3))) and

Viil,special(z) = (Oﬂov(sgvza)a (211)
Vi?,special(z) = (0707071) (212)

By adding the definition Vi, speciat,a (2) = 0aVh,special(2) and the trivial result 0,V ceiar(2) = 0 to Eqs. (M), one
finally gets the set of differential relations [45]

aa‘/h,special (Z) = Vh,special,a (Z) y

aaabvh,special (Z) = aavh,special,b (Z) = Wabc (Z) th,special (Z) )
(2.13)
aavf?,special (Z) = 52‘/0

h,special?

0V}

h,special

(2) =0,

which are the holomorphic counterparts of SK relations (2, written in special coordinates and for X° = 1.
By “holomorphically covariantizing” the relations ZI3), i.e. by writing them in a generic system of homogeneous

coordinates, one obtains (notice that here a-indices and a-indices in general do not coincide) [45]
Dth(Z) = Vh,a(z),

DaDgVi(2) = DaVip(2) = Wapy (2)) Vi (2),
(2.14)



where V3, (2), Vi, 8(2), Vhﬁ (z) and V,(z) are respectively given by the following formulee® [H5):
Va(2) = (X°(2), X(2), X°(2)eq (2)0aF(2), X (2)eq (2)0aF (2) — 2X°(2)F(2)) ;

Vis(2) = DaVa(X (2)) = (0, X°()e (), XO(2)et(2) Dads F (2), =X ()05 F (2) + X*(2)es (=) DadsF (2) )
V() = (0,0, (X02) T el (2), (XO(=)) 7" X2 ()¢l (2))

VO(z) = (0,0,0, (Xo(z))*l) :
(2.15)

which correspond to the “holomorphically covariantized” counterparts of Eqs. (&8), (Z8), TI) and €I, respec-
tively.

Notice that a new holomorphic covariant derivative D, has been introduced. In analogy with the usual covariant
derivative in Kéhler-Hodge manifold, the action of D,, on a vector ¢ with Kéhler weight p reads [A4} A5

Das (2,%) = (9a+ 5Ra (2)) 65 (2,9 ~ T (2) 65 (,9), (2.16)

where fa[ﬂ (z) is the holomorphic part of the Christoffel connection I' ;" (2,%) of the SK manifold being considered
B4, B3] (eg, (2) €5(2) = 03, eq (2) €5 (2) = dp):

[e3%

Lo (2) (Opeq (2))€q(2) =Top" (2,2) =T (2,7) = (2.17)

z,Z) el (z). (2.18)

3 2),t(z =
= ¢77(2,%) 0a0505K (2,%) — €2 (2)e}(2) la K (£, ))] g (

otb ot dt"
It can be checked that fa67 (z) transforms as a connection under holomorphic reparametrizations. Moreover, since

X (2) has Kéhler weights (2,0), the quantity
Ko (2) = =04 [In (X°(2))] (2.19)
transforms as a connection under Kéhler gauge transformations:
K (2,%) — K (2,2) + f(2) + f(2) = Ko (2) — Ko (2) + 0af(2). (2.20)
It is worth pointing out that the r aﬁvs are the Christoffel symbols of the second kind of an holomorphic Riemann

P );“(2) o [Xi)
= a (=) X0(z)
Gap (2) = ea(z)e%(z)nab = {aza } {azﬁ } Nab, (2.21)

metric

where 74 is constant (invertible) symmetric matrix (note that gog (z) has two holomorphic indices, in contrast to

the Kéhler metric g,5(2,%) = 8a55K(Z,§)). Jap (2) is the metric tensor of the so-called holomorphic geometry

8The first of relations ([ZIH) corresponds to Eq. ([Z33) by using the definition of t* (2)s and the homogeneity of degree 2 of the prepotential
F.
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“embedded” in the considered SK geometry. Due to Eq. [ 3), it can be checked that fa 5 (2) is actually a Riemann-

flat connection, since it holds that

~

Rspp 7 (2) = 05T ,57 (2) — 0aTsp" (2) + T 50 ()T 7 (2) = Ty (2) Ty (2) = 0. (2.22)

Finally, it should observed that special coordinates are flat coordinates for the holomorphic geometry, because for

special coordinates (e (2) = §%) (in the Kéhler gauge X° = 1) Eqs. ZI1), (I and {ZI) respectively reduce to

~

Ty (2)=0; (2.23)
Ko (2) =0; (2.24)
Gop (2) = Nag- (2.25)

It is worth pointing out that the system (EId)) is the holomorphic counterpart of the system [Z2), and it is
manifestly covariant with respect to the holomorphic geometry defined by g (2) and K, (z). By breaking the
“holomorphic covariance” and choosing special coordinates (and fixing Kihler gauge such that X° = 1), the system
EId) reduces to the system [ZI3). The system of holomorphic differential relations ZId) is usually referred to as
the (holomorphic) Picard-Fuchs (PF) system.

Let us now specialize the treatment to the 1-modulus case. Once again, such a case is peculiarly simple, since the
Vielbein is nothing but an holomorphic function (we denote z! = 1)):

o |5otd] _ on )

ey (1) = 5 = ou =e(v), (2.26)

and the connections and metric of holomorphic geometry reduce to

~

Pqpqu (1) = 9y [In (e (¥))];
Ky () = =0y [In (X° ()] ; (2:27)

Guw (1) = [e (V)] nyy.

Consequently, the action of Dy, on a l-vector (function) ¢ (¢,1) with Kahler weights (p,p) reads

Do (0.8) = (0u+ 5K () ~T,,0 1) 6 (10.7) =

= {0u =0, [1n (xX° @))] 0y lin (W]} 6 (.7) . (2.28)

It can be shown 4] 45] that in the 1-modulus case the PF system (T4 is equivalent to the following complex
differential relation:

DD W~ (¥)] DDV, (1) =0, (2.29)
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where D = ﬁw, B
W () = Wypy () = e KD Oy, (4, 9) =

= [05X° (¥)]” Fooo (¥) + 3 [0, X° ()] [0, X" (¥)] Foor (¥) + (2.30)

+3 (00X ()] [05X° (9)] Forr () + [0 X" ()] Fan (1),
and (see Eq. 3) and the first of relations ZI3))

Vi (@) = (X°(), X' (¥),F1 (X)), ~Fo (X(¥))) = (2.31)

= (X)), X' (@), X (0)e(¥)0y F (1), X (¥)e($)0y F () — 2X° (V) F (1)) . (2.32)

Eq. 29) can also be rewritten as a fourth order linear ordinary differential equation in V}, (¢) (1-modulus PF

Eq.) B4, B5): \
S () 0"V (4) =0, (2.33)
n=0

where 0" = % (n = 0 corresponds to the identity operator)?. The functional coefficients a,, (1)s can be obtained

by comparing Eqgs. (Z29) and @33) [E4] (0 = 9y):
as =W

a5 =20 (W) ;

az =W (08 = A2+ 28) + [0 (W) R+ 2 (W)
a1 =W (9?8 + 205 - 2R0R) + [0 (W1)] A+
+ [0 (W] (25 + 208 - A2);
ao =W (£2 —$08 - RoS + 928 + [0 (W1)] S+

+[o(w )] (208 - A%),
(2.34)

9For a general treatment of the ny-moduli case, see 5.
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where the following holomorphic functions have been introduced (recall the first two Eqs. of Z21)):

A () =20, Ky () =T, (4) = =202 [In (X° (¥))] = 9y [In (e (¥))]; (2.35)

£ (0) = 028y () + [0,y ()] T, (6 Ry (0) =
(2.36)

= =03 [in (x° ()] + {92 [in (X° ()] }2 + 0y [In (e ()] 0 [in (X° ()] .

The definitions ([Z34)) entail the following differential relations between the functional coeffiecients of 1-modulus
PF Eq. Z33):
ag () = 20yas () ;
ar (¥) = Oy [az (¥) — 30yas (¥)] .
In special coordinates (with X° = 1) one has X' (¢)) = t' (¢) = ¢ and e(¢) = 1, and the a, ()s simplify

drastically'C:

(2.37)

a4, special (dj) = W_l (d]) ;
a3, special (¢) = 281!’ [Wil (dj)] )

a2 special (¢) = 83’ [Wil (dj)} )

(2.38)

a1,special (V) = @o,special (¥) = 0.
It is interesting to notice that not all the a, (¢)s are actually relevant. Firstly, one can scale a4 (1) out from the
1-modulus PF Eq. (Z33), and furthermore drop the coefficient proportional to as (¢)) by performing the following
rescaling redefinition of V3, (v) [43:

1 ()
Vi (#) — Vi (9) cap [ 1] s (239)
By doing this, the PF Eq. 33)) can be recast in the following form:

Dy Vi () = [0 + c2 (1) 87 + 1 () Dy + co (V)] Vi (¢) = 0, (2.40)

where the new functional coefficients ¢,, (1)s are (rather complicated) combinations of the a,, (¢)s and their derivatives.
Notice that, due to the redefinition Z39), ¢ (1)) = 0.

As shown in [6], the basic, defining differential relations [Z2) of SK geometry can be recast as a vanishing
condition for a suitably defined flat symplectic non-holomorphic connection. Analogously, the holomorphic differential

Eqs. @TI4) can be rewritten as a vanishing condition for a suitably defined flat holomorphic connection, i.e. as [43]

(Iony 4200 — Aa (2)) Vi (2) = 0, (2.41)

10However, in the following treatment of Fermat C'Y3s t! () is not a special coordinate, i.e. t! () # 1.
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where V}, (z) is a (2ny + 2) X (2ny + 2) holomorphic matrix ((2ny + 2) x 1 vector with 1 x (2ny + 2) vector entries)

defined as follows [45]:
Vi (2)

Vi,p(2)

Vi (2) , (2.42)

Vhﬁ (2)
Vi (2)
where the entries are defined in Eqs. (ZIH). On the other hand, A, (z) is the following (2ny +2) x (2ny +2)

holomorphic connection matrix:

_Ka (Z) 5’7 0 0
0 (M@ Ke@lu), (Wa), (2) 0
A, (2)= R ~ 5 . (2.43)
0 0 (Ka ()L, — T (z))7 58
0 0 0 Ko (2)

It should be noticed that A, (2) is Lie-algebra valued in sp (2ny + 2), i.e. it satisfies the infinitesimal symplecticity
condition [45]
AL (2)Q+ QA4 (2) =0, (2.44)

where @ is the symplectic metric defined in Eq. (Z4)).

Put another way, it can be stated that the PF Eqs. [Id]) are equivalent to the matrix system 1), with A, (2)
defined by Eq. ZZ3)). The general solution of such an holomorphic matrix system is given by Eqs. [IH) arranged
as a vector as given by Eq. ZZ2).

As expected, by specializing the holomorphic matrix system (ZZ1) in special coordinates and choosing the Kahler

gauge to be such that X° = 1, one gets the following holomorphic matrix system:

(H2nv+26a - Aa,special (Z)) Vh,special (Z) = 07 (245)

which is equivalent to the holomorphic system (ZT3]).
Vi, special (2) is a (2ny + 2) x (2ny + 2) holomorphic matrix ((2ny + 2) x 1 vector with 1 X (2ny + 2) vector entries)

defined as follows [45):
Vh,special (Z)

Vh,special,b (Z)
Vh,special (Z) = s (246)

b
Vh,special (Z)

Vi?, special (Z)
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where the entries are defined in Eqs. @), ), @II) and @ZI2). It is worth mentioning that the matrices
Vi, special (2) and 'V}, (z) have a symplectic structure with respect to the symplectic metric relevant for holomorphic

geometry, i.e. with respect to @ defined in Eq. &2):

V,fl;,special (Z) QVh,special (Z) = Q;
(2.47)

Vi (2)QVir (2) = Q.
Ay special (2) (named C, in Eq. (3.6) of the first Ref. of [454]) is the (2ny +2) X (2ny + 2) holomorphic connection
matrix obtained by A (z) (given by Eq. ([Z3)) by putting L' (2) = 0 = K, (z) (also recalling that in special coordi-
nates a-indices and a-indinces coincide). Clearly, as its “holomorphically covariant” counterpart A, (z), clearly also
A, special (7) is Lie-algebra valued in sp (2ny + 2), and therefore it satisfies a corresponding infinitesimal symplecticity
condition.

In other words, it can be stated that the the holomorphic system (ZI3]) can be recast in the matrix form ZZ3),
with Ag speciai (2) defined by Eq. (3.6) of the first Ref. of [45]. The general solution of such an holomorphic matrix
system is given by Egs. £8), ), I and [ZI2) arranged as a vector as given by Eq. (ZZ4).

Once again, by considering the 1-modulus case more in detail, one obtains a major simplification. The 1-modulus

PF Eq. [Z33)) can be rewritten in matrix form as follows:

(110 — Ay (1)) Vi (4) =0, (2.48)
where V7, (¢) is a 4 x 4 holomorphic matrix, corresponding to ny = 1 in Eq. ZZ2):
Vi (¥)

Vi (¥)

Vi (¥) = (2.49)

Vi

Vi (¥)

X0 () X () XO(4)e($)Dy F (1)) X ()e()dy F () — 2XO () F(3)
0 XO(W)e(®)  XO()e(¥)DypdpF (1)  —XO()dpF () + X' (¥)e(v) DydyF (¥)

2

0 0 (X)) e(v) (XO®)) = X ()e(y)

0 0 0 (XO(¢)) "
(2.50)

where the second row can be further elaborated by making use of Eq Z2Z8) (recall that the holomorphic prepotential
F has Kéhler weights (4,0)):

DydyF () = {9y — 20y [In (X° ()] = 0y [in (e ()]} 9 F (). (2.51)
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On the other hand, Ay (1) is a 4 x 4 holomorphic connection matrix, which is Lie-algebra valued in sp (4) and
corresponds to ny = 1 in Eq. ZZ3):

Ay (v) =
B [In (X° (1))] 1 0 0
Oy [In (e ()] +
0 +w5w lin (X0 (4))] Wy (¥) 0
0, In (e ()] + |
0 0 ~ 0y [In (X° (1))] 1
0 0 0 —0y [In (X (v))]

(2.52)

where use of Eqs. ([Z27)) has been made (see also Eq. (Z30)).

It can be stated that the 1-modulus PF Eq. Z33) is equivalent to the matrix system (ZZH), with A (1)) defined
by Eq. ([Z32). The general solution of such an holomorphic matrix system (which corresponds to the most general
solution of the fourth order linear PF Eq. [Z22)) is given by Eqs. [Z49)-@X50) (implemented by Eq. X21).

