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1. Introduction and conclusions

Dimensional transmutation and generation of a small scale is a remarkable result com-

mon to many quantum field theories, most notably the four-dimensional QCD and the

two-dimensional Gross-Neveu model. The effect is also realized in two-dimensional quan-

tum mechanics with a deep (delta-like) attractive potential and in six-dimensional scalar

models1 with 4d localized scalar potential and a large but compact transverse space. The

last example, put forward in [2], was analyzed from the point of the quantum-mechanical

problem in the case of a perturbative coupling µ appearing as the (dimensionless) localized

parameter interpreted as a mass term in 4d. It was shown that for a 6d scalar field with

Dirichlet boundary condition on a large two-dimensional compact space taken for simplicity

to be a disk, there is a phase transition with a very light (compared to the compactification

scale) particle for a small critical value µc ¿ 1. The parameter µ was shown to run between

the cutoff scale Λ and the compactification scale R−1, such that precisely at the critical

point, µ becomes large at R−1. A very similar phenomenon of appearance of a light state

close to a critical point where an (four-fermion) interaction becomes strong is in the 4d

Nambu-Jona-Lasinio (NJL) model [3]. The purpose of the present paper is to study closer

this analogy and argue that the 6d model studied in [2] and the 4d NJL model are, in a

1For gravitational aspects of codimension two models, see e.g. [1].
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sense which will be defined in detail later on, dual descriptions of the same physics. Our

starting point is to provide an explicit framework in which the 4d localized potential is

generated, by a Yukawa interaction of the bulk scalar field with N 4d localized fermions.

In the large N limit, integrating out the fermions produces precisely the potential needed

for the symmetry breaking. Alternatively, we show that integrating out the bulk scalar

leads to a dual 4d NJL model with chiral symmetry breaking, where the Fermi coupling is

generated at tree-level by scalar bulk exchange. We show that the critical Fermi coupling

calculated by NJL methods in the large N limit agrees with the bulk 6d calculation of the

critical coupling calculated as a problem with nontrivial boundary conditions. The 6d ↔ 4d

duality we study exchanges some quantum and classical natures of the symmetry breaking

phenomenon. In the bulk 6d picture, the quantum (Yukawa) interactions are completely

encoded in a boundary condition, the localized scalar potential, whereas the symmetry

breaking can be studied as a quantum-mechanical problem with nontrivial boundary con-

dition and can be understood as a result of a classical running effect in the transverse 2d

space. In the 4d NJL picture, the symmetry breaking is provided by the nonperturbative

self-consistent gap equation [3 – 5], but in addition the four-fermion coupling has a classical

logarithmic running between the cutoff and the compactification scale. When in the bulk

picture µ = µc at Λ, the four-fermion coupling in the NJL picture at the compactification

scale reaches the critical value for the dynamical symmetry breaking G(R−1) = Gc. Our

main interest in this equivalence is that, whereas a consistent treatment of the NJL model

involves nonperturbative techniques like the large N expansion or going below 4d and using

UV nontrivial fixed points and 1/ε techniques, the bulk analysis is essentially classical2 and

does not need, in principle, any nonperturbative techniques.

The structure of the paper is as follows. In section 2 we review the six dimensional

model worked out in [2] and argue that, in addition to the perturbative critical coupling

µc we found there, there are other critical points corresponding to large values µ
(n)
c > 1.

In section 2.1 we study a similar setup in which the nontrivial boundary condition in the

compact space is replaced by a bulk mass and Neumann boundary condition. In section 3

we define the 6d model on an orbifold space instead of a disk, which is more suitable for a

microscopic (string theory) realization. Section 4 contains the main arguments concerning

the infrared equivalence between the 6d scalar model with nontrivial boundary condition

and the 4d NJL model. Section 5 generalizes the previous section to a (softly broken)

supersymmetric theory. Section 6 provides an explicit string theory realization of the

present setup in an orientifold of type IIB strings with D-branes.

2. Six dimensional phase transition: perturbative and nonperturbative

critical couplings

Recently, [2] addressed the problem of spontaneous symmetry breaking in a 6d scalar model

2Throughout the paper by “classical” we mean classical from the point of view of quantum field theory,

i.e. no quantum interaction. The treatment is still quantum mechanical.
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with 4d localized Higgs potential. The corresponding action reads:3

S =

∫

d4xd2y

[

1

2
(∂Mφ)2 − Vδ(φ)

]

,

Vδ(φ) =

(

−µ2

2
φ2 +

λ

4
φ4

)

· δ2(y) . (2.1)

The scalar field φ has dimension two and therefore µ2 is dimensionless. The scalar potential

is localized at the origin of the compact space. We resolve the singularity at y = 0 by

introducing a disk r < ε supporting the potential,

V (φ) =
1

πε2

(

−µ2

2
φ2 +

λ

4
φ4

)

for 0 < r < ε , (2.2)

V (φ) = 0 for ε < r < R .

According to [6, 7, 2], there is a ”classical” running of the tachyonic mass parameter

1

µ2(Q)
=

1

µ2(Λ)
− 1

2π
ln(

Λ

Q
) . (2.3)

It was shown in [2] for a compact two-dimensional space, chosen to be a disk of radius R,

with 4d localized Higgs potential and Dirichlet boundary condition

φ|r=R = 0 , (2.4)

that this model has a phase transition for a small critical value

µ2
c

2π
ln(RΛ) = 1 , (2.5)

where Λ is a UV cutoff defined in connection with the resolution of the delta singularity Λ =

1/ε. So the phase transition happens precisely when the renormalized value µ2
c(R

−1) → ∞
blows up at the compactification scale. The running interpretation breaks down close

to the phase transition point. The classical running of µ induces also a running for the

self-coupling λ, according to the RG equation

Q
dλ

dQ
= − 2

π
µ2λ , (2.6)

which, by using (2.3), readily integrates to

λ(Q) =
λ(Λ)

(1 − µ2

2π ln Λ
Q)4

. (2.7)

Notice that at the phase transition point µ = µc,

µ(R−1) → ∞ , λ(R−1) → ∞ . (2.8)

3We are using a (+,−,−,−,−,−) metric. The index M denotes bulk coordinates and runs from

0, 1, 2, 3, 4, 5, while µ = 0, 1, 2, 3 denotes brane coordinates. We’ll use either x4,5 or y1,2 to denote the

two extra dimensions.
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We will argue later on in section 4 that in a dual 4d theory which turns out to be a

NJL theory, the conditions (2.8) have the interpretation of compositeness conditions of [5].

