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Tracking simulations remain the essential tool for evaluating how multipolar imperfections in ring
magnets restrict the domain of stable phase-space motion. In the Large Hadron Collider (LHC) at
CERN, particles circulate at the injection energy, when multipole errors are most significant, for more
than 107 turns, but systematic tracking studies are limited to a small fraction of this total time — even
on modern computers. A considerable speedup is expected by replacing element-by-element tracking
with the use of a symplectified one-turn map. We have applied this method to the realistic LHC lattice,
version 6, and report here our results for various map orders, with special emphasis on precision and
speed.

DOI: 10.1103/PhysRevSTAB.6.064001 PACS numbers: 41.85.–p
of the current LHC optics (now under construction at conditions. When applied to the Taylor series representa-
I. INTRODUCTION

Since 1982, when maps were first introduced to the
accelerator community [1], the question has been, ‘‘Can
they be used to replace element-by-element tracking?’’ It
became clear that in the presence of strong multipolar
fields, maps can be used only if one applies some kind of
symplectification scheme [2]. One such scheme was pro-
posed by Irwin [3] in 1989 and later tested for the CERN
Large Hadron Collider (LHC) [4]. Unfortunately, it was
found to be (i) only a factor of 2 faster and (ii) insuffi-
ciently precise for determining the dynamic aperture.
The application of this technique was therefore discon-
tinued, until recently, when a significant improvement
was proposed [5,6]. This improved scheme produces a
symplectic map, called a Cremona map, that is guaran-
teed to agree with element-by-element tracking through a
given Taylor order with minimal additional terms.

Here we apply Cremona map tracking to a realistic
model of the LHC to see if this new technique can yield
a sufficiently precise determination of the dynamic aper-
ture, but with a tenfold gain in speed compared to direct
tracking. To this end we study 60 different configurations
(called ‘‘seeds’’ in the following) of randomly distributed
multipole errors.

A sketch of the underlying theory, with references to
more detailed literature, appears in Sec. II. Then, in
Secs. III and IV, we describe the performance and opti-
mization of the code CTRACK and the production of the
required Cremona maps. The results obtained for a model
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CERN) are reported in Sec. V. We conclude the paper
with a brief summary, Sec. VI.

II. THEORETICAL BACKGROUND

A. The symplectic condition

The study of dynamical systems leads naturally to the
concept of transfer maps M, which describe a system’s
change in phase space from initial conditions zi to final
conditions zf during a given fixed interval of time (or the
timelike variable): Mzi � zf. For Hamiltonian systems,
transfer maps obey the very special symplectic condition.
In a 2n-dimensional phase space, with points z �
�z1 � � � z2n� � �q1 � � � qn; p1 � � �pn�, where qi and pi are
the particle’s positions and canonical momenta, this con-
dition reads [1,7,8]

~MMJM � J: (1)

Here M denotes the Jacobian matrix, which has entries
Mab � @zfa=@zib; ~MM denotes the transpose of M; and J
denotes the fundamental 2n� 2n symplectic matrix
� 0
�I

I
0�, where I is the n� n identity matrix. If throughout

phase space M obeys Eq. (1), then M is called a sym-
plectic map.

For most systems of interest we cannot write the trans-
fer map in closed form; hence we usually resort to the use
of approximations—often in the form of a Taylor map:
each phase-space variable in the final state is expressed as
a (truncated) Taylor series expanded in terms of the initial

tion of a map, the symplectic condition Eq. (1) comprises
a set of nonlinear relations between Taylor series coef-
ficients of different orders. Hence the unavoidable trunca-
tion of the Taylor series (almost always) violates the
symplectic condition. For some purposes this (one hopes
small) violation will have little effect; but for others, e.g.,
2003 The American Physical Society 064001-1
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long-term tracking using many iterations of the map, the
consequences can be severe. Moreover, numerical studies
have shown that these undesirable consequences often do
not derive from the loss of high-order information in the
truncated Taylor map but from the symplectic violation
itself [9].

B. The factorization theorem

Dragt and Finn have shown that one can cast the Taylor
map derived from a Hamiltonian system into a form that
maintains its symplectic nature. To do this they use the
Poisson bracket � ; � to define the Lie operator :f: associ-
ated with any function f:

:f:g � �f; g� �
Xn
i�1

�
@f
@qi

@g
@pi

�
@f
@pi

@g
@qi

�
(2)

for any function g. And the corresponding Lie trans-
formation is the operator

e:f: �
X1
k�0

1

k!
:f:k � 1
 :f:


1

k!
:f:2 
 � � � : (3)

(Here :f:2g � �f; �f; g��, and similarly for higher
powers.) These operators have the very special property
that for any function f, the Lie transformation e:f: denotes
a symplectic map [1,10,11].