Let us now further specialize our treatment to the 1-modulus SK geometries endowing the moduli space of Fermat
CYss. As previously mentioned, the fourth order linear PF ordinary differential equation for each of the four threefolds
(classified by the index k = 5,6, 8,10: see next Section) of such a class of C'Y3s has been obtained for k = 5 in |34, [35]
(see in particular Eq. (3.9) of [34], where z = 1 ~?; see also [36]), and for k = 6,8,10 in [37] (see Eq. (3.1) of such a
Ref., with notation a = 1), where a unified, k-parametrized treatment was exploited. We will shortly review it in the
next Section.

In order to recast the 1-modulus PF Egs. given by Eq. (3.1) of [87 in the form [33)) with the differential relations
(E&30) between the a,, (1)s holding, one must multiply them by the function ¢~%¢, with & = 0,3,6,8 for k = 5,6, 8, 10
respectively. By doing this, one achieves the result that for Fermat CY3s the fourth order linear PF Eqgs. [Z33) can

be recast in the following k-parametrized form®!:

Zi:O Qn k (w) 8th (’lr/)) = 0;

Qn, Kk () = _Unwn—i_l =+ (_1)n Tn,k¢n+1_ka

with the constants o,s and 7, is given by Tables 1 and 2:

(2.53)

3 General Analysis

In the present Section we will briefly present the formalism of one-modulus (mirror) Fermat Calabi-Yau threefolds

(CY3s). We will mainly follow [37], and cite where appropriate other relevant works. We also derive original formal

1 As we will see in Sect. Fl for self-consistency reasons the 1-modulus PF Eqs. (&) (with Tables 1 and 2) (which are “corrected” by
an overall factor )&k with respect to the ones given in Eq. (3.1) of [37]) need also to be further multiplied by a suitable “normalization”

constant (see Eq. (@3)).
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Table 1: Values of the integer constants oy,

[k —l5[6]8]10]

To,k 0101] O 0
Ti,k 0101|1535
Tk 0121535
T3,k 0121] 6 |10
T4k 1)1 1 1

Table 2: Values of the integer constants 7, j

results, which will be then used in the case-by-case analysis of extremal BH LG attractors performed in next Sections.
Fermat C'Y3s can be defined as the vanishing locus of quasi-homogeneous polynomials in 5 complex variables, of

the general form:
4
Wo = Z v; (xl)m =0; (3.1)
i=0

4

such a locus gives the embedding of the considered C'Ys in a suitably weighted complex projective space WCP,, , . . .-

By imposing the defining conditions of vanishing first Chern class and of absence of singularities, it is possible to show
that only four possible sets of {vi,n;},_q, 5,4 exist, all corresponding to C'Yzs with h (1,1) = dim (H"' (CY3)) = 1
(i.e. only one Kéhler modulus). The four existing Fermat C'Y3s can be classified by introducing the Fermat parameter

k, defined as the smallest common multiple of the n;s'2; the only allowed values of k turn out to be k = 5,6,8, 10.

12k can equivalently be defined as the degree of Wy. It turns out that k = n;v; (no summation on ¢) Vi = 0,1,2,3,4. Moreover, it also
holds that k = 3.7_, vi.
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k G Ord(G) | h(1,1) | h(2,1) | »=2[h(1,1)—h(2,1)]
|

5 (Zs)® 5 1 101 —200

6 Z3 @ (Z)* 362 1 103 —204

8 (Zs)* © Zy 282 1 149 —296

10 (Z10)? 1-10? 1 145 —288

Table 3: Basic topological data of Fermat CYss Mys

Thus, the four existing Fermat C'Y3s M, are given by the following geometrical loci'® [33} B34} 35, B37):

k =5 : quintic M5 = {xl € (W) CP%,l,Ll,l Wos = E?:o (xl)5 = O} ;
k =6 : sextic Mg = {xi € WCP%,LI,LI Woe =2 (x0)3 + 2?21 (xl)G = 0} ;
k =8 : octic Mg = {a:l € WCP3,1,1,1,1 Whs =4 (330)2 + E?zl (xi)s = O} ;

k =10 : dectic Mo = {xl € \W(CIE”;Q’LL1 :Wo,10 =5 (x0)2 + 2 (x1)5 + 2?22 (;vi)lo = 0} .
(3.2)

By orbifolding the Mys and quotienting by the full phase symmetry group G (see [87] and Refs. therein), one
obtains a pair of Fermat CY3s'* (My, M},) related by the so-called mirror symmetry A7, 48, A9, 34, B5], with h(1,1)
and h(2,1) = dim (H 21 (CY3)) interchanged (and therefore opposite Euler number ). Correspondingly, the defining

vanishing geometrical loci will be “deformed” as follows:

4
Wo — W =Wy — kg ][ " (3.3)
=0

All the relevant topological data of Fermat CY3s Mys are given in Table 3.

13Here and below, we give a name to the Fermat C'Y3s corresponding to the various possible values of the Fermat parameter.

The Fermat CY3 with k = 5 has been named quintic some time ago (see e.g. [33 B6l 34, 35, 7).

In a similar fashion, by using the corresponding Latin cardinal adjectives, we name sextic, octic, and dectic the Fermat CY3ss with
k = 6,8, 10, respectively.

14For simplicity’s sake, we denote in the same way the starting Fermat C'Y3 and the one obtained by orbifolding and then quotienting
by G.
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1 is the Kdhler deformation modulus for Fermat CY3s Mys (all having h(1,1) = 1) and the complex structure
deformation modulus for the corresponding mirror Fermat C'Yss M) (all having h (2,1) = 1). Since in the treatment
and computations performed below we will consider 1 as a complex structure modulus, we will be actually working in
the mirror description of the considered CY3s, i.e. we will be considering the mirror Fermat CY3s M,s (k = 5,6, 8, 10).

In such a framework, the relevant quantities for the d = 4 low-energy effective Lagrangian of the d = 10 superstring
theory compactified on My, are given (within the complex structure moduli space (dimc = 1)) by the Kéhler metric
and Yukawa couplings on M) (related to My by mirror symmetry). All such quantities will be obtained by the
solutions of the fourth order linear PF ordinary differential Eqs. ([Z33).

Near the LG point ¢ = 0, the 4 x 1 period vector!'® in the PF basis wy, (1) is obtained by solving the PF Eqs.!6

4
> ank () 0wy, (1) = 0. (3.4)
n=0
Here we choose the normalization and the gauge of the holomorphic 3-form defined on M}, such that!”
wa k(1)
1 @rip | )
o (V) = —————~— , 3.5
wr—1,k(¥)

with 0
wjk(¥) = wok (8 ¥),
(3.6)
Br, = exp(F)

150nce again, in order to make the contact with the relevant literature easier, in this Section as well as in the next ones, we will reconsider
column (z.e. 4 x 1), rather than row (i.e. 1 x 4), period vectors. Moreover, the holomorphic period vector in the symplectic basis (hitherto
named V}, (1)) will be henceforth denoted by II (¢).

6When comparing Eq. [E34) to Eq. @33) (and, more in general, considering the treatment given in Sect. BJ), the 4 x 1 symplectic
holomorphic period vector V}, (¢) = I1 (¢)) and the 4 X 1 PF holomorphic period vector @ (1)) turn out to satisfy the same fourth order
linear ordinary differential equation.

Consequently, they necessarily have to be related by a global (i.e. 1p-independent) “rotation” in the moduli space. This is precisely what
happens, with such a “rotation” in the moduli space expressed by the 4 X 4 real matrices Mys given in Eqgs. (EI0)-@I0) (see Sect. 4 of
7).

17The normalization of wy, (v) adopted in the present work is the same of |34} [35] [37], and it differs from the one adopted in (a part
of the) literature on flux compactifications (see e.g. Subsect. 3.2 of [5l]]) by a factor m (the reason is that we are interested in the

mirror manifolds M;cs, not in Mgs).

On the other hand, it is easy to realize that the gauge of the holomorphic 3-form adopted in |34} [37)] is mostly convenient in order to
study the large complex structure modulus limit. Since we will investigate the LG limit, for our purposes it is better to adopt the gauge
of [B0], which amounts to performing the following gauge transformation on the holomorphic 3-form:

in turn corresponding to the following transformation of the Kahler potential:

Oy K — 0y K +In ([v]?)
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all being solutions of Eq. @) (j = 0,1,...,k — 1). However, since Eq. B3 is a fourth order (linear) differential
equation, only 4 linearly independent solutions wj ,(¢)s exist. Thus, Yk = 5,6,8,10, k — 4 linear relations between

the w; 1 (1)s hold. One possible choice is the following one [34l, 35, B7:

k = 5 : Z?:O wj75(1b) = 0 (37)
wo,6(¢) + wa2,6(¢¥) + wa6(¥) = 0;
k=6 B (3.8)
w1,6(¢) +w36(¥) +ws6(¢p) = 0.
k=8: wi)g(lﬁ) + w¢+4,8(1/)) =0, +=0,1,2,3. (39)
wi,10(¢) + wi+5,10(¢) = 07 1= 0) 17 2) 37 45
k=10: (3.10)

wo,10(%) + w2,10(¥) + w3,10(¥) + wa,10(¢) + ws,10(¢) = 0.

The defining Eq. ) expresses the usual conventions, in which one takes wo k(¢), w1,k (¥), wo x(¥) and wi_1 k() as
basis for @y, (¢). Therefore, due to relations [FH), the key quantity turns out to be the holomorphic function, whose
series expansion (convergent for [¢| < 1, with the fundamental region [34, 35, B7] selected by 0 < arg (1) < 2%) reads

87
wo,k (Y chm LBy, (3.11)

with

_ _Ira-pent
Chrom—1 = T T =m0 Tk

(3.12)

Ve = I (vi ) ~Vor/*,

where in Cj 1 I' denotes the Euler gamma function I'(s) = [;°¢*"te~'dt (with Re(s) > 0). By using Egs.
(ETI)-([ETA), the series expansion (convergent for || < 1,0 < arg (¢) < 2F) of @y, (1) can be written as follows:

3m
k
. oo . ﬁ;”
@y (V) = Ord 2—1 "Chm—19 o . (3.13)
m= k
ﬁk—3m

The change between the PF basis and the symplectic basis for holomorphic 4 x 1 period vector is given by:

k() = Mywy () - (3.14)
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where the 4 x 4 constant matrices My, read [34] 35, B7]

_3 _1 21 8 1 1 1 1
0 0 210 0 0 -1 0
Ms = 10 8 3| M= 1 o 3 2| (3.15)
0 1 -1 0 0 1 -1 0
LA 00 -1 0
My =1 4 ¢ 3 o Mo=1 1 g o (3.16)
0 1 -1 0 01 -1 0
The Kahler potential is given by:
Ky (4,9) = ~tn |~ T () Sk (6)| = ~tn | ~i ], (8) maeon (0)] (3.17)
where!8
05 I,
Y= ; (3.18)
I, 0,
0 -1 —X -1
1 0 —< —A
my = MISM,, = L o ok _1k , (3.19)

1 X 1 0

with the values of xi, Ar and ¢, given in Table 4. By recalling the third column from the left of Table 3, one can
observe that Ord (Gy) = xxk?. Substituting Eq. @I3) and definition (BI9) into Eq. ([BIQ), one obtains the series
expansion (converging for || < 1,0 < arg (¢) < %’T) of the Kéhler potential:

— (27’(’)6 > _1—n71
K =-I TN 3 o C m— C n— m F; mn | 3.20
K (4, 0) n ((Ord(Gk))2 m;:l k,m—1Ck,n—19"™" 1 k, (3.20)
where the following infinite rank-2 tensor has been introduced:
3m
k
Fk,mn = i(_1)m+n+1 ( ﬁ];:;na ﬂ];na ﬂ]?a }3" ) mg ﬁ]im =
]iBm
Pr

= %ei(m“‘)” {sin(B”;m ™) + sin(22="m) 4+ sin(—g(":m) )+

tepsin( 22 ) + Ay [sin(ZE27) 4+ sin(22E2 )] )

(3.21)

18Note the change of convention with respect to (the case ny = 1 of) the defining Eq. (CH): ¥ = — Q=1
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k Xk Ak Sk

!

5 5 3 3

6 3 2 0

8 2 2 1

10 1 1 —1

Table 4: Values of the integer constants yi, \; and ¢

From such a definition, F} ,,, turns out to have the following relevant properties:
Fiemn = Fimn;
Femn = Frnm;
Frmtk n=Fem nek = (=) EFy s (3.22)
Fymn=0ifn+m==k;

Fypr = 0.

Consequently, at most only @ — [£] = 1 (veal) non-vanishing independent elements of Fj ,, exist (where [%]
denotes the integer part of £), even though, as evident from Eqs. @2), (E2), [E2) and [ZZ) below, actually such an
upper bound is never reached for the allowed values of the Fermat parameter k = 5,6, 8, 10.

The holomorphic superpotential (also named A" = 2 holomorphic central charge function) is given by:
Wi (¢5¢,p) = Ty, (¥), (3.23)

where the 1 x 4 BH charge vector in the symplectic basis is here defined as'®

= (_pO’ _pla q0, Q1) = f27
(3.24)

r= (q07 q17p07 pl)

Using Eqs. B13), BId) and BI), one can obtain the following series expansion (convergent for |¢| < 1, 0 <

19Notice the change in the notation of the symplectic charge vectors with respect to the notation used in Sects. [l and
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arg (V) < 27”) of the holomorphic superpotential:

Wi (;4,p) = Ak > Chomn-1%™ " Nim (¢,p) (3.25)

m=1

where the following quantities have been introduced:

_ (2mi)® |
A = _X% Ord(Gr)’ (3.26)
Nim (@,0) = (=1)™ [nk1 (¢, ) BE™ + 12 (0, 9) BY + 13 (0,0) By ™ + nka (a,0) By °™] (3.27)
where
n (q,p) = x,I' My, € Z* (3.28)

is the 1 x 4 BH charge vector in the PF basis.
By inverting the definition ([B28), one obtains

1
r= Enk (¢,p) M ' € Z4, (3.29)

where T' is defined in Eq. B24)). Egs. B2J)-E29) express the change between the symplectic and PF basis of BH
charges.