Close to the critical coupling, however, the running interpretation breaks down and actually

the higher-dimensional 6d and also the 4d physics turn out to be perturbative.

We now review and slightly update the arguments of [2] by arguing that there are

actually additional but large critical couplings µ
(n)
c ≥

√
4π, defined by the presence of a 4d

massless mode in the spectrum. Assuming that this exists, slightly below it µ ≤ µc, in the

background φc = 0, the field eqs. for a 4d mode of mass M2 = p2, are

∆(2)φ +
µ2

πε2
φ = 0 , r < ε ,

∆(2)φ + p2φ = 0 , r > ε , (2.9)

where we neglected the mass p2 inside the brane (this is a very good approximation for

all masses much lighter than the cutoff Λ = 1/ε). The solutions of (2.9) with Dirichlet

boundary condition (2.4) and for p2 ¿ R−2 are

φ(r) = f0 J0(
µr√
πε

) , r < ε ,

φ(r) = a

[

ln
R

r
− p2r2

4
ln

R

r
+

p2

4
(R2 − r2)

]

, r > ε . (2.10)

The zero mass solutions p2 = 0 define the whole set of critical couplings. The matching

conditions of the logarithmic derivative of the wave function at r = ε then give

µc J ′
0(

µc√
π
)

√
π J0(

µc√
π
)

ln
R

ε
= −1 . (2.11)

For small µc, eq. (2.11) has the unique solution (2.5), which is indeed small provided that

R−1 ¿ Λ. Equation (2.11), however, has an infinite discrete set of solutions, as can easily

be shown by a numerical plot. The peculiarity of the perturbative solution (2.5) is that

the wave function (2.10) inside the brane r < ε, and actually also the wave functions of the

massive modes below the cutoff Λ, are almost constant. On the contrary, the wavefunctions

corresponding to the “nonperturbative” critical couplings (in the sense µ2
c/4π > 1) have

substantial variation inside the brane. Slightly below the critical coupling(s) µc, the zero

mode becomes massive, with a mass M given approximately by

M2 = pµpµ ' 2(µ2
c − µ2)

πR2
(ln

R

ε
)2 . (2.12)

The mass (2.12) reduces to the one computed in [2] in the case of the perturbative critical

coupling (2.5). Close to the other critical couplings µ ' µ
(n)
c the light mode can also be

described in a 4d effective field theory. The 6d field is decomposed according to φ(x, r) =

σ(x)χ(r), where

χ(r) =

√

2

πR2
ln

(

R

ε

) J0(
µr√
πε

)

J0(
µ√
π
)

, r < ε ,

χ(r) =

√

2

πR2
ln

R

r
, r > ε . (2.13)
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The effective 4d potential for σ is given by

Veff(σ) =
m2

4

2
σ2 +

λ4

4
σ4 , (2.14)

where the mass parameter and the coupling are given by

m2
4 = −2µ2

ε2

∫ ε

0
rdrχ2 +

2µ2

ε2

∫ ε

0
rdr(χ′)2 + 2π

∫ R

ε
rdr(χ′)2 ,

λ4 =
2λ

ε2

∫ ε

0
rdrχ4(r) =

8λ

π2µ2R4

1

J4
0 (µ/

√
π)

(ln
R

ε
)4

∫
µ√
π

0
xdxJ4

0 (x) , (2.15)

where the derivative in χ′ is wrt the argument of the Bessel functions. Very close to µ
(n)
c ,

the resulting mass coincides with M2 in (2.12), showing the validity of the 4d description.

The presence of light 4d modes close to the large critical couplings µ
(n)
c is a signature of a

UV-IR mixing, where the UV physics changes the masses in the IR. While in a microscopic

theory in which µ is generated dynamically, large values ask presumably for nonperturbative

effects, from the bulk 2d viewpoint, µ changes only the boundary conditions of the scalar

field and its consequences can be treated exactly quantum-mechanically. On the other

hand, the explicit values of µ
(n)
c depend on the way we regularize the origin of the 2d space

and thus on the UV physics. Therefore, the physical consequences of the large critical

couplings are probably highly sensitive on the UV physics. This is not the case for the

small critical coupling (2.5), whose value is insensitive to the regularization procedure and

therefore of the UV physics, as we explicitly check by using a different regularization in

section 3.

2.1 Phase transition with bulk mass and boundary Higgs potential

A natural question arising in the present setup is what happens if one replaces the positive

contribution to the mass coming from the Dirichlet boundary condition by a bulk mass m,

keeping the 4d localized Higgs-type potential. The action describing this case is given by

S =

∫

d4xd2y

[

1

2
(∂Mφ)2 − 1

2
m2φ2 − Vδ(φ)

]

,

Vδ(φ) =

(

−µ2

2
φ2 +

λ

4
φ4

)

· δ2(y) , (2.16)

where the field φ has now Neumann boundary condition

∂rφ|r=R = 0 . (2.17)

We are working in the unbroken phase φc = 0, in which case the field equations for a 4d

field of mass p2 are

∆(2)φ +
µ2

πε2
φ = 0 , r < ε ,

∆(2)φ + (p2 − m2)φ = 0 , r > ε . (2.18)
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By defining q2 = m2 − p2, we find the solutions of (2.18) with Neumann boundary condi-

tions (2.17) and for q2 ¿ R−2 to be

φ(r) = f0 J0(
µr√
πε

) , r < ε ,

φ(r) = a

[

1 +
q2R2

2
ln

R

r
+

q2

4
r2

]

, r > ε . (2.19)

Matching conditions at r = ε for zero mass solutions p2 = 0 define the critical couplings in

this case to be given by the solutions of

[

1 −
µc J1(

µc√
π
)

√
π J0(

µc√
π
)

ln
R

ε

]

m2R2

2
=

µc J1(
µc√

π
)

√
π J0(

µc√
π
)

. (2.20)

Analogously to the case discussed in the previous section, eq. (2.20) has an infinity but

discrete number of solutions µ
(n)
c , out of which only one is perturbative µc ¿ 1. In this

perturbative case, similarly to (2.5), there is a classical running interpretation of the critical

coupling

πR2m2 =
µ2

c

1 − µ2
c

2π ln R
ε

= µ2
c(R

−1) , (2.21)

where µ2
c(R

−1) is the renormalized value of the (perturbative) critical coupling at the

compactification scale Q = R−1. From (2.21) it follows that for small bulk mass m2R2 ¿ 1,

µ stays perturbative at all energies above the compactification scale, whereas for large

masses m2R2 ≥ 1, µ enters strong coupling regime if there is a light 4d mode in the

spectrum.