The Dragt-Finn factorization theorem shows that for
any symplectic map M which has a convergent Taylor
series representation, one can use an order-by-order pro-
cedure to convert that representation to the form

M � e:f1:e:f2:e:f3:e:f4: � � � ; (4)

where each fk denotes a homogeneous polynomial of
degree k in the initial phase-space variables zi [7,10].
The fk are called the Lie generators of the map M, and
the Taylor series terms through order k� 1 determine
uniquely the Lie generators f1; . . . ; fk. Among the virtues
of this representation are that one can relate the coeffi-
cients of the fk to the various optical properties of the
dynamical system; each factor corresponds to succes-
sively higher-order information about the dynamical
system; and truncating the product does not violate
the symplectic condition Eq. (1). Hence the factoriza-
tion theorem gives us a method for symplectifying
Taylor maps.

The one drawback of the representation Eq. (4) is the
time required to compute its action. The first two factors
pose no difficulty: e:f1: generates the constant terms in the
Taylor map and e:f2: generates the linear terms (the matrix
part). It is the remaining, nonlinear factors

N � e:f3:e:f4: � � � (5)

that present a problem: each e:fk: leads to Taylor map
terms of degrees k� 1 and higher. A straightforward
use of Eq. (3) can be time-consuming to compute to
064001-2
machine precision, and truncating that power series again
(usually) violates the symplectic condition. See [6] for a
more complete discussion. One approach to addressing the
difficulty just described uses the concepts of Cremona
maps, the jolt representation, and jolt decomposition.

C. Cremona maps

A Cremona map is a map that is both symplectic and
polynomial. The set of all such maps obviously includes
all linear symplectic maps, but it also includes many
nonlinear maps: Consider a Lie generator g that depends
only on the coordinates q. Then :g�q�:2za � 0 for all a,
and

e:g�q�:za � za 
 :g:za � za 
 �g; za� (6)

is a polynomial. Hence the Lie transformation of any
polynomial in the coordinates alone is a Cremona map.
As these affect only the momenta p, they are known as
kick maps. Now let L denote any linear symplectic map.
One can show that :Lg�q�:2za also vanishes for all a, and
hence any map of the form exp�:Lg�q�:� is also a
Cremona map. These are called jolt maps [5,6].

D. The jolt representation

The jolt representation of a nonlinear symplectic map
seeks to approximate the truncated version of Eq. (5),

NP � e:f3:e:f4: � � � e:fP
1:; (7)

by a product of N Cremona maps (here jolts),

JP � exp�:L1g1�q�:� � � � exp�:LNgN�q�:�; (8)

in such a way that the Taylor expansions of N P and JP
agree through terms of order P. (The number of jolts N
will, of course, depend on P.) If one starts from a Taylor
map of order P and extracts N P using the factoriza-
tion theorem, then JP constitutes an easy-to-evaluate
symplectification of the nonlinear part of the original
Taylor map.

The particular form of the polynomial generators gj is
described in Sec. II F. Here we simply note that they
are not homogeneous: each contains terms of degrees 3
through P
 1, and each factor in Eq. (8) is therefore a
nonlinear polynomial (symplectic) map of order P. The
polynomial expansion of Eq. (8) will, of course, contain
many higher-order terms, terms that serve to symplectify
the original Taylor map. Assuming Taylor map terms
of degrees P
 1 and higher do not contribute to the
dynamics, then those high-order terms in the polynomial
expansion of Eq. (8) ought to be small. Since those high-
order terms involve products of various coefficients in the
generators gj, we ask that the coefficients of the gj’s be as
small as possible.

Irwin first proposed the representation Eq. (8) in 1989
[3], using Lj’s that perform (uncoupled) rotations in the
064001-2



PRST-AB 6 DAN T. ABELL, ERIC MCINTOSH, AND FRANK SCHMIDT 064001 (2003)
transverse planes, but numerical tests yielded poor results
[12]. Later research has shown the results were better
when selecting the Lj’s from a broader class of linear
symplectic maps. Moreover, that research showed that the
quality of the representation Eq. (8) depends very sensi-
tively on the choice of Lj ’s, and showed how to recognize
and construct optimal sets of Lj ’s [5,6]. The Lj’s so
constructed are the ones used in the work reported here.

