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Numerical study of the photoelectron cloud in KEKB Low Energy Ring
with a three-dimensional particle in cell method
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A three-dimensional particle in cell simulation code has been developed to study the photoelectron
cloud instabilities in KEKB LER. In this report, the program is described in detail. In particular,
typical simulation results are presented for the photoelectron motion in various kinds of magnetic fields.
The simulation shows that a solenoid is very effective in confining the photoelectrons to the vicinity of
the vacuum chamber wall and in creating a region free of photoelectrons at the vacuum pipe center. The
more uniform the solenoid field is, the more effectively does it suppress the electron-cloud buildup.
Multipacting can occur both in a drift region and in a dipole magnet, and the heat load deposited on the
chamber wall due to the lost electrons is important in these two cases. Electron trapping by the beam
field as well as by various magnetic fields is an important phenomenon, especially inside quadrupole

and sextupole magnets. Our numerical results qualitatively agree with the experimental studies.
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L. INTRODUCTION

In April 1999, a blowup of the vertical size of the
positron beam was observed with the threshold beam
current 450 mA in the KEKB Low Energy Ring (LER)
[1]. Tt proved to be one of the most serious luminosity
limitations for KEKB. As a countermeasure, thousands
of so-called C-yoke permanent magnets were installed
in the KEKB LER in May 1999 and March 2000. They
were attached to the outside of the vacuum chambers to
confine the electrons to the vicinity of the chamber walls.
A C-yoke consists of two permanent magnets and a
C-shaped iron yoke. The magnets are attached every
10 cm along the drift space between ring magnets. For
short bunch trains and low beam currents, the C-yoke
magnets were effective in confining the electron cloud
and reducing the beam-size blowup. Therefore, in
September 2000 the C-yoke magnets were replaced by
solenoid magnets, in order to better remove the photo-
electrons near the beam. At the beginning of January
2002, the total length of the solenoids covering otherwise
field-free areas around the ring circumference reached to
2180 m. This corresponds to about 95% of the total drift
region. The experimental studies demonstrated that the
solenoid magnets are very efficient in reducing the verti-
cal beam size as well as the tune shift due to the electron
cloud [2]. No blowup was observed up to the so far highest
beam current of 1300 mA. Thus the luminosity has
greatly benefited from the solenoid installation. A
three-dimensional particle in cell (PIC) program
CLOUDLAND has been developed to study the effects of
various magnetic fields on the photoelectron formation,
distribution, heat load, multipacting, and so on. A three-
dimensional irregular mesh is applied in CLOUDLAND,

124402-1 1098-4402/02/5(12)/124402(13)$20.00
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which enables the program to solve the general three-
dimensional problem. Image currents, arbitrary magnetic
fields, space charge of electron cloud, and secondary
emission are all taken into account in the program. In
the following, the program and examples of simulation
results are described in detail. The results qualitatively
agree with the experimental observations.

I. METHOD

The positron bunch is longitudinally divided into a
number of slices according to a Gaussian distribution.
Such slices interact with photoelectrons transversely
and are propagated according to the transfer matrix of
the linear optics. Photoelectrons are emitted when posi-
tron slices pass through a beam pipe with length L, which
is usually chosen as 1 or 2 m. In the simulation photo-
electron yield of 0.1 is assumed and 30% of the photo-
electrons are taken to be produced by reflected photons,
i.e., randomly distributed around the chamber. The center
of the photoelectron energy distribution is assumed to be
5 eV with an rms (root mean square) energy spread of 5 eV.
In our simulation, the photoelectrons are represented by
macroparticles, which move in three-dimensional space
under the force:

Fe = Fspace + Fp + FB’ (1)
where Fp,.. is the space charge force of the photoelec-
tron, F, is the force due to the electric field of the positron
beam, and Fy is the force exerted by the external mag-
netic field.

The direct simulation of particle-particle interactions

is most easily implemented and it has a high accuracy.
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However, the efficiency of such an approach is low due to
the very large number of particles and hence very long
CPU time. For this reason, a mesh method seems to be
applied by most particle simulation programs. The regu-
lar mesh as applied in the study of beam-beam simula-
tions cannot satisfy here because of the complex shape of
the vacuum chamber, e.g., the antechamber in PEP-II and
in the future KEKB upgrade. In our code, an irregular
mesh is used, so that the solver can be applied to a general
geometry. The vacuum chamber of KEKB LER is of a

1
N; = g(l + &)1 + mo)(1 + 5o)(€p + Mo + 59 — 2),
N _1
g

(1 =)+ )1 +5p), i=261418,

N; = %(1 + &0)(1 + o)1 — &?), i=91011,12
where £, 1, and ¢ are the natural coordinates; &, = &;¢&,
Mo = MM, So = S;S, and (&;, ;, s;) are the coordinates of
node i.