Slightly below the critical couplings, the light 4d mass is given by

p2 = m2 − 2

R2

µ J1(
µ√
π
)/(

√
π J0(

µ√
π
))

1 − ln R
ε µ J1(

µ√
π
)/(

√
π J0(

µ√
π
))

. (2.22)

Very close to the perturbative critical coupling (2.21) , the light mass becomes

p2 = m2 − 1

πR2

µ2

1 − µ2

2π ln R
ε

= m2 − 1

πR2
µ2(R−1) (2.23)

and has again a transparent interpretation in terms of the classical running between the

compactification scale and the cutoff.

There are also light 4d states for q2 ∼ R−2 or larger. However, we are especially

interested in the case of small bulk masses m2R2 ¿ 1, for reasons to be explained in the

dual NJL formulation of a supersymmetric extension of this model.

3. Symmetry breaking phase transition in orbifolds

More standard and easy to handle spaces in string theory are orbifolds. We will consider

in the following a compactification on the orbifold T 2/Z2 and check as a warmup the

properties of the phase transition. The orbifold acts as the reflection (y1, y2) → (−y1,−y2).

– 6 –
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This orbifold has four fixed points. The fixed points and their corresponding Z2 coordinate

transformations are summarized as:

y1 → −y1 y1 → −y1 + 2πR1 y1 → −y1 y1 → −y1 + 2πR1

y2 → −y2 y2 → −y2 y2 → −y2 + 2πR2 y2 → −y2 + 2πR2

(0, 0) (πR1, 0) (0, πR2) (πR1, πR2) .

(3.1)

In complex notation, the action of Z2 on the compact space is a two-dimensional π rotation,

Z2(y1 + iy2) = eiπ(y1 + iy2).

The field equation is free in the bulk and has a delta function source at the origin,

suitably replaced by a mass distribution

∂M∂MΦ +
∂V

∂Φ
δ2(y) = 0 . (3.2)

Let us now proceed to study the mass spectrum for a scalar field with antiperiodic boundary

conditions in the y1-direction4

Φ(y1 + 2πR1, y2) = − Φ(y1, y2) . (3.3)

If the scalar field Φ is even under the orbifold action, it can be decomposed on a

complete basis formed by the cosine functions:

Φ(x,y) =
∑

(k1,k2)∈I

1√
2π2R1R2

cos

(

k1 + 1/2

R1
y1 +

k2

R2
y2

)

φ(k1,k2)(x) . (3.4)

The indices k1,2 belong to the set I

I = {(0; 0), (1 . . . ∞; 0), (0,−1; 1 . . . ∞), (1 . . .∞; 1 . . .∞), (1 . . .∞;−∞ . . . − 1)} . (3.5)

In the unbroken vacuum, the quadratic part of the scalar action takes the following form

after integration over the two extra dimensions

L = Lkin − 1

2

∑

(k1,k2)∈I

(

(k1 + 1/2)2

R2
1

+
k2
2

R2
2

)

φ2
(k1,k2)

+ µ̄2

(

∑

(k1,k2)∈I
φ(k1,k2)

)2

, (3.6)

where

µ̄2 ≡ µ2

4π2R1R2
(3.7)

is the naive (volume suppressed) four dimensional lightest scalar mass. The mass term of

the 4d action is

Lmass = −1

2

∑

(k1,k2),(p1,p2)∈I
φ(k1,k2) M2

(k1,k2),(p1,p2)
φ(p1,p2) , (3.8)

4This is the analog of the Dirichlet boundary condition on the disk imposed in [2]. As will become

clear from our discussion, different boundary conditions, for example Φ(y1, y2 + 2πR2) = −Φ(y1, y2) or

Φ(y1 + 2πR1, y2 + 2πR2) = −Φ(y1, y2) lead to the same critical coupling (2.5).

– 7 –



J
H
E
P
1
1
(
2
0
0
6
)
0
1
0

with the mass matrix given by

M2
(k1,k2),(p1,p2)

= −2µ̄2 +

(

(k1 + 1/2)2

R2
1

+
k2
2

R2
2

)

δk1,p1
δk2,p2

. (3.9)

The diagonalization of this mass matrix defines the physical mass eigenstates.

Let us now try to find the eigenvalues and eigenvectors of the mass matrix (3.9). We

use the techniques used in 5d models in [8, 9] and in 6d models in [7]. The characteristic

equation is given by

M2Ψm = m2Ψm , (3.10)

where m2 represents the eigenvalues and Ψ is the eigenvector in the basis |k1, k2 〉(k1,k2)∈I ,

i.e Ψ(k1,k2) = 〈k1, k2|Ψm〉 . The matrix equation (3.10) is equivalent to the infinite set of

explicit equations for every (k1, k2) ∈ I

2µ̄2Ψ′ =

(

−m2 +
(k1 + 1/2)2

R2
1

+
k2
2

R2
2

)

Ψ(k1,k2) , (3.11)

where Ψ′ is independent of (k1, k2). The solution of the equations (3.11) is given by

Ψ(k1,k2) =
N

−m2 + (k1 + 1/2)2/R2
1 + k2

2/R
2
2

, (3.12)

where N is a normalization constant independent of (k1, k2). Putting this solution back in

the equation (3.11) and using the fact that

∑

(k1,k2)∈I
=

1

2

∞
∑

k1,k2= −∞
, (3.13)

we obtain the eigenvalue equation

1

µ̄2
=

∞
∑

k1,k2=−∞

1

−m2 + (k1 + 1/2)2/R2
1 + k2

2/R
2
2

, (3.14)

or equivalently

1

µ2
= D(p2 = m2, y1 = y2 = 0) , where

D(p2, y1, y2) =
1

4π2R1R2

∞
∑

k1,k2=−∞

cos[(k1 + 1/2)y1/R1 + k2y2/R2]

−p2 + (k1 + 1/2)2/R2
1 + k2

2/R
2
2

(3.15)

is the propagator in a mixed, 4d momentum and 2d position, representation. We want

to find an estimate for the lightest solution, m2, of the eigenvalue equation (3.14). The

procedure we are using is similar to the one used in [7] and we only give the result here. It

is clear from (3.14) that there is a critical coupling, defined for arbitrary radii by

4π2R1R2

µ2
c

=
∑

|ki|<kmax

i

1

(k1 + 1/2)2/R2
1 + k2

2/R
2
2

, (3.16)
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which signals a second order phase transition, where the lightest mass m2 changes sign.