By recalling Eq. (C24) and using Eqs. (B20) and (2ZH), the general form of the “effective BH potential” function
VBH,k (@b,@; q, p) for the Calabi-Yau threefolds M s reads

_ 1 ~ . —~ |2 _ . —~ |2 _
Vi (0.700) = g eow [Ki (0:7)] [\Wk\ (6,:0.9) + (950 (4. 6) 7 [ DI (w,w;q,p)} =
1 ~ _
= Xsz;711 VBH,k (1/)7 1/)7 qap) ) (330)
where e o B )8 , .
k (¢7¢) = Ky, (dja ¢) +In [—(Ord(Gk))z Ck,OFk711:| )
(3.31)

—~ _ Wi (g,
Wi (w;q,p):%z?'

A remark worth making concerns the holomorphic prepotential F (X (10)). In the treatment of 1-modulus SK
geometry underlying the moduli space of Fermat CYs-compactifications, we will assume it to exist. By specializing
Eq. @) for ny = 1, one achieves:

1
T2

1

F (X (1)) -

[Fo () X° (4) + F1 () X' (4)] [T () T () + 112 () IT* ()] , (3.32)

where II* (1) denotes the i-th component (i = 1,2,3,4) of the 4 x 1 symplectic holomorphic period vector gy ().
Consequently, by using Eqs. @BI3) and @Id), F (X (¢)) can be explicitly computed in power series expansion
(convergent for [¢| < 1, 0 < arg (¢) < 2F) for the k-parametrized class of Fermat CY3s.

23



Let us now consider the (k-indexed) ny = 1 case of Eqs. ([[H), corresponding to the (k-indexed) 1-modulus AEs
(without explicit use of Cyyy, in which case one would obtain Eq. (LZJ)). By recalling the last step in Eq. (LJ), and
considering that the SK geometry is assumed to be regular (i.e. with |K k (@[J,EH < oo everywhere), one obtains the

1-modulus AEs in terms of the superpotential and its covariant derivatives:

2Wi. Dy Wi + (9y5.) " (DyDyWi) DyW ), = 0, (3.33)
) o _ . .
L = 9 8¢gww’k = Oyln (gww’k), and recall that W, has Kéhler weights (2, 0))

DyWi, = (0y + 0y Ky) Wi; (3.34)

Dd)Dka = (aw + 8¢K}c) Dka — Fi/ﬂ/JwaWk =
= (0y + Oy Ki) (Oy + Oy Ki) Wi — Oyln (gwk) DyWy = (3.35)

= [({93, + QiKk + 20y K10y + (aka)g — Oyln (5#,5@1{1@) (51/, + 5¢K;€) Wi.

In the next Sects. EHA we will consistently solve the 1-modulus AEs [B33) (with covariant derivatives given by
Eqs. B34)-B33)) near the LG point ¢ = 0, using all the formal machinery elaborated above in the framework of
1-modulus SK geometry underlying the moduli space of Fermat CY3-compactifications. In other words, we will solve
the criticality condition for the “effective BH potential” ([B30) near the LG point ¢» = 0, obtaining the constraints
which define the BH charge configurations supporting the LG point to be a critical point of Ve given by Eq. B30).
Furthermore, we will address the issue of the stability, by inspecting the real form of the 2 x 2 Hessian matrix.

We will exploit such a procedure for each of the mirror Fermat C'Y3s Ms, classified by the values of the Fermat

parameter k = 5,6,8, 10.

4 k=5: Mirror Quintic

In the case of mirror quintic Mj it is easy to realize that one has to consider the “effective BH potential” ([B30) (at
least) up to O (¢*) (or, as always understood below, O (EB)) As a consequence, the AEs ([233)) and the Hessian
matrix will be known up to O (v).
For k = 5 the definitions [BI2) yield
Cs51-1=0, l€N; (4.1)

moreover, since Fs 5 n = F5m nts = F5.mn (see the third of properties (B22)), the only independent elements of
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the rank-2 tensor F5 belong to the 5 x 5 matrix

5+2V5 0 0 0 —V/54+2V5
0 —/5—-2v5 0 0 5—2v5
Fsmn = 0 0 5—-2V5 0 —V/5-2V5
0 0 0 —V5+2v5 V5+2V5

~V5+2v5 V5-2V6 —V5-2V6 V5425 0
(4.2)

Let us now write down all the relevant quantities up to the needed order (here and below, unless otherwise specified,

we omit the Fermat parameter k = 5):

K~ (B-2)G (06 - (& - Y525 (09)° + SE(VB+2)(v° +6°)] + 0w®);

(4.3)
e _ C_f B C_§ (\f 2) C3 4

95~ (V5 - 2)ch [1 4(03 )w]ww) (4.4)

W~ Ny + g_;Nﬂ/) + %NQUJQ + %Nﬂ/)g +0°). (4.5)

Now, by using the formula of the general analysis exploited in Sect. Bl we can get the “effective BH potential” and
the holomorphic superpotential, as well as their (covariant) derivatives, up to O (¥) (notice that in all the treatments
of Sects. B we are interested only in ordinary derivatives of ‘73 H, since they coincide with the covariant ones at the

critical points of ‘7BH):

W = Ny + G Noy;

(4.6)
. o N
DyW =G [Nz + 28 Nov + G (VB - 2)Mid 5 (4.7)
DyDyW =282 Ny + 6% N1 + 4252 No b
o co Cocn = (4.8)
Ven = [N1]> + (V5 + 2)[Na? + 2cl |:N2N1 + (V5 +2) L5 (N2)2:| bt
v . (4.9)
+28¢ [Nala + (V5 +2) G52 (V22 o
0T =265 [Nl + (V5 + DS 08 [1+ (45 + 1G] Mot
2 2 ~2 — .
(4.10)
+25 [IN1|2(\/— —2) + [Ny ? (1 +4(V5 +2) % )} b
0 1
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Oy0yVr =62 [1+ (V5 +2) % | NiNo+

+24 82 (N1)%p + 4G {C— (1 +4(V5+2)% ) (N2)? +

(4.11)

2 2 ~2 3 _ —
+ (V528 (14 (VB + 2B +3(v5 + 225 ) NNy i

040y Ve =25k [|N1|2(f —2) + |Nof? (1 +4(V5+2)

cics
ar )| T

C2C2 —
+48 [S (1+4(v5+ 255 ) ()2

+(V5-2)5 (1+(\/’+2)COC2 +3(\/’+2)2000203)N1N2} bt (4.12)

4G (G (1 4B+ EE ) (Vo) +

+ (VE-2) 8 (1+ (VB+ S 4 3(v5 + 22 A8 ) Ny Ny 4.

Let us now find the solutions of the AE 9y Vay (¢,9;4q,p) = 0, and check their stability. Since we are working
near the LG point, by using Eq. ) we can rewrite the AE for M as follows:

C2Co
ct

NoNi 4 (V5 +2) (N2)? ~ 0. (4.13)

Here we simply put ) = 0. Solving Eq. ([EI3)), we will find one (or more) set(s) of BH charges supporting 1 = 0 to
be a critical point of Vg . As understood throughout all our treatment of Sects. BHA, ¢ca va sans dire that actual BH
charges are very close to the found one, and also that the critical value of v is not zero, but it belongs to a suitable
neighbourhood of the LG point.

The stability of the critical point ¥ = 0 of Vpp is governed by the symmetric, real form of Hessian 2 x 2 matrix

of Ve evaluated at the considered extremum; in general, it reads
A C
Hr‘gileorm = < C B > ’ (414)

where A, B, C € R are given in terms of 0,0y VpH, BingVBH, EEEEVBH € C by Egs. (4.7)-(4.12) of [15]. By using
such Egs., and also Eqs. [I))-[ETIA) evaluated along the criticality condition I3)), it can be computed that the
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components of H Voi  constrained by the AE [I3) read as follows:

real form

Am G IMPOB-2) + N (1+4(v5+2)%95)] +
(4.15)
+3G [14 (VB+2) S8 ] (NiNs + N1 No);
B G [INP(VE—2) + [Naf? (1+4(v5+2) %5 )] +
o (4.16)
~3& [1+ (V5 +29%%| (NiNs + NNy,
Cr -G [14+ (VB + 2G5 | (MN; — NiNa). (4.17)
The resulting real eigenvalues of Hreﬁf’form constrained by the AE #I3) read:
012 2 2 CSCQQ
Ar o~ g |[IMPVE=2) + [N (1+4(VE+2) =572 ) | +
0 1
Cy C5Co
+322 1 2 Ni[|Ns. 41
322 [1+ (V542 22 v (4.18)

By recalling Eq. (B30) and using Eq. [EY) with ¢ ~ 0 and constrained by the AE [Z13), one obtains that the purely

charge-dependent LG critical values of the “effective BH potential” for the mirror quintic M% are

1
VBH,LG—critical k=5 R ——F—— [|N1|2 + (V5 + 2)|N2|2} ; (4.19)
255+ 25

by recalling formula ([[C2), this directly yields the following purely charge-dependent values of the BH entropy at the
LG critical points of Vgp 5 in the moduli space of Mf:

[|N1|2+ (V5 +2)|No 2] . (4.20)

™
SBH,LG—critical k=5 N ———F———
25v/5 + 2v/5

Let us write down here the numerical values of constants relevant to our treatment:

Co~ 25, C1~225 Co~0.77, Cy=0.054. (4.21)

Let us now analyze more in depth the species of LG attractor points arising from the AE [E13). As it can be easily

seen, the AE [ZI3)) has two non-degenerate solutions (i.e. with non-vanishing Vg and therefore with non-vanishing

BH entropy, see Eq. (L2)):
I. The first non-degenerate solution to AE [{@I3) is

N ~ 0. (4.22)
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As one can see from Eq. (ESH)-ED), such a solution corresponds to a %—BPS LG critical point of Vpg (W # 0,
wa = 0). From the definitions B27) and [B2J), in order to get the solution [@2Z), we have to fine-tune 2 PF BH

charges out of 4 in the following way:

nsy ~

(14 V5)(ng — n1), n4%—%(1—|—\/5)n1—|—n2. (4.23)

N =

The charges ny, ny are not fixed; they only satisfy the non-degeneration condition N # 0. The real eigenvalues [EIX)

for the %—BPS critical solution coincide and, as it is well known [311 [I5, [I6], are strictly positive:
Ct v 2
/\+’%_BPS:)\_’%_BPSz(\/5—2)E|N1| > 0. (4.24)
0

Consequently, the %—BPS LG critical point ¥ ~ 0 supported by the PF BH charge configuration ([23)) is a stable
extremum, since it is a (local) minimum of Vg, and it is therefore an attractor in a strict sense. The “effective BH

potential” and BH entropy at such a (class of) $-BPS LG attractor(s) take the values

Vemi-pps = 0.013[N1[*,  Spy1_pps~ 0.0137[ N[, (4.25)
where
ni . no .
N~ = [4\/5—2 2(5+x/5)3} - {5+\/5—u/10(5—\/5)] (4.26)

II. The second non-degenerate solution to AE [I3) is

|N1| &~ &|Na,
€= (V5+2)95* = 1,6 (4.27)

arg(N1) — 3arg(Na) ~ m,

where

Ny = \/54_1 <n1+n4— (?)—'—T\/g)(ng—i—ns)) +% (5—'—7\/5) <n4—n1 + (\/ET_U(TL?)—HQ)> ) (4.28)
Ny =~ —@ <n1+n4— Lﬁ(nzﬁ-nﬂ) +% w <n4—n1 - L;_l)(nB —n2)> - (4.29)

As one can see from Eq. (EH)-E), such a solution corresponds to a non-BPS, Z # 0 LG critical point of Vgy
(W £ 0, Dq/,ﬁ// # 0). The real eigenvalues [EIF) for such a non-BPS, Z # 0 critical solution read

G : cacy
Msn-eszpo ~ I [145(/5 - 223 (605 -2+ (V5 + 22 ) o] (4.30)
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Substituting the numerical values [@2]]) of the involved constants in Eq. [#30), one reaches the conclusion that both

A+ non—BPS,z+£0 are strictly positive:
M\t non—BPS.z40 ~ | No|? [3.277 + 1.97] > 0. (4.31)

Thus, the non-BPS, Z # 0 LG critical point ¢ & 0 supported by the PF BH charge configuration [EEZ0)-E29) is a
(local) minimum of Vi and consequently an attractor in a strict sense.

Let us now find the fine-tuning conditions for PF BH charges supporting the considered non-BPS, Z # 0 LG
attractor for the mirror quintic M§. This amounts to solving Eqs. ([27)-[E29) by recalling the definitions (B27) and
B2y). By doing so, one gets the following three different sets of constraining relations on the PF BH charges:

I1.1) ng = nl%, nz = —711%7 ng =Ny Ziilz’
y vl — (4.32)
20(143€) _ V/50+2VE)+/10(5+2V5)¢ |
az (§ i\/ 512VB4E(—5—4vBe12(54vB)ED) . 12 (&)= V5—2v5+1/2(5+2V5)¢
L2) oy =m0y =y =g (4.33)
11.3) No+ng—ni—nNg=a, Ni+no+ng+ng=>b, 2n3—2n+d=c¢, ng—ni=d,
(€b,ed) = — V5+2VBe—+/5(5—-2v5)d+1/2(5+V5)&(—c+/5d)
T V5(5-2VB)e—V/5(5+2V5)d+/2(5+V5)E(VEe—5d) (4.34)
(€e,d) = V (@VE+(5+5)€) 2 —10(1+V5)Ecd+5(—2v5+(5+v5)€)d?

2 (=2VB+3(5+v5)€)ec2 —30(1+v5)Ecd+5(2v5+3(5+5)£)d2
(5—2V5+26(5— VB+(5+V5)€))cZ —10(1+£(€+1) (1+V/5)) cd+5(5+2VE+2£ (5+3VE+ (5+VB)€))d2

Notice that the typology II.2 of fine-tuning conditions for PF BH charges given by Eq. ([33) is the one adopted in
[9 (see in particular Sect. 4 and App. C of such a Ref.).
By recalling that £ ~ 1,6 (see Eq. @Z1)), the typology II.1 of fine-tuning conditions for PF BH charges yields

ng/nl ~ 0342(—1383), n3/n1 ~ —1352(35), n4/n1 ~ 0009(1023), (435)

where, here and below, the numbers in round brackets correspond to considering a; _, rather than a; 4, in Eqs. 32).
Since the PF BH charges are integers as are the symplectic BH charges (see definition ([B28)), the numerical conditions
(E3H) can approximately be met by taking e.g.

ny =1000(10), ny = 342(—1383), n3 = —1352(350), n4 = 9(1023). (4.36)

Switching to the symplectic (electric/magnetic) basis for BH charges by using Eq. [B2d), one finally gets

p° = 3ny +ng = 3009(1053), p' = L [~4(ny + ng) + na +ns) = —1009(—1033),
(4.37)
= £(8n1 + 3n4) = 1605(630), g1 = 5(—3n1 +ng — n4) = —533(—487).
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By repeating the same procedure for the typology II.2 of fine-tuning conditions for PF BH charges given by Eq.
[E33)), one achieves the same results obtained at the end of Sect. 4 of [9).