For the isoparametric element, the charge assignment
scheme in Eq. (2) has all the characteristics of a charge
assignment function, i.e., it fulfills the relations

SN =1,
i
ZN,-r,- =r,

where r is the position of the photoelectron, and r; is the
position at node i. The property of the shape function in
Eq. (4) guarantees the charge conservation.

Figure 3 shows the distribution of the macroparticle
and charge at the mesh node in one transverse section.
The number of elements in this transverse section is 276,
which is a small number. It already shows a good repre-
sentation of the real electron-cloud distribution.

This method could be called a cloud-in-a-Cell (CIC)
scheme [3]. However, it is different from the so-called
general CIC schemes which are commonly applied for
multiparticle simulations in two aspects. First, the gen-
eral CIC method applies a regular mesh. By contrast, our
scheme uses an irregular mesh, which allows the treat-
ment of complex boundary problems, such as the very flat

4
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FIG. 1. Mesh example of the KEKB-LER vacuum chamber,
used by the space charge solver for the photoelectron cloud.
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round shape with a radius of 50 mm. Figure 1 shows an
example mesh for the KEKB-LER vacuum chamber.
Figure 2 shows one 20-node brick element employed by
the solver. The charge Q, of a macroparticle is assigned to
each node i of the brick element inside which the photo-
electron is located according to the shape function N;

Q; = N;Q,, 2)
| where
i=1,35713151719,
N; = %(1 + ) — )1 +s),  i=4816,20,
3)

| beam case and the antechamber. Secondly, our scheme
refers to a finite element method. Many types of elements
can be considered in the finite element calculation.
Higher-order elements, which means high order nonlin-
ear terms of the potential, improve the accuracy of the
calculation and are far superior to the nearest-grid-point
assignment applied by the general CIC. Therefore, our
scheme offers two clear advantages: the possibility to
treat arbitrary boundaries and a high accuracy. In addi-
tion, an adaptive mesh can be applied if the electrons are
concentrated in a small region, in analogy to similar
treatments for long-range beam-beam simulations.

The electron cloud (both the density and the distribu-
tion) changes with time. However, since the electron
motion is slow, in a good approximation, we can assume
a quasistatic condition. At each moment, the scalar po-
tential satisfies

Ap = —p/z,. (6)
Equation (6) can be solved by the finite element method.
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FIG. 2. 20-node brick element.
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FIG. 3. Charge assignment of the PIC method. (a) Transverse distribution of the macroparticles in a solenoid field. (b) Transverse
distribution of the charge on the mesh obtained by the charge assignment.

The finite element equation is handling such linear problems, e.g., conjugate gradient
method, and profile or frontal techniques. If the vacuum
A¢ =B, (7) chamber is of a round shape, as in the KEKB LER, we

can also alternatively use a Green function to compute the
where the stiffness matrix A depends only on the mesh  potential. The potential ¢ at R for a particle distribution
and B represents the source term. The matrix A is ex-  f(R’) is obtained using the Green function G(R, R’)
tremely sparse and there are well-known methods for | as [4]

L 2 a
H(R) = fo dz ﬁ 49 ﬁ Ydr f(R)G(R, R'), )

p* + r*r'?/p* — 2rr' cos(0 — ')
r2+ 2 — 2rr' cos( — 6)

G(R,R/) = %h«.

4e & 5 >
+ f; cosnk(z — z’){Ko[nk\/r + 7% — 2rr cos(6 — 0')]

> Km(nkp) / — 0
-Se- 5mo)mlm(nkr)lm(nkr)cosm(ﬁ 6 )}, )

m=0

where L is the period length of the vacuum chamber, p is |
the pipe radius, R’ is the source position, and R is the
potential position, k = 277/L. We here use cylindrical
coordinates with the z axis oriented along the axis of E=— ZVNi b, (10)
the pipe, R = (r,0,z), R = (v, 6/, 2). ;

After finding the potential, the force on each particle is
interpolated using the same shape function in order to
conserve the momentum. In the general PIC method, the J . J . 9
field at each node is first calculated using the difference V= ot + a_y'] + a_zk' (1D
scheme and the field at each particle is interpolated based
on the fields at all nodes. Unlike the general PIC method, = One example of the potential and field of the electron
we directly calculate the field at each particle using the  cloud in one transverse section is shown in Fig. 4. The
potential at the mesh nodes instead of the mesh-defined  field is automatically perpendicular to the potential

field, namely, we compute

where
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FIG. 4. (Color) Potential and field interpolation of the PIC
method. The color shows the potential; the arrows denote the
field direction and strength.

contour according to Eq. (10). Note that the distribution of
the photoelectrons is three dimensional.