For equal and large radii and by cutting the sums at kmax
i = RΛ, we find µc to be exactly

equal to the value (2.5) worked out in [2]. A puzzle arises however in this KK approach to

the phase transition. Indeed, whereas we accurately describe the perturbative critical cou-

pling (2.5), eq. (3.16) does not contain the nonperturbative couplings µ
(n)
c present in (2.11).

We believe that this is due to the way the logarithmic divergence is handled in (3.16), or

equivalently, to the “brane resolution” for nonperturbative values of µ2. Indeed, as we

already mentioned, in this case wave functions oscillate significantly inside the brane and

the regularization procedure becomes more subtle.

Very close and slightly below the phase transition we can linearize the mass equa-

tion (3.14) in order to find for the lightest mode

m2 ' 4π2

αR1R2

µ2
c − µ2

µ4
c

' 4π2

αR1R2
(

1

µ2
− 1

µ2
c

) , (3.17)

where

α = R−2
1 R−2

2

∞
∑

k1,k2=−∞

1

[(k1 + 1/2)2/R2
1 + k2

2/R
2
2]

2
. (3.18)

The mass (3.17) is not exactly the same as the one worked out in [2]. The reason is that

the geometries in [2] and in the present section are different and affect the IR physics,

in particular physical masses. UV physics, however is the same for both geometries ;

in particular the value (at the leading order in µ2) of the perturbative critical coupling

µc defining the phase transition is the same as in (2.5). Since the regularizations used

on the disk and in (3.16) are different, this shows the regularization independence of the

perturbative critical coupling.

Above the critical value, the scalar gets a vev (more precisely, a profile in the compact

space)

φc(y1, y2) = φ0N
∑

k1,k2

cos[(k1 + 1/2)y1/R1 + k2y2/R2]

(k1 + 1/2)2/R2
1 + k2

2/R
2
2

, (3.19)

where according to [2]

φ2
0 =

µ2 − µ2
c

λ
(3.20)

and N is a normalization constant such that at the origin (more precisely, at the regularized

mass distribution), φc(0, 0) = φ0.

4. Localized matter and dual description: the NJL model

An immediate question is how to generate in a natural way the localized scalar potential

needed for the symmetry breaking. The simplest idea is to add (Weyl for definiteness, but

the situation is similar for Dirac fermions) N fermions χi on the boundary, with Yukawa

couplings

gχiχiφ(y = 0) + h.c. , (4.1)

to the (now complex) bulk field. The model has, in addition to a global SO(N) symmetry,

a continuous chiral U(1) symmetry under which φ is charged.
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4.1 The bulk picture

One-loop quantum corrections generated by the fermion loops automatically generate a

scalar potential of the appropriate form (2.1), plus higher-order terms. The continuous

chiral symmetry will now be spontaneously broken at the phase transition.

In the large N limit, the leading induced scalar potential is

Veff(φ) = − N

∫

d4p

(2π)4
ln(p2 + 4g2|φ|2) , (4.2)

which can be expanded in powers of φ as

Veff(φ) = −4Ng2|φ|2
∫

d4p

(2π)4
1

p2
+ 8Ng4|φ|4

∫

d4p

(2π)4
1

p4
+ · · · . (4.3)

We therefore induced radiatively, to the leading order in an 1/N expansion, a potential of

the form (2.1) with

µ2 =
Ng2

4π2
Λ2 . (4.4)

As usual [10] the power expansion in φ has severe IR divergences, which are however re-

summed in the effective potential (4.2). Then the condition defining the symmetry breaking

phase is
Ng2

4π2
Λ2 >

4π

ln(R2Λ2)
, (4.5)

whereas the perturbative expansion used in [2], for µ2 ¿ 1, translates here into

Ng2

4π2
Λ2 ¿ 1 . (4.6)

For 〈φ〉 6= 0 the brane fermions χi acquire a mass and the chiral symmetry is spontaneously

broken, with the imaginary part of φ being the Goldstone boson.

4.2 Dual picture: the NJL model

There is a dual description in which the bulk field φ is integrated out at tree-level and the

chiral symmetry breaking is entirely described in terms of nonperturbative brane dynamics.

The resulting brane lagrangian has the simple form

Sbrane = −i χiσ
µ∂µχ̄i + Gχiχiχ̄jχ̄j , (4.7)

with

G =
g2

2π2R1R2

∑

(k1,k2)∈I

1
(k1+1/2)2

R2

1

+
k2

2

R2

2

' g2

4π
ln(R2Λ2), (4.8)

where in the last equality we considered equal and large radii R1 = R2 = R À M−1
∗ ,

where M∗ is the 6d fundamental (Planck) scale. Therefore the ”dual” lagrangian (4.7) is

the Nambu-Jona-Lasinio model [3], in which the chiral symmetry is dynamically broken
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  = MΛ
*

R
−1

Λ

G

QG(   )

Figure 1: Classical running of the four-fermion coupling induced by the cumulative effect of the

Kaluza-Klein states. The coupling becomes strong G = Gc at the compactification scale and induces

chiral symmetry breaking.

by the fermion condensate 〈χiχi〉 for values of the four-fermion coupling above the critical

value

G > Gc , where G−1
c =

NΛ2

4π2
. (4.9)

By using (4.4) and (4.8), we find that the condition (4.9) is precisely the same as the

condition for the broken phase derived in the ”bulk” approach (4.5).