It is worth remarking that all three distinct sets of fine-tuning conditions for PF BH charges [E32)-E34) do
support a non-BPS, Z # 0 LG attractor in a strict sense.

The “effective BH potential” and BH entropy at such a (class of) non-BPS, Z # 0 LG attractor(s) take the values
2 2, (4.38)

VBH,non—BPs, 20 = 0.055|Na|*,  SpH non—pPs,z+0 = 0.0557| N2

where Ny is given by Eq.[229), implemented by one of the fine-tuning conditions ({32)-E34).
Finally, by recalling the definition (LZd), one can compute the supersymmetry-breaking order parameter for the
non-BPS, Z # 0 LG attractor in the mirror quintic M%; by using Eqs. @), @4), @) and E2ZD), one gets

-1 -1 —
2 2
o B (gd@) | Dy W B (gd@) | Dy W B (V5 +2) e
non—BPS,Z#0 = |W|2 = |W|2 ~ T ~ 1.65,
non—BPS,Z#0 non—BPS,Z#0

(4.39)

which is consistent with the result obtained at the end of Sect. 4 of [9].

5 k=06 : Mirror Sextic

For the mirror sextic My the computations (but not the results!) go the same way as for the mirror quintic M§.
Thus, also for k = 6 it is easy to realize that one has to consider the “effective BH potential” ([B30) (at least) up to
@) (w3) in order to get the AEs (B33)) and the Hessian matrix up to O ().
For k = 6 the definitions (BI2) yield
Co3-1=0, l€eN (5.1)

moreover, since Fg m+6,n = F6,m .n+6 = —F6,mn (see the third of properties (822)), the only independent elements of

the rank-2 tensor Fg belong to the 6 x 6 matrix

23 0 —V3 0 0 3
2 1
Of oL 0 } G
-3 1 0 -1 3 -2
F67mn: 0 0 -1 2 0 1 . (52)
/3 /3
0 0 V3 0 -2v3 3
1 1
3. -5 2 -5 30

Let us now write down all the relevant quantities up to the needed order (here and below, unless otherwise specified,

30



we omit the Fermat parameter k = 6):

R~ 3G oo+ 15 w0)?] + 0(u®);
gus ~ ¥k [1+ 25 00] + 0w,

W~ N + g—;Nﬂb - g—gNgibB - %Nl¢4 + O(y°).

(5.3)

(5.4)

(5.5)

Now, by using the formulse of the general analysis exploited in Sect. Bl we can get the “effective BH potential” and

the holomorphic superpotential, as well as their (covariant) derivatives, up to O (¢):
W — (&1 .
W = Nl + C_ONZwa
DyW =& |Nao+ 56 N1y 5

DyDyW = —65 Nty — 1282 N1y,

VBH = |N1|2 + 3|NQ|2 + 22—(1)N2N1¢ + 2%N2N11Z},

C1 Cs 2 2 PAYYS
Oy Vpr = 2& LN Ny — 18G4 (No)?y) + 3 302 (| V112 + 3| N2|?) o

050y Vor = 1852 (Na)? — 245 (1 n 0400) NiN>y+ 354 ! N1 Not;

C
C,

= o

awgdijH =

wWin

(|]\[1|2 + 3|N2|2) + %

%,I%,

1N2¢+ 3CSN1N2/¢

o

From the definitions (B27) and B2]), for k¥ = 6 one gets that

3 )
Ny = —g(n2+n3)+5(2”4_2”1+"3_n2)’
1 V/3i
Ny = §(n3+n2—2n4—2n1)—T("B_”2)'

(5.6)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

Let us now find the solutions of the AE 81/,‘73 H (@[J,E; q,p) = 0, and check their stability. Since we are working

near the LG point, by using Eq. (E9) we can rewrite the AE for Mg as follows:

NQNl ~ 0.

(5.15)

Here we simply put ¢ = 0. Solving Eq. (EZIH), we will find one (or more) set(s) of BH charges supporting ¢ ~ 0 to

be a critical point of Vpy.
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By using Eqs. (4.7)-(4.12) of [15] and Eqs. (BII)-(E&TIZ) evaluated along the criticality condition ([EIH), it can be
computed that the components of H Vi (given by Eq. (Id)) constrained by the AE (2TH) read as follows:

real form
1% 9Cs -
A=3 cz 5 (INVi[* + 3| N2f?) — 20, ((N2)? + (N2)?) ; (5.16)
10?2 90y
B= 3 (NP +31NaP) + 52 (W2)? o+ (N2)?) (5.17)
9.Cs ,,
C =iz (V2)* = (N2)?). (5.18)
2 ¢y
The resulting real eigenvalues of Hreal torm CODstrained by the AE (BTH) read:
7 CEC:
Ay~ L |N1|2+|N2|2 1497021, (5.19)
C? Cs

By recalling Eq. (B30) and using Eq. (B9) with ¢ ~ 0 and constrained by the AE (EIH), one obtains that the purely

charge-dependent LG critical values of the “effective BH potential” for the mirror sextic My are
VBH,LG—critical k= Ni[? +3|N2[*] ; 5.20
BH,LG—critical k=6 ~ 18\/— [| V4] |N2|?]; (5.20)

by recalling formula (L), this directly yields the following purely charge-dependent values of the BH entropy at the

LG critical points of Vpp g in the moduli space of Mg:

SBH,LG—critical k=6 ~ 18\/_ [|N1]* + 3| N2 %] . (5.21)

Let us write down here the numerical values of constants relevant to our treatment:

C2C;4
OO ~ 227, Cl ~ 152, 03 ~ —0247, 04 ~ 0054, 9 CB
1

~ —3.25. (5.22)

Let us now analyze more in depth the species of LG attractor points arising from the AE (BEIH). As it can be
easily seen, the AE (BIH) has two non-degenerate solutions:

I. The first non-degenerate solution to AE (BIH) is
Ny ~ 0. (5.23)

This is nothing but the k& = 5 solution [EZZ). As one can see from Eq. (&8)-(E1), also for & = 6 such a solution
corresponds to a +-BPS LG critical point of Vg (W 0, Dq/,W = 0). From the definitions B2Z17) and [B2ZF), in order
to get the solutlon (E23), we have to fine-tune 2 PF BH charges out of 4 in the following way:

ng < ng, Ng4g=<nNg—Nj. (524)
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The charges ny, ny are not fixed; they only satisfy the non-degeneration condition N7 # 0. As it was for k = 5, also
the real eigenvalues ([EId) for the 3-BPS critical solution coincide and, as it is well known [3T, [T, [T6], are strictly
positive:

1C?%
Ay 1-Bps =A_ 1 pps R gc—lgwﬂ2 > 0. (5.25)
0

Consequently, the %—BPS LG critical point ¢ & 0 supported by the PF BH charge configuration (B24]) is a stable
extremum, since it is a (local) minimum of Vg, and it is therefore an attractor in a strict sense. The “effective BH

potential” and BH entropy at such a (class of) 3-BPS LG attractor(s) take the values
Vemi-pps = 0.032|N1[%,  Spp1_pps ~ 0.0327|Ny|?, (5.26)

where

Ny = —V/3ng +i(ng — 2n1). (5.27)

II. The second non-degenerate solution to AE (1) is
Ny ~ 0. (5.28)

As one can see from Eq. (&8)-(@), such a solution corresponds to a non-BPS, Z = 0 LG critical point of Vpy
(W =0, wa # 0). The real eigenvalues (I for such a non-BPS, Z = 0 critical solution read

C? C3C.
/\:t,7Lo7L—BPS,Z:O ~ C_lg <1 +9 83 3) |N2|2- (529)
0 1

Substituting the numerical values ([E22) of the involved constants in Eq. (B2d), one reaches the conclusion that one

eigenvalue is positive and the other one is negative:
At non—BPS.7=0 ~ | N2|*[0.45 F 1.46] < 0. (5.30)

Let us now find the fine-tuning conditions for PF BH charges supporting the considered non-BPS, Z = 0 LG attractor
for the mirror sextic M. This amounts to solving Eq. ([&28) by recalling the definitions (B2Z1) and (B23). By doing

so, one gets the following unique set of constraining relations on PF BH charges:
ng & —ng, N4 ng+ny. (5.31)

Thus, the non-BPS, Z = 0 LG critical point ¢ ~ 0 supported by the PF BH charge configuration (B31l) is a saddle
point of Vpg and consequently it is not an attractor in a strict sense.

The “effective BH potential” and BH entropy at such a (class of) non-BPS, Z = 0 LG saddle point(s) take the
values
2

VBH non—BPS,7=0 ~ 0.096| N2>, SEH non—BPs,z=0 = 0.0967| Na|?, (5.32)
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where

Ny &~ —2n1 — ng +iV/3na. (5.33)
Switching to the symplectic (electric/magnetic) basis for BH charges by using Eq. (82Z9), one gets
n1 = p° — 3qo;

no = p® + 3q1;
(5.34)
n3 = —p° + 3p' +9q0 — 3q1;

Ny = _pO + 6(]0,

one can easily show that fine-tuning condition (31l can be rewritten in terms of symplectic BH charges as follows:
0_ 1_
P’ =30 —q, p =—3q. (5.35)

It is worth remarking that such a critical solution for the mirror sextic Mg had been previously investigated in
Sect. 7 of [I0]. Up to irrelevant changes of notation, Eq. ([&3H) coincides with Eq. (7.8) of [I0]. By considering the
second derivatives (BII)-([ETA) of the “effective BH potential” constrained by Eq. ([2Z8) and comparing them with
Eq. (7.9) of [1I0], one can state that the crucial difference between the results of [I)] and ours lies in the critical value

of the second holomorphic derivative of Vpp. Indeed, Eq. (7.9) of [I0] reads

(0605 VBH) pon—pps.g—o = 0- (5.36)

From our previous computations, consistently taking into account the needed orders in i to get the series expansion
for Vg up to O (w2) (or O (¢3)), we disagree with the critical value of the second holomorphic derivative of Vg at
the considered non-BPS, Z = 0 critical point given by Eq. (B38). According to our results, the statement made in [T0]
that the considered non-BPS, Z = 0 LG critical point of Vpy is actually an attractor in a strict sense for all possible
supporting symplectic BH charge configurations (B3H) does not hold. Instead, as correctly stated above, the non-BPS,
Z = 0 LG critical point 1 ~ 0 supported by the BH charge configurations (&31l) (PF) and (E3H) (symplectic) is a
saddle point of Vpy and consequently it is not an attractor in a strict sense.

Also, by recalling Eq. ([32) and using Eqs. (B33) and (34)-E3H), our analysis yields that the “effective BH
potential” and BH entropy at the considered (class of) non-BPS, Z = 0 LG saddle point(s) take the purely charge-

dependent values:

1 ™
VBHnon—BPS,Zz=0 = 2—\/5(3618 +41), SBHmon-BPS.Z=0 = 2—\/§(3L]§ + 7). (5.37)

As one can see, the value of Ve non—pBps,z=0 given by Eq. (&34) does not coincide with the one given by Eq. (7.10)

of [10].
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6 k£ =8: Mirror Octic

The case of mirror octic Mj§ (as well as the one of mirror dectic M), treated in Sect. [) needs a different approach
with respect to the cases of mirror guintic M§ and mirror sextic Mg, respectively treated in Sects. Hl and B

Indeed, contrary to what happens for k = 5,6 (see Eqs. () and &), respectively), for k = 8,10 the series
expansion of the Kéhler metric g, (1,) near the LG point starts with no constant term (namely, it is not regular at
¥ =0). As a consequence, one has to consider the series expansion of the “effective BH potential” Vzg up to O (¢*)
(rather than up to O (¢*), as it is for k = 5,6), in order to obtain all the relevant quantities up to O (¢?) (rather
than up to O (¢), as it is for k = 5,6).

For k = 8 the definitions (BI2) yield

C&2l—1 =0, l€N; (6.1)
moreover, since Fg m+s n = Fsm nts = —Fs mn (see the third of properties (822)), the only independent elements of
the rank-2 tensor Fg belong to the 8 x 8 matrix

224 V3 —J1047V3 0 V24 V3 0 2+ v2 0 Vio+7v2
-y +7v2 2 V2-v2 vz V10— 7v2 0 V2+v2 —3v2
0 \/2—\/5 2(—2+ v2) \/2—\/5 0 7\/1077\/5 0 \/1077\/5
V2+ V2 -vz V2 -2 0 —J2-va va —V2+v2 2
FS,mn - S R - -
0 V10— 7v2 0 —J2-v2  a-2v2 —J2-v2 0 V10— 7v2
7\/2+\/§ 0 7\/10—7\/5 V2 —\/27\/5 -2 \/10+7\/§ —3v2
0 \/2+\/§ 0 —\/2+\/§ 0 \/1o+7\/§ —4—-2v2 \/10+7\/§
\/10+7\/§ —3V2 \/1077\/5 2 \/1077\/5 —3v2 \/10+7\/§ 0
(6.2)

Let us now write down all the relevant quantities up to the needed order (here and below, unless otherwise specified,

we omit the Fermat parameter k = 8):

K~ (3-2v2) G002 1 - (8 - 36 -2VDEG) 00| + G0 + %) + 0W); 63)
9o 4B -2V G [1- 4 (G - 16 - 2vDF ) (W] + 0wT; 6.4)

T ~ C C4 N Cs N
W~ Ny + S N3yp? — SaNsypt — Go NS + O(y®). 6.5)

Now, by using the formule of the general analysis exploited in Sect. Bl we can get the “effective BH potential” and
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the holomorphic superpotential, as well as their (covariant) derivatives, up to O (wg):

W = Ny + 22 Nayp?;

DyW =282 Napp — 4% Nay® + 2(3 — 2v2) % Niwg?;

DyDyW = —8% N3yp?;

Ve = IN1 |2 + (34 2v2)|N3|? + 2%‘; (N3N1 — (34 2\/5)05_29)(]\73)2) N

122 (Noi — (3 4+ 2v2) 250 (V) ) 9

OuVin =40 [ S (NsNy — 3+ 20D %Ge(N3)?) — 3% (1+ (3 + 2V S ) N Nyw+

+g—§ (|N1|2(3 —2V2) + |N3|? (1 +4(3+ 2\/5)%292)) @52} :

@@ﬁgH:4%(Mﬂa—@+a¢®%§%N@ﬂ—4%%(1+@+a¢®gg)Nu%W+

2 22 —
4G (INPE=2vD) + NP (1446 +2vD) S ) ) %

0-V 5 22
0y0yVen = 82—% (|Nl|2(3 — 2\/5) + | Ns)? (1 Y4B+ 2\/5) COC?