The positron bunch is represented by a rigid Gaussian
distribution. The kick on the photoelectrons is given by
the Bassetti-Erskine formula [5]

2T

o +a'y)

Av, + iAv, = Nr,c (
x,y\Yx

f(x, y),

with
x+ iy

f(xy) =W<m>_ eXp<_ 2% B 2y72%>

y

v W(xa'y/a'x + iyo, /o, >’ (12)

2(a2 — 0'3)

where o, and o, are the positron bunch rms transverse
sizes, r, is the classical electron radius, ¢ the speed of
light, N the particle number in the slice, and w(x + iy)
the complex error function.

The image charge effect is also included in the pro-
gram. The shape of the vacuum chamber in KEKB LER is
round. Therefore, the image current is easily found. In
case of an arbitrary chamber shape, a PIC calculation can
be applied to the positron bunch in the same way as to the
photoelectron cloud.

The magnetic field along the beam chamber can be an
arbitrary three-dimensional field. The typical magnetic
fields, in which we are interested for the KEKB LER, are
solenoid, dipole, quadrupole, and sextupole.

According to Furman [6], Seiler [7], and Kirby [8], the
yield of the true secondary emission can be written as

Oyis(E, 0) = 0y L11x7035(1 — 72357

X exp[0.5(1 — cos6)], (13)

where, x = E [1 + 0.7(1 — cosf)]/en.x [6], E, is the
primary electron energy, £, is the energy of the maxi-
mum secondary emission yield, 6., is the maximum
secondary emission yield for perpendicular incidence,
and @ is the incidence angle with respect to the surface
normal.

The initial energy distribution of the true secondary
emission is taken to be a half-Gaussian centered at 0 with
an rms spread of 5 eV.

E,
5E(Est) = 6ESZ exp<_ 23; )E 0- (14)
Et S>>

The emission angles of the true secondary photoelec-
trons are distributed according to dN/df o« cos6 sinf or
dN/dQ « cos6, where 6 denotes the angle with respect to
the surface normal, and () is the solid angle.

The parameters used in the simulation are summarized
in Table L

TABLE I. KEKB-LER parameters used in the simulation.

Variable Symbol Value
Ring circumference C 3016.26 m
rf bucket length Spf 0.589 m
Bunch spacing Sp 4 rf buckets
Bunch population N 3.3 X 10%
Average vertical betatron function By 10 m
Average horizontal betatron function B, 10 m
Horizontal emittance g, 1.8 X107 m
Vertical emittance N 3.6 X 10719 m
rms bunch length g 4 mm
Chamber diameter 2R 100 mm
Energy of the maximum secondary emission yield €max 250 eV
Maximum secondary emission yield O max 1.5
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IIL. NUMERICAL EXAMPLES

In this section, the buildup, distribution, heat load, and
trapping of electrons in a few typical magnetic fields are
discussed.

A. Effect of C-yoke magnet and solenoid field on the
confinement of the photoelectrons

Permanent C-yoke magnets were attached to vacuum
ducts to sweep out the electrons in May 1999 and March
2000. The magnet field in a C-yoke magnet with quadru-
pole configuration is modeled as

B, = (a + bcoskz)y, (15)
B, = (a + bcoskz)x, (16)
B, = —bksin(kz)xy. (17)

Where a = 0.3 T/m, b =02 T/m, A =27/k = 0.1 m,
anda =0, b = 0.5 T/m, A = 0.2 m for the equal polar-
ity and alternating polarity, respectively. The photoelec-
tron cloud density near the beam is nonzero for all C-yoke
magnet configuration as shown in Fig. 5 for equal-
polarity quadrupole configuration. The transverse mag-
netic field is stronger than the longitudinal field in some
locations along the chamber. The relatively stronger
transverse field may guide the electrons into the chamber
center, which is undesirable. This conclusion holds true
for adjacent C-yokes of both equal and opposite polarity.

Adjacent solenoids can be arranged with constant or
alternating current direction in the coil. We refer to these
two arrangements as the equal or alternating polarity
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FIG. 5. Electron-cloud distribution in the C-yoke quadrupole
with equal polarity configuration.