Whereas in the deep IR the 6d bulk model is equivalent to the 4d NJL model, their

UV behaviour is different.5 In particular, due to the cumulative effects of the KK states,

the four-fermion coupling G has a logarithmic running

G(Q) ' g2

4π
ln(Λ2/Q2) (4.10)

from the cutoff scale Λ to the compactification scale R−1, as illustrated in figure (1). So

G increases in the IR and can generate dynamical chiral symmetry breaking. Even for

couplings g2 ¿ 4π such that a perturbative treatment is available, the non-decoupling of

heavy KK states generates a large four-fermion coupling in the infrared which drives the

symmetry breaking.

In the bulk formulation, the mass parameter was generated through quantum loops

and the phase transition had a ”classical” (quantum mechanical) nature. In the NJL

formulation, the four-fermion coupling is generated classically while the phase transition is

generated in a nonperturbative fashion through the quantum gap equation

1 = 4NG

∫

d4p

(2π)4
1

p2 + m2
= 4 N G D(x = 0,m2) . (4.11)

In the previous expression, D(x,m2) is the 4d propagator in the position representation

of a scalar field, and m is the dynamical fermion mass.

5For earlier ideas of the role of extra dimensions in dynamical symmetry breaking, see [11]. For a recent

extensive review on strong dynamics, see e.g. [22].
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The counterpart of the NJL quantum gap equation (4.11) in the bulk formulation is

the classical gap equation (3.14)-(3.15). The similarity of the bulk equation (3.15) and the

NJL gap equation (4.11) is transparent.

Notice that the dual NJL description is valid in principle only below the phase tran-

sition. In this case and when the classical running interpetation is valid, the connection

between the Higgs-localized scalar potential and the NJL model can also be understood in

terms of the compositeness condition of [5]. There, it was argued, by introducing a compos-

ite scalar field H, that the kinetic term ZH |∂H|2 vanishes, ZH → 0, at the compositeness

scale ΛC . By a rescaling of the kinetic term to the canonical form, this is equivalent of

imposing the boundary conditions mH → ∞, λH → ∞, where the parameters mH , λH are

defined from the effective scalar potential V = −m2
H |H2| + λH |H|4. In our 6d model, the

running between the UV cutoff and the compactification scale R−1 produces µ2 and λ to

diverge at R−1 precisely at the critical point. With a rescaling φ → Z1/2φ of the scalar to

go from the convention of [2] to the normalization of [5], keeping the scalar mass fixed, the

wave function is

Z(Q) = 1 − µ2

2π
ln

Λ

Q
. (4.12)

At the phase transition µ = µc, we get

Z(Q = R−1, µ = µc) = 0 , λ(Q = R−1) = λ(Λ) Z−2(Q = R−1, µ = µc) → ∞ .

(4.13)

The first of these conditions is similar to the one-loop (large N) induced wave function

displayed in [5], whereas the one for scalar self-coupling is different, since the UV physics is

different. A natural candidate for the compositeness scale in our case is therefore ΛC = 1/R.

Analogously to the scalar parameters µ, λ, the Yukawa coupling g gets an induced

running which can be easily integrated:

Q
dg

dQ
= −µ2

2π
g , g(Q) =

g(Λ)

1 − µ2

2π ln Λ
Q

. (4.14)

The compositeness conditions have therefore to be supplemented with

g(Q = R−1) → ∞ , (4.15)

in analogy with the compositeness condition for the top quark in the top condensation sce-

nario [5]. Whereas the first and the third conditions (4.13)-(4.15) are indeed similar to the

compositeness conditions in [5], close to the critical coupling µc the running interpretation

breaks down and the 4d physics is actually completely perturbative. Indeed, defining the

4d effective theory as in [2] by

φ(xµ, r) =

√

2

πR2
ln

R

ε
σ(xµ) , r < ε ,

φ(xµ, r) =

√

2

πR2
ln

R

r
σ(xµ) , ε < r < R , (4.16)
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we find, at µ ' µc, the 4d scalar self-coupling and Yukawa coupling to the fermions to be

λ4 =
64π2

µ8
c

λ

R4
, g4 =

2
√

2π

µ2
c

g

R
. (4.17)

Since 1/µ2
c ∼ ln(ΛR), the couplings (4.17) are log enhanced compared to their naive (vol-

ume suppressed) values, but are still perturbative and under control.

Whereas the NJL 4d description and the bulk 6d one with appropriate boundary con-

ditions are equivalent in the IR, the 6d picture can sometimes be simpler to use in order

to describe the symmetry breaking pattern. For example, consider two set of fermions

living in two different fixed points, (0, 0) and (0, πR2) and interacting both with (rela-

tively large) Yukawa coupling to the same 6d bulk scalar, which has nontrivial boundary

conditions (3.3). In the NJL picture, there are three four-fermionic interactions coming

from the two sets of fermions, with specific four-fermion couplings. In the bulk picture,

localized loops of fermions generate localized scalar potentials at both fixed points. The

scalar action in this case is

S =

∫

d4xd2y

[

1

2
(∂Mφ)2 − Vδ,1(φ) − Vδ,2(φ)

]

,

Vδ,1(φ) =

(

−µ2
1

2
φ2 +

λ1

4
φ4

)

· δ(y1)δ(y2) ,

Vδ,2(φ) =

(

−µ2
2

2
φ2 +

λ2

4
φ4

)

· δ(y1)δ(y2 − πR2) . (4.18)

It is a straightforward exercise to work out the equation defining the mass eigenstates (3.10)

in the unbroken phase. We find

[

1

µ̄2
1

−
∞
∑

ki=−∞

1

m2+(k1+1/2)2/R2
1+k2

2/R
2
2

]

×
[

1

µ̄2
2

−
∞
∑

ki=−∞

1

m2+(k1+1/2)2/R2
1+k2

2/R
2
2

]

=





∞
∑

ki=−∞

(−1)k2

m2 + (k1 + 1/2)2/R2
1 + k2

2/R
2
2





2

. (4.19)

Putting different fermions in different positions in the compact space can also provide a

geometrical understanding of various values of their Yukawa couplings via the wave function

profile of the bulk scalar.