) v

(6.10)

(6.11)

(6.12)

Let us stress once again that, contrary to the treatment of Sects. Hl and [, and as evident from Eqs. @3)-(@I2), for

the case of mirror octic we truncate the series expansion of the “effective BH potential” and of its second derivatives

around the LG point up to O (wg) included, and the series expansion of its first derivative around the LG point up to
o (w3) included. This is due to the absence of an O (1) term in expression of Vau given by Eq. [@3). As mentioned

at the start of the present Section, such a fact can be traced back to the non-regularity of g,,; at 9 = 0 (see Eq. ).

Let us now find the solutions of the AE 81/,‘73 H (@[J,E; q,p) = 0, and check their stability. Since we are working

near the LG point, by using Eq. [@3) we can rewrite the AE for M as follows:

& (NBNl -3+ 2\/5)05—2?0(]\73)2) +

2 2 ~2 —
+& (IMPE-2v2) + NP (1+ 46+ 2vD) %) ) 02 =

~ 3G (14 (34 2v2) S ) Ny Nyys?,

(6.13)

Solving Eq. ([@I3), we will find one (or more) set(s) of BH charges supporting ¢ ~ 0 to be a critical point of Vpg.
Since we are working near the LG point, it is clear that the first term in the left-hand side (Lh.s.) of Eq. (EI3) must
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be small enough. This implies the following fine-tuning condition:
N3N1 — 19(]\73)2 ~ 0,
= (3+2v2)%5".
By using Eqs. (4.7)-(4.12) of [T5] and Egs. II)-(@EI2) evaluated along the criticality condition (GI3)-([EId), it can

be computed that the components of H, Vi (given by Eq. (EId))) constrained by Egs. [E13)-(ETI4) read as follows:

real form

(6.14)

A=—6g (1 + (34 2V2) CGCO) (N1N3yp? + N1 N3y?) +
- (6.15)
E))

B=6gt ( (3+2\/_)C6C°) (N1N3yp? + N1 N3y?) +

+4g—§W (IN1|2(3 — 2v/2) + | N3|? (1 +4(3+2V2)

2 — 2 2 6-16)
¢ 2(9 _ 2 CoCy . (
+4Gud (1IN (3 2v3) + NP (1+ 403+ 2vD) S ) )
C= —Gig—é (1 + 3+ 2\/5) gigg) (N1N3%/;2 — N1N3¢2) . (6.17)
The resulting real eigenvalues of Hreﬁf’form constrained by Egs. [E13)-EId) read:
C3C3
A &~ A [ (|N 2(3 — 2v/2) + | N3|? <1+4(3+2\/§) ?;44» +
2
Cy CsC
135 <1+ (3+2f) 0 °> |N1||N3|} : (6.18)
0

By recalling Eq. (B30) and using Eq. (B3) with ¢ ~ 0 and constrained by Eqs. @I3)-@Id), one obtains that

the purely charge-dependent LG critical values of the “effective BH potential” for the mirror octic Mg are
VBH,LG—critical, k=8 = [|N1|2 3+ 2\/§)|N3|2} ; (6.19)
8(2+ xf 2)

by recalling formula ([C2), this directly yields the following purely charge-dependent values of the BH entropy at the

LG critical points of Vpp s in the moduli space of Mj:
SBH,LG—critical k=8 & [|N1|2 (3+ 2\/§)|N3|2} . (6.20)
8(2 + xf 2)
Let us write down here the numerical values of constants relevant to our treatment:

Co ~ 1.64, Cg ~ —0.9, C4 ~ 0.24, Cﬁ ~ —0.007, Cg ~ —0.004; ¥ ~ 2.83. (6.21)

Let us now analyze more in depth the species of LG attractor points arising from the AE (EId). As it can be
easily seen, the AE ([EIdl) has two non-degenerate solutions:
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I. The first non-degenerate solution to AE (@14 is
N; ~ 0. (6.22)

As one can see from Eq. (B8)-([@1), such a solution corresponds to a %—BPS LG critical point of Vpg (W # 0,
Dw/V[v/ = 0). From the definitions (B21) and B2]), in order to get the solution [E22), we have to fine-tune 2 PF BH

charges out of 4 in the following way:
ng ~ —ni+V2ns, ngx—vV2n1 + no, (6.23)

The charges n1, ns are not fixed; they only satisfy the non-degeneration condition Ny # 0. The real eigenvalues (GI8)

for the %—BPS critical solution coincide and, as it is well known [311 [I5, [I6], are strictly positive:
203
A1opps = A 1_pps N 4¢¢@|N1| (3-2v2) > 0.
0

Consequently, the %—BPS LG critical point ¢ & 0 supported by the PF BH charge configuration [B23)) is a stable
extremum, since it is a (local) minimum of Vg, and it is therefore an attractor in a strict sense. The “effective BH

potential” and BH entropy at such a (class of) 3-BPS LG attractor (s) take the values

VBH,%—BPS ~ 00366|N1|2, SBH,%—BPS ~ 003667T|N1|2, (624)
where
Ny~ 4—2V2[n (1 —i(1+V?2)) —na(14+ V2 —i)]. (6.25)

II. The second non-degenerate solution to AE ([EI4) reads (from Eqs. ([EI4) and [@2Z1)): ¢ = (3+2\/§)% ~ 2.83):

2
2

|N1| ~ J|Ns|,
(6.26)
arg(Ny) =~ 3arg(Ns),
where
N o~ V2oV2 ; V2 (m +n4+ (1+V2)(n +n3) —i((na — n1) (1 + V2) +ng — n?)) ; (6.27)
N3 =~ 2+\/§ (m + 4+ (1= V2)(n2 + ng) +i((na —n1)(1 — V2) + nz — ”2)) - (6.28)

As one can see from Eq. @8)-(@), such a solution corresponds to a non-BPS, Z # 0 LG critical point of Vg
(W £ 0, Dq/,ﬁ// # 0). The real eigenvalues [EIF) for such a non-BPS, Z # 0 critical solution read

i 2 CoC,
At mon— BPS.Z#0 & 41/)w|N3|QC—22 {(1 +5(3 — 2v/2)9?) + 3(3 — 2v/2)19? (1 + (3 +2V?2) CZCE )} ~
0

2
~ 4W|N3|2% [7.9£5.5] >0, (6.29)
0
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where in the second line we replaced some constants with their numerical values by using Eq. (E21)).

Thus, the non-BPS, Z # 0 LG critical point ¢ ~ 0 supported by the PF BH charge configuration (G26)-E2S) is
a (local) minimum of Vppy and consequently an attractor in a strict sense.

Let us now find the fine-tuning conditions for PF BH charges supporting the considered non-BPS, Z # 0 LG
attractor for the mirror octic M. This amounts to solving Eqs. ([E20)-EZ8) by recalling the definitions B21) and
B23). By doing so, one obtains the following three different sets of constraining relations on PF BH charges:

I1.1) n2 = (a1,£ +az)n1, nz=ni(arx —az), ng=-ni,
L e (6.30)
_ 3 [3(2=V2)9+Vv2 — V2+9(2-v2),
o, () = 2350\ e () =45
_ . 2+V2(9-1) — =nq;
I1.2) M2 =G Ay T8 = N2, Ma =M (6.31)
I13) no+ng=a, ni+na=bs, no—ng=c, ni—ny=d,

) — _ -2+ e+ (1+9)d
a(ﬁ,bﬂ:aca d) = _(1+19)C_(1+(\/§—1)19)dbi’ (6.32)

by (V;¢,d) =+ V= (V24 (24+v2)9) 2 +2v2(9— 1) cd+(v/2+(—2++/2)9)d?

2(vV2-3(2+V2)9)c24+4VZ2(1439) cd+2(—V2+3(—24+v2)8)d2
(149)2¢2 —2(14+9)(14+9(V2—1))ed+(1+9(—2+2V2+(3—22)9))d?

By recalling that ¢ &~ 2.83 (see Eq. (EZI])), the typology II.1 of fine-tuning conditions for PF BH charges yields
ng/nl ~ 2.44(—1.31), ng/nl ~ 131(—244), (633)

where, here and below, the numbers in round brackets correspond to consider a;,_, rather than aq 4, in Eqs. (@30).
Since the PF BH charges are integers as are the symplectic BH charges (see definition (B28)), the numerical conditions
E33)) can approximately be met by taking e.g.

ny =100, ng=244(—131), ng=131(—244), ny = —100. (6.34)

Switching to the symplectic (electric/magnetic) basis for BH charges by using Eq. (29), one gets

p° = 201 + ng = 100(100), p' = L [~3(n1 +n4) + no + ng] = 187(—187),
(6.35)
Qo = L(n1 +n4) =000), @ = 3(~2n1 +no —ny) = 72(—115).

For what concerns the typology I1.2 of fine-tuning conditions for PF BH charges, it is worth remarking that Eq.
(E3T) is the analogue for the mirror octic Mj of the fine-tuning condition [E33) adopted for the mirror guintic M§
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in [9] (in particular, see Sect. 4 and App. C of such a Ref.). By recalling that ¢ ~ 2.83 (see Eq. [EZ1])), the typology
I1.2 of fine-tuning conditions for PF BH charges yields

na/n1 ~ 18.6. (6.36)

Once again, since the PF BH charges are integers as are the symplectic BH charges, the numerical conditions (G330

can approximately be met by taking e.g.
ny = 10, Nng = 186, ns = 186, nygy = 10. (637)

Switching to the symplectic (electric/magnetic) basis for BH charges by using Eq. ([829), one obtains

¥ =2n; +ny =30, pl= % [-3(n1 4+ n4) + n2 + ng) = 156,
(6.38)
g = 3(n1+n4) =10, q1=3(—2n1 +ny —ng) =T8.
Once again, it is worth remarking that all three distinct sets of fine-tuning conditions for PF BH charges (E30)-
E32) do support a non-BPS, Z # 0 LG attractor in a strict sense.
The “effective BH potential” and BH entropy at such a (class of) non-BPS, Z # 0 LG attractor(s) take the values
|2

VBHnon—BPs,z20 ~ 0.211|N3|%,  SEH non—BPs, 220 ~ 0.2117|N3|?, (6.39)

where N3 is given by Eq.([28), implemented by one of the fine-tuning conditions (E30)-E32).
Finally, by recalling the definition (L2Zd), one can compute the supersymmetry-breaking order parameter for the
non-BPS; Z # 0 LG attractor in the mirror octic Mg; by using Egs. ([@4), 68), [@7) and [E24), one gets

~ 0.72.

-1 -1 —~
o B (g@) |DyW|? B (g@) | Dy W2 3422
non—BPS,Z#0 = |W|2 = |W|2 ~ T
non—BPS,Z#0 non—BPS,Z#0

(6.40)

7 k=10 : Mirror Dectic

For the mirror dectic M/, the computations (but not the results!) go the same way as for the mirror octic Mj.

For k = 10 the definitions BI2) yield
Coy1=C5-1=0, l€EN; (7.1)

moreover, since F19,m+10,n = F10,m n+10 = —F10,m n (see the third of properties (B222)), the only independent elements
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of the rank-2 tensor F}g belong to the 10 x 10 matrix

F107mn:
\/5(5+2¢3> -3 -5 0 3+ V5 —\/m 24+ V5 0 -2 0 24+ V5
—3- B V5 +2vE 3- V5 /26 +v5) 2+ VB V1o -2vE 2t vE 0 2 —\25 — 28
0 33 —/5(5 — 2v%) 2 —\/5(5 — 2v3) 3 - VB 0 2 V3 0 —24 VB
3+ V5 —\/m 2 7\/5—72\/3 -2+ V5 0 -3+ V5 V10— 2v3 -2- V5 V25 +2v3
—/5(5 +2v5) 24+ V5 ~\/55 — 2v5) —24+ VF o 2 VB V505 — 2v5) 2B V505 + 2vE) 8
245 —y/10 —2v5 3 V5 0 2 V5 V5 -2V -2 V26 + vB) -3- V5 V25 25
0 —24+ V5 0 —34+ V5 \/m —2 \/m —34+ V5 0 —2 4+ 5
-2 0 2 -5 \/m -2 -5 \/m —3+ V5 —\/5+72x/§ 3+V5 —\/m
0 2 0 23 V505 +2v5) —3-V3 0 3+ VB ~\/5(5 +2v5) 2+ V5
245 —\25 — 2% 24 V5 V25 +2v5 8 V25 425 —24vE /2525 245 0

Let us now write down all the relevant quantities up to the needed order (here and below, unless otherwise specified,

we omit the Fermat parameter k = 10):

R~ (65— VDG W) |1+ B2 G i) + 0w);

(7.3)
Gus 40— VDG [1+2( - VG )] + 0w, (7.4)
W~ Ny + S N3y — G2 N3y® + O(¥®). (7.5)

Now, by using the formulse of the general analysis exploited in Sect. Bl we can get the “effective BH potential” and

the holomorphic superpotential, as well as their (covariant) derivatives, up to O (¢?):

W =N, + 8—§N3w2;

(7.6)
7 _ oC cs 72.
DyW =28 N5y + 2(v/5 — 2) G Ny (7.7)
Dd,DwW = —24%NB¢4'
Co ’ (7.8)
Vea = |N1[? + (V5 + 2)|Ns|? + 282 N3Ny 9p? + 222 Ny N1 )%, (7.9)
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0 Vi = 4 (G2 NaNy = 3(v3 + D (Mo + G (IMA(V5 - 2) + |Naf?) 2

(7.10)
8¢8¢VBH :4(C2N3N1 —9(\/_+2)CG( ) ¢2 _z (|N1|2(\/g_2)+|N3|2) 152) ) (711)
51/,51;‘731{ = Sg—g (|N1|2(\/5 - 2) + |N3|2) ME (7.12)

Contrary to the cases of mirror quintic and sextic (see Sects. Hl and Bl respectively), and similarly to the case of
mirror octic (see Sect. [), for the case of mirror dectic it is evident from Eqs. (Z9)-([ZIJ) that we truncate the series
expansion of the “effective BH potential” and of its second derivatives around the LG point up to O (¢2) included,
and the series expansion of its first derivative around the LG point up to O (1/)3) included. This is due to the absence
of an O () term in expression of Vzy given by Eq. ([Z3). As mentioned in Sect. B, such a fact can be traced back to
the non-regularity of g,; at ¢ = 0 (see Eq. ([Z4)).