124402-5

configurations. The magnetic field in the equal-polarity
configuration can approximately be expressed as

B.(x,y,z) = B,y + By sinkz, (18)
B.(x,y,z) = —0.5Bykx coskz, (19)
By(x,y,z) = —0.5Byky coskz. (20)

For the opposite polarity configuration, the longitudinal
filed is

B.(x,y, z) = Bjsinkz, 201

and the transverse field components are the same as for
the equal-polarity case. We assume B,; = 30 G, By =
20G, and A =27/k =1 m, so as to approximate the
field of the real machine for the equal-polarity configu-
ration. There is no electron cloud at the chamber center for
the equal-polarity solenoid as shown in Fig. 3(a). The
reason is that the longitudinal magnetic field confines
the photoelectron motion to the vicinity of the vacuum
chamber wall. The more uniform the solenoid field, the
more effective is the confinement. In the alternating po-
larity configuration, the transverse field between two
adjacent solenoids is stronger than the local longitudinal
field and may allow some photoelectrons to penetrate into
the center of the chamber. Therefore, the equal-polarity
configuration is better than the opposite polarity one.
This is consistent with the experiment study [9].
Compared with the C-yoke magnets, solenoids of equal
polarity are much preferred, in view of the vanishing
electron-cloud density at the chamber center. The elec-
trons at the center are suspected to cause the beam-size
blowup according to the Ohmi and Zimmermann
model [10].

Figure 6 displays the photoelectron distribution at the
chamber wall, i.e., the distribution of photoelectrons
which hit the wall, for the case of a solenoid field. If
photoelectrons impinge on the chamber wall, they are
either lost or produce secondary electrons. The solenoid
field is nonuniform in the longitudinal direction, which
renders the lost cloud distribution dependent on the lon-
gitudinal position. The radius of the gyration motion is
small in a strong field region with a z coordinate from 0 to
0.5 m in Eq. (18) and Fig. 6, and hence the electron hits
the wall near its emission point. On the other hand, the
electron at the weaker field region, z coordinate equal to
—0.25 m, drifts with a big radius and hits the chamber
wall far from its emission point. This is clearly shown in
Fig. 6. The azimuthal distribution of the lost photoelec-
trons depends on the current direction in the solenoid
coil, because the deflection angle of the photoelectrons
depends on the sign of the magnetic field. As a conse-
quence, the electron current measured by a photoelectron
monitor will depend on both the longitudinal position of
the monitor and the current direction in the solenoid coil.
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FIG. 6. Lost electron distribution around the chamber wall in
the solenoid field with equal polarity configuration.

In a solenoid field, the photoelectrons cannot gain
much energy from the positron bunch, because they are
confined to the vicinity of the wall, far from the chamber
center, by the solenoid magnetic field. Therefore, there is
little or no multipacting in the solenoid case. The heat
load on the chamber wall due to the photoelectron bom-
bardment is also small for the same reason. It can be
concluded that solenoids work well, providing both zero
photoelectron density at the chamber center and a lower
heat load on the chamber wall due to the absence of
multipacting,

B. Multipacting in drift region and dipole magnet

In a drift region, the photoelectrons are attracted by the
space charge field of the positron bunch and, therefore, a
large photoelectron density builds up at the chamber
center. The photoelectron density at the chamber center
is 10" m™3, which is 5 times larger than the average
volume density due to the stronger attractive force of
the positron beam there. The transverse distribution of
the photoelectron cloud in a drift region is shown in Fig. 7.
The photoelectrons near the chamber center cloud receive
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FIG. 7. Electron-cloud distribution in drift region.

more energy from the passing positron bunches than those
near the wall. Such higher energy photoelectrons may
cause significant multipacting when they hit the chamber
wall. Heat load is an additional serious problem in a drift
region because the photoelectrons are strongly acceler-
ated by the positron bunches and the rate of photoelectron
loss on the wall is large. Therefore, the drift region is
considered to be the most dangerous case with respect to
both beam dynamics and heat load.

Figure 8 shows the photoelectron cloud distribution
inside a dipole magnet. Two multipacting strips are
clearly visible in the figure. There is no experimental
study on the electron cloud inside a dipole magnet in
KEKB LER. The CERN SPS experiments [11] exhibited
two similar multipacting strips in a dipole magnet. There
is little multipacting in the center region, because the
photoelectrons with horizontal coordinate close to zero
receive further energy, exceeding the energy value at
which the secondary emission yield is bigger than 1.
The typical energy of the photoelectrons decreases from
the horizontal center towards both sides. In other words,
the energy of the photoelectrons decreases with the hor-
izontal coordinate |x| as shown in Fig. 9. It is well known
that the true secondary emission yield is smaller than 1
for photoelectrons with both very high and low energy.
As a result, multipacting occurs in two regions on either
side of the chamber center. The position of the multi-
pacting region depends on the energy of the photoelec-
trons, which is determined by the interaction of
photoelectrons and positron bunches. Therefore, the fill-
ing pattern of the beam, including bunch current and
bunch spacing, can alter the regions with strong multi-
pacting. In general, when the bunch current increases, the
multipacting region moves towards larger |x| on either