E. Jolt decomposition

1. Notation

We use a special normalization for monomials of de-
gree ‘ in z:

G�‘�
r �

qr1
1 � � � qrn

n prn
1
1 � � �pr2n

n�����������������������
r1! � � � r2n!

p ; (9)

where r1 
 � � � 
 r2n � ‘. On the space spanned by these
monomials, the USp�2n� inner product h ; i is defined to
act according to the rule [5,7]

h�G�‘�
r ; �G�‘0�

r0 i � ����‘;‘0�r;r0 (10)

for any scalars � and �. In addition to the general
monomials G�‘�

r , we define the q monomials

Q�‘�
k �

qk1
1 � � � qkn

n���������������������
k1! � � � kn!

p ; (11)

where k1 
 � � � 
 kn � ‘. In terms of these monomials,
we define two further quantities:

(1) The sensitivity vectors �r with elements

�r
jk � hG�‘�

r ;LjQ
�‘�
k i: (12)

Here the superscript r labels the different vectors, and the
subscript jk is treated as a single index labeling the vector
elements.

(2) The Gram matrix ��‘� with elements

��‘�rs �
XN
j�1

XM�‘;n�

k�1

wj

M�‘; n�
�r

jk�
s
jk: (13)

Here

M�‘; n� �
�
‘
 n� 1

‘

�
(14)

denotes the number of monomials of degree ‘ in n vari-
ables, and the wj denote a set of N weights associated
with the N linear symplectic maps Lj. (Equally weighted
Lj’s of course have wj � 1=N.)

2. Decomposition

The conversion of a symplectic map from the factored
product representation Eq. (7) to the jolt representation
Eq. (8) relies on the solution to the following problem:
Given a homogeneous polynomial of degree ‘ in z,
064001-3
h‘ �
XM�‘;2n�

r�1

c�‘�r G�‘�
r ; (15)

and a set of N linear symplectic maps L1; . . . ;LN , with
associated weights w1; . . . ; wN , find the smallest possible
jolt coefficients a�‘�

jk such that

h‘ �
XN
j�1

wj

M�‘; n�

XM�‘;n�

k�1

a�‘�
jk LjQ

�‘�
k : (16a)

The solution, derived elsewhere [5,6], is

a�‘�
jk �

X
r;s

c�‘�r ���‘��1�rs�
s
jk: (16b)

The above way of writing h‘ is called a jolt decomposition
because each term in Eq. (16a) can act as the Lie generator
of a jolt map.

3. Special case

When one variable is a constant of the motion, the jolt
decomposition can be done in 1 less degree of freedom.
Suppose, for example, that pn is the given constant of the
motion; then its conjugate variable qn will not appear in
the Lie generators, and hence the polynomials h‘ have the
form

h‘ �
X‘
$�0

XM�‘�$;2�n�1��

r�1

c�‘;$�r G�‘�$�
r p$

n:

Note that the general monomials G�‘�$�
r in this expression

have the form Eq. (9), but in n� 1 degrees of freedom.
Consider the coefficient of p$

n :

h‘;$ �
XM�‘�$;2�n�1��

r�1

c�‘;$�r G�‘�$�
r :

A jolt decomposition of this polynomial will be a sum of
terms of the form LjQ

�‘�$�
k in n� 1 degrees of freedom.

Now observe that �LjQ
�‘�$�
k �p$

n can also act as the Lie
generator of a jolt map. It follows that a jolt decomposi-
tion of h‘;$ yields directly a jolt decomposition of h‘.
Since jolt decomposition is much easier in fewer degrees
of freedom, we gain a considerable computational savings
whenever we can use this technique.

F. Conversion to Cremona map

The process for converting a map from the factored
product representation Eq. (7) to the jolt representation
Eq. (8) has been derived elsewhere [3,6]. Here we simply
indicate the algorithm:

(1) For the lowest Lie order, 3, set h3 � f3, and jolt
decompose h3 using Eqs. (16a) and (16b):

h3 �
X
jk

wj

M�3; n�
a�3�
jk LjQ

�3�
k �

X
j

Ljgj�3�:
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Then write

J 2 � exp�:L1g1�3�:� � � � exp�:LNgN�3�:�:

(2) Now suppose one has computed the jolt representa-
tion through Lie order m to obtain

Jm�1 � exp�:L1g
1:� � � � exp�:LNg

N:�:

(3) To go to the next order, expand Jm�1 as a Taylor
series and then refactor it as

Jm�1 � exp�:f3:� exp�:f4:� � � � exp�:fm:� exp�: ~ffm
1:� � � � :

(4) Set hm
1 � fm
1 � ~ffm
1, and jolt decompose hm
1

using Eqs. (16a) and (16b):

hm
1 �
X
jk

wj

M�m
 1; n�
a�m
1�
jk LjQ

�m
1�
k

�
X
j

Ljg
j�m
 1�:
064001-4
(5) Then set

gj � gj�3� 
 � � � 
 gj�m� 
 gj�m
 1�

�
Xm
1

‘�3

wj

M�‘; n�

XM�‘;n�

k�1

a�‘�
jk Q

�‘�
k ;

and write

Jm � exp�:L1g
1:� � � � exp�:LNg

N:�:

(6) Steps (3)–(5) can be repeated for successively
higher orders until one obtains JP.

G. Numerical evaluation

For rapid evaluation of the Cremona map JP, we make
use of a slight rewriting of Eq. (8): A very useful, indeed
defining, fact about the Lie operators given in Eq. (2) is
that for any symplectic map A

:Af: � A:f:A�1:

We may therefore rewrite Eq. (8) in the form
JP � L1 exp�:g
1:�L�1

1 L2 exp�:g
2:�L�1

2 � � �LN exp�:gN:�L�1
N � A0 exp�:g

1:�A1 exp�:g
2:�A2 � � � exp�:g

N:�AN;

(17)
where the A0 � L1, A1 � L�1
1 L2, A2 �

L�1
2 L3; . . . ;AN � L�1

N all denote linear symplectic
transformations. This rewriting of Eq. (8) says we may
compute the action of JP as a sequence of matrices and
kicks. Moreover, evaluating a given kick, e:g

j:, requires,
according to Eqs. (2) and (6), simply calculating
the associated gradient of gj with respect to its varia-
bles, and this can be computed as the product of a matrix
of coefficients (determined and stored in advance)
with a corresponding vector of monomials. Fast
numerical evaluation of the Cremona map JP there-
fore requires efficient algorithms for just two essential
routines: (1) multiplying a vector by a matrix, and (2)
computing a vector of monomials (in two or three
variables for our case and through the Taylor order of
interest).

Before leaving this section, we note that the procedure
described in Sec. II F is not actually applied to the map
N P of Eq. (7) but to a linearly normalized version of
N P. In other words, the similarity transformation used
to bring the linear part of M to normal form is applied
also to N P, thus putting the coordinates and momenta on
an equal footing. The linear maps thus ‘‘removed’’ from
N P—along with the exp�:f1:� exp�:f2:� from Eq. (4)—
are then folded in with the maps A0 and AN of Eq. (17)
to build our Cremona approximation to the complete
map M.
III. CREMONA MAP PRODUCTION

The LHC optics database, version 6, comprises a design
(ideal) lattice together with 60 different seeds represent-
ing the range of imperfections expected to exist in the
real machine. To build Cremona maps for each of these
rings, we first used the available SIXTRACK [13] tools to
construct tenth-order Taylor maps representing one turn
around each of these 60 rings. Then the code CREMONA

was used to construct the corresponding Cremona maps
of (Taylor) orders 2, 4, 6, 8, and 10. In the six-dimensional
case (with the rf cavity on) the map constructed carried
particles around the ring from just after the rf cavity to
just before the cavity. The rf cavity was then treated as an
exact kick. The virtue of this approach was that the ‘‘one-
turn’’ map did not change the momentum deviation � �
�p� po�=po, and we could therefore use the technique
described in Sec. II E 3 to greatly simplify the Cremona
symplectification.
IV. CTRACK PERFORMANCE AND
OPTIMIZATION

The implementation of Cremona map tracking requires
three principal tools: (1) a means for constructing the
Taylor map for a given machine lattice; (2) a routine for
064001-4
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FIG. 1. (Color) This plot shows execution times (hollow sym-
bols, left-hand ordinate) and speed gains (solid symbols, right-
hand ordinate) versus map order for different aspects of
Cremona map tracking as compared to direct tracking.
Execution times are shown for creating a differential algebra
map (DA map), converting it to a Cremona map (C map), doing
the actual tracking (C track), and the sum of these times plus
the CTRACK overhead (Total). The gains shown are just the
ratios of the times required for direct tracking (shown by the
horizontal line at top) and Cremona map tracking—either ‘‘C
track’’ (gain), or ‘‘Total’’ (net gain).
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converting that Taylor map into a corresponding Cremona
map; and (3) a routine for tracking with the result-
ing Cremona map. Tool 1 was already available in
SIXTRACK’s suite of tools; tool 2 was implemented in
the program CREMONA, which makes extensive use of
Forest’s LIELIB package [14]; and tool 3 was implemented
in the program CTRACK. Because tracking consumes so
much more time than map production (see Fig. 1), only
the second of the two new tools, CTRACK, was subjected
to intensive optimization, as described in this section.
TABLE I. Percentage of time spent in t