5. Supersymmetric extension and coupling to localized chiral fields

The basic mechanism we used for generating a sizable running uses the logarithmic terms

coming from the renormalization of the localized mass term. This implies in particular that

the corrections to the mass should be forbidden in the bulk. The natural way to implement

this is to have supersymmetry in the bulk. Since the potential has to be generated on the

brane, we add boundary chiral fields in supersymmetric multiplets, with supersymmetry

softly broken on the boundary.
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There are two inequivalent ways to supersymmetrize, by using either bulk hypermulti-

plets or bulk vector multiplets. Let us start with the first case and consider a bulk hyper-

multiplet in 6d, which in 4d N = 1 supersymmetric language has two chiral (super)fields

Φ1,2 = (φ1,2, ψ1,2), and N localized matter superfields Ai = (zi, χi), with i = 1 · · ·N , where

we denoted in parenthesis the scalar and fermionic components of the multiplets. By using

the N = 1 superfield formalism of ref. [12], the action is given by

S =

∫

d2yd4θ
(

Φ†
1Φ1 + Φ†

2Φ2

)

+ (

∫

d2yd2θ Φ1 (∂5 + i∂6) Φ2 + h.c.)

+

∫

d4 θA†
iAi(1 − Σ2θ2θ̄2) +

(
∫

d2θ g Φ1(y = 0) AiAi + h.c.

)

, (5.1)

where Σ is a scalar soft mass term for the boundary fields. In order to write the

component lagrangian, we first solve for the auxiliary fields

F †
φ,1 = −(∂5 + i∂6)φ2 − gziziδ

2(y) ,

F †
φ,2 = (∂5 + i∂6)φ1 , F †

Ai
= −2gφ1zi . (5.2)

After eliminating auxiliary fields, the component lagrangian is

S =

∫

d2y
[

|∂Mφ1|2 + |∂Mφ2|2 − iψ1σ
µ∂µψ̄1 − iψ2σ

µ∂µψ̄2 + (ψ1(∂5 + i∂6)ψ2 + h.c.)
]

−
[

Skin(zi, χi) + gφ1χiχi + 2gziψ1χi + 4g2|φ1|2|zi|2

+g
{

zizi(∂5 − i∂6)φ̄2 + h.c.
}

+ Σ2|zi|2 + g2z2
i z̄

2
j δ2(0)

]∣

∣

∣

∣

y=0

. (5.3)

Analogously to the non supersymmetric case we impose nontrivial boundary conditions

Φ1,2(y1 + 2πR1, y2) = − Φ1,2(y1, y2) . (5.4)

The Z2 orbifold has a nontrivial action on the bulk hypermultiplet fields. A consistent

assignement is Φ1 to be even and Φ2 to be odd. The KK expansions in this case are

Φ1(x,y) =
∑

(k1,k2)∈I

1√
2π2R1R2

cos

(

k1 + 1/2

R1
y1 +

k2

R2
y2

)

Φ
(k1,k2)
1 (x) ,

Φ2(x,y) =
∑

(k1,k2)∈I

1√
2π2R1R2

sin

(

k1 + 1/2

R1
y1 +

k2

R2
y2

)

Φ
(k1,k2)
2 (x) . (5.5)

The second possibility of supersymmetrization is to add bulk 6d vector multiplets,

which in 4d N = 1 language are described by vector V and chiral φ supermultiplets,

both in the adjoint representation of a gauge group G. In order to be able to couple φ

to the localized matter, we need to choose Z2, the orbifold action, such that V is odd

and therefore has no zero modes, whereas φ is even and can therefore couple to boundary

chiral multiplets. More precisely, we can start from a nonabelian gauge group and give a

nontrivial action of the orbifold on the gauge degrees of freedom

V (−y1,−y2) = P † V (y1, y2) P , φ(−y1,−y2) = − P † φ(y1, y2) P , (5.6)
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where P is a matrix in the adjoint representation of the gauge group, such that P 2 = 1.

The surviving (even) gauge group generators Ta satisfy [Ta, P ] = 0, whereas the remaining

ones Tα are projected out. The complementary states φα from the adjoint scalar φ survive

at the fixed points and can consistently be coupled to the localized matter. By imposing

nontrivial boundary conditions on φα we generate a setup where φα plays the role of the

scalar field with localized Higgs potential and can trigger the phase transition. While this

can be an interesting alternative, we will not pursue this possibility further on.

5.1 Bulk picture

The leading quantum corrections in 1/N come at one-loop with the chiral (super)fields Ai

running in the loop. There is an induced effective potential for φ1 which can be computed

in the standard way [10]. The result is

Veff(φ1) = N

∫

d4p

(2π)4
{ln(p2 + Σ2 + 4g2|φ1|2) − ln(p2 + 4g2|φ1|2)} , (5.7)

which can be expanded in powers of φ1 as

Veff(φ1) = −4NΣ2g2|φ1|2
∫

d4p

(2π)4
1

p2(p2+Σ2)
+ 8NΣ2g4|φ1|4

∫

d4p

(2π)4
2p2 + Σ2

p4(p2+Σ2)2
+ · · · .

(5.8)

We therefore induced radiatively, in the leading order in an 1/N expansion, a potential of

the form (2.1) with

µ2 =
Ng2

4π2
Σ2 ln

Λ2

Σ2
. (5.9)

In a first approximation, we can consider this as the bare coupling in the model of [2].

Then the condition defining the symmetry breaking phase, for large and equal radii R1 =

R2 À 1
Λ , is

Ng2

4π2
Σ2 ln

Λ2

Σ2
>

4π

ln(R2Λ2)
, (5.10)

whereas the perturbativity condition translates here into

Ng2

4π2
Σ2 ln

Λ2

Σ2
¿ 1 . (5.11)

For 〈φ1〉 6= 0 the brane fermions χi acquire a mass and the chiral symmetry is spontaneously

broken. Finally, fermion loops also induce localized operators of the form |(∂5 + i∂6)φ2|2.
Their effect is to renormalize the KK masses of the odd field φ2, but this effect has no

relevance for our present discussion.

