

Heavy Ion Physics with the ATLAS Detector

Barbara Wosiek Institute of Nuclear Physics PAN, Kraków, Poland

for the ATLAS Collaboration

Outline:

- Capabilities
- On going studies
- Summary

- Plenty of heavy quarks (b,c)
- Weakly interacting probes available (Z⁰, W[±])

High-p_T Results

Jet quenching observed in Au+Au collisions at RHIC: →Direct evidence that high energy density matter interacts strongly with high p_T partons! Jet quenching at SPS, RHIC, LHC

Hard processes: excellent probes of the hot QCD matter!

ATLAS: A Detector for High- p_T Studies

ATLAS as a Heavy Ion Detector

1. Excellent Calorimetry

- Hermetic coverage up to $|\eta| < 4.9$
- Fine granularity (longitudinal and transversal segmentation High p_T probes (jets, jet shapes, jet correlations, π^0)
- 2. Large Acceptance Muon Spectrometer
 - Coverage up to $|\eta| < 2.7$ Muons from Υ, J/ψ, Z⁰ decays
- 3. Inner Detector (Si Pixels and SCT)
 - Large coverage up to $|\eta| < 2.5$
 - High granularity pixel and strip detectors

Tracking particles with $p_{T} \geq 0.5~GeV/c$

- **2.+ 3.** Heavy quarks(b), quarkonia production $(J/\psi, \Upsilon)$
- **1.& 3.** Global event characterization (dN_{ch}/dη, dE_T/dη, flow); Jet quenching/unquenching

One Central Pb+Pb Event in ATLAS

HIJING + GEANT3 simulations - b < 1fm

Detector occupancies:

Pixels < 2% SCT < 20% Muon chambers: 0.3 – 0.9 hits/chamber (<< pp at 10³⁴ cm⁻² s⁻¹)

 $|\eta| \leq 0.5$

Global Event Characterization

Day-one measurements: N_{ch} , $dN_{ch}/d\eta$, ΣE_T , $dE_T/d\eta$, b

Constrain model prediction

- Indispensable for all physics analyses
- Obtained using small sets of simple measurements:

position of hits or hit clusters in ID position and energy in Calorimeters

Collective Flow Effects in AA Collisions

RHIC v_2 measurements \rightarrow a perfect fluid nature of the system!

Elliptic Flow Reconstruction in ATLAS

Hijing simulations with $v_2 = 0.05$; const(N_{ch} , η , y, p_T)

 v₂ signal measured using azimuthal angles of Hit Clusters in Pixel barrel; reaction plane estimated from the energy depositions in FCAL.

Remaining difference (~10%) is due to non - flow correlations and will be accounted for by MC corrections.

Track Reconstruction

Standard ATLAS reconstruction for pp is used, not yet optimized for PbPb.

- Pixel and SCT detectors, not TRT
- p_T threshold of 0.5 GeV
- Uses 10 hits out of 11(13) available in the barrel (end-caps)

For p_T : 1 - 10 GeV/c: efficiency ~ 70 % fake rate ~ 5% Momentum resolution ~ 3% (2% - barrel, 4-5% end-caps)

Heavy Quark Production

Motivation: Heavy quarks may radiate less energy in the dense medium (dead-cone effect) than light quarks.

b-tagging capabilities offer additional tool to understand quenching.

To evaluate b - tagging performance:

- pp→WH→l∨bb events overlayed
- on HIJING background have been used.
- A displaced vertex in the Inner Detector has been searched for.

Rejection factor against u- jets ~ 100 for b-tagging efficiency of 25%

Should be improved by optimized algorithms and with soft muon tagging in the Muon Spec.

Jet Studies

Goal is to determine medium properties.

Jet quenching

Modifications of the jet fragmentation function

- Jet inclusive cross-sections
- Fragmentation function using tracks
- Core E_T and jet profile using calorimeters
- Neutral leading hadrons using EM calorimeters

Jet Reconstruction

- Sliding window algorithm, $\Delta \eta \times \Delta \phi = 0.4 \times 0.4$, after subtracting the pedestal (the average pedestal is 50 ±11 GeV)

Jet Studies with Tracks

Fragmentation function

- Jets with E_{T} = 100 GeV
- Cone radius of 0.4
- Tracks with $p_T > 3 \text{ GeV}$

E_T^{core} Measurements

Energy deposited in a narrow cone: R < 0.11 (HADCal), R < 0.07 (EMCal)

<E_T^{core}> sensitive to ~10% change in E_T^{jet}

The background has not been subtracted: $\langle E_{T}^{core} \rangle^{PbPb} \rangle \langle E_{T}^{core} \rangle^{pp}$

 $\textbf{PbPb} \approx \textbf{HIJING-unquenched} \approx \textbf{pp}$

Promising, but a lot of additional work is needed!