Let us now find the solutions of the AE &/JN/B H (w V3 q, p) = 0, and check their stability. Since we are working
near the LG point, by using Eq. ([Cd) we can rewrite the AE for M/, as follows:

%Ngm + =2 (|N1| (V5 —2)+ |N3|2) 0P 3(\/5+2)%2(N3)2¢2 (7.13)

Solving Eq. ([EI3), we will find one (or more) set(s) of BH charges supporting ¢ ~ 0 to be a critical point of Vgg.
Since we are working near the LG point, it is clear that the first term in the Lh.s. of Eq. ([ZI3)) must be small enough.

This implies the following fine-tuning condition:

By using Egs. (4.7)-(4.12) of [18] and Eqs. (ZII)-[ZI2) evaluated along the criticality condition [CI3)-CT4), it
can be computed that the components of H, Vi (given by Eq. @Id)) constrained by the Eqs. ([CI3)-([ZId) read

real form
as follows:
6V + 2 EE ()07 + (Na0?) + 45500 (I P(V5 - 2) + NP (715)
— 65+ 2 (Va0 + (V00°) + 4300 (NP (V5 — 2+ NP (7.16)
€ = —6i(V5 +2) 2 (N2 = (Na)0?) (r.17)
The resulting real eigenvalues of Hr‘gﬁf’form constrained by Eqs. (CI3)-([ZI4) read:
Ax & A [ (|N1| (V5—-2)+ |N3|2) +3(v5+ 2)%|N3|2 : (7.18)
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By recalling Eq. (B30) and using Eq. ([ZJ) with ¢ ~ 0 and constrained by by Eqs. ([ZI3))-([ZId), one obtains that

the purely charge-dependent LG critical values of the “effective BH potential” for the mirror dectic M/, are
1
VBH,LG—-critical k=10 X —F———= [|N1|2 + (V5 + 2)|N3|2} ; (7.19)
5(5 +2v/5)

by recalling formula (L), this directly yields the following purely charge-dependent values of the BH entropy at the
LG critical points of V10 in the moduli space of M]:

s

SBH,LG—critical k=10 X ———= {|N1|2 +(V5+ 2)|N3|2} . (7.20)
5(5+ 2V/5)

In both Eqs. (CI9) and [C20) N, and N3 are given by

N, = —%U 5_2\/5 <n1 +ng + Lﬁ(nz—i—ns)) +i\/54+1 <n4 —ni + 3_2\/5(713 —"2)> ;o (1.21)

N3 = % w <n1 +ng — \/52_ ! (n2 + ns)) +i\/g4_ ! <n4 —ni+ 5 +2\/5(n3 - nz)) : (7.22)

Let us write down here the numerical values of constants relevant to our treatment:

Cs

Co~ 157, Cy~—0.66, Cs~0.077; 3(v5+ 25
2

~ —1.48. (7.23)

Let us now analyze more in depth the species of LG attractor points arising from the AE ([ZId). As it can be
easily seen, the AE ([ZId)) has two non-degenerate solutions:

As it can be easily seen, also in this case the attractor equation ([ZId]) has two (non-degenerate) solutions:

I. The first non-degenerate solution to AE (T4 is
N; = 0. (7.24)

This is nothing but the & = 8 solution E22). As one can see from Eq. [Z8)-([CD), also for &k = 10 such a solution
corresponds to a 1-BPS LG critical point of Vg (W 0, Dq/,ﬁ// =0). From the definitions B217) and [B2]), in order
to get the solution ([C24l), we have to fine-tune 2 PF BH charges out of 4 in the following way:

1 1
ng ~ 5(\/5—1)(711—#712), n4m—§(\/5—1)n1+n2- (7.25)

The charges ny, no are not fixed; they only satisfy the non-degeneration condition N; # 0. As it was for k = 5,6, 8,
also the real eigenvalues [LI8) for the %—BPS critical solution coincide and, as it is well known |31, [T5, [I6], are strictly
positive:
-C3 o
Ay 1-Bps =A_ 1 pps ™ 4(V5 — 2)¢¢@|Nl| > 0. (7.26)
0
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Consequently, the %—BPS LG critical point ¢ &~ 0 supported by the PF BH charge configuration [Z2H) is a stable
extremum, since it is a (local) minimum of Vg, and it is therefore an attractor in a strict sense. The “effective BH

potential” and BH entropy at such a (class of) 3-BPS LG attractor(s) take the values

Vem,i—pps < 0.166|N1[*,  Spy1_ppg =~ 0.166m|N:[%, (7.27)

NGl N 5+5 . VB —1
le—7 5—2\/5n1+ 5 ng +1 [ ny— 5 n2 . (7-28)

II. The second non-degenerate solution to AE ([CId) is

where

Ny ~ 0. (7.29)

Interestingly, this is nothing but the & = 6 solution (&2ZF). As one can see from Eq. ([Z8)-({Z1), also for & = 10 such a
solution corresponds to a non-BPS, Z = 0 LG critical point of Vg (f/[v/ =0, Dq/,ﬁ// #0). The real eigenvalues ([[LI8)

for such a non-BPS, Z = 0 critical solution read

_ C? C
/\:t,7Lo7L—BPS,Z:O ~ 4¢1/)|N3|2 0_22 + 3(\/54— 2)66 :
0 2

Substituting the numerical values [L2Z3) of the involved constants in Eq. [Z3M), one reaches the conclusion that one

(7.30)

eigenvalue is positive and the other one is negative:
At non—BPS,z=0 ~ 41p|N3|* [0.18 T 1.48] < 0. (7.31)

Let us now find the fine-tuning conditions for PF BH charges supporting the considered non-BPS, Z = 0 LG attractor
for the mirror dectic M/,. This amounts to solving Eq. [Z29) by recalling the definitions (B2Z0) and [B25). By doing

so, one gets the following unique set of constraining relations on PF BH charges:

1 1
ny~ =S (L+VB) (i +ng), na~ S(L+ VB +na. (7:32)

Thus, the non-BPS, Z = 0 LG critical point ¢ = 0 supported by the PF BH charge configuration ([L32) is a saddle
point of Vpp and consequently it is not an attractor in a strict sense.

The “effective BH potential” and BH entropy at such a (class of) non-BPS, Z = 0 LG saddle point(s) take the
values
2

VBHnon—pPs,z—0 ~ 0.7|N3|*,  SpH.non—BPs,z—0 ~ 0.77|N3|?, (7.33)

/5 — 1
Ng%? \/5 +2v5n; + > 2\/5n2—i<n1+\/52+ n2> . (7.34)

Similarly to the treatment of Sects. EHE, one can also switch to the symplectic (electric/magnetic) basis for BH

where

charges by using Eq. (B2J), re-expressing the fine-tuning condition ([Z32) in terms of the symplectic BH charges
I'=(—p° —p', qo, ¢1) (see definitions ([FZ4)).
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8 Special Kahler Geometrical Identities and Fermat C'Y3s

Let us now consider the real part of the ny = 1 case of SK geometry identities ([CIH) [43] &), 3] [T5] [T6] 24]; by taking
into account the change in the notation of the symplectic charge vectors with respect to the notation used in Sects. [

and B (see Footnote before Eq. ([B2Z4])), one achieves:

-~ _ 1 _
T — 2¢K1m [WH n (gw) D¢WD¢H] : (8.1)

where the 1 x 4 BH charge vector in the symplectic basis [ is defined in Eq. BZ4).
Next, let us switch to more convenient variables for the treatment of 1-modulus SK geometries endowing the moduli
space of Fermat CY3s. By recalling the definition (B28) of the 1 x 4 PF BH charge vector n, we can rewrite Eq. (Bl

as follows (here and below, unless otherwise specified, we omit the classifying Fermat parameter k = 5,6, 8,10):

2 ~ = -1 _ = ~
T K
= Im |(Wo + - D;WD,® 2
n N 11e m{ (gwj) 5 W ], (8.2)

where the notations introduced in Sect. (@Bl have been used. Furthermore, we defined the 4 x 1 holomorphic vector

~ 1 1
d=—M"YT=—m" )
AC, AC, (8:3)

where Egs. BId) and BI9) have been used in the second step.
Firstly, let us investigate Eq.([&3) in a certain neighbourhood of the LG point ¢ = 0. The treatment given in Sects.
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EHA yields that, by its very definition (&3, ® has the following series expansion near the LG point2°:

®(v) = ' + G,
k=5:

Dyd =& [@2 +282 7%y + g (V5 — 2)@“/3} ; (8.4)
O () = ! + Gy,
k=6 B
Dyd =& {@2 + %g—;wlw} ; (8.5)
O () = ! + 2%y,
k=8 B
Dy =252y [303 — 25552 + 2(3 - 2\/§)<p1w2} ; (8.6)
O () = o' + L%y,
k=10 B
Dy =280 [+ G (V5 - 2)¢1?]. (8.7)
We defined the complex 4 x 1 vector
3Im
k
B
o= my , (m=1,2,3), (8.8)
B ™
ﬁlz?)m

20Notice that, consistently with the approach to the truncation of series expansions near the LG point performed in Sects. EHA for
k = 5,6 we truncate up to O (¢) included, whereas for k = 8,10 we truncate up to O (1/;2) included.
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whose explicit forms relevant for the series expansion [&Z)-(&) read as follows:

V5425405 V5 —2v5 —iV5

5+v5 | 1 5—v5 | 1:
k=50 ¢l =552 G e o N Y
5455 4 Li(5+ 3v/5) 55 1 Li(5 - 3V/5)
V54 2V5 +iV5 V5 —2v5—iV/5
—V3+i 1—iV3
2 ~1
— - 1_ 3 2 __ 1 .
k=6: ¢ =3 9i , v =31 ; (8.10)
V3+i —1-iV3
—2—V2+iV2 —2+V2+1iv2
. 1_1 —V2+i(2+V2) 3_ 1./ V24i(—2+2) )
k=8: o' =1v2+2 V242 1 v3) , ¢t =1v2-\2 CVari—24va) | (8.11)
2+ V24iv2 2-V2+4iv2
—3V3+ VB +iy/ B W B4y 58
i 2 —q _ 2
P v L4 /1+ 2 Y v BV
k=10: ¢ =5/ 5> , @° =34/ .(8.12)
1+ 1+ % —1-i/1- %
V3 + V5 iy /25 L/3- B +iy/ 25

Using Egs. B3)-®TIJ), one obtains that Eq. (E2J) near the LG point of the moduli space of Fermat CY3-

compactifications (when consistently truncated up to the order in ¢ considered above) reads

2 . Fi1 -
k = 5, k=6: n?= Im[N LN 2}; 8.13
xFq 17 Fyo 2% (8.13)

2 _ Fl]_f
k= 8 k=10: nT = Im{N LN 3]. 8.14
xF11 ¥ F33 3% (8:.14)

Thence, it is easy to check that, substituting the explicit forms of N ., (¢,p), ¢¥' and Fj mr (see Egs. B2Z0), &)
and ([BZII), respectively) in Eqs. (BT3)-&TI4), they become trivial identities, yielding nothing but

ny =ni, Nng = Na, ng = ns, Ng = Ny. (815)

In other words, the 4 real Eqs. ([82) are not equations, but rather they are identities. Therefore, they are satisfied at
every point in the moduli space and for every BH charge configuration. Therefore, it is no surprise if, when evaluating
them in a certain neighbourhood of the LG point as we did, one finds the identical relations ([8TH). Thus, we found
nothing new but another confirmation of a well known fact of SK geometry [E3| 8l [[3], [[5], 6] 24].

However, the 4 real identities [B2) can still be used to find extremal BH attractors, when properly evaluated
along the constraints defining the various species of such attractors satisfying the criticality condition of the “effective
BH potential” V. Put another way, in the 1-modulus case with which we are concerned, when evaluated at the

geometrical loci in the moduli space defining the various tipologies (i.e. %—BPS, non-BPS Z # 0 and non-BPS Z = 0)
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of attractors, the 4 real identities (B2 become 4 real equations. These are equivalent to the 2 real equations given
by the real and imaginary part of the criticality condition 9y Vgy = 0. This approach has recently been used in [§]
for the general ny-moduli case, and then further investigated in [I3]. The SK geometrical identities in the general
ny-moduli case had previously been formulated in [43] in terms of the decomposition of the third real cohomology

H3 (CY3;R) of the C'Y3 in the Dolbeaut cohomology basis (see [&3], and [38] for further Refs.).

In the remaining part of the present Section we will focus on the 1-modulus case related to Fermat CY3-compactifications,
and we will evaluate the 4 real identities (B2) at the geometrical loci in the moduli space defining the various classes
of extremal BH attractors. We will consequently show that solving the obtained 4 real equations is equivalent to
solving the 2 real equations corresponding to the real and imaginary parts of the criticality condition 33). Thus,
it follows that only 2 equations are independent out of the starting 4 ones. From a computational point of view, one
can realize that, at least in the framework we are considering, the “criticality condition” approach is simpler than the
“SK geometrical identities” approach, at least for the non-BPS, Z # 0 case.

Let us now evaluate the 4 real SK identities (2] along the 3 geometrical loci defining the 3 species of critical
points of Vpy arising in SK geometry.