124402-6
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FIG. 8. Electron-cloud distribution in the dipole magnet.

side of the center, and the width of the multipacting
region also increases at the same time. The exact results
depend on the interaction between the photoelectron
cloud and positron bunches. The mechanism of the multi-
pacting in a dipole magnet is clearly evident in Fig. 9.
From the energy of an electron hitting the chamber wall,
the secondary emission yield is calculated. Values larger

10 T T

= Energy [eV]

= Secondary emission yield
—— charge distribution

Energy(eV),Yield and Charge

20 -10
X [mm]

FIG. 9. (Color) Mechanism of multipacting in the dipole mag-
net. Blue dots show the energy of photoelectrons which hit the
chamber wall. Red dots represent the secondary emission yield
of the photoelectrons which hit the wall. The black solid line is
the charge distribution of the lost photoelectrons, which is
normalized by the number 10'? in order to compare the charge
distribution with the secondary emission yield clearly.
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than 1 imply that multipacting can happen. The computed
yields are consistent with the simulated charge distribu-
tion of the lost electrons on the wall, as illustrated
in Fig. 9.

C. Photoelectron trapping in beam electric field and
magnetic fields

Photoelectrons can be trapped by the beam field and
by magnetic fields, or by a combination of fields.
Experimental study in CESR found that photoelectrons
can be trapped in the combined dipole magnetic field and
quadrupole electrostatic leakage field from the distrib-
uted ion pumps [12]. As predicted by Chao [13], the beam
field is the most effective trapping field due to its periodic
focusing force. The mirror magnetic field, such as a
quadrupole or sextupole field, is the most effective mag-
netic trapping field. Some electrons can also be trapped in
a periodic solenoid field because it is also a type of mirror
field. But the number of the trapped electrons is much
smaller than that of the quadrupole and sextupole fields’
cases. Electrons can also be trapped in a dipole magnet.
However, in this case, the trapping in the direction of the
magnetic field (typically vertical) is accomplished by the
space charge field of the positron beam and the electron
cloud instead of by the magnetic field. The mechanism of
electron trapping for different field configurations is
studied in this section.

1. Trapping in the beam field

In a drift region, the photoelectrons near the bunch can
receive linear beam kick from the bunch and can get
temporarily trapped in the beam potential, as shown in
Fig. 10, and will thus oscillate around the bunch [14]. The
photoelectrons near the beam perform about one oscil-
lation during the passage of a positron bunch in the
KEKB-LER case. However, in the case of proton bunches
the electrons can oscillate for many periods due to the
longer bunch length.

Photoelectrons at large amplitudes do not move much
during the bunch passage due to their long oscillation
period. They simply receive a nonlinear kick from the
beam. Most photoelectrons with large amplitude can still
be trapped as shown in Fig. 11. Photoelectrons can be
trapped for long or short times, which depend on its initial
condition. Photoelectrons are emitted from the chamber
wall with a small initial energy, and they oscillate under

Proton/Positron bunch

FIG. 10. (Color) The electron motion during a bunch passage.
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FIG. 11. Orbits of trapped electrons without magnetic field.

(a) Long time trapped electron; (b) short time trapped electron.

the influence of the focusing beam force. The electrons
gain energy during the process, approaching the chamber
center. The energy and the radial position of the trapped
electron are modulated by the beam kick.

As a result, photoelectron trapping in the beam field is
one important phenomenon. This mechanism leads to the
uniform distribution of the photoelectron cloud in the
beam chamber although most photoelectrons are emitted
in a horizontal direction (primary photoelectron), and
then such a round distribution of the cloud causes the
same coupled bunch instability in horizontal and vertical
directions. This is consistent with the experimental study
[15]. The cloud distribution shown in Fig. 7 is roughly

124402-8

uniform in the azimuth angle due to the trapping effect.
There are more photoelectrons along the emission direc-
tion of the primary photoelectron, because these elec-
trons mainly oscillate in the horizontal plane instead of in
a circle around the chamber center, due to their small
initial vertical velocity and initial coordinate. The photo-
electron has a short decay time during the bunch train
gap because the trapping mechanism depends on the
positron or proton bunch. Therefore, a bunch train gap is
very effective to terminate the trap.