Notice that for natural values of (the dimensionful coupling) g, eq. (5.10) can be

satisfied only for large values of the soft breaking parameter Σ. This is easy to interpret

in the dual NJL description, to which we now turn.
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5.2 Dual description: the softly supersymmetric NJL model

There is a dual description in which the bulk fields Φi are integrated out at tree-level and the

chiral symmetry breaking is entirely described in terms of nonperturbative brane dynamics.

Since the bulk plus the interaction action is supersymmetric, the integrating out procedure

gives rise to a supersymmetric effective action, to add to the brane lagrangian with softly

broken supersymmetry. There are some subtleties in proving that the integration out leads

to a well-defined four-dimensional action without ill-defined (i.e.δ2(0)) terms. Analogously

to former studies in 5d [13], it can be checked that the singular terms cancel out as they

should. The resulting brane lagrangian has the simple form

Sbrane =

∫

d4θ{A†
iAi(1 − Σ2θ2θ̄2) + G AiAiA

†
jA

†
j} , (5.12)

where

G =
g2

2π2R1R2

∑

(k1,k2)∈I

1
(k1+1/2)2

R2

1

+
k2

2

R2

2

. (5.13)

Therefore the ”dual” lagrangian is a softly-broken supersymmetric version [14, 15] of the

Nambu-Jona-Lasinio model [3]. The dynamics of the softly broken supersymmetric version

of the NJL model in the large N expansion was investigated in detail in [15]. It was found

there that chiral symmetry is dynamically broken by the fermion condensate 〈χiχi〉, for

values of the four-fermion coupling above the critical value

G > Gc , where G−1
c =

NΣ2

4π2
ln

Λ2

Σ2
. (5.14)

By using (5.13), we find that the condition (5.14) is precisely the same as the condition

for the broken phase derived in the previous section, which for equal and large radii is

displayed in (5.10).

As in the 4d supersymmetric NJL model, there is a naturalness problem in the 6d

construction. In the 4d SUSY NJL model, the symmetry breaking occurs for values of the

four-fermion interaction G >∼ 1/Σ2 À 1/Λ2 much larger than its natural value. For small

supersymmetry breaking ΣR ¿ 1, this generates strong four-fermion interactions well

below the compositeness scale Λc = R−1. As transparent in (5.13), the natural scale of the

strong four-fermion interactions for our 6d explicit realization is actually R−1, unless g is

much larger than its natural value. The reason is simpler to understand by rewriting (5.12)

in an appropriate form to compare with the Minimal Supersymmetric Standard Model

(MSSM) [14]

Sbrane =

∫

d4θ{A†
iAi(1 − Σ2θ2θ̄2) + H†

1H1} +

(∫

d2θH2 (mH1 − g AiAi) + h.c.

)

. (5.15)

Since H2 is a Lagrange multiplier in (5.15), the two lagrangians (5.12) and (5.15) are

equivalent for G = g2/m2. As explained in [14, 15], H2 acquires a kinetic term Z2H
†
2H2

at one-loop in the large N expansion, which vanishes at the compositeness scale Z2(Q =
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Λc) = 0. Below Λc, both H1 and H2 are dynamical fields and are to be identified with the

two Higgs doublets of the MSSM. In the language of (5.15), the naturalness problem is that

in order to keep the Higgs mass light, the supersymmetric mass term should be of order

m ∼ Σ, which is nothing but the reincarnation of the so-called µ-problem of MSSM in the

SUSY NJL case. In the 6d case, the analog of the action (5.15) is (5.1), the analog of H2 is

Φ1, whereas the analog of the supersymmetric mass m is the mixing term Φ1(∂5 + i∂6)Φ2

in (5.1). Upon KK expansion, we get m ∼ (1/2R1). Equivalently, this can be seen from

the nontrivial boundary conditions (5.4) via the KK expansion (5.5). Since the symmetry

breaking only occurs for m ∼ Σ, the model also requires large supersymmetry breaking

scale, as already anticipated.

If we believe in the equivalence between the 6d scalar model and the 4d NJL model

also close to the nonperturbative critical couplings of section 2, then the corresponding

Yukawa coupling g can be large and produce a larger Fermi coupling G. However it will be

hard to argue reliably for very large Yukawas. Maybe a simpler road is to use a small bulk

mass mR ¿ 1, which will generate a large Fermi coupling G ∼ g2/R2m2. Another solution

in order to get symmetry breaking compatible with small supersymmetry breaking scale

Σ is to start with small supersymmetry mass generated by boundary conditions. In other

words, we need

(Φ1 + iΦ2)(y1 + 2πR1, y2) = e2πiω(Φ1 + iΦ2)(y1, y2) , (5.16)

with ω ¿ 1, in which case m ∼ (ω/R1). Whereas from first principles in string theory

ω is quantized and cannot be very small, in analogy with known 5d examples [9], ω ¿ 1

can actually be realized by starting with periodic boundary conditions and adding small

supersymmetric mass terms for bulk fields localized at the fixed points (πR1, 0) and/or

(πR1, πR2). Supersymmetry is broken softly with ΣΛ ¿ 1 only at the origin (0, 0). After re-

diagonalization of the mass matrix, this is equivalent to starting with nontrivial boundary

conditions (5.16) and no localized mass terms. This is technically natural in the sense that

a small supersymmetric mass term in the fixed points is protected by supersymmetry.

6. String theory realization

It is legitimate to ask if it is possible to realize the field theory construction we did provide

in [2] and in this paper from a string theory framework. The answer is positive and

we provide here one possible construction for the (softly broken) supersymmetric case of

section 5.6 The main requirement for the string construction is to provide a large and

flat two-dimensional compact space, so there should be no localized source which would

curve the large 2d space. Indeed, our field theory analysis was done in flat space. This

situation can be realized in orientifold constructions, where orientifold planes cancel the

sources provided by the branes. The basic ingredients of the construction are that the field