%-BPS critical points. The corresponding geometrical locus in the moduli space is given by the constraints
w #0, D¢W = 0, which directly solve the criticality condition (i.e. the 1-modulus AE) [B33). By evaluating the 4
real SK identities (B2) along such critical constraints, one gets

nT = X}zll {eklm [Wg}}

ne (8.16)
2

Such 4 real equations constrain the PF BH charge configurations along the locus w #0, D¢W =0 of %—BPS critical

points of Vg in the moduli space (dimc = 1) of Fermat CY3s. One can explicitly check that for all Fermat CYss
the solutions of the 4 real Eqs. ([BIf) near the LG point give nothing but the %—BPS—supporting PF BH charge
configurations previously computed in Sects. BHI exploiting the so-called “criticality condition” approach.
non-BPS, 7 # 0 critical points. The corresponding geometrical locus in the moduli space is given by the
constraints W #0, wa # 0, which, by the criticality condition ([B33) and the definition B31I), yield
(9,5) 7" (DyDyW ) Dy

(EEW) non—BPS,Z#0 oW ' (8.17)

non—BPS,Z#0

By inserting Eq. (BID) in the 4 real SK identities ([82), one obtains 8| 3] [6]

- [~ ()2 (DeDaW) D
nT o= 2R e - vy Dy - (8.18)
XFi1 oW
L non—BPS,Z#0
- .
_3 Y
2 _ = (9pp) T Cyyy (D*W) _ =
- KIm | W +i SR , (8.19)
xFi1 oW
L non—BPS,Z#0
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where, in the second line, we used the ny =1 case of the second SK differential relation of (LI2), yielding
Dy DyW = iCyyu(gy5) " DyW (8.20)

at every point in the moduli space. The 4 real Eqs. [BI8)-Id) constrain the PF BH charge configurations along
the locus [BID) of non-BPS Z # 0 critical points of Vg in the moduli space (dim¢ = 1) of Fermat CYss.
Let us for example consider the mirror quintic Mf. From the treatment given in Sect. Hl and above, the 4 real
Eqgs. (BIR) take the following form near the LG point:
nt = X;M.Tm Mgt — (V5 + 2)§N]2V—J1V2<p2 ) (8.21)
where ¢ is defined in Eq. [21). Substituting into Eqs. ([Z]) the explicit expressions for the Ns (see Sect. Hl) and the

vs (see Eq. (BH)) and performing long but straightforward computations, it can be shown that one generally recovers
all the three distinct sets of BH charge configurations ([EE32)-E34) supporting the considered non-BPS Z # 0 LG
attractor. The same can be explicitly checked for the mirror octic Ms.

non-BPS, Z = 0 critical points. The corresponding geometrical locus in the moduli space is given by the
constraints W = 0, Dw/V[v/ # 0, which, by the criticality condition [B33) and the definition B31l), yield

(DwaW)mn_BPS’Z:O ~0. (8.22)

By recalling Eq. ([B3H), the replacement of W = 0 and of the condition E22) into the 4 real SK geometrical identities
[B2) yields the following 4 real equations:
. - —
) S AN g A
=3 (gy) o v D% . (8.23)
Xt Oy [ln (905) —K}

Such 4 real equations constrain the PF BH charge configurations along the locus &22) of non-BPS Z = 0 critical

non—BPS,Z=0

points of Vg in the moduli space (dimc = 1) of Fermat CYss.

Let us for example consider the mirror sextic My. As one can easily check by using Eqgs. B33) and ([&8)- (), in
this case W = 0 directly satisfies the criticality condition B33). Consequently, rather than Eqgs. [823), in order to
exploit the so-called “SK geometrical identities” approach, one can consider the 4 real equations

nt — % { (gd@) -1 KIm [&ZWDMT’} }mm_BPS’Z_O , (8.24)

obtained from identities [82) by simply putting W =0 and by replacing Eqﬁﬁ// with 51;/12[7, as implied by W = 0.
From the treatment of Sect. B and above, the 4 real Eqs. (824 take the following form near the LG point:
) _
T 2
no =— Im |N. . 8.25
XF22 [N2”] (8.25)
Substituting the explicit expressions for Ny (see Eq. ([E33)) and for ¢? (see Eq. ([&I0)) into Eqs. [®ZH), it can be
shown that one obtains nothing but the fine-tuning conditions ([E31)) for PF BH charges supporting the considered

non-BPS Z = 0 LG attractor. The same can be explicitly checked for the mirror dectic M.
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9 Consistent Normalization of Picard-Fuchs Equations for Fermat C'Y3s

It is interesting to notice that Eq. (E20) yields a way to compute the covariantly-holomorphic Yukawa coupling
function Cyypy (@b,@) along the locus wa # 0 of ny = 1 SK manifolds, such as the moduli spaces of Fermat CY3s.

Indeed, Eq. (8Z0) implies

DDwW(

Zwaw = gww Dd,w 75 0) . (91)

Therefore, by employing the formulae and the treatment given in Sects. BHZ, one can use Eq. @Il to compute iCyyy
for all the Fermat CY3s near the LG point 1 = 0. Keeping only the first orders, the LG limit for iCy.y or all the
Fermat CY3s reads:

c.C
E=5: iCyyy = 2(\/— -2) 522, (9.2)
. C C
k=6: Zcq/”/”/, = - (17231,/), (9.3)
. CyC.
k=8: iCypy=—16(3—2V2) éz4¢ ; (9.4)
k=10: iCyypy = —48(V5 —2) 0206 ¢5 (9.5)
Now, by recalling the first of defining relations ([Z34l) and Eq. ([230), one arrives at
1 _effw . (Ord(Gy))? e
asi (V) = = i- = OrdGR))” : (9.6)

Wygwk  Cpypypr  (21)5CE o Fia1 (1Cyyu,k)
where the first definition of [B31]) has been used in the last step, and classifiying Fermat parameter k has been
restored in the notation. By substituting Eqs. (@2)-(@3) in Eq. ([@0) and recalling the treatment of Sects. BHl one
gets nothing but the LG limit of the holomorphic function a4 (1) for Fermat CY3s:

(Ord(Gp))? e kxk

5— k
2 CZ, Fom (1O (@m)BY 60

lim¢_,0a4,k (¢) = limu,_,oi(

where the constants ygs are given in Table 4.

In order for the general treatment reported in Sects. [[l and 2 to be consistent with the general analysis and explicit
computations for Fermat CY3s performed in Sects. B the LG limit given by Eq. (@) should coincide with the
LG limit of a4 (¢) as given by Eq. Z23). By putting n = 4 in such an equation, and recalling that 74, = 1
Yk =5,6,8,10 (see Table 2), one achieves that

lim¢_,0a4,k (¢) = limq/,_,o [—041/)5 + 7'4,]@’1,/)5716} = 1,/)5716. (9.8)

By comparing Eq. (@) with Eq. ([@38), one notices that they differ by the factor z(’;%’)”g
The factor “¢” can be explained simply: the definitions ([234]) are consistent with a notation in which the Cjj;i
tensor of our treatment actually is “—iCj;,” (compare e.g. the second of Egs. (8) of [#4] with the second of Egs.

(E2)); thus, one can get rid of the “” without any problem.
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Concerning the k-dependent real factor “é%’)“g,”, it simply means that, in order to make our treatment of 1-modulus

SK geometry of the moduli space of Fermat C'Y3s consistent with the general theory exposed in Sects. [l and B one

has to multiply the L.h.s. of 1-modulus PF Eq. ([Zh3) for Fermat CY3s by the k-dependent real factor (’gﬁ’)‘g . Of course,

such an overall multiplication by a constant factor will not affect the differential relations ([2337), nor will it change
the solutions of 1-modulus PF Eq. [Z53).
In other words, the consistent normalization of 1-modulus PF Eq. [Z353)) for Fermat CY3s implies Eq. [Z23) to
be further “corrected” as
Yo n (1) 0" Vi (1) = 0,
an g () = 5% [—ong™ ™+ (=1)" T T

Having obtained the matching in the LG limit, we can now reconsider the first of the defining relations [234)); from

(9.9)

the correctly normalized definition of the a, i (1)s given in the second line of Eq. (@), one can achieve the exact,
k-parametrized formula for the holomorphic part Wyyy i (¢) of Cyyy.k (¢, %) for Fermat CYis:

)3
Wy i (V) = Wi () = [aar W)]il = (le (@[154@1_ Y5)’ (9.10)

where Tables 1 and 2 have been used.
By using the exact formula ([@I0), the evaluation of such an holomorphic Yukawa coupling function near the three

species of regular singular of points of PF ordinary differential Eqs. for Fermat C'Y3s yields:

3 3
LG limit : limy__oWy, (¢) = limw_,o%wf—f’ — %5,@,5; (9.11)
Conifold limit : |limyr__ Wy (¢)| = oo (9.12)
Large complex structure modulus limit : limy_— oWy (¢) = — (2,;;)31#’5. (9.13)

Finally, by multiplying Wj (¢) by e®* (%) and recalling the first definition of B3Il), one can obtain the k-
parametrized formula for Cyyy, i (¥, 1) for the class of Fermat CY3s:

= _ K (0.9 1 (Ord(Gy))? eKn(v:9) B k3 Xk Kr(v:9)
Covwi (0.9) =e " laar (W] = (2m)3CE o Frikxs (0578 —4%) — (2m)3CE (Fi1 ($0~F — 40) (6-14)

where in the last step we used the relation Ord(G) = xxk? (see Sect. B). If the real function Kj (1, 9) is left as a

generic one, Eq. (@Id)) can be considered as the exact formula for Chyypy & (1/),@), holding true at every point in the
moduli space of the class of Fermat CY3s. On the other hand, if Ky (@b,@) is given, through the first definition of
B31), by Eq. B20), Eq. [@Id) gives the series expansion of the covariantly-holomorphic Yukawa coupling function
Cypip (%E) near the LG point of the moduli space of Fermat CY3ss. In such a case, by performing the LG limit
1 — 0 of Eq. ([@I4) and considering the treatment and the formulee from Sects. BHAl one finally achieves:

. — k3 _
limy—oCuyyp, (¥, 9) = ( Xy, (9.15)

27T)30]%70Fk,11
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As expected, this is nothing but the k-parametrized formula summarizing Eqs. (@2)-(@H).

10 Conclusions and Outlook

In the present work we investigated non-degenerate extremal BH attractors near the so-called LG point ¢ = 0 (herein
named LG attractors) of the moduli space (dimgc = 1) of the class of Fermat Calabi-Yau threefolds. We found the
BH charge configurations supporting 1) = 0 to be a critical point of the real, positive-definite “effective BH potential”
Ven defined in Eq. ([C24).

In order to do this, we exploited two different approaches:

1) “criticality condition” approach: we solved at 1 = 0 the 2 real criticality conditions of Vgg, corresponding in
the 1-modulus case to the real and imaginary part of the Attractor Eqs. [L23)) (see Sects. EHD);

2) “SK geometrical identities” approach: we evaluated at 1) ~ 0 the 4 real fundamental identities (Bl of 1-modulus
SK geometry at the geometrical loci corresponding to the various species of critical points of Vg (see Sect. B).

We found that the results of two such solving approaches do coincide, in spite of the different number of real Egs.
involved in approaches 1 and 2. The equivalence of the above-mentioned approaches to find the critical points of Vpy
(and the BH charge configurations supporting them) is explicit proof of the fact that the relations &Il actually are
identities and not equations, ¢.e. that, for any point of the moduli space at which we evaluate them, they do not give
any constraint on the charge configuration.

It is worth pointing out that the “criticality condition” approach had been previously exploited in literature only
for the following cases:

a) marror quintic (k = 5) in |9], where however peculiar Ansdtze (on the BH charge configuration and on ¢ in the
neighbourhood of the LG point) were used, implying a certain loss of generality;

b) mirror sextic (k= 6) in [10].

On the other hand, the “SK geometrical identities” approach (and its equivalence with the “criticality condition”
one) had been hitherto exploited only in [I3]; in such a Ref., the mirror quintic was considered within the same
simplifying Ansdtze formulated in [9], obtaining a complete agreement with the results of [9].

As a by-product of our computations, we extended the results of [9 and [I3] to full generality (see Sect. H).
Moreover, we found that the analysis of the stability of v = 0 as a non-BPS, Z = 0 critical point of Vg in the mirror
sextic, performed in Sect. 7 of [I0], suffers from some problems of inconsistency. Indeed, in [I0] it was found that
the LG point (supported by a certain BH charge configuration characterizing it as a non-BPS, Z = 0 critical point
of Vpp) is stable (minimum of Vpy). Instead, our computations (see Sect. Hl), which carefully took into account the
relevant orders in 1) and 1) in the truncation of the series expansion around 1) = 0, allow us to conclude that, for the
same supporting BH charge configuration, the LG point is unstable (namely, a saddle point of Vg).

We also checked the stability of ¢» = 0 by inspecting the Hessian matrix of Vppy in correspondence to the various

BH charge configurations supporting the LG point to be a critical point of Vpg. A sketchy summary of our results is
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given by the following Table:

| E— [ 5 | 6 | 8 | 10 |
1 BPS stable, stable, stable, stable,
2 1 charge config. 1 charge config. 1 charge config. 1 charge config.
stable, stable,
non-BPS, Z 7 0 3 charge configs. B 3 charge configs. B
unstable, unstable,
non-BPS, Z =0 B 1 charge config. B 1 charge config.

Table 5: Species and stability of the critical points of Vpy in the moduli space of Fermat CY3s

The stability of v =0 as a %—BPS attractor agrees with the known results from general analysis of SK geometry
of scalar manifolds in /' = 2, d = 4 supergravity coupled to ny Abelian vector multiplets |31, [15] [T6].

Regardless of the kind of BH charge configuration supporting them, the non-BPS, Z # 0 LG attractors, when
they exist, are found to be stable (local minima of Vg ). This means that, for all the configurations of supporting
BH charges, these non-BPS, Z # 0 LG attractors satisfy the general condition of stability in 1-modulus SK geometry,
given by Eq. (4.27) of [15].

It is interesting to compare such a result to what happens in the large volume limit of C'Y3-compactifications of
Type II A superstring theory. Indeed, in such a framework (with a generic number ny of complex structure moduli)
in [9 it was shown that the stability of non-BPS, Z # 0 critical points of Vg (and therefore their actual attractor
behaviour) within a certain supporting BH charge configuration, crucially depends on the possible vanishing of p°, i.e.
of the asymptotical magnetic flux of the graviphoton field strength, whose microscopical interpretation corresponds to
a D6-brane wrapping p° times a 3-cycle of the considered CY3. Nevertheless, also in such a context in the 1-modulus
case (ny = 1) the non-BPS, Z # 0 critical points of Vg are always stable, and therefore they are attractors in a
strict sense.

Furthermore, one can also observe that all Fermat CY3s admit only one kind of non-BPS LG attractors, either
with Z # 0 or with Z = 0; for the allowed values of the classifying Fermat parameter k£ = 5,6,8,10, one gets the
“pattern” shown in Table 5 above.

Once again, such a feature is exhibited also by the large volume limit of of C'Y3-compactifications, whose related
SK geometry is characterized by cubic holomorphic prepotentials; indeed, it can be explicitly computed that the
1-modulus prepotential F (z) = %z?’, corresponding to the homogeneous symmetric SK manifold < g((i)l) (see 22] and

Refs. therein), admits 2-BPS and non-BPS, Z # 0 attractors only [22).