System DEC IBM
C compiler cc x

MdotV (%) 53.5 79
evalMonoms (%) 43.0 10
Total (%) 96.5 89

064001-5
Code development and optimization were initially car-
ried out on a Digital Equipment Corporation (DEC) com-
puter with an Alpha EV5 processor. Performance and
portability tests were then run on an IBM Power PC,
and on a Linux Pentium III PC with both the GNU and
Portland Group compilers. The intention was to find the
best overall source code, hopefully the same for each
platform and compiler, and not to compare systems
with significantly different price and performance. Once
the best compiler switches had been chosen, an execution-
time analysis was performed. The results for a standard
test case, ten particles for 50 000 turns in 6D mode, are
shown in Table I. Based on our observations at the end of
Sec. II G, it should come as no surprise that CTRACK

spends almost all its time ( � 90% or more) in the sub-
routines computing the dot product of a matrix with a
vector and evaluating the required vector of monomials in
the routines named MdotVand evalMonoms, respectively;
see Table I.

In code where a loop has a fixed, and not too large,
number of iterations, it sometimes pays to ‘‘unroll’’ the
loop. This technique involves writing explicitly each it-
eration of the loop, thus eliminating the overhead. For
example, the (trivial) code

do i=1,2
a(i)=b(i)+c(i)
enddo

would become simply

a(1)=b(1)+c(1)
a(2)=b(2)+c(2)
eliminating the time spent initializing, incrementing, and
testing the loop index. Even on systems with vector or
pipelined architecture, this can still be worthwhile, espe-
cially for small numbers of loop iterations.

Since the matrices and vectors have fixed dimensions,
typically 6 or smaller, all the loops in MdotV and
evalMonoms were unrolled in the new routines mydotu
and myMonoms. In a further version of MdotV for longer
vectors, called mydotv, the innermost loop was not un-
rolled in order to make use of pipelining.

Finally, the new, C-optimized, subroutines were trans-
lated to FORTRAN. (The bulk of the code remained in C.)
The results in Table II show a further improvement in
he two principal CTRACK subroutines.

PPC Intel PIII Intel PIII
lc pgcc gcc

.3 48.0 63.6

.2 45.3 33.0

.5 93.3 96.6

064001-5



TABLE III. Percentage of time spent in selected FORTRAN-optimized subroutines.

System DEC IBM PPC Intel PIII Intel PIII
FORTRAN/C compiler f77/cc xlf/xlc pgf77/pgcc g77/gcc

mydotv (%) 67.0 74.7 62.7 74.0
mydotu (%) 7.6 5.8 8.2 11.0
myMonoms (%) 16.5 5.6 8.7 10.9

TABLE II. Comparison of timing results (in seconds), by version and platform.

System DEC IBM PPC Intel PIII Intel PIII
FORTRAN/C compiler f77/cc xlf/xlc pgf77/pgcc g77/gcc

C 234 593 180 152
C, optimized 168 464 112 111

FORTRAN 130 422 121 137
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performance on the proprietary systems but not on the
Intel PC.

Speedup factors of between 1.4 and 1.8 were obtained.
As confirmed by Table III the most time-consuming

procedure is now the matrix by vector product, mydotv,
with three rows and 165 columns in the standard test case
(6D, Taylor order 8, 32 jolts=turn, for 5� 105 turns). The
procedure is called 16 000 000 times to perform 3� 165
multiplies and adds, using about 67 s on the DEC system,
giving a respectable 236 mega-floating point operations
per second on a 350MHz processor.