2. Trapping in quadrupole and sextupole magnets

It is interesting that more than 90% of the photoelec-
trons can remain seriously trapped in a quadrupole or
sextupole magnetic field during the bunch train gap, as
shown in Fig. 12 [16]. The photoelectron density is almost
constant during the train gap in these two fields, which
implies a long electron lifetime. On the other hand, the
density decays quickly in a dipole magnet. Figure 13
shows a typical trapped-electron orbit in a normal quad-
rupole field during the train gap. The drift time is about
960 ns. The trapped electron spirals in an ever-tighter
orbit along the magnetic field line when the field becomes
stronger, converting more and more translational energy
into energy of rotation until its velocity along the field
line vanishes. Then the electron turns around, still spi-
raling in the same sense, and moves back along the same
field line. A similar phenomenon is observed in the sextu-
pole magnets. The electron-trapping phenomena are quite
similar to the plasma trapping in a mirror magnetic field.

We consider the case of no electric field, which is
almost realized for the electron cloud during the bunch
train gap, if the space charge potential of the electron
cloud is negligible compared with the magnetic potential

x 10"
8,
— Dipole
7f | ==+ Quadrupole
== sextupole

Photoelectron Volume Density [m‘s]

0 500 1000 1500 2000 2500
Time [ns]

FIG. 12. Photoelectron average volume density in different

magnetic fields as a function of time for a train with
200 bunches spaced by 7.86 ns and followed by a long gap.
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FIG. 13. (Color) Photoelectron trapping in a quadrupole mag-
netic field during the train gap. (a) 3D orbit; (b) 2D orbit (red
line); and quadrupole field (black arrows).

in a normal magnet. Since the direction of the magnetic
force acting on the electron is perpendicular to the elec-
tron velocity, the electron kinetic energy is conserved,

2

muv

W = - = const. (22)

The motion of the electron in the magnetic field can be
regarded as the superposition of the gyration motion
around the guiding center and the motion of the guiding
center. The gyration motion of the electron is a rapid
rotation around the magnetic field line. The motion of
the guiding center is the average motion over the gyration.

Consider the case in which the magnetic field slowly
varies in space. The variation is assumed to be sufficiently
slow so that the magnetic field at the electron position
hardly changes during the cyclotron motion. This is true
for our case where the magnetic field is strong except for
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the central region of the chamber and the electron energy
is low, which means a small Larmor radius and a short
period. While the period of a spiraling electron changes
as it moves into regions where the magnetic field is
weaker or stronger, the product 7 X E, the period T times
the energy E of the gyration motion, is almost a constant.
It is not an exact constant, but if the rate of change is slow
enough, e.g., if the field changes rather slowly, it comes
very close. A certain quality, an ‘“‘adiabatic invariant,” is
almost kept at a constant value. In a more general way, the
action of a system with canonical variables ¢ and p,

defined by
1= § pda

is a constant under a slow change in an external parame-
ter. Here § represents an integral over one period of the
motion. Therefore, for such a quasiperiodic motion, there
exist two adiabatic invariants given by [17]

(23)

dm
JJ_ = fmvipsdQD = T/*Lm: (24)
J|| = jgmv”dl, (25)
where

2

va_
= 26
Mm =g (26)

is the magnetic moment, v | is the gyration velocity, p;, =
muv | /|e|B is the Larmor radius, and vy is the parallel or
longitudinal velocity which is parallel to the magnetic
field. J; and J) are called the transverse and parallel
adiabatic invariants, respectively.

As the guiding center of the electron moves along the
field line, the magnetic field strength at the position of the
electron changes. Because the magnetic moment and ki-
netic energy of the electron are conserved, the kinetic
energy of the parallel motion varies according to the
relation

1
Emvﬁ + w,,B = const. (27)

Equation (27) implies that the guiding center motion
along the field line behaves like a particle motion in
a magnetic potential energy w,B. In quadrupole and
sextupole magnets, the magnetic field is a mirror field,
in which the magnetic field is weaker at the center and
stronger at both ends of the mirror field line. When the
guiding center of the electron moves along the field line
from a weaker field region to a stronger field region, the
parallel velocity decreases and the gyration velocity in-
creases, and the electron is heated. Therefore, the electron
spirals in an ever-tighter orbit because the period of
gyration motion and parallel velocity become smaller
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Mirror Point n

FIG. 14. Motion of electron in a mirror magnetic field.
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FIG. 15. Photoelectron distribution during the bunch train
passage before a positron bunch arrives.

and smaller. When the electron comes to the point where
the parallel velocity vanishes, the electron direction of
motion is reversed. The parallel velocity of the reflected
electron is increased when it moves along the field line
and gets the maximum value at the weakest field point
(mirror point). Then it continues a similar motion along
the other side of the mirror point. Such kind of trap is
called a magnetic-mirror trap. The motion of an electron
in a mirror field is depicted in Fig. 14.