Quarkonia Reconstruction via $\mu^+\mu^-$ Decay

Measurements of quarkonia suppression allow to study the modifications of the heavy-quark screening potential.

 $J/\psi \rightarrow \mu^{+}\mu$ $|\eta| < 2.5, p_{T}^{\mu} > 1.5 \text{ GeV}$

Trigger and DAQ

Interaction rate of 8 kHz for L = 10^{27} cm⁻² s ⁻¹ Event size ~ 5 MB for central PbPb (a conservative estimate) Data rate to storage the same as in pp: ~300 Hz × MB \Rightarrow Output rate (after HLT) ~ 50 Hz for central events

- > Unbiased interaction trigger (LVL1) use forward calorimeters (FCAL)
- Triggering on the total E_T in FCAL with a Trigger Tower threshold of 0.5 GeV selects 95% of the inelastic cross-section.
- Triggering on events with b < 10 fm use full ATLAS Calorimetry</p>
- ➢ High Level Triggers (ATLAS T/DAQ) jet trigger, di-muon trigger,... Jet rate ~ 40 Hz for E_T threshold = 50 GeV ~ 0.1 Hz for E_T threshold = 100 GeV

On Going Studies

\rightarrow Physics Performance Report \rightarrow Day 1 Readiness

*<u>Tracking</u>: Use of TRT with higher signal threshold (lower occupancy)
 → improves tracking capability and μμ mass resolution; optimization of tracking algorithms
 *<u>Jets</u>: Improving efficiency at low E_T; Background reduction; Jet fitting algorithm;

 <u>Sets</u>. Improving enciency at low E_T, Background reduction, Set Inting algorithm, Energy calibration; γ+j, Z⁰+j
 *<u>Minimum-bias pp, AA, pA</u>

*Ultra-Peripheral Nuclear Collisions: High energy γγ,γN; PDF(CGC)

***Triggering**: low-p_T muons, jets, e/γ , global E_T ; use of MBTC, LUCID, ZDC

*Hardware: ZDC design and integration

***Software**: Integration of HI algorithms with the ATLAS Athena framework

Summary

The ATLAS Experiment has a very good potential for a comprehensive study of heavy-ion collisions:

✓ High-p_T phenomena;

✓ Heavy quark and quarkonia production;

✓ Collective effects;

✓ Global event characterization.

This can be achieved thanks to the properties of the ATLAS detector:

- high granularity and large coverage of the calorimeter system,
- acceptance of the external muon spectrometer,
- coverage and tracking capabilities of the inner detector.

ATLAS Collaboration "LoI for Heavy Ion Physics with the ATLAS Detector", CERN-LHCC-2004-009/I-013. H. Takai et al., "Heavy Ion Physics with the ATLAS Detector", J. Phys. G: 30, s1105 (2004).

- H. Takai et al., "Heavy Ion Physics with the ATLAS Detector", Eur.Phys.J.C34:S307-S315,2004.
- L. Rosselet et al., "Heavy-ion physics with the ATLAS Detector", Czech.J.Phys.55:B343-B350,2005.
- A. Olszewski et al., "Heavy Ion Physics with the ATLAS Detector", Proc. of Sci. HEP2005, p.144 (2006).