Figure 1 shows our final measure of performance: a
comparison of the total computer time used in tracking
with Cremona maps (as optimized above) against the
time required by direct tracking. To make realistic track-
ing speed comparisons between direct and map tracking,
one must include the time required to produce the neces-
sary maps; but this time becomes relatively less important
as one tracks for more and more turns. Since our typical
TABLE IV. LH

Length (m)
Injection energy (GeV)
Collision energy (GeV)
Triplet errors
Luminosity (cm�2 s�1)
Tune (Qx=Qy)
Low-order systematic resonances
Maximum � in the arc (m)
Natural chromaticity
Chromaticity caused by b3 errors
Dipole and quadrupole multipole components (systematic & rando
Linear imperfections
Correction system for dipole errors
Nonlinear detuning with correction at 8�

064001-6
dynamic aperture study for one LHC lattice involved
tracking particles at four different amplitudes and five
initial angles, each 6� 106 times around the ring—a
total of 120� 106 turns—we used this total amount of
tracking as our basis for comparison.

The principal results of our timing study are given in
Fig. 1 by the curves labeled gain and net gain. The curve
gain compares pure tracking speed, showing gains of
about 170 at order 2, 19 at order 6, and 2.2 at order 10.
The curve net gain, which includes the cost of map
creation and the overhead of invoking CTRACK, shows
a gains of about 27 at order 2, 12 at order 6, and 2.0 at
order 10.

The overhead cost of invoking CTRACK was not opti-
mized—indeed CTRACK was invoked for each of
the twenty particles tracked—and it constitutes the prin-
cipal difference between gain and net gain. One
could easily improve this behavior by tracking particles
simultaneously.
C parameters.

26 658.883
450 (studied here)
7000 (not studied)

Not studied
1:0� 1034

64:28=59:31
Avoided by choice of tunes

183
�89
600

m) (b3–b11) and (a3–a11)
Not considered

b3 and b5

5� 10�3

064001-6



FIG. 2. Horizontal phase-space portraits generated at amplitude 10� for the LHC optics, version 6, seed 39. The portraits shown
derive from direct tracking (a), and Cremona map tracking at orders 10 (b), 8 (c), and 6 (d).
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V. RESULTS AND ANALYSIS FOR THE LHC
OPTICS, VERSION 6

The LHC is being constructed in the tunnel of the
former Large Electron-Positron Collider and will accel-
erate protons (bidirectional) to 7 TeVusing superconduct-
ing 2-in-1 dipole and quadrupole magnets for bending
and focusing purposes, respectively. The LHC parameters
relevant for these studies are shown in Table IV.

To assess the utility of Cremona maps for long-term
tracking studies of the LHC, one might compare phase-
space portraits generated by direct (element-by-element)
and by Cremona map tracking. Figure 2 shows just such a
comparison of horizontal phase-space portraits at a very
large amplitude (10�) for several different map orders.
(In what follows the order of a map will always mean the
corresponding Taylor order.) This figure shows only very
subtle differences in the phase-space portraits and sug-
gests that for our present purpose we must use more
detailed and more quantitative measures to assess the
utility of Cremona maps.

A. Quantitative measures

For more quantitative comparisons between Cremona
map tracking and direct tracking, we looked at the
064001-7
following measures: (1) differences in the amplitude-
dependent tune, or detuning error; (2) differences in the
predicted dynamic aperture (DA); (3) one-turn tracking
errors; and (4) multiturn phase errors. We describe each of
these in turn.

From particle tracking data one can determine the
tunes of a given particle. Figure 3 shows the results of
just such an analysis on particles launched at five different
angles (in x-y space) and at ten different amplitudes (from
1 to 10�), and followed using direct tracking around one
particular LHC lattice (seed 39). Using symbols, we say,
for example, that each point of the left-hand plot in Fig. 3
represents a value for the horizontal tune Qh�A; *; r;X� of
a particle launched with amplitude A and angle *, and
tracked around the LHC lattice, seed r, using direct
tracking, indicated here by the ‘‘exact’’ map X. Figure 4
shows how the results based on Cremona map tracking
differ from those based on direct tracking. In, say, the
upper plot of that figure, each point represents an aver-
age —over the 60 different seeds r and the five different
angles *— of the absolute error

jQh�A; *; r;Cn� �Qh�A; *; r;X�j;

where Cn denotes the Cremona map of (Taylor) order n.
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FIG. 4. (Color) Tune error (log10) versus amplitude, parame-
trized by Cremona map order. The upper and lower plots
correspond to the horizontal and vertical planes. The solid
and dashed lines show, respectively, the average and maximum
(over 60 seeds and five angles) of the absolute difference in
tunes measured from tracking results based on direct and
Cremona map tracking.
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FIG. 3. (Color) Example (seed 39) of horizontal and vertical
detuning versus amplitude for five initial angles. The upper and
lower plots correspond to the horizontal and vertical planes,
respectively.
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The lower plot shows corresponding results for the verti-
cal plane. The error bars on the points indicate 1 standard
deviation above the mean values, and the dashed lines
indicate the maximum values.