Figure 15 shows the electron’s cloud distribution just
before a bunch interacts with the cloud during the bunch
train passage. Clearly the electron density is higher near
the mirror points. The central region is not an adiabatic
region due to the weak field there. Electrons moving along
these diagonal field lines can receive a larger amount of
parallel energy and may be lost before the next positron
bunch arrives.

3. Trapping in the periodic solenoid field

Solenoid magnets have been installed in the LER ring
in order to reduce the photoelectron density near the

124402-10

beam. The periodic solenoid field can also trap a few
electrons, but typically less than 1% of the total. The
trapping mechanism is still the mirror magnetic field
trap. Figure 16 shows the trajectory of a trapped electron
in a sinusoidal solenoid field as described in Eqs. (18)—
(20) with B,y = 30 G, By =20 G, and A = 27/k = 1 m.
The solenoid field strength along the trajectory is also
shown in the same figure in order to compare the trajec-
tory and field strength. The electron is trapped in the
wake field region with the mirror point located at Z =
—250 mm, which is the midpoint of the two adjacent
solenoids. Therefore, the trapped electrons stay around
the center point of the two adjacent solenoids.

Note that the mirror field trap strongly depends on the
electron velocity v and v . According to Egs. (22),
(24), and (26), the trap occurs if

v? B
. (28)
vig T+ Vi

where By is the field at one position with velocity v, and
v, and B, is the maximum field along the field line.
Equation (28) shows that a photoelectron could be trapped
if its kinetic energy of gyration motion increases.
Different from the quadrupole and sextupole fields, the
solenoid field line applied here is along the longitudinal
direction, which is the beam direction. The photoelec-
trons moving longitudinally along the field lines can
receive gyration motion energy from the transverse
beam field. During the passage of a positron bunch, the
position of the photoelectrons does not change and the
photoelectrons simply receive energy because the posi-
tron bunch length is much shorter than the period of the
gyration motion. A similar statement applies to the quad-
rupole and sextupole cases.

55

— Radial coordinate

sol 1 Solenoid field strength | |

45F

401

35f

301

251

R (mm) and B (Gauss)

201

15f

10 . . e w“fr"“‘ . .
-600 -500 —400 -300 —200 -100 0 100
Z (mm)

FIG. 16. Two-dimensional orbit of a trapped electron in a
sinusoidal solenoid field and the solenoid field strength B along
the orbit. Here, R and Z are the radial and longitudinal
coordinates, respectively.
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However, the electron motion has very different char-
acters in solenoid and quadrupole/sextupole fields. First, a
solenoid field is a longitudinal field and a quadrupole field
is a transverse field. The electron in the solenoid field
moves in the beam direction, which means the electron
meets the positron bunch with different time spacing. On
the other hand, the electron in the quadrupole field meets
the positron bunch periodically due to its very slow move-
ment along the beam direction. Second, the periods for
one electron to move along the mirror field line, which is
the period of the parallel motion, as shown in Figs. 13 and
16, are quite different. The period depends on the mag-
netic field. In quadrupole and sextupole cases, for KEKB
parameters it is close to 2 times that of the bunch spacing,
which indicates the resonance of the interaction between
the electron and positron bunch. This period is much
longer in the solenoid case. It is about 210 times of the
bunch spacing in Fig. 16. Third, the solenoid field is
weaker than the quadrupole field. As a result, the trajec-
tory of an electron in the solenoid field can be easily
changed by the positron beam field. Therefore, in a sole-
noid field the electrons are accelerated by the passing
positron bunches in a random fashion, and, even after a
long time, the gyration energy acquired can be too small
to fulfill the trapping condition, Eq. (28). All these char-
acters make the trapping in a solenoid more difficult than
in a quadrupole or sextupole field.

4. Trapping in dipole magnet

The electrons effectively move only along the vertical
field lines due to the strong vertical magnetic field. The
uniform dipole magnetic field cannot trap any particle.
However, the space charge field of the positron beam and
electron cloud oriented in a vertical direction can trap the
particle in the vertical plane. The mechanism is similar to
the beam field trapping in a drift region, but here the
trapping refers to a one-dimensional motion instead of to
a two-dimensional motion. This motion resembles a circle
in the drift region as shown in Fig. 11. Simulation shows
that the photoelectrons can be easily trapped in the two
multipacting strips, where the space charge field of the
electron cloud is strong and is in the vertical direction.