It is worth mentioning that the fourth order linear ordinary differential Picard-Fuchs equations of Fermat CYss
E313) (specified by Tables 1 and 2) exhibit other two species of regular singular points, namely the k-th roots of
unity (¢* = 1, the so-called conifold points) and the point at infinity 1) — oo in the moduli space, corresponding
to the so-called large complex structure modulus limit. It would be interesting to solve criticality conditions for Vpy

near such regular singular points, i.e. to investigate extremal BH conifold attractors and extremal BH large complex
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structure attractors in the moduli space of 1-modulus (Fermat) CY3s, also in view of recent investigations of extremal
BH attractors in specific examples of 2-moduli C'Y3-compactifications [25].

When C'Y3-compactifications with more than one complex structure deformation modulus are considered, it is clear
that interesting situations might arise other than the ones present at 1-modulus level. Indeed, differently from what
has been studied so far [25], in such frameworks all three species of extremal BH (LG) attractors (namely £-BPS,
non-BPS Z # 0 and non-BPS Z = 0) should exist, each typology being supported by distinct, zero-overlapping BH
charge configurations. (Ja va sans dire that such an issue deserves more investigation and analyzing efforts.

Finally, it is worth spending a few words concerning the instability of non-BPS, Z = 0 (LG) attractors in the
1-modulus case. It would be intriguing to extend to such a framework the same conjecture formulated in [24]. In
Sect. 5 of such a Ref., in the framework of (the large volume limit of C'Y3-compactifications leading to) the peculiarly
symmetric case of cubic stu model, it was argued that the instability of the considered non-BPS attractors might be
only apparent, since such attractors might correspond to multi-centre stable attractor solutions, whose stable nature
should be “resolved” only at sufficiently small distances. As mentioned, it would be interesting to extend such a
conjecture to the non-BPS, Z = 0 (LG) attractors, also in relation to the possible existence of non-BPS lines of
marginal stability |51, B2.

Acknowledgments

It is a pleasure to acknowledge proofreading by Mrs. Suzy Vascotto and Mrs. Helen Webster.

A. Y. would like to thank the INFN Frascati National Laboratories for the kind hospitality extended to him during
the work for the present paper.

The work of S.B. has been supported in part by the European Community Human Potential Program under
contract MRTN-CT-2004-005104 “Constituents, fundamental forces and symmetries of the universe”.

The work of S.F. has been supported in part by the European Community Human Potential Program under
contract MRTN-CT-2004-005104 “Constituents, fundamental forces and symmetries of the universe”, in association
with INFN Frascati National Laboratories and by D.O.E. grant DE-FG03-91ER40662, Task C.

The work of A.M. has been supported by a Junior Grant of the “Enrico Fermi” Centre, Rome, in association with
INFN Frascati National Laboratories.

The work of A.Y. was supported in part by the grants NFSAT-CRDF ARPI-3328-YE-04 and INTAS-05-7928.

References

[1] S. Ferrara, R. Kallosh and A. Strominger, N = 2 Eatremal Black Holes, Phys. Rev. D52, 5412 (1995),
hep-th/9508072.

[2] A. Strominger, Macroscopic Entropy of N =2 Extremal Black Holes, Phys. Lett. B383, 39 (1996),
hep-th/9602111.

[3] S. Ferrara and R. Kallosh, Supersymmetry and Attractors, Phys. Rev. D54, 1514 (1996), hep-th/9602136.

54



[4] S. Ferrara and R. Kallosh, Universality of Supersymmetric Attractors, Phys. Rev. D54, 1525 (1996),
hep-th/9603090.

[5] A. Sen, Black Hole Entropy Function and the Attractor Mechanism in Higher Derivative Gravity, JHEP 09, 038
(2005), hep-th/0506177.

[6] K. Goldstein, N. lizuka, R. P. Jena and S. P. Trivedi, Non-Supersymmetric Attractors, Phys. Rev. D72, 124021
(2005), hep-th/0507096.

[7] A. Sen, Entropy Function for Heterotic Black Holes, JHEP 03, 008 (2006), hep-th/0508042.
[8] R. Kallosh, New Attractors, JHEP 0512, 022 (2005), hep-th/0510024.

[9] P. K. Tripathy and S. P. Trivedi, Non-Supersymmetric Attractors in String Theory, JHEP 0603, 022 (2006),
hep-th/0511117.

[10] A. Giryavets, New Attractors and Area Codes, JHEP 0603, 020 (2006), hep-th/0511215.

[11] K. Goldstein, R. P. Jena, G. Mandal and S. P. Trivedi, A C-Function for Non-Supersymmetric Attractors, JHEP
0602, 053 (2006), hep-th/0512138.

[12] M. Alishahiha and H. Ebrahim, Non-supersymmetric attractors and entropy function, JHEP 0603, 003 (2006),
hep-th/0601016.

[13] R. Kallosh, N. Sivanandam and M. Soroush, The Non-BPS Black Hole Attractor Equation, JHEP 0603, 060
(2006), hep-th/0602005.

[14] B. Chandrasekhar, S. Parvizi, A. Tavanfar and H. Yavartanoo, Non-supersymmetric attractors in R? gravities,

hep-th/0602022.

[15] S. Bellucci, S. Ferrara and A. Marrani, On some properties of the Attractor Equations, Phys. Lett. B635, 172
(2006), hep-th/0602161.

[16] S. Bellucci, S. Ferrara and A. Marrani, Supersymmetric Mechanics. Vol.2: The Attractor Mechanism and Space-
Time Singularities (LNP 701, Springer-Verlag, Heidelberg, 2006).

[17] G. L. Cardoso, D. Liist and J. Perz, Entropy Maximization in the presence of Higher-Curvature Interactions,
JHEP 05, 028 (2006), hep-th/0603211.

[18] B. Sahoo and A. Sen, Higher-derivative corrections to non-supersymmetric extremal black holes, hep-th/0603149.

[19] S. Ferrara and R. Kallosh, On N = & attractors, Phys. Rev. D 73, 125005 (2006), hep-th/0603247.

95


http://arXiv.org/abs/hep-th/9603090
http://arXiv.org/abs/hep-th/0601016
http://arXiv.org/abs/hep-th/0602005
http://arXiv.org/abs/hep-th/0603247

[20]

[23]
[24]

[25]

[30]

[31]

[32]

[33]

[34]

M. Alishahiha and H. Ebrahim, New attractor, Entropy Function and Black Hole Partition Function,
hep-th/0605279.

S. Ferrara and M. Giinaydin, Orbits and attractors for N = 2 Maxwell-FEinstein supergravity theories in five

dimensions, hep-th/0606108.

S. Bellucci, S. Ferrara, M. Giinaydin and A. Marrani, Charge Orbits of Symmetric Special Geometries and At-
tractors, hep-th/0606209.

D. Astefanesei, K. Goldstein, R. P. Jena, A. Sen and S. P. Trivedi, Rotating Attractors, hep-th/0606244.
R. Kallosh, N. Sivanandam and M. Soroush, Ezact Attractive non-BPS STU Black Holes, hep-th/0606263.

P. Kaura and A. Misra, On the FExistence of Non-Supersymmetric Black Hole Attractors for Two-Parameter

Calabi- Yau’s and Attractor Equations, hep-th/0607132.

G. L. Cardoso, V. Grass, D. Liist and J. Perz, Extremal non-BPS Black Holes and Entropy Extremization,
hep-th/0607202.

J. F. Morales and H. Samtleben, Entropy Function and Attractors for AdS Black Holes, hep-th/0608044.

J. D. Bekenstein, Phys. Rev. D7, 2333 (1973) ¢ S. W. Hawking, Phys. Rev. Lett. 26, 1344 (1971); in: “Black
Holes” (Les Houches 1972), C. DeWitt and B. S. DeWitt eds. (Gordon and Breach, New York, 1973) ¢ S. W.
Hawking, Nature 248, 30 (1974) ¢ S. W. Hawking, Comm. Math. Phys. 43, 199 (1975).

G. W. Gibbons and C. M. Hull, A Bogomol’ny Bound for General Relativity and Solitons in N = 2 Supergravity,
Phys. Lett. B109, 190 (1982).

R. Arnowitt, S. Deser and C. W. Misner, The Dynamics of General Relativity, in : “Gravitation: an Introduction

to Current Reserach”, L. Witten ed. (Wiley, New York, 1962).

S. Ferrara, G. W. Gibbons and R. Kallosh, Black Holes and Critical Points in Moduli Space, Nucl. Phys. B500,
75 (1997), hep-th/9702103.

S. Ferrara and M. Glinaydin, Orbits of Exceptional Groups, Duality and BPS States in String Theory, Int. J.
Mod. Phys. A13, 2075 (1998), hep-th/9708025.

A. Strominger and E. Witten, New Manifolds for Superstring Compactification, Commun. Math. Phys. 101, 341
(1985).

P. Candelas, X. C. De La Ossa, P. S. Green and L. Parkes, A Pair of Calabi-Yau Manifolds as an Exactly Soluble
Superconformal Theory, Nucl. Phys. B359, 21 (1991).

56


http://arXiv.org/abs/hep-th/0607202

[35]

[44]

[45]

[46]

P. Candelas, X. C. De La Ossa, P. S. Green and L. Parkes, An FEzactly Soluble Superconformal Theory from a
Mirror Pair of Calabi-Yau Manifolds, Phys. Lett. B258, 118 (1991).

A. C. Cadavid and S. Ferrara, Picard-Fuchs Equations and the Moduli Space of Superconformal Field Theories,
Phys. Lett. B267, 193 (1991).

A. Klemm and S. Theisen, Considerations of One Modulus Calabi- Yau Compactifications: Picard-Fuchs FEqua-
tions, Kdhler Potentials and Mirror Maps, Nucl. Phys. B389, 153 (1993), hep-th/9205041.

A. Ceresole, R. D’Auria and S. Ferrara, The Symplectic Structure of N = 2 SUGRA and Its Central Extension,
Talk given at ICTP Trieste Conference on Physical and Mathematical Implications of Mirror Symmetry in String
Theory, Trieste, Italy, 5-9 June 1995, Nucl. Phys. Proc. Suppl. 46 (1996), hep-th/9509160.

B. Craps, F. Roose, W. Troost and A. Van Proeyen, The Definitions of Special Geometry, hep-th/9606073.

B. Craps, F. Roose, W. Troost and A. Van Proeyen, What is Special Kihler Geometry?, Nucl. Phys. B503, 565
(1997), hep-th/9703082.

L. Castellani, R. D’Auria and S. Ferrara, Special Geometry without Special Coordinates, Class. Quant. Grav. 7,
1767 (1990) ¢ L. Castellani, R. D’Auria and S. Ferrara, Special Kahler Geometry: an Intrinsic Formulation from
N = 2 Space-Time Supersymmetry, Phys. Lett. B241, 57 (1990).

R. D’Auria, S. Ferrara and P. Fré, Special and Quaternionic Isometries: General Couplings in N = 2 Super-
gravity and the Scalar Potential, Nucl. Phys. B359, 705 (1991) ¢ L. Andrianopoli, M. Bertolini, A. Ceresole, R.
D’Auria, S. Ferrara, P. Fre and T. Magri, N = 2 Supergravity and N = 2 Super Yang-Mills Theory on General
Scalar Manifolds : Symplectic Covariance, Gaugings and the Momentum Map, J. Geom. Phys. 23, 111 (1997),
hep-th/9605032 ¢ L. Andrianopoli, M. Bertolini, A. Ceresole, R. D’Auria, S. Ferrara and P. Fré, General Matter
Coupled N = 2 Supergravity, Nucl. Phys. B476, 397 (1996), hep-th/9603004.

S. Ferrara, M. Bodner and A. C. Cadavid, Calabi-Yau Supermoduli Space, Field Strength Duality and Mirror
Manifolds, Phys. Lett. B247, 25 (1990).

S. Ferrara and J. Louis, Flat Holomorphic Connections and Picard-Fuchs Identities from N = 2 Supergravity,
Phys. Lett. B278, 240 (1992), hep-th/9112049.

A. Ceresole, R. D’Auria, S. Ferrara, W. Lerche and J. Louis, Picard-Fuchs Equations and Special Geometry, Int.
J. Mod. Phys. A8, 79 (1993), hep-th/9204035 { A. Ceresole, R. D’Auria, S. Ferrara, W. Lerche, J. Louis and
T. Regge, Picard-Fuchs Equations, Special Geometry and Target Space Duality, in: “Mirror Symmetry 1I”, B. R.

Greene and S.-T. Yau eds. (American Mathematical Society - International Press, 1997).

A. Strominger, Special Geometry, Commun. Math. Phys. 133, 163 (1990).

o7


http://arXiv.org/abs/hep-th/9205041
http://arXiv.org/abs/hep-th/9509160

[47] P. Candelas, M. Lynker and R. Schimmrigk, Calabi-Yau Manifolds in Weighted P (4), Nucl. Phys. B341, 383
(1990).

[48] B. R. Greene and M. R. Plesser, (2, 2) and (2, 0) Superconformal Orbifolds, Harvard Univ. Rept. HUTP-89/A043
¢ B. R. Greene and M. R. Plesser, Duality in Calabi- Yau Moduli Space, Harvard Univ. Rept. HUTP-89-A043A,
Nucl. Phys. B338, 15 (1990).

[49] P. Aspinwall, A. Liitken and G. G. Ross, Construction and Couplings of Mirror Manifolds, Phys. Lett. B241,
373 (1990).

[50] A. Giryavets, S. Kachru, P. K. Tripathy, S. P. Trivedi, Fluz Compactifications on Calabi-Yau Threefolds, JHEP
0404, 003 (2004), hep-th/0312104.

[51] F. Denef, Supergravity Flows and D-Brane Stability, JHEP 0008, 050 (2000), hep-th/0005049.

[62] F. Denef, On the Correspondence between D-Branes and Stationary Supergravity Solutions of Type II Calabi-Yau
Compactifications, hep-th/0010222.

o8



	Introduction
	Holomorphic Geometry
	General Analysis
	k=5 : Mirror Quintic
	k=6 : Mirror Sextic
	k=8 : Mirror Octic
	k=10 : Mirror Dectic
	Special Kähler Geometrical Identities and Fermat CY3s
	Consistent Normalization of Picard-Fuchs Equations for Fermat CY3s
	Conclusions and Outlook