We define the DA for a given lattice as the largest
amplitude below which all simulated particles remain
in the accelerator for the duration of the simulation
[15]. Figure 5 compares DAs computed using direct track-
ing with those computed using Cremona map tracking at
orders 4, 6, 8, and 10. Each plot shows, for a given order
and a given angle (in the x-y plane), the DAs computed by
direct tracking for each of the 60 realistic LHC lattices
(red curves), and the corresponding DAs computed by
Cremona map tracking (blue curves). The green hatching
serves simply to highlight the differences between the
two curves.

The two measures described so far—detuning errors
and differences in predicted DA—might be called ‘‘high-
level’’ measures: they report how well Cremona map
tracking performs the tasks we want it to do. By contrast,
one might describe the next two measures as ‘‘low level’’:
they report how well Cremona map tracking performs on
a turn-by-turn basis.

Recall, for a moment, the origin of our Cremona maps:
from a tracking code, corresponding to some exact map
X, we extract a truncated Taylor series map T m contain-
ing terms through order m, so that T m � X 
O�zm
1�.
This Taylor map is then symplectified by converting it to a
Cremona map Cm that agrees with the Taylor map through
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the same order m; hence Cm � T m 
O�zm
1�. It follows
that the three maps X, T m, and Cm all differ from one
another by terms that scale as zm
1; but we would like to
know just how big those differences are. To that end we
define the one-turn errors

"TX
m �z� � kT mz�Xzk; (18a)

"CX
m �z� � kCmz�Xzk; (18b)

"CT
m �z� � kCmz�T mzk; (18c)

where k � k denotes an appropriate vector norm on phase
space. To determine in some meaningful way how the
average errors vary with amplitude, we require at each
amplitude a set of points over which to average. To gen-
erate a given set of points, we launch a single particle at
the given amplitude (between 3 and 12�, where � is
defined in terms of the local lattice function values);
and we use direct tracking to follow it for 1000 turns,
thus generating the phase-space points

fz0; z1; z2; . . . ; z1000g � fz0;Xz0;Xz1; . . . ;Xz999g:

The first 1000 of these, 0–999, constitute the desired set
of points. Applying also the maps T m and Cm to these
points, we can compute the one-turn errors defined in
064001-8



FIG. 6. (Color) Average one-turn error h"�
mi versus amplitude, parametrized by map order m (indicated by 10, 8, 6, and 4 in the

figure), for a relative momentum deviation � � 0. The different plots show results averaged over an orbit of 1000 turns for the one-
turn error between (a) direct and Taylor map tracking, TX, (b) direct and Cremona map tracking, CX, and (c) Taylor map and
Cremona map tracking, CT.

FIG. 5. (Color) Dynamic apertures (DA) computed from the results of direct and Cremona map tracking (orders 4, 6, 8, and 10) for
the realistic LHC lattice, version 6. In each plot we show the DA for each of 60 different seeds. The red curves show the results
obtained from direct tracking, and the blue curves show those obtained from Cremona map tracking. The comparisons are shown
for five different angles. (Note that the vertical scales for order 4 differ slightly from those of the other orders.)
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FIG. 8. (Color) Horizontal phase error �0h versus turn
number, in steps of 100 turns, parametrized by Cremona
map order (6, 8, and 10), for a comparatively large rela-
tive momentum deviation of � � 7:5� 10�4. The upper
and lower plots show results obtained at amplitudes
of 8� and 12�, respectively. That the phase error is largest
for the low-order maps at 8� but for the high-order maps at 12�
is consistent with the one-turn error results. The large inter-
mediate excursions are due to the nonlinear phase-space
topology.

FIG. 7. (Color) Average one-turn error h"�
mi versus amplitude, parametrized by map order m (indicated by 10, 8, 6, and 4 in the

figure), for a comparatively large relative momentum deviation of � � 7:5� 10�4. The different plots show results averaged over an
orbit of 1000 turns for the one-turn error between (a) direct and Taylor map tracking, TX, (b) direct and Cremona map tracking,
CX, and (c) Taylor map and Cremona map tracking, CT.
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Eq. (18), and average over the 1000 points. For the vector
norm used in Eq. (18) we take the Pythagorean length in
the transverse linearly normalized phase space, and we
show the results for relative momentum deviations � � 0
in Fig. 6 and � � 7:5� 10�4 in Fig. 7.