D. Heat load of photoelectron cloud

The lost photoelectrons, which hit the chamber wall,
can cause a temperature increment of the vacuum cham-
ber. The heat load depends on the quantity and energy of
the photoelectrons, which hit the vacuum chamber wall.
Figure 17 shows the lost photoelectron charge and heat-
load azimuth angle distribution for different magnetic
fields.

In a drift region, the photoelectrons can receive more
energy from the beam and the quantity is larger due to the
multipacting. Therefore, the electron flux on the wall is
higher and so is the heat load. The heat-load azimuth
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FIG. 17. (Color) Charge and heat-load azimuth angle distribu-
tions of photoelectrons lost to the chamber wall in differ-
ent magnetic fields. (a) Charge distribution; (b) heat-load
distribution.

angle distribution is roughly uniform due to the beam
trapping effect as explained in Sec. IIIC1.

Multipacting occurs along two strips in the dipole
magnet. Both the lost charge and the heat-load distribu-
tion show peaks at these two multipacting regions. The
electron flux on the wall is not peaked at the central
region with |x| = 0, because multipacting does not hap-
pen there. However, the heat load is peaked at the cham-
ber center due to the higher energy of the electrons here.

There is a lower heat load in solenoid and quadrupole
and sextupole cases where multipacting could not occur.
In the solenoid case, the energy of the photoelectron is
lower because the photoelectron is confined away from
the beam. Electrons can be deeply trapped by quadrupole
and sextupole magnets fields, but the electron cannot
effectively receive energy from the beam. Therefore,
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both the loss rate and the energy of the photoelectrons are
lower in the solenoid, quadrupole, and sextupole magnets.

The interaction of electrons with the positron beam
strongly depends on the magnetic field. Therefore, the
heat-load azimuth angle distribution is also magnetic
field dependent as shown in Fig. 17(b). It is always peaked
at locations where the magnetic field is oriented along the
radial direction, as illustrated in the figure for the quadru-
pole magnet.

E. Buildup of electron cloud

Figure 18 shows the average and center volume density
in different magnetic fields as a function of time for a
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0 500 1000

FIG. 18. (Color) Photoelectron average volume densities and
volume densities at pipe center in a different magnet field as a
function of time for a train with 200 bunches spaced by 7.86 ns
and followed by a long bunch train gap. (a) Average volume
densities; (b) volume densities at pipe center.
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train with 200 bunches spaced by 7.86 ns and followed by
a long bunch train gap. The decay time during the bunch
train gap in the field-free case is the shortest, because
there is no magnetic field to confine the photoelectrons.
On the other hand, the decay time is very long in quadru-
pole and sextupole magnets due to the deep trapping. The
primary photoelectrons do not much contribute to the
buildup of the photoelectron cloud in normal dipole,
quadrupole, and sextupole magnets. While in quadrupole
and sextupole magnets the buildup is dominated by mag-
netic trapping; in the dipole magnet multipacting is the
dominant process. As a result, the average cloud density
in these three fields is almost a linear function of time
during the cloud buildup as illustrated in Fig. 18(a).

The photoelectron density near the beam is zero in the
case of the solenoid and small for the quadrupole and
sextupole. The deeply trapped photoelectrons in the quad-
rupole and sextupole magnets may contribute to the
coupled bunch instabilities. On the other hand, the photo-
electron densities near the beam are much larger for the
drift and the dipole field, which indicates that the photo-
electrons in the drifts and dipoles are mainly responsible
for the single-bunch blowup of the positron beam.

IV. SUMMARY AND CONCLUSIONS

A complete three-dimensional PIC program has been
developed. It provides a powerful tool to study the elec-
tron-cloud problem. The numerical results are qualita-
tively consistent with the experimental observations and
with simple theoretical models, in many aspects.

A uniform solenoid is found to be the most effective
field for confining the photoelectrons to the vicinity of the
vacuum chamber wall. Indeed, even a realistic equal-
polarity periodic solenoid is more efficient than any other
kind of magnet. The solenoid reduces the photoelectron
central density to nearly zero, and it also significantly
lowers the heat load to the chamber wall. Strong multi-
pacting occurs both in drift regions and in the dipole
magnet, resulting in a significant central density of elec-
trons. Therefore, these two regions are thought to be the
main contributors to the single-bunch beam-size blowup.
In quadrupole and sextupole fields, a large number
of electrons can be trapped by a magnetic-mirror mecha-
nism and survive a long gap between bunch trains.
These deeply trapped electrons can cause coupled bunch
instabilities.
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