ATLAS Heavy Ion Working Group

S.Aronson, K. Assamagan, M. Baker, B. Cole, R.Debbe, A.Denisov, M.Dobbs, J. Dolejsi, N.Grau, H. Gordon, F. Gianotti, I. Gavrilenko,

V. Kostyukin, S. Lebedev, M. Leltchouk, M. Levin, F. Marroquim,

A. Moraes, J. Nagle, P. Nevski, A.Olszewski, V. Pozdnyakov, M. Rosati,

L. Rosselet, M. Spousta, P. Steinberg, H. Takai, S. Tapprogge,

S. Timoshenko, B. Toczek, A. Trzupek, M.A.B.Vale, Yu. Vertogradova,

F. Videbaek, S. White, B. Wosiek, K. Woźniak

Brookhaven National Laboratory

CERN

Columbia University Iowa State University Institute of Particle and Nuclear Physics, Prague Institute of Nuclear Physics PAN, Cracow JINR-Dubna Lebedev Institute of Physics, Moscow Moscow Engineering Physics Institute Universidade Federal do Rio de Janeiro University of Colorado University of Geneva

Back-up slides

Detector Occupancies

b = 0 – 1fm

Si detectors:

Pixels < 2% SCT < 20%

<u>TRT:</u>

too high occupancy, not used for these studies (limited usage for AA collisions is under investigation)

Muon Chambers:

0.3 - 0.9 hits/chamber (<< pp at 10^{34} cm⁻² s⁻¹)

Collision Centrality

Jet Rates

For a 10⁶s run with Pb+Pb at L=4×10²⁶ cm⁻² s⁻¹ we expect in $|\eta| < 2.5$:

E _T threshold	N _{jets}
50 GeV	3.0 × 10 ⁷
100 GeV	1.5 × 10 ⁶
150 GeV	1.9 × 10 ⁵
200 GeV	4.4 × 10 ⁴

And also: ~10⁶ γ + jet events with E_T > 50 GeV ~500 Z⁰(µµ) + jets with E_T > 40 GeV

Quarkonia Suppression

Color screening prevents various ψ , Υ , χ states to be formed when T \rightarrow T_c for the phase transition to QGP

(color screening length < size of resonance)

Important to separate $\Upsilon(1s)$ and $\Upsilon(2s)!$

Quarkonia Reconstruction via $\mu^+\mu^-$ **Decay**

Measurements of quarkonia suppression allow to study the modifications of the heavy-quark screening potential: ~thermometer for the plasma

Reconstruction of low momentum muons:

- method A: use tracks fully traversing the μ -spectrometer and associate them with ID tracks through a global fit.
- method B: select ID tracks whose extrapolation coincide with a track segment in the μ-spectrometer
 Better p measurement and purity of A over B
 Lower p threshold (larger acceptance) of B over A

Reconstruction of Q \rightarrow $\mu^+\mu^-$:

Global Fit: both muons reconstructed with method A
Global+Tag: one muon from method A, one from B

$\Upsilon \rightarrow \mu^+ \mu^-$ **Reconstruction**

$J/\psi \rightarrow \mu^+\mu^-$ Reconstruction

If a trigger is possible forward with a muon $p_T > 1.5$ GeV, we gain a factor 4 in statistics...A solution might be to reduce the toroidal field for HI runs

Trigger and DAQ

Triggering on events with b < 10 fm - use full ATLAS Calorimetry</p>

High Level Triggers (ATLAS T/DAQ) - jet trigger, di-muon trigger,...

Jet rate ~ 40 Hz for E_{T} threshold = 50 GeV

~ 0.1 Hz for E_{T} threshold = 100 GeV

Selection signatures

LVL1 signature	HLT signature	Physics coverage
random	random	Zero-bias sample
INT(FCAL)	int(FCAL)	Centrality/interaction
EM	е	Z→ee
EM	γ	Photon production
2EM	2e	Z→ee
MU	μ	Ζ \rightarrow μμ, Υ \rightarrow μμ
2MU	2 μ	$Z \rightarrow \mu \mu$, Υ $\rightarrow \mu \mu$
nJ	nj	Jet production

Ultra-Peripheral Nuclear Collisions

High-energy γ - γ and γ -nucleon collisions

- Measurements of hadron structure at high energies (above HERA)
- Di-jet and heavy quark production
- Tagging of UPC requires a Zero Degree Calorimeter

Ongoing work on ZDC design and integration with the accelerator instrumentation:

Proton-Nucleus Collisions

- Link between pp and AA physics
- Study of the nuclear modification of the gluon distribution at low x.
- Study of the jet fragmentation function modification
- Full detector capabilities (including TRT) will be available.
 - L~10³⁰ translates to about 1MHz interaction rate (compare to 40 MHz in pp)

Luminosity Issues

20% reduction for 3 experiments as opposed to 2 experiments

ATLAS Calorimeters & Forward Det.