Our last quantitative measure for comparing direct and
Cremona map tracking is the horizontal phase error �0h.
It measures the phase difference in (normalized) horizon-
tal phase space between a particle tracked element by
element and the same particle tracked using a Cremona
map. Figure 8 shows the evolution of �0h for map orders
6, 8, and 10 at two different amplitudes, 8� and 12�.

B. Analysis

The detuning error, shown in Fig. 4, behaves more or
less as expected: the error grows with amplitude, and
higher-order maps have significantly smaller detuning
errors. Note, however, that the improvement seen in the
detuning error as one goes to higher order becomes much
smaller at the larger amplitudes. In particular, going from
order 6 to order 8 shrinks the average error by more than a
decade at amplitude 1� but by less than a factor of 2 at
amplitude 10�.

The predicted DA, however, does not show the same
consistent improvement as one goes to higher order: As
seen in Fig. 5, Cremona map tracking at order 6 agrees
very satisfactorily with direct tracking. But at higher
orders Cremona map tracking tends to underestimate the
DA—and by as much as several sigma for the larger
angles. This fact, puzzling at first sight, becomes more
understandable in light of the one-turn errors shown in
Figs. 6 and 7.
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Figure 6 shows that the average one-turn error has the
correct scaling with amplitude: Consider, for example,
"TX
m of Eq. (18a). The mth order Taylor map T m makes

errors of order zm
1, hence "TX
m �z� �O�zm
1�, and simi-

larly for the other one-turn errors, "CX
m and "CT

m . And in
the log-log plots of Fig. 6 the errors labeled order m do
indeed lie on lines of slope roughly m
 1.

The three plots in Fig. 6 show that the differences
between the three maps—Cremona, Taylor, and exact —
are all comparable, but closer inspection reveals more. A
comparison of plots 6(a) and 6(b) shows that the error
made by the Cremona map, "CX

m , is roughly 2 to 3 times
that made by the Taylor map, "TX

m . And a comparison of
plots 6(b) and 6(c) shows that "CX

m roughly equals
the difference between the Cremona and the Taylor
maps, "CT

m . In other words, the difference between the
Cremona and the exact maps is due mostly to the process
of symplectification. Observe also that the power-law
scaling of the various orders implies that at some ampli-
tude higher-order map tracking must lead to larger errors
than lower-order map tracking.

The plots in Fig. 7 correspond to those in Fig. 6, except
that here all the particles have a relatively large momen-
tum deviation of � � 7:5� 10�4, which masks the
O�zm
1� scaling at amplitudes below about 8 or 9�. One
may here make comparisons similar to those made above
for Fig. 6. But it suffices to note [see plot 6(b)] that at this
nonzero value of �, relevant for the tracking studies, the
amplitude at which higher-order tracking begins to give
poorer results is less than 12�.

The results shown in Fig. 8 reinforce the observations
made above for Fig. 7: At some amplitude between 8� and
12� tracking at orders higher than 6 no longer produces
smaller errors.

We conclude that the difficulty higher-order Cremona
map tracking has (see Fig. 5) in predicting the dynamic
aperture results from the small-amplitude loss of preci-
sion introduced by the symplectification process coupled
with the steep power-law scaling of the one-turn errors.
Ironically, one can expect better results when applying
Cremona map tracking to a machine with larger
errors and, hence, a smaller dynamic aperture. Indeed,
in preliminary studies for an earlier version of the LHC
lattice, we successfully used Cremona map orders higher
than 6.

VI. SUMMARY

By replacing direct tracking of the LHC with Cremona
map tracking at order 6 (which includes magnetic multi-
pole components up through order 7), one can obtain a
net gain in speed greater than ten; and one can predict
DAs that agree very well with those of direct tracking.
Moreover, for the amplitudes of interest, Cremona map
tracking produces errors that are smaller at order 6 than
064001-11
at higher orders. We conclude that for the current version
of the LHC, where multipole components beyond order 7
are less relevant, Cremona map tracking at order 6 is
an attractive alternative for doing rapid systematic
investigations.

To the potential client at other future accelerators, we
recommend examining the one-turn errors "�

m, which can
be done rapidly. From plots such as those in Fig. 7 one can
determine whether or not Cremona map tracking will be
useful.
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