6Other realizations of dynamical symmetry breaking can be found in [16] for string realizations of a

nonlocal NJL version and [17] ([18]) for a string (field-theory) realization of the chiral symmetry breaking

in QCD.
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φ arises from D5 branes wrapping our large 2d space, whereas the localized fermions arise

at the intersection between the D5 branes and a different set of branes, the intersection

being four dimensional and generating chiral fermions. We use orientifolds of type IIB

string theory with D5-branes wrapping different coordinates of the internal space. Our

example is based on the orientifold projection Π′ = Π π4π5π8π9, where Π is the left-right

world-sheet interchange, π4, π5 are parity operations in two compact coordinates x4 and x5,

to be identified with the two large dimensions (y1, y2) in our field theoretical construction

and π8, π9 are parity operations in two internal noncompact coordinates x8 and x9. The

basic building block for brane configuration we consider is then the following

coord. 0 1 2 3 4 5 6 7 8 9

D51 x x x x x x 0 0 0 0

D52 x x x x 0 0 x x 0 0

O52 x x x x 0 0 x x 0 0 (6.1)

In (6.1), crosses x denote coordinates parallel to the branes, whereas 0 denotes orthogonal

coordinates. Notice that D52 branes and O52 planes are orthogonal to the large 2d space

(x4, x5). In order to keep the 2d space flat we need a configuration with D52 branes on

top of the O52 planes, with locally zero tension and charge. We add a Wilson line 〈W4〉 on

the D51 branes in the compact x4 coordinate, which has the effect of breaking the gauge

group and giving masses to fields charged under W4. There are in particular four charged

scalar fields φi, which get a mass from this Hosotani mechanism and will be identified

with the master field(s) of our field theory model. Notice first of all that this field lives

indeed in six dimensions, in the bulk of our large 2d compact space and it corresponds to

a hypermultiplet φ = (φ1, φ2) from the 4d viewpoint, as in section 5. The mass of φ is

positive and it corresponds to the mass generated by boundary conditions analyzed in [2]

and in sections 2, 4 and 5 of the present paper. Alternatively, using a Wilson line in one of

the last four coordinates x6 · · · x9 is equivalent to considering a bulk supersymmetric mass

as in the section 3. For simplicity, we can consider the last three coordinates x7 · · · x9 as

being noncompact, whereas x6 is a circle and will be used to break supersymmetry a la

Scherk-Schwarz.

The D52 branes gauge fields are nondynamical in four dimensions and play the role of

global symmetries. The D51 brane degrees of freedom, on the other hand, are dynamical

and contain in particular gauge fields and the field(s) φ. The D51-D52 sector, after addi-

tional orbifold projections to be discussed below, contains massless N = 1 chiral multiplets

localized in four dimensions, to be identified with the 4d chiral multiplets Ai in section

5. At the effective low energy action level , the setup is similar to the one considered in

section 5, with couplings of the form AφA and one expects the arguments presented there

to apply and generate dynamical symmetry breaking. Non-trivial boundary conditions in

the compact coordinate x6 a la Scherk-Schwarz break supersymmetry at tree-level in the

D52 sector, whereas the D51 branes, being orthogonal to the x6 coordinate, feel the break-

ing only through radiative corrections [19]. Notice that the dynamics in the large bulk

coordinates x4, x5 is supersymmetric at that stage. At one-loop, supersymmetry breaking
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propagates in the D51- D52 sector and generates the localized 4d soft terms that were used

in section 5.

The setup preserve until now N = 2 supersymmetry in 4d spontaneously broken to

N = 0 by the Scherk-Schwarz deformation, so additional ingredients are needed in order

to generate chirality. The standard internal spaces used in this respect are the Calabi-Yau

spaces or the orbifolds. We choose here the second possibility. We introduce additional Z2

and Z3 orbifold operations acting on the internal coordinates as

Z2 (z1, z2, z3) = (−z1,−z2, z3) , Z3 (z1, z2, z3) = (e
2πi
3 z1, z2, e

− 2πi
3 z3) ,

where z1 =
x4 + ix5√

2
, z2 =

x6 + ix7√
2

, z3 =
x8 + ix9√

2
(6.2)

are the three complex internal coordinates. The resulting orientifold, which is dual to

the so-called Z3 × Z2 or Z ′
6 type I orbifold in the literature [20] after performing four T-

dualities in x6, x7, x8, x9, reduces supersymmetry down to N = 1 in 4d. The 4d type I

Z3×Z2 orbifold has D9 brane / O9 planes and one set of D5 branes / O5 planes, wrapping

the third internal torus. After the four T-dualities, the D9 branes (O9 planes) become our

D51 branes (O51 planes) and the D5 (O5) branes become our D52 branes (O52 planes).

Our Wilson line is in the type I orbifold a Wilson line on the D9 branes.

In order to break completely supersymmetry, as already announced we are adding a

Scherk-Schwarz operation in the compact coordinate x6, compatible with the two orbifold

operations. Our Scherk-Schwarz deformation is a 2π rotation in x6 and one 4d spacetime

coordinate. The corresponding worldsheet current anticommutes with the Z2 orbifold

projection and commutes with the Z3 one, as required by the consistency of the string

construction [21]. A last subtlety, explained in detail in [19] is that due to the Scherk-

Schwarz operation, the O51 planes, which are perpendicular to the x6 coordinate used

in the supersymmetry breaking, are actually pairs of O51 orientifold - O51 antiorientifold

planes, situated at x6 = 0 and x6 = πR6, respectively. If the radius R6 À ls is large

enough, the closed string tachyon is massive and the timescale for the instability can be

large enough. The D51 branes should be at (or close to) the point x6 = 0, such that the

strings D51 -Ō51, which break supersymmetry, to be very massive.

A possible objection to the present setup is that the boundary conditions generated

mass and/or the bulk hypermultiplet mass m are not constant but field-dependent, given

by the vev of the Wilson line on the D51 branes. Since the setup in non-supersymmetric,

the Wilson line acquires a potential and its vev will be dynamically fixed. This last point

needs further investigation which is however beyond the goals of the present paper. This

objection is also valid for the field-theory construction, in that we assumed that the radii of

the large 2d space were stabilized by additional dynamics. To conclude, the setup presented

in this section does realize the (softly) supersymmetric model work out in section 5, where

the supersymmetry breaking is soft and comes from a Scherk-Schwarz deformation in an

extra space coordinate.

The original non-superymmetric setup of [2] and in sections 2,3 of the present paper

can be in principle also realized for smaller values of R6
>∼ ls. However in this case we
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expect severe tachyonic instabilities in the system, which need to be suppressed in order

for the string picture to be a viable description of the field-theory construction.
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